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ABSTRACT
In this paper, the problem of measuring the degree of subsethood in the interval-valued fuzzy setting is addressed. Taking into
account the widths of the intervals, two types of interval subsethood measures are proposed. Additionally, their relation and
main properties are studied. These developments are made both with respect to the regular partial order of intervals and with
respect to admissible orders. Finally, some construction methods of the introduced interval subsethood measures with the use
interval-valued aggregation functions are examined.
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1. INTRODUCTION

Since fuzzy sets were introduced by Zadeh [1], many new
approaches and theories have arisen to treat imprecision and uncer-
tainty in the information theory schema. Particularly, many works
can be found in the literature where different types of transitivities,
distance measures, similarity measures and subsethood, inclusion
or equivalence measures between fuzzy sets have been proposed
([2–11] or [12,13]). Focusing on subsethood measures, different
axiomatizations have been proposed [14–17] and they have been
adapted and applied in different settings [18,19].

On the other hand, as extensions of classical fuzzy set theory, intu-
itionistic fuzzy sets [20] and interval-valued fuzzy sets [21,22] are
very useful in dealing with imprecision and uncertainty (cf. [23]
for more details). In this setting, different proposals for subsethood
measures between interval-valued fuzzy sets have been proposed
[24,25]. However, these proposals failed to consider the width of
the intervals as an important feature in the axiomatization. In this
regard, recent works in the literature have proposed this property
to be taken into account [26,27].

Thus, the motivation of the present paper is to propose a more nat-
ural tool for estimating the degree of subsethood between interval-
valued fuzzy sets taking into account the widths of the intervals and
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to explore their properties. In this attempt, we introduce two types
of interval subsethoodmeasures, that is, operators that measure the
grade of subsethoodness of an interval in another, to end with a new
definition of subsethood measure for interval-valued fuzzy sets.

In the interval-valued fuzzy setting, we assume that the precise
membership degree of an element in a given set is a number
included in the membership interval. For such interpretation, the
width of the membership interval of an element reflects the lack of
precisemembership degree of that element. Hence, the fact that two
elements have the same membership intervals does not necessar-
ily mean that their corresponding membership values are the same.
Similarly, this interpretation requires that the uncertainty regard-
ing the membership degrees is translated to subsethood measures
between interval-valued fuzzy sets, resulting in interval-valued sub-
sethood measures. This is why we have taken into account the
importance of the notion of width of intervals while defining new
types of subsethood measures. Additionally, these developments
are made according to the standard partial order between intervals,
but also with respect to admissible orders [28], which are linear.

The paper is organized as follows. In Section 2, basic information
on interval-valued fuzzy sets is recalled and the notion of interval-
valued aggregation function is presented. In Section 3, two types of
interval subsethood measures for the interval-valued fuzzy setting
by using partial and linear orders are proposed. Then, some prop-
erties and construction methods are examined. Finally, some con-
clusions are presented.
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2. INTERVAL-VALUED FUZZY SETS

We use the following notation for the set of intervals

LI = {[x, x] ∶ x, x ∈ [0, 1] and x ⩽ x} ,

which are the basis of interval-valued fuzzy sets introduced by
Zadeh [21].

Definition 1. [22,21] An interval-valued fuzzy set A over the uni-
verse U is a mapping A ∶ U → LI such that

A(u) = [A(u),A(u)] for all u ∈ U,

whereA,A are fuzzy sets that satisfyA(u) ⩽ A(u) for all u ∈ U. The
class of all interval-valued fuzzy sets in U is denoted by IVFS(U).

2.1. Orders in the Interval-Valued
Fuzzy Setting

The standard partial order between intervals that is used in the
interval-valued fuzzy setting [20] is of the form

[x, x] ⩽LI [y, y] ⇔ x ⩽ y and x ⩽ y,

and [x, x] <LI [y, y] with strict inequalities. Thus, the operations
joint and meet are defined, respectively:

[x, x] ∨ [y, y] = [max(x, y),max(x, y)] ,

[x, x] ∧ [y, y] = [min(x, y),min(x, y)] .

The structure (LI, ∨, ∧) is a complete lattice with the partial order
⩽LI and 𝟏 = [1, 1] and 𝟎 = [0, 0] are the greatest and smallest
elements, respectively (see [28]).

We are interested in extending the partial order ⩽LI to a linear
order, solving the problem of existence of incomparable elements.
We recall the notion of an admissible order, which was introduced
in [28] and studied, for example, in [29] and [30]. The linearity of
the order is needed in many applications of real problems, in order
to be able to compare any two interval data [31].

Definition 2. [28] An order ⩽Adm in LI is called admissible if it is
linear and satisfies that for all x, y ∈ LI, such that x ⩽LI y, then
x ⩽Adm y.

Plainly, an order ⩽Adm on LI is admissible if it is linear and refines
the standard partial order ⩽LI . Admissible orders can be con-
structed in terms of aggregation functions [28].

Proposition 1. [28] Let B1,B2 ∶ [0, 1]2 → [0, 1] be two continuous
aggregation functions, such that, for all x = [x, x], y = [y, y] ∈ LI,
the equalities B1(x, x) = B1(y, y) and B2(x, x) = B2(y, y) hold if and
only if x = y. Thus, if the order ⩽B1,2 on LI is defined by

x ⩽B1,2 y ⇔ B1
(
x, x

)
< B1

(
y, y

)
or(

B1
(
x, x

)
= B1

(
y, y

)
and B2

(
x, x

)
⩽ B2

(
y, y

))
,

then ⩽B1,2 is an admissible order on LI.

Example 1 (28). The following are special cases of admissible linear
orders on LI:

• The Xu and Yager order:

[x, x] ⩽XY [y, y] ⇔ x + x < y + y or(
x + x = y + y and x – x ⩽ y – y

)
.

