
ESCUELA TÉCNICA SUPERIOR DE INGENIEROS
INDUSTRIALES Y DE TELECOMUNICACIÓN

Titulación:

INGENIEŔIA TÉCNICA EN INFORMÁTICA DE GESTIÓN

Tı́tulo del Proyecto:

CLOUD COMPUTING KEEPS FINANCIAL
METRICS COMPUTATION SIMPLE

Alumna: Ainhoa Azqueta Alźuaz

Tutores: Jośe Enrique Armend́ariz Íñigo
Pablo Murta Baĩao Albino

Pamplona, 28 Julio 2011

Contents

1 Introduction 5

2 System Model 8
2.1 The Hadoop Distributed FileSystem (HDFS) 8

2.1.1 Blocks . 8
2.1.2 Namenodes and Datanodes . 9
2.1.3 Interfaces . 9
2.1.4 Data Flow . 9

2.2 The MapReduce procedure . 12
2.2.1 Map and Reduce Functions . 13
2.2.2 Interface . 13
2.2.3 Fault Tolerance . 13

2.3 A Weather Dataset . 14

3 Experimental Setup 16
3.1 Case of study: SABI . 16

3.1.1 Data availability and format . 16
3.1.2 Verification: Database Correctness 16
3.1.3 Computation: Return On Investments (ROI) 17
3.1.4 Validity of returned results . 18

3.2 Treatment file . 18
3.3 Sabi Data Repository Explanation . 20

4 Discussion 24
4.1 System Implementation . 24
4.2 Experimental Settings . 24
4.3 Sabi Experiments . 25

4.3.1 Verifications . 25
4.3.2 Return On Investments (ROI) . 27
4.3.3 Performance analysis . 28
4.3.4 AWK Performance . 30

4.4 Evaluation . 30

5 Conclusions 34
5.1 Summary . 34
5.2 Future Work . 34

1

6 Related Publications 35

2

List of Figures

1.1 Hadoop Structure . 7

2.1 HTTP Interface from HDFS . 10
2.2 A client reading data from HDFS . 11
2.3 A client writing data to HDFS . 12
2.4 HTTP Interface from MapReduce . 14
2.5 MapReduce logical data flow . 15

3.1 The first 5 fields of a sample SABI file . 20
3.2 A sample of a SABI file with some accounting info 20
3.3 code companies name . 21
3.4 SABI file company’s name . 21
3.5 code prepearing fields . 22
3.6 SABI file replaced fields in head part . 22
3.7 SABI file replaced fields in tail part . 22
3.8 SABI file corrected . 22
3.9 MapReduce Architecture . 23

4.1 core-site.xml . 25
4.2 hadoop-env.sh . 26
4.3 hdfs-site.xml . 27
4.4 mapred-site.xml . 28
4.5 masters . 28
4.6 slaves . 29
4.7 MapTask . 29
4.8 ReduceTask . 30
4.9 MainProgram . 30
4.10 ROI Reduce Task . 31
4.11 AWK implementation . 32

3

List of Tables

3.1 Distribution of the repository with regard to the activity sector and the year 19

4.1 Execution times in regard with the different configuration system 31
4.2 Distribution of the repository with regard the sector and the different check

points . 32
4.3 Description of the percentages of companies that have presented data and the

ones that have passed the computation . 33

4

Chapter 1

Introduction

Nowadays the volume of data, process and users of Internet have increased rapidly. All
people would like to store any kind of files like photos, films or files with a determinate
structure among other. The problem appeared when we do not have enough space to store
these files due to the fact that we can not have a large number of hard disks in our property.
So the solution to this problem is a paradigm that is in continuous change calledCloud
Computing[16]. This paradigm allows the clients pay to the company that offers that service
depending of the resources they used; this is also known as the “pay-as-you-go” model. Thus
you can contract depending of the necessities you have.

We are talking about hundreds of terabytes to store that could be used for different pur-
poses. Let us see this with an example, we can use stored data to compute some statistics
about a feature(i.e., the mean value of a certain measure). This made several companies
to develop their own systems to share their. Due to that this companies started to develop
their own systems to handle all their data but they were so expensive to buy and hold. Fur-
thermore, the tools that we had to make search of information in the databases not provide
optimum performance to that kind of applications. We are talking about operations on a
large scale search, aggregation and binding of multidimensional data schemas. Because of
that the highest internet companies (Amazon [6], Google [8], Microsoft [15], Yahoo! [5],
etc.) started to redesign massive data storage and in order to build scalable systems. Thus,
lead to the definitions ofCloud Computingparadigm.

The first company that started to deal with this problem was Google with designed and
implemented the Google File System [8], a scalable distributed file system for large dis-
tributed data-intensive applications. It provides fault tolerance while running on inexpen-
sive commodity hardware, and it delivers high aggregate performance to a large number of
clients. Google File System shares many of the same goals as previous distributed file sys-
tems such as performance, scalability, reliability, and availability. To process and generate all
these large data sets that are stored in the Google File System, Google designed MapReduce
[9] that is a programming model and an associated implementation to help us to manage all
these data. The user has to define a map and a reduce function, the first one processes a
key/value pair to generate a set of intermediate key/value pairs and the second one merges
all intermediate values associated with the same intermediate key. We talk about this process
later in Chapter 2.

However, there are other private companies that develop this project on their own like
Microsoft with Microsoft Azure, Amazon with EC2 or Yahoo! with PNUTS as we pre-

5

viously said. It is worth noting that there are open source software projects, like Apache
Software Foundation [3], that develop equivalent architectures like Hadoop [4, 20], it is a
collection of related subprojects that fall under the umbrella of infrastructure for distributed
computing. But Hadoop is best known for MapReduce and Hadoop Distributed File System
(HDFS) which are inspired in MapReduce of Google and Google File system respectively.
To understand properly what Hadoop is we have to explain all the subprojects in which it is
divided [20]:

CommonThe common utilities that support the other Hadoop subprojects, before called
core.

Avro is a data serialization system that provides rich data structures; a compact, fast,
binary data format; a container file, to store persistent data; remote procedure call; and
simple integration with dynamic languages.

Pig is a platform for analyzing large data sets that consists of a high-level language for ex-
pressing data analysis programs, coupled with infrastructure for evaluating these programs.
The salient property of Pig programs is that their structure is amenable to substantial paral-
lelization, which in turns enables them to handle very large data sets. At present time. Pig’s
infrastructure layer consists of a compiler that produces sequences of MapReduce programs,
for which large-scale parallel implementations already exist (e.g., the Hadoop subproject).

HBaseis the Hadoop database. Is an open-source, distributed, versioned, column-oriented
store modeled after Google’ Bigtable: A Distributed Storage System for Structured by Chang
et al. Just as Bigtable leverages the distributed data storage provided by the Google File Sys-
tem, HBase provides Bigtable like capabilities on top of Hadoop.

