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Abstract 

The correct classification of power lines in LiDAR point clouds has attracted the in-
terest of the mapping community in the last years. The objective of this research is the 
detection and automatic extraction of high-voltage transmission lines from LiDAR 
data using data mining techniques. With this aim, a Single Photon LiDAR (SPL) sur-
vey acquired over the region of Navarre (Spain) in 2017 was used, with a mean point 
density of 14 pt/m2. Different data mining techniques were evaluated, including deci-
sion trees (C4.5 and CART) and ensemble learning algorithms (Random Forests, 
Bagging and AdaBoost). Fifteen test sites were studied corresponding to areas with 
high-voltage power lines over different conditions regarding the underlying vegeta-
tion and topography. For these sites 92,104 LiDAR points were identified as power 
lines and more than 4M points as not power lines using existing cartography. This da-
taset was randomly split in train and test sets and then balanced two obtain a similar 
amount of data for the two classes. The results obtained show the importance of bal-
ancing the training data with improvements in accuracy of ~10% with respect to the 
imbalanced case. Accuracies higher than 87% were obtained in all balanced cases, 
with particularly successful results for ensemble learning techniques, being AdaBoost 
the technique with the highest accuracy 91%. These results suggest that the combina-
tion of SPL surveys and data mining tools can be successfully used for the operational 
mapping of high voltage power lines. 
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1 Introduction 

Power line mapping is a costly task for the organizations in charge of making cartog-
raphy [1]. Therefore, methods to automatically identify and map power lines are re-
quired in order to update existing maps, create new ones for areas where such maps 
do not exit, and hence for enhancing the efficiency of cartographic organizations.  

Since its invention, Light Detection And Ranging (LiDAR) technology has had a 
dramatic impact in the cartographic methods and workflows. Indeed, airborne LiDAR 
is an efficient and cost-effective technique for the rapid and precise acquisition of 
massive 3D point clouds [2]. Furthermore, it enables the automation of the surveying 
process and the production of maps with a level of detail unattainable with previous 
cartographic techniques [3]. Before the onset of LiDAR, both topographic surveys 
and photogrammetric restitution processes required an enormous amount of expert 
hand labor, so producing detailed scale cartography was very costly [4]. With LiDAR 
the production of high resolution Digital Terrain Models (DTM) and cartography can 
be done much faster, cheaper and in a more objective (with less human intervention) 
and precise manner.  

Data mining is a set of techniques and approaches designed to extract knowledge 
and patterns from large datasets [5], so they are ideal tools to efficiently process Li-
DAR datasets. The aim of this work is to apply state of the art data mining algorithms 
to automatically identify high voltage power lines in LiDAR point clouds, so as to ob-
tain a classified point cloud that can produce a power line map. To attain this objec-
tive a Single Photon LiDAR (SPL) dataset was processed, which was acquired over 
the region of Navarre (Spain) in 2017. SPL is a very recent and innovative technology 
with significant improvements in terms of the number of points acquired. In the next 
sections, the materials and methods used are described and the obtained results are 
shown, finally some conclusions and recommendations are outlined. 

2. Materials and methods 

An airborne LiDAR survey was carried out in Navarre (Spain) between September 
and November 2017 using the Leica SPL100 sensor. The SPL technology splits the 
laser beam into a 10x10 array achieving a much higher point density than its prede-
cessors. Some other key differences with the more conventional LiDAR systems used 
so far are its operation wavelength at 532 nm, the possibility to record as many as 10 
returns per laser pulse and its faster recovery time (1.6 ns). On the other hand its cir-
cular scanning pattern creates a very irregular point distribution with a higher point 
proportion at the borders of the swath, and the obtained point clouds are very noise 
with a large amount of noise points <50m above the ground.  For this project, a flight 
height of 3,900-6,300 m(asl) was set with an airspeed of 200 knots, leading to a swath 
width of 2.3 km and an average point density of 14 pt/m2. The complete survey over 
Navarre comprised more than 500 billion points and ~50 TB of data, and was freely 
distributed as 1x1km tiles in LAS 1.4 format (ftp://ftp.cartografia.navarra.es). The 

ftp://ftp.cartografia.navarra.es/
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LAS files contain information on UTM X, Y and Z in ellipsoidal elevation consider-
ing EPSG:25830 (ETRS89 UTM 30 North) reference system, additionally, for each 
point the LiDAR intensity, return number and RGB reflectance are given (the latter 
obtained from a RCD30 half-format camera). Finally, each point was automatically 
assigned to a class using TerraScan software following the ASPRS standard class def-
inition [6]. 