• The first lexicographical order (with respect to the first
variable), ⩽Lex1 defined as:

[x, x] ⩽Lex1 [y, y] ⇔ x < y or
(
x = y and x ⩽ y

)
.

• The second lexicographical order (with respect to the second
variable), ⩽Lex2 defined as:

[x, x] ⩽Lex2 [y, y] ⇔ x < y or
(
x = y and x ⩽ y

)
.

• The 𝛼𝛽 order, ⩽𝛼𝛽 defined as:

[x, x] ⩽𝛼𝛽 [y, y] ⇔ K𝛼
(
x, x

)
< K𝛼

(
y, y

)
or(

K𝛼
(
x, x

)
= K𝛼

(
y, y

)
and

K𝛽
(
x, x

)
⩽ K𝛽

(
y, y

))
,

for some 𝛼 ≠ 𝛽 ∈ [0, 1] and x, y ∈ LI, where
K𝛼 ∶ [0, 1]2 → [0, 1] is defined as K𝛼(x, y) = 𝛼x + (1 – 𝛼)y.

The orders ⩽XY, ⩽Lex1 and ⩽Lex2 are special cases of the order ⩽𝛼𝛽
with ⩽0.5𝛽 (for 𝛽 > 0.5), ⩽1,0, ⩽0,1, respectively. The orders ⩽XY,
⩽Lex1, ⩽Lex2 and ⩽𝛼𝛽 are admissible linear orders ⩽B1,2 defined by
pairs of aggregation functions (see Proposition 1), namely weighted
means. In the case of the orders ⩽Lex1 and ⩽Lex2, the aggregations
that are used are the projections P1, P2 and P2, P1, respectively.

Remark 1

Throughout the paper we use the notation ⩽ both for partial and
admissible orders, with 𝟎 and 𝟏 as minimal and maximal element
of LI, respectively. Regarding the results for the partial order, the
previously introduced notation ⩽LI is used, whereas for the results
for a general admissible order the notation ⩽Adm is used.

With respect to the order between interval-valued fuzzy sets, that is,
for A,B ∈ IVFS(U) and card(U) = n, n ∈ N we use the following
notion of partial order

A ⪯ B ⇔ ai ⩽ bi for i = 1, ..., n,

where ⩽ is the same kind of order (partial or linear) for each i and
ai = A(ui), bi = B(ui). Let us note that if for i = 1, ..., n we con-
sider the same linear order ai ⩽ bi, then the order A ⪯ B between
interval-valued fuzzy sets A,B is the partial one but it need not be
the linear one.

We consider the following notion of strict order between interval-
valued fuzzy sets

A ≺ B ⇔ ai < bi for i = 1, ..., n.
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2.2. Interval-Valued Aggregation Functions

Let us now recall the concept of an interval-valued aggregation
function, or an aggregation function on LI, which is an important
notion for many applications. We consider interval-valued aggre-
gation functions both with respect to ⩽LI and ⩽Adm.

Definition 3. [32,33] Let n ∈ ℕ, n ⩾ 2. A function ∶ (LI)n → LI
is called an interval-valued aggregation function if it is increas-
ing with respect to the order ⩽ (partial or linear (see Remark 1)),
that is,

∀xi, yi ∈ LI xi ⩽ yi ⇒ (x1, … , xn) ⩽ (y1, … , yn),

and it satisfies

(0, … , 0) = 0, and
(1, … , 1) = 1.

A special class of interval-valued aggregation functions is the one
formed by the so-called representable interval-valued aggregation
functions.

Definition 4. [34,35] An interval-valued aggregation function ∶ (LI)n → LI is said to be representable if there exist aggregation
functions A1,A2 ∶ [0, 1]n → [0, 1] such that

(x1, … , xn) = [A1
(
x1, … x

n

)
,A2

(
x1, … , xn

)
] ,

for all x1, … , xn ∈ LI, provided that A1
(
x1, … x

n

)
⩽

A2
(
x1, … , xn

)
.

Remark 2

Lattice operations ∧ and ∨ on LI are examples of representable
aggregation functions on LI with respect to the partial order ⩽LI ,
with A1 = A2 = min in the first case and A1 = A2 = max in the
second one. However, ∧ and ∨ are not interval-valued aggregation
functions with respect to ⩽Lex1, ⩽Lex2 or ⩽XY.

Indeed, note that

x = [0.2, 0.8] ⩽Lex1 y = [0.3, 0.7] ⩽Lex1 z = [0.5, 0.6],

and we obtain a contradiction with isotonicity of ∨ with respect to
⩽Lex1, that is,

[0.5, 0.8] = x ∨ z ⩾Lex1 y ∨ z = [0.5, 0.7].

Similarly, in the case of ∧ and ⩽Lex2 (or ⩽XY) that for

x = [0.4, 0.6] ⩽Lex2 y = [0.2, 0.8] ⩽Lex2 z = [0.1, 0.9],

we obtain a contradictionwith isotonicity of∧with respect to⩽Lex2,
that is,

[0.2, 0.6] = x ∧ y ⩾Lex2 x ∧ z = [0.1, 0.6].

Example 2. The following are examples of representable interval-
valued aggregation functions with respect to ⩽LI .

• The projections:

L

(
[x, x] , [y, y]

)
= [x, x] ,

R

(
[x, x] , [y, y]

)
= [y, y] .

• The representable product:

p

(
[x, x] , [y, y]

)
= [xy, xy] .

• The representable arithmetic mean:

mean

(
[x, x] , [y, y]

)
= [

x + y
2 , x + y

2 ] .

• The representable geometric mean:

gmean

(
[x, x] , [y, y]

)
= [√x y,√xy] .

• The representable harmonic mean:

H

(
[x, x] , [y, y]

)
=
⎧⎪
⎨⎪
⎩

[0, 0], if x = y = [0, 0],

[
2xy
x + y ,

2xy
x + y

] , otherwise.