ZooKeeper is a centralized service for maintaining configuration information, naming,
providing distributed synchronization, and providing group services. All of these kinds of
services are used in some form or another by distributed applications. Each time there are
implemented there is a lot of work that goes into fixing the bugs and race conditions that are
inevitable. Because of the difficulty of implementing these kinds of services, applications
initially usually skimp on them, which make them brittle in the presence of change and
difficult to manage. Even when done correctly, different implementations of these services
lead to management complexity when the applications are deployed.

Hive is a data warehouse system for Hadoop that facilitates easy data summarization,ad-
hoc queries, and the analysis of large datasets stored in Hadoop compatible file systems.
Hive provides a mechanism to project structure onto this data and query the data using a
SQL-like language called HiveQL. At the same time this language also allows traditional
MapReduce programmers to plug in their custom mappers and reducers wher it is inconve-
nient or inefficient to express this logic in HiveQL.

Chukwa is an open source data collection system for monitoring large distributed sys-
tems. Chukwa is built on top of the HDFS and MapReduce framework and inherits hadoop’s
scalability and robustness. Chuckwa also includes a flexible and powerful toolkit for dis-
playing, monitoring and analyzing results to make the best use of the collect data.

Cassandradevelops a highly scalable second-generation distributed database, bringing
together Dynamo’s fully distributed design and Bigtable’s ColumnFamily-based data model.

Hama is a distributed computing framework based on BSP (Bulk Synchronous Parallel)
computing techniques for massive scientific computations, Currently being incubated as one
of the incubator project by the Apache Software Foundation.

Mahout its goal is to build scalable machine learning libraries. With scalable they mean:

6

scalable to reasonably large data sets, scalable to support your business case and scalable
community.

To have a best point of view about all these subprojects we can use the next Figure
1.1 in which we can watch all of them and in with appeared the HDFS in the middle and
MapReduce on the left hand of it due to that HDFS is the pillar of all these project:

Figure 1.1: Hadoop Structure

Source: Own.
The main goal of this work is to apply the use of a dynamic distributed system tool

specialized in processing huge informations data sets. We are going to use MapReduce to
perform some mathematical computations on a data storage that contains some accounting
information. In particular, we decided to use a Spanish and Portuguese database called
Sistema de Ańalisis de Balances Ib́ericos(SABI), which we will discuss later in Chapter 3.

This work focuses on the financial database SABI [19], which is considered as a basic re-
search tool by many Spanish universities [11, 1, 2] and is largely used by private companies to
perform market analysis. Although this repository constitutes the main financial information
source in Spain, many companies do not properly fill in all the field, leading to an incomplete
data panel. In some works, this issue is roughly solved by excluding those rows that belong
to companies with missing values or inconsistent data [11]. Nonetheless, this data repository
is targeted to engage researchers in analyzing companies’ efficiency [13, 17, 10], computing
ratios like indebtedness, availability of idle resources, or capital costs [14], among others.

As we think that is tool could be so interested due to we realized some accounting com-
putations on a large database like(SABI) and it could be so useful as we explain previously
we are going to explain the conclusion that we obtain with this project and who we could
continuous improving this technique in Chapter 5.

7

Chapter 2

System Model

In this chapter we are going to explain the structure of HDFS, MapReduce and finally
we are going to show who MapReduce Programs works with an example using a weather
dataset.

2.1 The Hadoop Distributed FileSystem (HDFS)

To understand what HDFS is, we have to know that the distributed filesystems are filesystems
that manage the storage across a network of machines. HDFS is a filesystem designed for
storing very large files with streaming data access patterns, running on clusters on commodity
hardware.

2.1.1 Blocks

A disk has a block size, which is the minimum amount of data that it can read or write. The
HDFS structure is based on a set of blocks that are large compared to disk blocks due to
minimize the cost of seeks. The main difference between a disk block and a HDFS block
is the size, the disk block size is about 512 bytes and the default HDFS block size is 64
Megabytes although some HDFS installation use 128 Megabytes. The files in HDFS are
broken into block-sized chunks, which are stored as independent units.

Having a block abstraction for a distributed filesystem brings several benefits. The first
is that a file can be larger than any single disk in the network, and the second is that making
the unit of abstraction a block rather than a file simplifies the storage subsystem.

Furthermore, blocks fit well with replication for providing fault tolerance and availability.
To insure against corrupted blocks and disk and machine failure, each block is replicated
to a small number of physically separate machines (typically three). If a block becomes
unavailable, a copy can be read from another location in a way that is transparent to the client.
A block that is no longer available due to corruption or machine failure can be replicated from
their alternative locations to other live machines to bring the replication factor back to the
normal level [20].

8

2.1. The Hadoop Distributed FileSystem (HDFS)

2.1.2 Namenodes and Datanodes

An HDFS cluster has two types of node operating in a master-worker pattern: a namenode
(the master) and a number of datanodes (workers, slaves).

The namenode manages the filesystem namespace. It maintains the filesystem tree and
the metadata for all the files and directories in the tree. This information is stored persistently
on the local disk in the form of two files: the namespace image and the edit log. The namen-
ode also knows the datanodes on which all the blocks for a given file are located, however,
it does not store block locations persistently, since this information is reconstructed from
datanodes when the system starts.

Datanodes are the work horses of the filesystem. They store an retrieve blocks when they
are told to, and they report back to the namenode periodically with lists of blocks that they
are storing.

Without the namenode, the fileystem cannot be used. In fact, if the machine running the
namenode were obliterated, all the files on the filesystem would be lost since there datanodes.
For this reason, it is important to make the namenode resilient to namenode resilient to
failure, and Hadoop provides two mechanisms for this.

The first way is to back up the files that make up the persistent state of the filesystem
metadata. Hadoop can be configured so that the namenode writes its persistent state to
multiple filesystems. These writes are synchronous and atomic. The usual configuration
choice is to write to local disk as well as a remote NFS mount.

It is also possible to run a secondary namenode, which despite its name does not act as
a namenode. Its main role is to periodically merge the namespace image with the edit log
to prevent the edit log from becoming too large. The secondary namenode usually runs on
a separate physical machine, since it requires plenty of CPU and as much memory as the
namenode to perform the merge. It keeps a copy of the merged namespace image, which can
be used in the event of the namenode failing. However, the state of the secondary namenode
lags that of the primary, so in the event of total failure of the primary data, loss is almost
guaranteed. The usual course of action in this case is to copy the namenodes metadata files
that are on NFS to the secondary and run it as the new primary [20].

2.1.3 Interfaces

Hadoop is written in Java, and all Hadoop filesystem interactions are mediated through the
Java API. Hadoop has several interfaces but there are two interfaces that are specific to
HDFS:

HTTP This is a read-only interface for retrieving directory listings and data. Directory
listings are served by the namenode’s embedded web server (which runs on port 50070) in
XML format, while file data is streamed from datanodes by their web servers (running on
port 50075). We can show an example in Figure 2.1:

FTP This interface permits the use of the FTP protocol to interact with HDFS. This is a
convenient way to transfer data into an out of HDFS using existing FTP clients.

