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Abstract 

Source to sink size ratio, i.e.: the relative abundance of photosynthetically active organs 

(leaves) with regards to photosynthate demanding organs (mainly bunches), is widely known 

to be one of the main drivers of grape oenological quality. However, due to the difficulty of 

remote sink size estimation, Precision Viticulture (PV) has been mainly based on within-field 

zone delineation using vegetation indices. This approach has given only moderately 

satisfactory results for discriminating zones with differential quality. The aim of this work was 

to investigate an approach to delineate within-vineyard quality zones that includes an 

estimator of sink size in the data-set. The study was carried out during two consecutive 

seasons on a 4.2 ha gobelet-trained cv. ‘Tempranillo’ vineyard. Zone delineation was 

performed using Normalized Difference Vegetation Index (NDVI), soil apparent electrical 

conductivity (ECa) and bunch number (BN) data. These variables were considered separately, in 

pairs, or the three altogether, using fuzzy k-means cluster analysis for combinations. The zones 

delineated based on single variables did not allow a sufficient discrimination for grape 

composition at harvest, NDVI being the only variable that by itself resulted in zones that to 

some extent differed in grape composition. On the contrary, when two variables were 

combined, discrimination in terms of grape composition improved remarkably, provided the 

sink size estimation variable (BN) was included in the combination. Lastly, the combination of 

the three variables yielded the best discriminating zoning, improving slightly on those provided 

by NDVI+BN and ECa+BN combinations. Thus, the relevance of including a variable related to 

sink size (in this case the number of bunches per plant) has been confirmed, which makes its 

consideration highly advisable for any PV work aiming at zone delineation for grape quality 

purposes. 

Introduction 

The delineation of within-vineyard zones that would potentially produce grapes of 

differential quality has been one of the main aspects that Precision Viticulture (PV) has dealt 

with in the last decade. Zone delineation has been based mainly on the information given by 

remotely obtained vegetative indices, and has been proved to be suitable to distinguish zones 

within the vineyard with different vegetative development (Santesteban et al. 2010; Acevedo-

Opazo et al. 2008a; Acevedo-Opazo et al. 2008b; Acevedo-Opazo et al. 2010; Hall et al. 2003; 

Bramley et al. 2011c). However, the performance of this approach with regards to grape 

composition is much more erratic. For instance, Bramley et al. (2011b) used PCD index to 

delineate zones, observing oenological differences for just two of the five wine composition 

parameters considered. Similarly, Acevedo-Opazo et al. (2008a) found that the zones defined 

with NDVI were not coherent with most grape composition parameters, and Santesteban et al. 

(2010) only found differences between NDVI-defined zones for one of the six grape 

composition parameters considered. On the contrary, Hall et al. (2011), observed that grape 

This is a post-peer-review, pre-copyedit version of an article published in Precision Agriculture. 
The final authenticated version is available online at: https://doi.org/10.1007/s11119-016-9450-0.



composition was generally correlated with vegetation indices, although the correlation 

coefficients found were inferior to 0.4. King et al. (2004) reported a very good correspondence 

between the zones defined with NDVI obtained with a proximal sensor mounted to an all-

terrain vehicle and grape composition. 

The zone delineation process has been completed by some authors combining the 

information given by vegetation indices with other variables such as soil apparent electric 

conductivity (ECa) or elevation (Bramley et al. 2011a; Bramley and Lamb 2003; Corwin and 

Lesch 2005; Santesteban et al. 2013; Urretavizcaya et al. 2011; Tagarakis et al. 2013), but the 

degree of agreement between the zones defined and grape composition was still just 

moderate. Santesteban et al. (2013) hypothesised that introducing any variable that estimated 

sink size (i.e.: fruit load) in multivariate based methods for zone delineation would provide an 

improvement in their performance, since an adequate balance between photosynthate 

sources (leaves) and sinks (majorly the bunches) is known to determine, to a great extent, 

grape quality (Howell 2001). 