• The representable power mean:

power

(
[x, x] , [y, y]

)
= [√

x2 + y2

2 ,√
x2 + y2

2 ] .

Representability is not the only possible way to build interval-
valued aggregation functions with respect to ⩽LI or ⩽Adm.

Example 3. Let A ∶ [0, 1]2 → [0, 1] be an aggregation function.

• The function1 ∶ (LI)2 → LI, where

1(x, y) = {
[1, 1], if (x, y) = (1, 1),
[0,A

(
x, y

)
] , otherwise,

is a nonrepresentable interval-valued aggregation function
with respect to ⩽LI .

• The functions2,3 ∶ (LI)2 → LI [36], where

2(x, y) = {
[1, 1], if (x, y) = (1, 1)

[0,A
(
x, y

)
] , otherwise,

3(x, y) = {
[0, 0], if (x, y) = (0, 0)

[A
(
x, y

)
, 1] , otherwise,

are nonrepresentable interval-valued aggregation functions
with respect to ⩽Lex1.
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• The functions4,5 ∶ (LI)2 → LI [36], where

4(x, y) = {[1, 1], if (x, y) = (𝟏, 𝟏)
[0,A(x, y)], otherwise,

5(x, y) = {[0, 0], if (x, y) = (𝟎, 𝟎)
[A(x, y), 1], otherwise,

are nonrepresentable interval-valued aggregation functions
with respect to ⩽Lex2.

• mean is an aggregation function with respect to ⩽𝛼𝛽 (cf. [29]).

• The following function

𝛼(x, y) = [𝛼x + (1 – 𝛼)y, 𝛼x + (1 – 𝛼)y] ,

is an interval-valued aggregation function on LI with respect to
⩽Lex1, ⩽Lex2 and ⩽XY for x, y ∈ LI and 𝛼 ∈ [0, 1] (cf. [30]).

There exist sufficient conditions for a representable interval-valued
aggregation function with respect to the partial order to be so with
respect to the orders ⩽Lex1 or ⩽Lex2.

Proposition 2. [37] Let ∶ (LI)n → LI be a representable interval-
valued aggregation function with component functions A1, A2. If the
component aggregation function A1 is a strictly increasing aggrega-
tion function on [0, 1], then is an interval-valued aggregation func-
tion with respect to the linear order ⩽Lex1.

Proposition 3. [37] Let ∶ (LI)n → LI be a representable interval-
valued aggregation function with component functions A1 and A2. If
the component aggregation function A2 is a strictly increasing aggre-
gation function on [0, 1], then  is an interval-valued aggregation
function with respect to the linear order ⩽Lex2.

The following is an example of interval-valued aggregation function
with respect to both ⩽Lex1 and ⩽Lex2.

Example 4. [37] Let 0 < r < s, r, s ∈ ℝ and w1, … ,wn ∈ [0, 1]
such that∑n

k=1 wk = 1.
Then, the function, given by

(x1, … , xn) = [ r
√√√
√

n

∑
k=1

wkxrk,
s
√√√
√

n

∑
k=1

wkx
s
k] ,

is an interval-valued aggregation function with respect to the linear
order ⩽Lex1 and ⩽Lex2.

In the subsequent part of this paper we use the following properties
of aggregation functions with respect to partial or linear orders.

Definition 5. (cf. [38]) An interval-valued aggregation function ∶ (LI)2 → LI is said to be:

• symmetric, if

(x, y) = (y, x),

• bisymmetric, if

((x, y),(z, t)) = ((x, z),(y, t)),

• idempotent, if

(x, x) = x,

• subidempotent, if

(x, x) ⩽ x,

for every x, y, z, t ∈ LI.

Moreover,

•  has an absorbing (zero) element z ∈ LI, if for all x ∈ LI,

(x, z) = (z, x) = z.

3. SUBSETHOOD MEASURES

Subsethood, or inclusion, measures have been studied mainly from
constructive and axiomatic approaches and have been introduced
successfully into the theory of fuzzy sets and their extensions.Many
researchers have tried to relax the rigidity of Zadeh’s definition of
subsethood to get a soft approach which is more compatible with
the spirit of fuzzy logic. For instance [39], defended that quantita-
tive methods were the main approaches in uncertainty inference, a
key problem in artificial intelligence, so they presented a general-
ized definition for subsethood measures, called including degrees.
There also exist several works regarding subsethood measures in
the interval-valued fuzzy setting [24,30,40–42], however the condi-
tion regarding the width of the intervals, with which we deal in this
paper, has not been so far considered, to our knowledge.

3.1. Interval Subsethood Measures

We introduce the notion of an interval subsethood measure for a
pair of intervals the partial and admissible orders and the width of
intervals w, where w(x) = x – x for x ∈ LI.

3.1.1. Interval subsethood measure I

First, we consider the notion of an interval subsethood measure
where strong inequalities between inputs give the same values of the
interval subsethood measure (see Definition 6, axiom (IM2)).

Definition 6. A function 𝜎 ∶ (LI)2 → LI is said to be an inter-
val subsethood measure, if it satisfies the following conditions for
intervals x = [x, x], y = [y, y] , z = [z, z] ∈ LI:

(IM1) If x = 𝟏, y = 𝟎, then 𝜎(x, y) = 𝟎;
(IM2) If x < y, then 𝜎(x, y) = 𝟏;
(IM3) 𝜎(x, x) = [1 – w(x), 1] (reflexivity);
(IM4) If x ⩽ y ⩽ z and w(x) = w(y) = w(z), then 𝜎(z, x) ⩽

𝜎(y, x) and 𝜎(z, x) ⩽ 𝜎(z, y) for x, y, z ∈ LI.