2.1.4 Data Flow

Anatomy of a File Read

9

2.1. The Hadoop Distributed FileSystem (HDFS)

Figure 2.1: HTTP Interface from HDFS

To learn how data flows between the client interacting with HDFS we are going to con-
sider Figure 2.2 in which the namenode and the datanode shows the main sequence of events
when reading a file.

The client opens the file it wishes to read by callingopen() on the FileSystem object,
which for HDFS is an instance of DistributedFileSystem (step 1 in Figure 2.2). Distributed-
FileSystem calls the namenode, using RPC, to determine the locations of the blocks for the
first few blocks in the file (step 2). For each block, the namenode returns the addresses of the
datanodes that have a copy of that block. Furthermore, the datanodes are sorted according to
their proximity to the client (according to the topology of the clusters network). If the client
is itself a datanode (in the case of a MapReduce task, for instance), then it will read from the
local datanode.

The DistributedFileSystem returns a FSDataInputStream (an input stream that supports
file seeks) to the client for it to read data from. FSDataInputStream in turn wraps a DFSIn-
putStream, which manages the datanode and namenode I/O.

The client then callsread() on the stream (step 3). DFSInputStream, which has stored
the datanode addresses for the first few blocks in the file, then connects to the first (closest)
datanode for the first block in the file. Data is streamed from the datanode back to the client,
which callsread() repeatedly on the stream (step 4). When the end of the block is reached,
DFSInputStream will close the connection to the datanode, then find the best datanode for
the next block (step 5). This happens transparently to the client, which from its point of view
is just reading a continuous stream.

Blocks are read in order with the DFSInputStream opening new connections to datanodes
as the client reads through the stream. It will also call the namenode to retrieve the datanode
locations for the next batch of blocks as needed. When the client has finished reading, it calls

10

2.1. The Hadoop Distributed FileSystem (HDFS)

Figure 2.2: A client reading data from HDFS

close() on the FSDataInputStream (step 6).
During reading, if the client encounters an error while communicating with a datanode,

then it will try the next closest one for that block. It will also remember datanodes that
have failed so that it doesnt needlessly retry them for later blocks. The client also verifies
checksums for the data transferred to it from the datanode. If a corrupted block is found, it
is reported to the namenode, before the client attempts to read a replica of the block from
another datanode [20].

Anatomy of a File Write
The client creates the file by callingcreate() on DistributedFileSystem (step 1 in

2.3). DistributedFileSystem makes an RPC call to the namenode to create a new file in the
filesystems namespace, with no blocks associated with it (step 2). The namenode performs
various checks to make sure the file doesnt already exist, and that the client has the right
permissions to create the file. If these checks pass, the namenode makes a record of the new
file; otherwise, file creation fails and the client is thrown an IOException. The Distributed-
FileSystem returns a FSDataOutputStream for the client to start writing data to. Just as in the
read case, FSDataOutputStream wraps a DFSOutput Stream, which handles communication
with the datanodes and namenode.

As the client writes data (step 3), DFSOutputStream splits it into packets, which it writes
to an internal queue, called the data queue. The data queue is consumed by the Data Streamer,
whose responsibility it is to ask the namenode to allocate new blocks by picking a list of
suitable datanodes to store the replicas. The list of datanodes forms a pipelinewell assume
the replication level is 3, so there are three nodes in the pipeline. The DataStreamer streams
the packets to the first datanode in the pipeline, which stores the packet and forwards it to
the second datanode in the pipeline. Similarly, the second datanode stores the packet and
forwards it to the third (and last) datanode in the pipeline (step 4).

DFSOutputStream also maintains an internal queue of packets that are waiting to be
acknowledged by datanodes, called the ack queue. A packet is removed from the ack queue

11

2.2. The MapReduce procedure

Figure 2.3: A client writing data to HDFS

only when it has been acknowledged by all the datanodes in the pipeline (step 5).
If a datanode fails while data is being written to it, then the following actions are taken,

which are transparent to the client writing the data. First the pipeline is closed, and any
packets in the ack queue are added to the front of the data queue so that datanodes that are
downstream from the failed node will not miss any packets. The current block on the good
datanodes is given a new identity, which is communicated to the namenode, so that the partial
block on the failed datanode will be deleted if the failed datanode recovers later on. The
failed datanode is removed from the pipeline and the remainder of the blocks data is written
to the two good datanodes in the pipeline. The namenode notices that the block is under-
replicated, and it arranges for a further replica to be created on another node. Subsequent
blocks are then treated as normal.

Its possible, but unlikely, that multiple datanodes fail while a block is being written. As
long as dfs.replication.min replicas (default one) are written the write will succeed, and the
block will be asynchronously replicated across the cluster until its target replication factor is
reached (dfs.replication, which defaults to three).

When the client has finished writing data it callsclose() on the stream (step 6). This
action flushes all the remaining packets to the datanode pipeline and waits for acknowl-
edgments before contacting the namenode to signal that the file is complete (step 7). The
namenode already knows which blocks the file is made up of (via Data Streamer asking
for block allocations), so it only has to wait for blocks to be minimally replicated before
returning successfully [20].

2.2 The MapReduce procedure

MapReduce is a programming model and an associated implementation for processing and
generating large data sets. Users specify a map function that processes a key/value pair to

12

2.2. The MapReduce procedure

generate a set of intermediate key/value pair, and a reduce function that merges all interme-
diate values associated with the same intermediate key.

Programs written in this functional style are automatically parallelized and executed on
a large cluster of commodity machines. The run-time system takes care of the details of
partitioning the input data, scheduling the program’s execution across a set of machines,
handling machine failures, and managing the required inter-machine communication [9].

2.2.1 Map and Reduce Functions

The user has to implement two functions to express the computation: Map and Reduce
functions.

The Map invocations are distributed across multiple machines by automatically parti-
tioning the input data into a set of M splits. The input splits can be processed in parallel
by different machines. Reduce invocations are distributed by partitioning the intermediate
key space into R pieces using a partitioning function. The number of partitions and the
partitioning function are specified by the user.

Later in this chapter, Section 2.3, we will show how the Map and Reduce Functions
works with an example.

2.2.2 Interface

As we said in the previous section there are a HTTP interface for the MapReduce jobs that
is ran by the master and exports a set of status pages show the progress of the computation,
such as how may task have been completed, how many are in progress, bytes of input, bytes
of intermediate data, bytes of output, processing rates, etc. Moreover, we can show which
workers have filed, and which map and reduce tasks they were processing when they filed.
Lets see an example of this interface at Figure 2.4.

2.2.3 Fault Tolerance

The MapReduce library tolerate machine failures in case that one of the workers failed. The
master pings every worker periodically. If no response is revived from a worker in a certain
amount of time, the master marks the worker as failed. Any map tasks completed by the
worker are reset back to their initial idle state, and therefore become eligible for scheduling
on other workers. Similarly, any map task or reduce task in progress on a failed worker is
also reset to idle and becomes eligible for rescheduling.