Using these SPL100 point clouds, two-class supervised classification algorithms 
were fit to predict whether a point corresponded to the class ‘high-voltage power line’ 
(class=1) or not (class=0). The point attributes used as descriptive features for the 
classification were the following (Table 1): 

Table 1. Point attributes used as input for the classification 

Attribute Description 
Z Point elevation 
Intensity Intensity of the laser return 
Return number Number of return of the point 
Number of returns Total number of returns for the pulse 
R Digital number of the red channel 
G Digital number of the green channel 
B Digital number of the blue channel 

 
A ground truth dataset was built to train and test the classification algorithms. For 

this, fifteen 1x1km tiles were selected on areas with high-voltage power lines present 
over different land uses (6 over forest, 4 over agriculture and 5 over urban areas) (Fig. 
1). Then, existing power line cartography was overlaid (Fig. 1) and a 20 m buffer 
width around the lines was established to mask out the remaining areas. Using a pro-
prietary algorithm (TerraScan), points belonging to power lines were classified. The 
algorithm is based on a recursive fitting of the catenary curve for all the points in the 
cloud [7], so it was very expensive in terms of computing time. Besides, it required a 
significant number of parameters that had to be set for each area, being the outcome 
very sensitive to some of them, so visual inspection of the results was mandatory and 
parameter values had to be fine-tuned for each area to avoid false positive and incor-
rect results. This process was very labor intensive but necessary to obtain a detailed 
training dataset to build the models upon. 
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Fig. 1. Left: Location of the fifteen tiles used to obtain the train and test datasets. Right: High-voltage 

power line cartography overlaid over the SPL LiDAR tiles. 

 
Fig. 2. Sample result of the training dataset used. 

A dataset of 4,527,727 points was built out of which 92,104 corresponded to power 
lines. This dataset was saved as a csv file and randomly split in 75% for training and 
25% for testing using the ‘hold out’ method, and thus ensuring that instances used for 
training the algorithms are not used for evaluating them and vice-versa. Different data 
mining approaches were used for classification:  

 
1. Decision trees  

a. C4.5  
b. CART  

2. Ensemble learning techniques  
a. Random Forests  
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b. Bagging  
c. AdaBoost  

 
A decision tree (DT) is a classification algorithm that represents a set of organized 

decisions following a hierarchical structure depending on a set of attributes or de-
scriptive features [5]. DTs are automatically built through a learning process based on 
the training dataset that is successively split in nodes and branches until leaves are 
reached (a terminal node where all the elements belong to the same class). At the 
nodes the dataset is split using the attribute that maximizes an impurity criterion, this 
criterion was the Gini index in CART and the Information Gain Ratio in C4.5. The 
obtained DT were pruned to avoid overfitting [5].   

Ensemble learning techniques follow the assumption that an ensemble of several 
classifiers (e.g., DTs) outperforms the results of each classifier alone [8]. Bagging is 
an ensemble method whereby a classifier is built using new sets of instances obtained 
applying the Bootstrapping technique, yielding a lower variance prediction if com-
pared to each of the subsets alone and avoiding overfitting [9]. Adaboost updates a 
first simple DT (weak classifier), by training it iteratively so as to improve the previ-
ous version by giving a higher and lower weight to instances incorrectly and correctly 
classified, respectively [2]. 

Finally, Random Forest (RF) [10] is an ensemble learning technique that combines 
the Bagging concept [9] and the Random Subspace concept [11]. On a RF each tree is 
built upon a different subset of data and using a random subspace of attributes to se-
lect the best splitting attribute at each node. This way, the forest is composed of DT 
that are varied since they learn from a different subset of data and a different subspace 
of attributes. The final prediction is obtained by majority voting of the different DTs. 
The generalization error of RF generally depends on the proportion of the final vote 
assigned to the winning class and on the correlation between the DT that compose the 
forest. 

Supervised data mining methods are severely affected by data imbalance [12], i.e., 
they tend to over-predict the most frequent classes in the training set. Therefore, in 
severely imbalance cases like this, training data needs to be balanced first, so as to ob-
tain a training set with the same number of class 1 and class 0 instances. Two ap-
proaches can be followed: under-sampling the most frequent class or over-sampling 
the less frequent one. In this work an over-sampling approach called SMOTE was ap-
plied that creates synthetic instances of the minority class by interpolating two in-
stances of the original dataset [13]. Then to reduce the eventual noisy instances creat-
ed in the borders of the two classes the Tomek Links (TL) method was used [14].  