Axioms (IM1)-(IM4) are inspired in the usual properties that sub-
sethood measures satisfy and, in order to take into account the
width of intervals, a similar approach to those in [26,27] has been
taken.
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Remark 3

Note that an interval subsethood measure as in Definition 6, in
particular due to axiom (IM3), is consistent with our interpretation.
Indeed, in the case that there is no uncertainty, the interval subset-
hood measure of an interval with respect to itself is certain as well,
for example, 𝜎([0.3, 0.3], [0.3, 0.3]) = [1, 1]. However, in case that
the uncertainty is maximum, so is it in the case of interval subset-
hood measures, for example, 𝜎([0, 1], [0, 1]) = [0, 1]. We refer the
reader to Example 5 for specific examples of such an interval sub-
sethood measure.

Let us denote by

 = {𝜎 ∶ (LI)2 → LI ∣ 𝜎 is a subsethood measure} .

Let us present two construction methods for such an interval sub-
sethood measure. The first one is given in the following result.

Theorem 1. Let 𝜎z ∶ (LI)2 → LI be the operation given by

𝜎z(x, y) =
⎧
⎨
⎩

[1 – w(x), 1], x = y,
𝟏, x < y,
𝟎, otherwise,

for x, y ∈ LI. Then, 𝜎z is an interval subsethood measure (𝜎z ∈ ).
Proof. Conditions (IM1)-(IM4) need to be checked. (IM1)-(IM3)
are obvious. Let us show (IM4). Assumew(x) = w(y) = w(z). There
are four possible cases:

• If x < y < z, then 𝜎z(z, x) = 𝟎 ⩽ 𝜎z(y, x) and
𝜎z(z, x) = 𝟎 ⩽ 𝜎z(z, y).

• If x = y = z, then

𝜎z(z, x) = [1 – w(x), 1] ⩽ 𝜎z(y, x) = [1 – w(x), 1],

and

𝜎z(z, x) = [1 – w(x), 1] ⩽ 𝜎z(z, y) = [1 – w(x), 1].

• If x = y < z, then

𝜎z(z, x) = 0 ⩽ 𝜎z(y, x) = [1 – w(x), 1],

and 𝜎z(z, x) = 𝟎 ⩽ 𝜎z(z, y) = 𝟎.
• If x < y = z, then 𝜎z(z, x) = 𝟎 ⩽ 𝜎z(y, x) = 𝟎 and

𝜎z(z, x) = 𝟎 ⩽ 𝜎z(z, y) = [1 – w(z), 1].

As a result 𝜎z ∶ (LI)2 → LI is an interval subsethood measure.

The second construction method is based on the next theorem.
Recall that an interval-valued fuzzy negation NIV is an antytonic
operation that satisfies NIV(𝟎) = 𝟏 and NIV(𝟏) = 𝟎 [43,44].

Theorem 2. Let 𝜎 ∶ (LI)2 → LI be the operation given by

𝜎(x, y) =
⎧
⎨
⎩

[1 – w(x), 1], x = y,
𝟏, x < y,
(NIV(x), y), otherwise,

for x, y ∈ LI, where NIV is an interval-valued fuzzy negation such
that, for a fuzzy negation n,

NIV(x) = [n(x), n(x)] ⩽ [1 – x, 1 – x],

and  is a representable interval-valued aggregation function with
respect to the order ⩽ such that ⩽ ∨. Thus, 𝜎 is an interval sub-
sethood measure (𝜎 ∈ ).
Proof. Conditions (IM1)-(IM4) need to be checked. (IM1)-(IM3)
are obvious. Let us show (IM4). Assumew(x) = w(y) = w(z). There
are four possible cases:

• If x < y < z, then

𝜎A(z, x) = A(NIV(z), x)
⩽ A(NIV(y), x) = 𝜎A(y, x),

and

𝜎A(z, x) = A(NIV(z), x)
⩽ A(NIV(z), y) = 𝜎A(z, y).

• If x = y = z, then

𝜎A(z, x) = [1 – w(x), 1]
⩽ 𝜎A(y, x) = [1 – w(x), 1],

and

𝜎A(z, x) = [1 – w(x), 1]
⩽ 𝜎A(z, y) = [1 – w(x), 1].

• If x = y < z, then

𝜎(z, x) = [A1(n(z), x),A2(n(z), x)]

⩽ [(1 – z) ∨ x, (1 – z) ∨ x]

⩽ [1 – x + x, 1]

= [1 – w(x), 1] = 𝜎(y, x),
and

𝜎(z, x) = (NIV(z), x)
⩽ (NIV(z), y) = 𝜎(z, y).

• The case x < y = z can be proven similarly.

Hence, 𝜎 ∶ (LI)2 → LI is an interval subsethood measure.

Using the constructionmethods from Theorem 2 we obtain the fol-
lowing examples.

Example 5. The following function is an interval subsethoodmea-
sure with respect to ⩽LI :

𝜎meanLI
(x, y) =

⎧
⎪
⎨
⎪
⎩

[1 – w(x), 1], x = y,
𝟏, x <LI y,

[
1 – x + y

2 ,
1 – x + y

2 ] , otherwise,
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where NIV(x) = [1 – x, 1 – x]. Moreover, the following function is a
subsethood measure with respect to ⩽Lex2:

𝜎meanLex2
(x, y) =

⎧⎪
⎨
⎪
⎩

[1 – w(x), 1], x = y,
𝟏, x <Lex2 y,

[
y
2 ,
1 – x + y

2 ] , otherwise.

Using the interval-valued aggregation function 𝛼 for 𝛼 ∈ [0, 1],
we get the subsethood measure

𝜎𝛼Lex2
(x, y) =

⎧⎪⎪
⎨
⎪⎪
⎩

[1 – w(x), 1], x = y,
𝟏, x <Lex2 y,
[(1 – 𝛼)y,

𝛼(1 – x)+
(1 – 𝛼)y], otherwise,

where

NIV(x) = {
1, x = 0,
[0, 1 – x], otherwise,

is an interval-valued fuzzy negation with respect to ⩽Lex2.