Completed map tasks are re-executed on a failure because their output is stored on the
local disk(s) of the failed machine and is therefore inaccessible. Completed reduce tasks do
not need to be re-executed since their output is stored in a global file system.

When a map task is executed first by worker A and then later executed by worker B
(because A failed), all workers executing reduce tasks are notified of the re-execution. Any
reduce task that has not already read the data form worker A will read the data from worker
B.

Due to this MapReduce is resilient to large-scale worker failures [9].

13

2.3. A Weather Dataset

Figure 2.4: HTTP Interface from MapReduce

2.3 A Weather Dataset

To understand how MapReduce works we are going to explain the example that appeared
in [20]. They manage a weather dataset through a MapReduce program. These data are
temperature measures of different part of the world and are store in a file in which each row
represent a measure.

We shows a sample of the weather repository to comprehend how the map and reduce
functions works:

0067011990999991950051507004 . . .9999999N9 + 00001 + 99999999999 . . .
0043011990999991950051512004 . . .9999999N9 + 00221 + 99999999999 . . .
0043011990999991950051518004 . . .9999999N9− 00111 + 99999999999 . . .
0043012650999991949032412004 . . .0500001N9 + 01111 + 99999999999 . . .
0043012650999991949032418004 . . .0500001N9 + 00781 + 99999999999 . . .

These lines are presented to the map function as the key-value pairs:

(0, 0067011990999991950051507004 . . .9999999N9+00001 + 99999999999 . . .)
(106, 0043011990999991950051512004 . . .9999999N9+00221 + 99999999999 . . .)
(212, 0043011990999991950051518004 . . .9999999N9-00111 + 99999999999 . . .)
(318, 0043012650999991949032412004 . . .0500001N9+01111 + 99999999999 . . .)
(424, 0043012650999991949032418004 . . .0500001N9+00781 + 99999999999 . . .)

14

2.3. A Weather Dataset

The keys are the line offsets within the file, which we ignore in our map function. The
map function merely extracts the year and the air temperature (indicated in bold text), and
emits them as its output. (The temperature values have been interpreted as integers.)

(1950, 0)
(1950, 22)
(1950,−11)
(1949, 111)
(1949, 78)

The output from the map function is processed by the MapReduce framework before
being sent to the reduce function. This processing sorts and groups the key-value pairs by
key. So, continuing the example, our reduce function sees the following input:

(1949, [111, 78])
(1950, [0, 22,−11])

Each year appears with a list of all its air temperature readings. All the reduce function
has to do now is iterate through the list and pick up the maximum reading:

(1949, 111)
(1950, 22)

This is the final output: the maximum global temperature recorded in each year.
The whole data flow is illustrated in Figure 2.5.

Figure 2.5: MapReduce logical data flow

To sum up, the Map function takes an input pair and produces a set of intermediate
key/value pairs. The MapReduce library groups together all intermediate values associated
with the same intermediate key and passes them to the Reduce function. The Reduce func-
tion, accepts an intermediate key, and set of values for that key. It merges together these
values to form a possibly smaller set of values. The intermediate values are supplied to the
user’s reduce function via an iterator. This allows us to handle lists of values that are too
large to fit in memory. And this Reduce function produce key/value pairs whit the results
that we wish to obtain.

15

Chapter 3

Experimental Setup

3.1 Case of study: SABI

This section presents a case of study where map/reduce functions are applied to deal with
large amounts of data and perform financial computation. Especially, we focus on the repos-
itory Sistema de Ańalisis de Balances Ib́ericos (SABI) which provides data of 1.222.198
Spanish and Portuguese companies from 1994 to 2009 it is approximately of 20 GB size
and is used by 99% of the Spanish Universities for several research studies in the fields of
Economics and Bussiness Administration. Both high dimensionality and popularity, couple
with some critiques about the consistency of this database. We are interested in proving the
data correctness with a distributed software processing tool [17].

3.1.1 Data availability and format

Sabi is available at [19]. However, there is a big constraint since only up to 500 companies
can be retrieved per query issued, due to the downloading format provided by the web site.
Therefore, due to the volume of data we are dealing with, we opted to obtain the data using
the DVD that SABI offers to their customers. Data can be obtained either as a text or an
Excel file, we chose the former as the limitation in the number of columns and rows of the
latter makes it hard to afford.

3.1.2 Verification: Database Correctness

SABI stores financial information from Spanish and Portuguese firms. All data are manually
inserted which leads to (1) human errors and (2) missing values. In order to detect and
correct such incompleteness and possible inconsistencies, we propose some verifications. In
the following, we describe the main economic indicators used and present some description
information about the data set .

We proceed to process the information associated with the balance accounts of the com-
panies that SABI has in its database. These balance accounts correspond to those presented
by the company in the Business Registry and should meet specific accounting criteria. For
the sake of clarity, in the following we describe the balance account definitions we need to
process with the data verification.

16

3.1. Case of study: SABI

Total Assetsare possessions, rights and other resources financially controlled by the
company; i.e., result of past circumstances from the company which will probably derive
economic benefits in the future [7].

Additionally, the conceptual framework of accounting requires that the asset is rated with
viability and simultaneously for its recognition; i.e., each entry in the asset must have an
entry in the liability as well to have a balance between both accounts. This is called Method
of Double Lines or Conceptual Framework Accounting.

Noncurrent Assetsare those things a company owns that are not expected to be con-
verted into or used as cash within one year, e.g. equipment, furniture and fixtures, real
estate, patents, trademarks, and long-term investments [18].

Current Assetsare those things a company owns that are expected to be turned into (or
used as) cash within one year from the date they are listed on the balance sheet, e.g. current
assets include cash, short-term investments, promissory note (IOUs) from customers, prepaid
expenses, and inventory [18].

Total Liabilities are those elements that compose the balance sheet accounts: net as-
sets, noncurrent liabilities and current liabilities. Total liabilities are simply monies that a
company owes. A business might owe money to the Internal Revenue Service in the form
of taxes, to employees in the form of accrued payroll, to vendors in the form of accounts
payable, or to banks for credits cards, mortgages, and other loans. The company takes into
account all these and expect extinction outflow of resources that can produce profits or future
economic performance [7, 18].

Equity are the share of owners in the financing of the company. This can vary depending
on the contribution made by the owners or partners as well as on the distribution company
results. This is one of the accounts that is part of the net assets.