Finally, the test dataset was used to evaluate the quality of the predictions ob-
tained, using a set of performance metrics calculated from the confusion matrix. 

 
FNFPTNTP
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where, TP corresponds to the true positive predictions (power lines correctly classi-
fied as power lines), TN true negative, FP false positive and FN false negative  pre-
dictions. The Accuracy (1) represents the proportion of correctly classified points. 
The Recall or True Positive Ratio (2) corresponds to the proportion of power line 
points classified as such. The Precision (3) represents the proportion of points classi-
fied as power line that actually corresponded to this class. The specificity represented 
the True Negative Ratio (4), and finally, the Geometric Mean (5) represented the pro-
portion of correctly classified points for both classes. The latter can be used as an 
overall performance metric to evaluate the behavior of each algorithm. 

3. Results and discussion 

The application of the trained algorithms to the test data produced in general quite ac-
curate results (Fig. 3). After evaluating the confusion matrices for each case the per-
formance metrics were computed (Table 2). We must point out that SMOTE followed 
by Tomek Links (SMOTE+TL) was applied only to balance the set of training points, 
which was subsequently used to train the different models. The performance of the 
trained methods was always obtained using the original set of test points (without be-
ing balanced). 
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Fig. 3. Sample of a subset of a test area with points classified as power lines represented in white. 

Table 2. Performance metrics in testing (all in %) obtained for each classification algorithm using 
both the imbalanced and balanced datasets 

Classification       
algorithm 

Imbalanced problem  Balanced problem (SMOTE+TL) 

Acc. Rec. Prec. Spec.  Acc. Rec. Prec. Spec. 
C4.5 95.2 62.8 59.7 97.3  98.7 76.9 66.7 99.2 
CART 95.6 65.0 56.1 97.2  98.7 76.9 65.0 99.1 
Random Forests 99.3 65.6 65.9 98.0  99.3 80.4 85.2 99.7 
Bagging 96.6 62.9 72.2 98.6  99.2 81.7 81.0 99.6 
Adaboost 97.1 66.2 75.7 98.8  99.1 84.5 82.9 99.5 
 

In general, it can be observed that results improved after balancing, with the largest 
improvements for Recall and Precision metrics, so both commission and omission er-
rors for the class of interest diminished after balancing. Ensemble algorithms were 
more benefited by balancing than C4.5 or CART DT. So, it can be said that SMOTE 
followed by TOMEK LINK was a successful balancing method. Having said that, it 
can be observed (Table 2) that all algorithms made accurate predictions after balanc-
ing the points, with the ensemble learning techniques leading to slightly higher met-
rics, especially in Recall and Precision, whereas Accuracy and Specificity obtained 
high rates in all cases.  

As already explained, the Geometric Mean is the metric that offers a compromise 
between the correct identification of class 1 and class 0 points, and can be used as a 
reference for selecting the best performing method (Table 3). Although differences 
were minor the Adaboost algorithm was the first in the ranking, followed by Bagging, 
Random Forests at an intermediate position and simple DT algorithms C4.5 and 
CART a step behind. The main difference was that these last methods had a higher 
rate of false positives. 
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Table 3. Classification results in testing in terms of Geometric Mean value obtained for each classi-
fication algorithm using both the imbalanced and balanced datasets 

Classification algorithm Imbalanced Balanced 
C4.5 78.15% 87.36% 
CART 79.49% 87.32% 
Random Forests 80.14% 89.53% 
Bagging 78.73% 90.22% 
Adaboost 80.90% 91.73% 

4. Conclusions 

Several data mining techniques were implemented on a high-voltage power line de-
tection application based on SPL LiDAR point cloud data. The main conclusion is 
that adequate results were obtained in most cases. Yet, class imbalanced appeared as a 
key issue and significant improvements were obtained in all cases after training data 
were balanced, with largest improvements in Recall and Precision metrics, especially 
in ensemble techniques. Ensemble techniques achieved higher precision metrics than 
simple decision trees like C4.5 and CART, in particular in the avoidance of false posi-
tives. Although differences were not large the highest accuracies, in terms of the Ge-
ometric Mean metric, were achieved by Adaboost followed by Bagging. 

Using machine learning techniques for detecting high-voltage power lines can be 
interesting not only for providing accurate results but also for being less computation-
ally expensive than other techniques relying on the computation and fitting of geo-
metric constraints. 

Future research efforts in this line should explore the generalization ability of the 
techniques investigated, validating them over a larger amount of test points. Also, 
new attributes obtained from LiDAR data, in particular contextual variables between 
each point and its neighbors should be investigated for their eventual added value. 
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