Remark 4

[30] The aggregation𝛼 preserves the width of the intervals of the
same width.

Let us now analyze some properties of interval subsethood mea-
sures constructed by means of Theorems 1 and 2.

Proposition 4. Let  ∶ (LI)2 → LI be subidempotent interval-
valued aggregation with respect to ⩽Adm, with zero element 𝟎. Thus
𝜎z is a -quasi-ordered operation (reflexive and -transitive with
respect to ⩽Adm).

Proof. Reflexivity is obvious by (IM3). We will prove-transitivity
of 𝜎z, that is,

(𝜎z(x, y), 𝜎z(y, z)) ⩽Adm 𝜎z(x, z), x, y, z ∈ LI.

We consider the following cases.

1. If x <Adm y <Adm z, then

(𝜎z(x, y), 𝜎z(y, z)) = (𝟏, 𝟏) ⩽Adm 𝟏 = 𝜎z(x, z).

2. If y <Adm x <Adm z, then

(𝜎z(x, y), 𝜎z(y, z)) = (𝟎, 𝟏) = 𝟎
⩽Adm 𝟏 = 𝜎z(x, z).

3. If x <Adm y = z, then

(𝜎z(x, y), 𝜎z(y, z)) =  (
𝟏, [1 – w(y), 1]

)
⩽Adm 𝟏 = 𝜎z(x, z).

4. If x = y <Adm z, then

(𝜎z(x, y), 𝜎z(y, z)) =  ([1 – w(x), 1] , 𝟏)
⩽Adm 𝟏 = 𝜎z(x, z).

5. If x = y = z, then

(𝜎z(x, y), 𝜎z(y, z)) = ([1 – w(x), 1] , [1 – w(x), 1])
⩽Adm [1 – w(x), 1] = 𝜎z(x, z).

Similarly we can show the remaining 8 cases. As a result 𝜎z is a-quasi-ordered operation.

Remark 5

We may obtain a similar result to Proposition 4 considering the
partial order ⩽LI , that is, -transitivity with respect to ⩽LI and ∶ (LI)2 → LI subidempotent interval-valued aggregation func-
tion with respect to ⩽LI .

Example 6. The functions ∧, Ap and TLIV , where

TLIV (x, y) = [max
(
0, x + y – 1

)
, max

(
0, x + y – 1

)
] ,

satisfy Proposition 4.

Moreover, these three functions are interval-valued t-norms, that
is, binary operations that are isotonic with respect to each variable,
associative, commutative and have neutral element 𝟏.
Proposition 5. Let  ∶ (LI)2 → LI be a subidempotent, symmet-
ric, bisymmetric interval-valued aggregation function with respect to
⩽Adm, with neutral element 𝟏 and satisfying(x,NIV(x)) = 1 for an
interval-valued fuzzy negation NIV which satisfies NIV(x) ⩽Adm x.
Then 𝜎 is a -quasi-ordered operation (reflexive and -transitive
with respect to ⩽Adm).

In addition, if  ⩽Adm , then 𝜎 is a -quasi-ordered operation
(reflexive and -transitive with respect to ⩽Adm).

Proof. Reflexivity is obvious by (IM3).We will prove-transitivity
of 𝜎, that is,

(𝜎(x, y), 𝜎(y, z)) ⩽Adm 𝜎(x, z), x, y, z ∈ LI.

We consider the following cases.

1. If x <Adm y <Adm z, then

(𝜎(x, y), 𝜎(y, z)) = (𝟏, 𝟏) ⩽Adm 𝟏 = 𝜎(x, z).

2. If y <Adm x <Adm z, then

(𝜎(x, y), 𝜎(y, z)) = ((NIV(x), y), 𝟏)
= 𝟎
⩽Adm 𝟏 = 𝜎(x, z).

3. If x <Adm y = z, then

(𝜎(x, y), 𝜎(y, z)) = (𝟏, [1 – w(y), 1])
⩽Adm 𝟏 = 𝜎(x, z).
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4. If z <Adm y <Adm x, then

(𝜎(x, y), 𝜎(y, z)) = ((NIV(x), y),(NIV(y), z))
= ((NIV(x), z),(y,NIV(y)))
= (NIV(x), z) = 𝜎(x, z).

5. If x = y = z, then

(𝜎(x, y), 𝜎(y, z)) = ([1 – w(x), 1], [1 – w(x), 1])
⩽Adm [1 – w(x), 1] = 𝜎(x, z).

6. If y <Adm z <Adm x, then

(𝜎(x, y), 𝜎(y, z)) = ((NIV(x), y), 𝟏)
= ((NIV(x), y),(z,NIV(z)))
= ((NIV(x), z),(y,NIV(z)))
⩽Adm ((NIV(x), z),(y,NIV(y)))
= (NIV(x), z) = 𝜎(x, z).

7. If z <Adm y = x, then

(𝜎(x, y), 𝜎(y, z)) = ([1 – w(x), 1],(NIV(y), z))
= ([1 – w(x), 1],(NIV(y), z))
= ([1 – w(x), 1],(NIV(x), z))
⩽Adm (𝟏,(NIV(x), z))
= 𝜎(x, z).

Similarly we can show the remaining 6 cases. As a result 𝜎 is a-quasi-ordered operation. By analogy, wemay prove the case
of -quasi-order.

3.1.2. Interval subsethood measure II

Definition 6 is satisfactory in situations where the comparisons of
subsethood measure values is not required for strongly comparable
elements, as there are no differences in these situations (see axiom
(IM2) of Definition 6). Consider, for example, the partial order⩽LI ,
thus,

𝜎(0, 1) = 𝜎([0.1, 0.5], [0.3, 0.7]) = 1.