The verifications we carried out according to the following account are:

• Total Assets = Total Liabilities

• Total Assets = Uncalled shareholders + Immobilized + Expenses deferred +
CurrentAssets

• NoncurrentAssets = Up cost+ Intangible assets+ Tangible assets+Financial assets+
Long − term treasury stock + Due on long − term traffic

• CurrentAssets = Expenditure required by shareholders+Stocks+Debtors+
Short term investments + Short−term treasury shares + Treasury +Accrual

• Total Liabilities = Equity+Revenue deferred+Provisions for liabilities and charges+
Long − term creditors + Short− term creditors

• Equity = Subscribed capital+ premium+ reservations and results for previous exercises

income + interimdividend paid during the year + share for capital reduction

3.1.3 Computation: Return On Investments (ROI)

We cannot only verify the accuracy of data inserted into the SABI repository but we can
also perform some computations. We computed the companies ranking according to their
financial profitability, ROI. It is a performance measure used to evaluate the efficiency of

17

3.2. Treatment file

an investment or to compare the efficiency of a number of different investments. ROI is
measured as the ratio between the Result Before Taxes (RBT) and the Equity. We have
used Hadoop MapReduce to perform this computations and hence we show that it is also
an attractive to perform data computation over the SABI repository. We show below how
ROI is calculated and in Section 4.3 how we proceed with this computations with Hadoop
MapReduce.

ROI =
Profit on ordinary activities + Extraordinary positive results

Equity +Revenue deferred− Uncalled shareholders− Longterm treasury shares

3.1.4 Validity of returned results

We compare each balance account of the companies and the ROI. To this end, we created
columns with dichotomic results (0 and 1) controlled by the name of the company and the
year, where 0 means that there is a wrong entry in the data of the company that the company
inserted and 1 otherwise.

We have run our MapReduce computation over a reduced data sample in order to verify
its correctness against its equivalent computation with Microsoft Excel.

In order to give a description of the data inserted in the repository we ran a MapRe-
duce computation that produces the results shown in Table 3.1. Moreover, we have to say
that all the years have the same number of companies (266417), although some companies
have disappeared, SABI decided to put the label (EXTINGUIDA) and without putting any
information about the companies with this label.

We can see from Table 3.1 that the different activity sectors obtained according to the
CNAE classification [12] this information is located in the 11th field, and we have used the
first two digits of this field to classified the companies as follows: from 01 to 04 Agriculture;
and, 05-34 Industry; and, 35-39 Energies; and 41-44 Construction and Dwelling; and, 45-49
Services. As some companies did not insert this field but they introduce the rest of informa-
tion we decided to create another column called “Unclassified”. It is important to note that
if we would want to make a research based on this distribution, we would have to eliminate
all these companies.

Finally, we want to highlight, from the information derived from Table 3.1, only the
1,26% of our repository have introduced the data and that most of them belong the services
sector. Other significant aspect is that SABI has more data between 2002 and 2006 that
indicates that we have more information in the central period analyzed.

3.2 Treatment file

The data repository that we obtained that from the SABI DVD had a structure that could not
be directly applied to Hadoop. Due to that we had to develop some programs to modify this
structure. In Figure 3.1 we show the first five fields of a SABI file. The different fields are
separated by blank spaces, such that the pattern is that between character of one field and the
first character of the next field are at must 31 characters.Another characteristic of the file is
that the companies with large names has its name separated in several lines.

18

3.2. Treatment file

Table 3.1: Distribution of the repository with regard to the activity sector and the year
Agriculture Industry Energies Construction Services Unclassified Total

& Dwellings Sample
1994 61 1539 51 528 2652 0 4831
1995 113 2244 77 942 4187 0 7563
1996 265 6115 203 3137 11970 0 21690
1997 298 6444 228 3412 13057 1 23440
1998 303 6644 267 3840 14119 1 25174
1999 421 8895 387 5282 18508 1 33494
2000 439 9110 426 5693 19327 3 34998
2001 465 9250 467 6188 20294 5 36669
2002 468 9281 508 6749 21044 6 38056
2003 492 9274 525 7101 21539 5 38936
2004 501 9271 516 7386 21812 2 39488
2005 496 9266 555 7632 22170 2 40121
2006 501 9204 588 7636 22311 2 40242
2007 462 8616 553 6861 20776 6 37274
2008 151 2648 202 1697 5598 1 10297
2009 0 0 0 0 0 0 0

TOTAL 5436 107801 5553 74084 239364 35 432273

Figure 3.2 presents another five fields of the file that refers tospecific accounting infor-
mation of the companies introduced in Figure 3.1. We can see form Figure 3.2 that some
of the fields are empty, due to that we need to fill this blank fields with a character that does
not change the meaning, so we decided to put a “*” character.

To solve these problems we prepared several scripts that fit the file according to the
Hadoop supported structure. The first point was to correct the companies names and put them
in one single line per company. To do so, we create a file with the name of the companies
followed by 1 if the line has the first part of the company name or 0 otherwise. Thanks to
this file structure we can easily build the company name into a single row name (see Figure
3.3 for the source code sample and Figure 3.4 for the resulting file):

The second part of our file treatment consisted in replacing the empty fields with a special
character “*”. We produced a program with this feature, the program reads in blocks of 31
characters and if the next one is a blank space it is replaced by “*”; otherwise it continues
the reading process. (see Figure 3.5 for the source code sample and Figures 3.6, 3.7 for
the result file). Later in the process we use the character “\t” to define the different fields.
The next stage consisted in replaceing the wrong layout of the companies’ names to fix them
to campanies’ names the correct one that we obtained previously and adding the year at
the beginning of the line ready to be used by Hadoop and adapted for our specific needs of
computation. We show a sample of this file in Figure 3.8.

19

3.3. Sabi Data Repository Explanation

Figure 3.1: The first 5 fields of a sample SABI file

Figure 3.2: A sample of a SABI file with some accounting info

3.3 Sabi Data Repository Explanation

In this section we are going to explain how our system works. To understand it properly we
are going to use Figure 3.9. It shows us an example of comparison between the Total Assets
and the sum of Uncalled shareholders, Immobilized, Expenses deferred, Assets:

The input file of our system corresponds to the following format; i.e. “Year \t Company
\t . . . \t uncalled shareholders \t immobilized \t . . .\t Expenses deferred
\t Assets \t . . . \t total assets \t . . .”. For example, we have: “2006 \t Repsol
Petr óleos S.A. \t . . . \t 2242904 \t . . . \t 48258 \t 3452272 \t . . . \t 5743434
\t . . .”.

The master (JobTracker in Figure 3.9) assigns to several workers (TaskTrakers in Figure
3.9) the different blocks in which the files are split into to do their map tasks. These tasks fol-
low the same structure for all the comparisons that we have specified per year; all of these ac-
counts are separated using “\t” too. So the result of the map task will be in the case: “2006
\t Repsol Petr óleos S.A. \t 5.743.434 \t 0 \t 2.242.904 \t 48.258
\t 3.452.272 ”.