However if, for application purposes, we needed to distinguish the
subsethood values for strongly comparable elements, then we may
use the following axiom (IM2’) instead of (IM2):

(IM2’) If x < y, then 𝜎(x, y) = 1.

Thus, we propose another definition of an interval subsethood
measure.

Definition 7. A function 𝜎 ∶ (LI)2 → LI is said to be a strength-
ened interval subsethood measure, if it satisfies the following
conditions:

(IM1) If x = 𝟏, y = 𝟎, then 𝜎(x, y) = 𝟎;
(IM2) If x < y, then 𝜎(x, y) = 1;
(IM3) 𝜎(x, x) = [1 – w(x), 1] (reflexivity);
(IM4) If x ⩽ y ⩽ z and w(x) = w(y) = w(z), then 𝜎(z, x) ⩽

𝜎(y, x) and 𝜎(z, x) ⩽ 𝜎(z, y) for x, y, z ∈ LI.

Let us denote by

 ′ = {𝜎 ∶ (LI)2 → LI ∣ 𝜎 is a strengthened
subsethood measure}.

The dependence between the families  and ′ is clear:

 ⊂ ′,

as depicted in Figure 1.

Remark 6

Observe that w(x) < w(y) (respectively, w(x) = w(y)) if and only if
𝜎(y, y) < 𝜎(x, x) (respectively, 𝜎(y, y) = 𝜎(x, x)).
Since (IM2’) provides only the upper value of an interval, for the
partial order ⩽LI , we may propose the following method to con-
struct the lower value and, as a result, an example of a strengthened
interval subsethoodmeasure fulfilling axioms (IM1), (IM2’), (IM3)
and (IM4) (Definition 7).

For x, y ∈ LI we set

r(x, y) = max{|x – y|, |x – y|}.

Observe that r(x, y) = r(y, x) in any case, and that x = y if and only
if r(x, y) = 0.
Theorem3. For x, y ∈ LI the operation𝜎 ∶ (LI)2 → LI is a strength-
ened interval subsethood measure

𝜎(x, y) = 1 – max(w(x), r(x, y)),

and

𝜎(x, y) = {1, x <LI y,
1 – r(x, y), otherwise.

Proof. The map 𝜎 is well defined as in any case 0 ⩽ 𝜎(x, y) ⩽
𝜎(x, y) ⩽ 1.
(IM1) r(𝟏, 𝟎) = 1 and w(𝟏) = 0, hence 𝜎(𝟏, 𝟎) = 𝟎.
(IM2) Is satisfies by definition of operation 𝜎.

Figure 1 Dependence between the
families  and ′ of interval subsethood
measures and strengthened interval
subsethood measures, respectively.
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(IM3) As r(x, x) = 0 and so max(w(x), r(x, x)) = w(x).

(IM4) Assume x ⩽LI y ⩽LI z, w(x) = w(y) = w(z) ∶= w. Then we
have

x ⩽ y ⩽ z and x ⩽ y ⩽ z. So z – y ⩽ z – x and z – y ⩽ z – x,

hence r(z, y) ⩽ r(z, x). Analogously r(y, x) ⩽ r(z, x). Therefore if
x <LI y <LI z we have

𝜎(z, x) = [1 – w, 1 – r(z, x)] ⩽LI [1 – w, 1 – r(z, y)] = 𝜎(z, y),

and analogously 𝜎(z, x) ⩽LI 𝜎(y, x). The case x = y = z is trivial
and the cases x = y <LI z, respectively x <LI y = z, follow imme-
diately taking in account that then we have 𝜎(y, x) = 1 ⩽ 𝜎(z, x),
respectively 𝜎(z, y) = 1 ⩽ 𝜎(z, x).
Considering the construction from Theorem 3, we derive the fol-
lowing results.

Proposition 6. Let 𝜎 ∈ ′ as in Theorem 3. For x, y ∈ LI, 𝜎(x, y) =
1 if and only if x ⩽LI y.

Proposition 7. Let 𝜎 ∈ ′ as in Theorem 3. For x, y ∈ LI the fol-
lowing are equivalent:

1. 𝜎(x, y) = 1,
2. 𝜎(x, y) = 𝟏,
3. x = y and w(x) = 0.

Proof. As 𝜎(x, y) ⩽ 𝜎(x, y) we have 1. ⇔ 2. Further 𝜎(x, y) = 1 is
equivalent to w(x) = r(x, y) = 0, that is to x = y and w(x) = 0, and
1. ⇔ 3.
Proposition 8. Let 𝜎 ∈ ′ as in Theorem 3. For x, y ∈ LI, 𝜎(x, y) =
0 if and only if either x = [0, 1], or x = 𝟏 and y = 0, or y = 𝟏 and
x = 0, or x = 𝟎 and y = 1, or y = 𝟎 and x = 1.
Proof. As w(x) = 1 if and only if x = [0, 1], and r(x, y) = 1 if and
only if x = 𝟏 and y = 0, or y = 𝟏 and x = 0, or x = 𝟎 and y = 1, or
y = 𝟎 and x = 1.
Proposition 9. Let 𝜎 ∈ ′ as in Theorem 3. For x, y ∈ LI the fol-
lowing are equivalent:

1. 𝜎(x, y) = 0,
2. 𝜎(x, y) = 𝟎,
3. Either x = 𝟏 and y = 0, or y = 𝟎 and x = 1.

Proof. As above, 1. ⇔ 2. Now by definition 𝜎(x, y) = 0 if and only
if x ≮ y and r(x, y) = 1, applying Proposition 8.

Let us now present some other construction methods for strength-
ened interval subsethood measures.