These map tasks will eventually finish and populate the intermediate files. Previously, the
master will assign to other workers the reduce task to be executed over all the intermediate
files. It will first obtain the different accounts. The second value corresponds to the total
assets and the rest corresponds to the values whose addition must be equal to the former. In
our case, we have that: total assets = 5.743.434, uncalled shareholders = 0, immobilized =

20

3.3. Sabi Data Repository Explanation

Figure 3.3: code companies name

Figure 3.4: SABI file company’s name

2.242.904, expenses deferred = 48.258, current assets = 3.452.272. In this case it is satisfied
and it will return the following tuple: “Repsol Petr óleos S.A. \t 2006 \t 1”;
otherwise, it will be “Repsol Petrleos S.A. \t 2006 \t 0”. At the end of the
reduce task we will have a file composed of the following tuples (formatted as text lines
with “\t” as the field separator for each tuple): “Cemex España S.A. \t 2003 \t
0” . . . “Endesa Distribuci ón El éctrica \t 2004 \t 1” . . . “Ford Espa ña
S.L. \t 2000 \t 0” . . . “Repsol Petr óleos S.A. \t 2006 \t 1”

21

3.3. Sabi Data Repository Explanation

Figure 3.5: code prepearing fields

Figure 3.6: SABI file replaced fields in head part

Figure 3.7: SABI file replaced fields in tail part

Figure 3.8: SABI file corrected

22

3.3. Sabi Data Repository Explanation

Figure 3.9: MapReduce Architecture

23

Chapter 4

Discussion

This Chapter presents the execution of our project, which we have described previously.
After introducing some aspects of our implementation in Section 4.1 and describing the
experimental setting in Section 4.2, Section 4.3 brings some insights about the process,
results and behavior obtained from our system with different configurations. Finally, in
Section 4.4 analyzes analyze the results obtained using some tables.

4.1 System Implementation

The implementation of the system is has been done using Hadoop Version 0.20.0 [4]. All
system parameters can be configured using XML files.

core-site.xmlIn this configuration file we specify the path of the directory in which there
are going to be the temporary files that appeared during the MapReduce execution, moreover
we specify the name of the default file system (see Figure 4.1):

hadoop-env.shIn this configuration file we specify the path of the Java implementation
to use (see Figure 4.2):

hdfs-site.xml In this confiruation file we specify the number of replications can be spec-
ified when the file is created and the block size in bits (see Figure 4.3):

mapred-site.xml In this configuration file we specify the host and port that the MapRe-
duce job tracker runs at (see Figure 4.4):

mastersIn this file we specify the name of the master, in our case (see Figure 4.5):
slavesIn this file we specify the names of the slaves, in this case they are (see Figure 4.6):

4.2 Experimental Settings

Our testing configuration consists of 5 computers conected in a 100Mbps switched LAN,
where each machine has an Intel Core 2 Quad processor running at 2.66GHz, 3.39GB of
RAM and a 120GB hard disk runing Linux (version openSUSE 11.2 (i586)).

24

4.3. Sabi Experiments

Figure 4.1:core-site.xml

4.3 Sabi Experiments

First of all, we have to upload our SABI file in HDFS.However, we have to configure our
system with the different XML files that we have explained before. Afterwards, we have
to configure our system and then start our system using a start script. When the system is
running we upload the file using this command:
%hadoop fs − put originDirectory fileName.

4.3.1 Verifications

We have developed several scripts to adapt the system to different scenarios. We have in-
cluded in Figures 4.7- 4.9 samples of Map and Reduce functions that we have used for the
different verifications.

Let us start with Figure 4.7 that reads each line from the modified SABI file (explained in
Section 3.2) and picks up the selected fields separated by “\t”. For exdample in the case of
Total Assets = Total Liabilities we need the1st, 2nd, 29th and46th field that correspond with
the Year, Name, Total Assets and Total Liabilities respectively. And the output structure in
this case is as follows: “context.write(new Text(name), new Text(year +
‘‘ \t’’ + totalAssets + ‘‘ \t’’ + totalLiabilities)); ” and this is input
for the reduce task.

In the reduce task (see Figure 4.8) we receive the output from the map task with this
structure:〈 companyName, mapOutput1, mapOutput2, ...〉. For each line it takes the key
companyName and to realize the computation, if it is correct we put 1, and 0 otherwise.

25

4.3. Sabi Experiments

Figure 4.2:hadoop-env.sh

The output of the reduce task is:〈 companyName ‘‘ \t’’ year1 ‘‘ \t’’ 0 or 1
‘‘ \t’’ year2 ‘‘ \t’’ 0 or 1 ‘‘ \t’’ ... 〉.

The main program specifies the call to MapReduce to execute the scripts. A Job object
defines the specification of the job. It gives you control over how the job is run. When we
run this job on a Hadoop cluster, we will package the code into a JAR file (which Hadoop
will distribute in the cluster). Rather than explicitly specify the name of the JAR file, we can
pass a class in theJobConf constructor, which Hadoop will use to locate the relevant JAR
file by looking for the JAR file containing this class.

Having constructed aJobConf object, we specify the input and output paths. An input
path is specified by calling the staticaddInputPath() method onFileInputFormat ,
and it can be a single file, a directory (in which case, the input forms all the files in that
directory), or a file pattern. As the name suggests,addInputPath() can be called more
than once to use input from multiple paths.

The output path (of which there is only one) is specified by the staticsetOutputPath()
method onFileOutputFormat . It specifies a directory where the output files from the
reducer functions are written. The directory shouldnt exist before running the job, as Hadoop
will complain and not run the job. This precaution is to prevent data loss (it can be very an-
noying to accidentally overwrite the output of a long job with another).

Next, we specify the map and reduce types to use via thesetMapperClass() and
setReducerClass() methods.

The setOutputKeyClass() and setOutputValueClass() methods control
the output types for the map and the reduce functions, which are often the same, as they
are in our case. If they are different, then the map output types can be set using the methods
setMapOutputKeyClass() andsetMapOutputValueClass() .

The input types are controlled via the input format, which we have not explicitly set since

26

4.3. Sabi Experiments

Figure 4.3:hdfs-site.xml

we are using the defaultTextInputFormat .
After setting the classes that define the map and reduce functions, we are ready to run

the job. The staticrunJob() method onJobClient submits the job and waits for it to
finish, writing information about its progress to the console [20].

4.3.2 Return On Investments (ROI)

Once we have seen how MapReduce works with the different verifications we have done,
we are going to explain how MapReduce can perform simple mathematical operations. In
our case we are going to compute the ROI value for all the companies. The ROI parameter
measures the efficiency of an investment or to compare the efficiency of a number of different
investments.

The Map Task has the same structure in all verifications (see Section 4.3.1). We have to
obtain all the data that we need for our operation:

ROI =
Profit on ordinary activities + Extraordinary positive results

Equity +Revenue deferred− Uncalled shareholders− Longterm treasury shares

All these fields correspond with the positions1st, 2nd, 75th, 81th, 30th, 37th, 12th and18th

fields. The output structure in this case is as follows: “context.write(new Text(na-
me), new Text(year + ‘‘ \t’’ + profitOrdActivities + ‘‘ \t’’ + ex-

27

4.3. Sabi Experiments

Figure 4.4:mapred-site.xml

Figure 4.5:masters

traPositResults + ‘‘ \t’ ’ + equity + ‘‘ \t’’ + revenueDeferred +
‘‘ \t’’ + uncalledShareholders + ‘‘ \t’’ + ltTreasuryStocK)); ”.