Theorem 4. For x, y ∈ LI the operation 𝜎z′ ∶ (LI)2 → LI is a
strengthened interval subsethood measure

𝜎z′(x, y) = {[1 – w(x), 1], x ⩽ y,
𝟎, otherwise.

Proof. Justification is analogous to Theorem 1.

Proposition 10. Let  ∶ (LI)2 → LI be an interval-valued aggrega-
tion function with respect to⩽Adm such that ⩽Adm p. Then, 𝜎z′ is
a -quasi-ordered operation (reflexive and -transitive with respect
to ⩽Adm).

Proof. Reflexivity is obvious by (IM3). We will prove-transitivity
of 𝜎z′, that is,

(𝜎z′(x, y), 𝜎z′(y, z)) ⩽Adm 𝜎z′(x, z), x, y, z ∈ LI.

By ⩽Adm p (i.e.,has element zero𝟎) we consider the following
cases:

1. If x ⩽Adm y ⩽Adm z, then

(𝜎z′ (x, y), 𝜎z′ (y, z)) = ([1 – w(x), 1], [1 – w(y), 1])
⩽Adm p([1 – w(x), 1], [1 – w(y), 1])
⩽Adm [1 – w(x), 1] = 𝜎z′ (x, z).

2. If y <Adm x ⩽Adm z, then

(𝜎z′ (x, y), 𝜎z′ (y, z)) = (𝟎, [1 – w(y), 1]) = 𝟎
⩽Adm [1 – w(x), 1] = 𝜎z′ (x, z).

3. If y ⩽Adm z < x, then

(𝜎z′ (x, y), 𝜎z′ (y, z)) = (𝟎, [1 – w(y), 1]) = 𝟎
= 𝜎z′ (x, z).

Similarly, the remaining 3 cases can be checked. As a result, 𝜎z′
is a -quasi-ordered operation.

Remark 7

We may obtain a similar result to Proposition 10 considering the
partial order ⩽LI , that is, -transitivity with respect to ⩽LI and ⩽LI p which is an interval-valued aggregation with respect to
⩽LI .

Theorem 5. Let x, y ∈ LI and let the function 𝜎 ∶ (LI)2 → LI be
given by

𝜎(x, y) =
⎧
⎨
⎩

[1 – w(x), 1], x = y,
[A1(n(x), y), 1], x < y,
(NIV(x), y), otherwise,

for an interval-valued fuzzy negation NIV such that

NIV(x) = [n(x), n(x)] ⩽ [1 – x, 1 – x],

where n is a fuzzy negation and is a representable interval-valued
aggregation function with respect to ⩽ such that = [A1,A2] ⩽ ∨.
Thus, 𝜎 is a strengthened interval subsethood measure.

Proof. Justification is similar to the one in Theorem 2.

Using the construction method given in Theorem 5 we obtain the
following example.
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Example 7. Let us consider the partial order ⩽LI . The following is
a strengthened interval subsethood measure:

𝜎(x, y) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

[1 – w(x), 1], x = y,

[
1 – x + y

2 , 1] , x <LI y,

[
1 – x + y

2 ,
1 – x + y

2 ] , otherwise.

Theorem 6. Let x, y ∈ LI and let the function 𝜎 ∶ (LI)2 → LI be
given by

𝜎(x, y) = {[1 – max(w(x), r(x, y)), 1], x ⩽LI y,(NIV(x), y), otherwise,

where NIV is an interval-valued fuzzy negation such that

NIV(x) = [n(x), n(x)] ⩽LI [1 – x, 1 – x],

where n is fuzzy negation and  is a representable interval-valued
aggregation function with respect to the order ⩽LI , satisfying  =
[A1,A2] ⩽LI ∨.
Thus, 𝜎 is a strengthened interval subsethood measure.

Proof. Justification is analogous to Theorem 2.

Using the construction method given in Theorem 6 we get the fol-
lowing example.

Example 8. Let us consider the partial order ⩽LI . The following is
a strengthened interval subsethood measure

𝜎(x, y) =
⎧⎪
⎨⎪
⎩

[1 – max(w(x), r(x, y)), 1], x ⩽LI y,

[
1 – x + y

2 ,
1 – x + y

2 ] , otherwise.

3.2. Connection between Interval-Valued
Implication Functions and Subsethood
Measures

Fuzzy implication operators are an example of functions that are
used in many applications. In the literature, the definition of an
implication in the interval-valued setting has been provided with
respect to the partial order ⩽LI (cf. [40,45]), but note that it is pos-
sible to build interval-valued implication functions with respect
to diverse orders. In [30], the definition and study of an interval-
valued implication with respect to a total order was presented.

Definition 8. An interval-valued fuzzy implication with respect
to ⩽ is a function IIV ∶ (LI)2 → LI which verifies the following
properties:

i. IIV is a decreasing function in the first component and an
increasing function in the second component with respect to
the order ⩽,

ii. IIV(𝟎, 𝟎) = IIV(𝟏, 𝟏) = IIV(𝟎, 𝟏) = 𝟏,
iii. IIV(𝟏, 𝟎) = 𝟎.

We would like to point out the connection between interval-
valued implication functions and the examined interval subsethood
measures.

Remark 8

Let x, y, z ∈ LI and w(x) = w(y) = w(z).

• Let 𝜎 ∈  . Then 𝜎 is an interval-valued implication function.

• Let 𝜎 ∈ ′. Then 𝜎 is an interval-valued implication function
if 𝜎(𝟎, 𝟏) = 𝟏.

We see that (IM1) implies 𝜎(𝟏, 𝟎) = 𝟎, (IM2) implies 𝜎(𝟎, 𝟏) = 𝟏
and (IM3) implies 𝜎(𝟎, 𝟎) = 𝜎(𝟏, 𝟏) = 𝟏 because w(x) = 0. More-
over, by (IM4), we observe that 𝜎 is a decreasing function in the
first component and an increasing function in the second compo-
nent with respect to the order ⩽. Thus, 𝜎 ∈  is an interval-valued
implication function.