The different between the previous MapReduce approach is the Reduce Task has to per-
form an arithmetic computation instead of performing a verification. As we could see in Fig-
ure 4.10, first of all we take all the operands with the exception of the company name and the
year. We check if all the operands are different from ”* to perform the computation; in such
a case the returned result will be ”ERRORif one of the operators meets this character, other-
wise the operation is performed producing the following output:〈companyName ‘‘ \t’’
year1 ‘‘ \t’’ result1 ‘‘ \t’’ year2 ‘‘ \t’’ ERROR ‘‘ \t’’ ... 〉.

4.3.3 Performance analysis

We measure these computations in different scenarios in which we change the number of
datanodes (between 3 and 5), the replication depth (between 3 and 4) and the chunk size
(32MB, 64MB, 128MB). As we said before the default chunk size is 64MB so we start
with this configuration in our experiments; afterward, we changed the parameters mentioned
above. With 3 computers as datanodes and a replication number of 3 the execution times
were about 120 seconds, so we decided to change our configuration using in this case 4
computers as datanodes and the same replication number and the results were better, we
reduce the time execution 20 seconds more or less and the execution times were about 100
seconds. The next step was to check if we change the replication factor to 4, to validate if we
can obtain better results. However, the results were similar and we can provide better fault-

28

4.3. Sabi Experiments

Figure 4.6:slaves

Figure 4.7: MapTask

tolerance support without incurring in a greater overhead. However, we continued changing
the parameters to 5 datanodes and the different replication factors but the results were worse
than the previous cases so we stopped there.

From this situation we decided to change the chunk size from 64MB to 128MB. Thus, as
we know that the best configuration so far is 4 computers with a replication factor of 3, we
used this configuration with the new chunk size and the result was that the execution time
was lower than the same configuration with 64MB of chunk size; we are talking about 95
seconds. Next, we set the configuration of 4 computers and a replication number of 4 again
and the result was an increase of 20 seconds. Due to that we decided to change the the chunk
size again to 32MB.

The chunk size at this moment was of 32MB and using again the configuration of 4
computers and a replication number of 3, we discover that the execution time increase in
a pronounced way; in this case, the completion time was 150 seconds. From these results
we notice that the chunk size is so important, if the file is so large we need an appropriate
chunk size in order to have the less number of chunks as possible to have less number of
Map and Reduce Tasks to be executed, but we have to take notice that if the chunk is so big
the Map and Reduce Tasks will take longer. In addition, we reduce the time that the system
spend changing between the different chunks during the execution of the map and reduce
tasks. The number of computers is so important too, because we have the same number of
namenodes as number of computers and this means that we could have at most this number
of tasks running concurrently in our system.

Let us see Table 4.1 to realize a better idea about the different execution times obtained
during the experiments and in with we could see that the best configuration is with a chunk
size of 128MB using 4 computers with a replication depth of 3 and the worst execution time

29

4.4. Evaluation

Figure 4.8: ReduceTask

Figure 4.9: MainProgram

in the distributed system is with a chunk size of 32MB. Obviously the centralized system,
labeling with “1(1)”, has an execution time higher than the rest of computation (i.e.; the
centralized) and can be considered the worst case in the system.

4.3.4 AWK Performance

To compare the execution time between a distributed system and a centralized system we
decided to develop an AWK script (see Figure 4.11). The execution time of this AWK script
using the same SABI file was 2 minutes 30 seconds. Thanks to this script we can certify
that a big data repository is easier and faster with this distributed tool than with a traditional
centralized application.

4.4 Evaluation

In this section we are going to evaluate the results obtained with our system. Thanks to the
files that our system produces we could generate two tables (see Tables 4.2 and 4.3) to show
the ccuracy of the data repository.

30

4.4. Evaluation

Figure 4.10: ROI Reduce Task

Table 4.1: Execution times in regard with the different configuration system
Chunk Size (MB) 64 128 32
Rep (Rep Depth) 1(1) 3(3) 4(3) 4(4) 5(3) 5(4) 3(3) 4(3) 4(4) 4(3)
TOTAL ASSETS

= 175 119 99 104 105 108 110 95 107 152
TOTAL LIABILITIES

TOTAL ASSETS 178 125 99 101 107 109 117 94 97 120
CURRENT ASSETS 175 123 106 105 109 106 116 101 101 125

NONCURRENT ASSETS 174 117 101 104 106 105 114 98 97 124
TOTAL LIABILITIES 179 124 101 104 106 105 114 98 97 124

EQUITY 176 118 97 103 110 107 115 99 99 121
ROI 178 120 99 102 111 113 118 98 102 120

As Table 4.2 shows, the number of companies that have passed the computations in each
of the activity sectors. Comparing these results with the TOTAL row from Table 3.1, we
could see that most of the companies that had presented data have passed the
Total Assets = Total Liabilities check point. On the other hand, we verify the most
hobbled verification was the comparison between the Current Assets and the fields to be
considered as the contributors to its associated value. To obtain all the results we have used
Hadoop too in the way we have explained in the previous section.

As Table 4.3 shows, we could infer that for each sector the percentage of companies
that have data in their registry (N) with respect to the total sample and the percentage of
companies that have passed all the check points in reference of the number of companies
that have presented data (n). It is worth highlighting, that the companies that belong to the
Energy sector have presented 50% of the data correctly and, on the other side, we could see
that the companies in the Constructions & Dwellings sector have the lowest percentage with
only a 40%. As a find remark, we could state that hardly the companies arrive to the 50%
percentage which produce that only a 41% of our total sample have passed the computation.

31

4.4. Evaluation

Figure 4.11: AWK implementation

Table 4.2: Distribution of the repository with regard the sector and the different check points

Agriculture Industry Energies Construction Services Unclassified Total
& Dwellings Sample

TOTAL ASSETS

= 5436 107770 5553 217407 239304 4 575474
TOTAL LIABILITIES

TOTAL ASSETS 2814 56993 3367 39034 126991 2 229201
NONCURRENT 2769 54822 3188 38169 122218 3 221169

ASSETS

CURRENT 2176 44285 2840 29984 99924 0 179209
ASSETS

TOTAL 2488 48410 2970 34007 112845 0 200720
LIABILITIES

EQUITY 2634 52249 3238 37272 117659 1 213053

32

4.4. Evaluation

Table 4.3: Description of the percentages of companies that have presented data and the ones
that have passed the computation

agriculture Industry Energies Construction Services Unclassified Total
& Dwellings Sample