Condition (IM2’), theweaker version of (IM2), implies that we need
to add the assumption 𝜎(𝟎, 𝟏) = 𝟏 to recover an interval-valued
implication function from 𝜎.

3.3. Subsethood Measures of
Interval-Valued Fuzzy Sets

Subsethood measures may be also defined to give an estimation of
“how included” an interval-valued set is in another.

We use the notion of interval-valued aggregation function to define
subsethood measures and strengthened subsethood measures of
interval-valued fuzzy sets.

Definition 9. Let  ∶ (LI)n → LI be an interval-valued aggre-
gation function and 𝜎 be an interval subsethood measure (respec-
tively, a strengthened interval subsethood measure). The mapping
𝜎 ∶ IVFS(U) × IVFS(U) → LI given by

𝜎(A,B) = (𝜎(A(u1),B(u1)), … , 𝜎(A(un),B(un))),

is a subsethood measure (respectively, a strengthened subsethood
measure) on IVFS(U) defined by 𝜎 and.

Definition 9 presents the concept of subsethood measure (and
strengthened subsethood measure) between interval-valued fuzzy
sets providing a method for constructing such a measure from
an interval subsethood measure (or a strengthened interval sub-
sethood measure). In what follows, we present two theorems that
describe the properties that a so-constructed subsethood measure
between interval-valued fuzzy sets satisfy. Note that there is con-
cordance between these properties and the ones of interval sub-
sethood measures and strengthened interval subsethood measures
in Section III.A. Additionally, the properties presented in the next
theorems are in accordance with a possible axiomatic definition of
subsethood measure for interval-valued fuzzy sets, which justifies
Definition 9.

Given A ∈ IVFS(U), we use the following notation

w(A) = (w(a1), … ,w(an)).
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Moreover, 0, 1 ∶ U → LI are defined by 0(ui) = 𝟎, 1(ui) = 𝟏 for
each i = 1,… , n.
Theorem 7. Let U be a nonempty set such that card(U) = n ∈ ℕ
and 𝜎 be a subsethood measure on IVFS(U) defined by an interval
subsethood measure 𝜎 and an interval-valued aggregation function. Then, for A,B,C ∈ IVFS(U), the following hold:

(IMV1) 𝜎(1, 0) = 𝟎,
(IMV2) if A ≺ B, then 𝜎(A,B) = 𝟏,
(IMV3) 𝜎(A,A) = ([1 – w(A(u1)), 1], … , [1 – w(A(un)), 1]),
(IMV4) if A ⪯ B ⪯ C and w(A) = w(B) = w(C), then 𝜎(C,A) ⩽

𝜎(C,B) and 𝜎(C,A) ⩽ 𝜎(B,A).

Proof. Let us set ai = A(ui), bi = B(ui), ci = C(ui), i = 1,… , n.

(IMV1) By (IM1) we get

𝜎(1, 0) = (𝜎(𝟏, 𝟎), … , 𝜎(𝟏, 𝟎))
= M(𝟎,… , 𝟎) = 𝟎.

(IMV2) Assume that A ≺ B, then ai < bi for i = 1,… , n and, by
(IM2), it holds that

𝜎(A,B) = (𝜎(a1, b1), … , 𝜎(an, bn))
= M(𝟏, … , 𝟏) = 𝟏.

(IMV3) It follows the fact that, by (IM3), we have 𝜎(ai, ai) = [1 –
w(ai), 1].

(IMV4) Assume that A ⪯ B ⪯ C and w(A) = w(B) = w(C). Then,
it holds that ai ⩽ bi ⩽ ci and w(ai) = w(bi) = w(ci) for
i = 1,… , n. Thus, by (IM4),

𝜎(C,A) = (𝜎(c1, a1), … , 𝜎(cn, an))
⩽ (𝜎(c1, b1), … , 𝜎(cn, bn))
= 𝜎(C,B).

Similarly, it can be shown that 𝜎(C,A) ⩽ 𝜎(B,A),
which proves (IMV4).

Theorem 8. Let U be a nonempty set such that card(U) = n ∈ ℕ
and 𝜎 be a strengthened subsethood measure on IVFS(U) defined
by a strengthened interval subsethood measure 𝜎 and a representable
interval-valued aggregation function  = [M1,M2]. Then, for
A,B,C ∈ IVFS(U), conditions (IMV1), (IMV3), (IMV4) are ful-
filled. Moreover, the following condition holds:

(IMV2’) A ≺ B, then 𝜎(A,B) = 1.

Proof. By Theorem 7, it suffices to show (IMV2’). Setting
ai = A(ui) and bi = B(ui) for i = 1,… , n, we have that if A ≺ B,
then ai < bi for i = 1,… , n. Consequently, by (IM2’), it holds that

𝜎(A,B) = M2(𝜎(a1, b1), … , 𝜎(an, bn))
= M2(1, … , 1) = 1.

As we can observe by Theorems 7 and 8 the subsethood measures
or the strengthened subsethood measure have similar properties to
their corresponding generators, or interval subsethood measures.

4. CONCLUSIONS

In this paper, we have discussed two possible axiomatical defini-
tions of interval subsethood measures for the interval-valued fuzzy
setting taking into account the widths of the intervals involved.
Specifically, we have introduced interval subsethood measures
(Definition 6) and strengthened interval subsethodd measures
(Definition 7). The relationships among the proposed subsethood
measures of intervals have been examined.

Since the inclusion of the width of intervals has been proven to
be useful in image processing [26,27] and so have fuzzy subset-
hood measures [19], our plan for future works is to apply the
introduced subsethood measures in constructions of width-based
indistinguishability measures and to use them in image processing
problems.
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