N n N n N n N n N n N n N n
1994 1% 38% 32% 35% 1% 24% 11% 39% 55% 37% 0% 0% 1% 36%
1995 1% 34% 30% 35% 1% 26% 12% 38% 55% 37% 0% 0% 2% 37%
1996 1% 39% 28% 37% 1% 37% 14% 41% 55% 40% 0% 0% 5% 39%
1997 1% 41% 27% 38% 1% 37% 15% 42% 56% 40% 0% 0% 5% 40%
1998 1% 38% 26% 37% 1% 39% 15% 40% 56% 39% 0% 0% 6% 39%
1999 1% 38% 27% 38% 1% 39% 16% 40% 55% 40% 0% 0% 8% 39%
2000 1% 39% 26% 37% 1% 45% 16% 40% 55% 40% 0% 0% 8% 40%
2001 1% 39% 25% 42% 1% 56% 17% 41% 55% 42% 0% 0% 8% 42%
2002 1% 38% 24% 45% 1% 57% 18% 41% 55% 44% 0% 0% 9% 44%
2003 1% 42% 24% 44% 1% 56% 18% 43% 55% 43% 0% 0% 9% 44%
2004 1% 41% 23% 43% 1% 55% 19% 41% 55% 43% 0% 0% 9% 43%
2005 1% 43% 23% 42% 1% 56% 19% 40% 55% 43% 0% 0% 9% 42%
2006 1% 40% 23% 43% 1% 55% 19% 40% 55% 43% 0% 0% 9% 42%
2007 1% 43% 23% 44% 1% 56% 18% 40% 56% 42% 0% 0% 9% 42%
2008 1% 36% 26% 40% 2% 43% 16% 32% 54% 43% 0% 0% 2% 41%
2009 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

TOTAL 1% 40% 25% 41% 1% 50% 17% 40% 55% 42% 0% 0% 100% 41%

33

Chapter 5

Conclusions

5.1 Summary

Data driven applications are becoming more popular nowadays and the requirements needed
to manage them are very stringent; huge volumes of data do not fit well in traditional database
management systems. Cloud computing provides us the proper tools and infrastructure to
manage data in a scalable and efficient way. In this paper, we have proposed a method to
deal, not just storing but also computing, with large data repositories in the financial research
field. This method consists in using the HDFS and MapReduce facilities to detect possible
errors and recalculate values of the Spanish/Portuguese data repository (SABI) and to ease
the computation of certain financial metrics.

This work has presented a more daily application of MapReduce which embraces eco-
nomics calculation. However, there is still a long way until this usage becomes familiar to
practitioners due to the difficulties of decomposing the problem in operations of mapping
and reducing required to apply the MapReduce distributed computing paradigm. We hope
our sketch encourages researchers to work on this direction and provide new insight into the
field.

5.2 Future Work

Finally, our future research lines are two-fold: (1) to apply the same idea with upper layer
Hadoop products such as HBase or Hive and compare which option is the best in terms of
coding complexity and (2) to make a performance comparison analysing statistical tools such
as R and SPSS.

34

Chapter 6

Related Publications

The work presented in this document has given rise to the following contribution:

• J. Navarro,A. Azqueta Alzúaz, P. Murta, J.E. ArmendárizÍnigo. Cloud Computing
Keeps Financialmetrics computation simple.The 6th International Conference on Soft-
ware and Data Technologies (ICSOFT 2011), July 18-21, Sevilla, Spain. Conference
Proceedings (accepted for publication).

35

Bibliography

[1] Pablo Murta Baião Albino. Eficiencia y productividad de las cooperativas de crédito
españolas frente al desafı́o de la desintermediación financiera. InINTERNATIONAL, C.
E. A. C. (Ed.) innovation and Management: Answers to the great challenges of public,
social economy and cooperative enterprises, 2008.

[2] Pablo Murta Baião Albino, Katrin Simón-Elorz, and Francisco Javier Arcelus-
Ulibarrena. Posicionamiento de la industria hortofrutı́cola en la industria agroalimen-
taria española: un análisis shift-share. InHORT́ICOLAS, S. E. D. C. (Ed.) VI Congreso
Ibérico de Ciencias Hortı́colas, 2009.

[3] Apache. The apache software foundation, 2011. Disponible en:http://www.
apache.org/ .

[4] Apache. Hadoop, 2011. Disponible en:http://hadoop.apache.org/ .

[5] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip
Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni.
Pnuts: Yahoo!’s hosted data serving platform.PVLDB, 1(2):1277–1288, 2008.

[6] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and
Werner Vogels. Dynamo: amazon’s highly available key-value store. In Thomas C.
Bressoud and M. Frans Kaashoek, editors,SOSP, pages 205–220. ACM, 2007.

[7] Pablo Archel Domench, Fermı́n Lizarraga Dallo, Santiago Sánchez Alegrı́a, and
Manuel Cano Rodrı́guez.Estados Contables:Elaboracin, anlisi e interpretacin(3th
Edition). Pirámide, 2010.

[8] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In
Michael L. Scott and Larry L. Peterson, editors,SOSP, pages 29–43. ACM, 2003.

[9] Google. Google app engine, May 2011. Disponible en:http://code.google.
com/intl/en/appengine/ .

[10] Isidoro Guzmán, Narciso Arcas, Rino Ghelfi, and Sergio Rivaroli. Technical efficiency
in the fresh fruit and vegetable sector: a comparison study of italian and spanish firms.
Fruits, 64(4):243–252, July-August 2009.

[11] G. Hernández-Cánovas and P. Martı́nez-Solano. Relationship lending and sme fi-
nancing in the continental european bank-based system.Small Business Economics,
34(4):465–482, 2010.

36

[12] Instituto Nacional de Estadı́stica. Cnae 2009. clasificación nacional de actividades
económicas, May 2011. Disponible en:http://www.ine.es/jaxi/menu.do?
type=pcaxis\&path=/t40/clasrev\&file=inebase .

[13] Magdalena Kapelko and Josep Rialp-Criado. Efficiency of the textile and clothing
industry in poland and spain.Fibres & Textiles in Eastern Europe, 17(3):7–10, 2009.

[14] A. Martı́nez-Campillo and R. Fernández Gago. What factors determine the decision
to diversify? the case of spanish firms (1997-2001).Investigaciones Europeas de Di-
rección y Econoḿıa de la Empresa, 15(1):15–28, 2009.

[15] Microsoft. Windows azure platform, May 2011. Disponible en:http://www.
microsoft.com/windowsazure/ .

[16] N. Monserrat, T. Palanca, M. Deppe, and B. Hartman. Replication Server: A compo-
nent of SYBASE System 10. Technical report, SYBASE Inc., April 1993.

[17] Jose Luis Retolaza and Leire San-Jose. Efficiency in work insertion social enterprises:
a dea analysis. InUniversidad, Sociedad y Mercados Globales, pages 55–64, 2008.

[18] Jr. Rick J. Makoujy.How to Read a Balance Sheet. McGraw-Hill, 2010.

[19] Bureau van Dijk. sabi, 2011. Disponible en:http://sabi.bvdep.com .

[20] Tom White.Hadoop:The definitive guide(1th Edition). OReilly Media, Inc., 2009.

37

	Memoria