The balance between source and sink size has been classically estimated by the Ravaz 

Index, defined as the ratio between grape and pruning wood mass (Ravaz 1903) and 

constitutes one of the most widely used indices among viticulturists. More recently, the ratio 

between leaf area and the amount of fruit has been introduced as an index to estimate 

vineyard balance (Howell 2001) and is frequently referred as crop load. In opposition to the 

relevance that has been given to vine balance in classic viticulture, PV has only taken into 

account “source size”, since vegetation indices are good surrogates for leaf area development 

(Baluja et al. 2012; Hall et al. 2011; Johnson et al. 2003; Tagarakis et al. 2013) and can, to some 

extent, represent canopy microclimate as canopy size conditions it (Smart and Robinson 1991), 

but are not good surrogates of the amount of fruit (Hall et al. 2011; Bonilla et al. 2015). The 

main reason for not considering “sink size” relative variables for zone delineation is probably 

that, to date, there is not a readily usable method that would allow the estimation of its spatial 

variability. Nevertheless, there is a growing interest in developing methods for accurate and 

cost effective estimation of fruit load early in the season, based on RGB (red, green and blue) 

and multispectral imagery (Diago et al. 2012; Nuske et al. 2011; Fernandez et al. 2013). In that 

sense, the work performed by Grocholsky et al. (2011), where both sink and source sizes were 

simultaneously estimated using a camera and laser system, is particularly relevant. The 

inclusion of sink size estimators for within zone delineation will have a great impact for 

vineyard management (for example, adjusting cultural practices to get more balanced vines by 

practices such as cluster or leaf thinning)  

The aim of this work was to investigate an approach to delineate within-vineyard grape 

quality zones from information obtained earlier in the season. The originality of this approach 

is the inclusion of an estimator of sink size in the data-set. 



 

Materials and methods 

Experimental layout 

The study was carried out during two consecutive seasons (2010 and 2011) on a 4.2 ha 

gobelet-trained cv. ‘Tempranillo’ vineyard, located in Leza (42º 33’ 22’’ N, 2º 38’ 07’’ W, 572 m 

asl, Basque Country, Spain). The vineyard was 17-years old at the beginning of the experiment, 

with a 2.4 x 1.2 m planting distance and no irrigation system, as this is a traditionally rain-fed 

vineyard area. This climate of the area belongs to Classes II and III in Huglin’s classification 

(Huglin and Schneider 1998). The climatic conditions in 2010 were drier and warmer than 

average, whereas in 2011 the weather was similar to average in terms of spring rainfall, and 

slightly cooler in temperature, but the lack of rainfall from mid-August to late-September led 

to moderate water deficit and basal defoliation after NDVI image acquisition. More detailed 

data on the climatic conditions during the study period and some vineyard characteristics are 

detailed in Urretavizcaya et al. (2014). 

During the season previous to the start of the experiment (2009), Normalized 

Differential Vegetative Index (NDVI) information was obtained from QuickBird satellite images, 

taken shortly after veraison (first half of August). Pixel size is 0.61 m for panchromatic, and 2.4 

meter for multispectral. NDVI was used to define a field sampling grid. The distance between 

each sampling point (SP) of the grid was chosen as the range of the NDVI semi-variogram 

model corresponding to 25 % of the total semi variance (C0 + C1), which implies that 75% of 

spatial variability was encompassed. The resulting sampling grid consisted of 60 SP, with a 30 

m x 30 m distance between them. At each SP, 15 adjacent plants located in three consecutive 

rows were marked, and all of them were used for the experimental measurements and 

sampling. 

In order to delineate within-vineyard zones, information related to (i) vegetative 

development, (ii) sink size and (iii) soil characteristics were considered.  

- Vegetative development was estimated using the NDVI calculated from QuickBird 

multiband satellite images acquired shortly after veraison each year, once vegetative growth 

had stopped. Once a map for the whole vineyard was obtained, the average value observed at 

the pixels in the zone that included the 15 vines at each SP was calculated and assigned to it. In 

order to test the ability of NDVI to estimate vegetative development in goblelet trained vines, 

for which no references are available, mean total shoot cross sectional area (SCSA) was 

calculated for each SP by measuring the basal diameter of all the shoots in the 15 vines at the 

end of July, once apical growth was stopped. 

- Sink size was estimated by counting at veraison the total number of bunches (BN) of all 

the 15 vines at each SP. 



- Soil variability was characterized by measuring soil electrical apparent conductivity (ECa) 

at each SP using a handheld EM38 (Geonics Ltd, Ontario, Canada). At each sampling point, ECa 

measurements were performed every second for 3-5 minutes, and the obtained data averaged 

after removing values shown to be outliers in box-and-whisker diagram. The measurements 

were performed in 2010 winter, after a heavy rainfall, in order to minimize the differences 

between measurements caused by soil water content.  

The evaluation of the agronomic significance of the zones delineated was tested using 

yield and grape composition data obtained at harvest. Yield was determined by weighting all 

the bunches produced by the 15 vines at each SP. Then, a 300-berry sample was gathered per 

SP, and berry weight (BW) as well as the main composition parameters were determined using 

standard procedures. Shortly, after crushing, total soluble solids concentration (TSS) was 

measured with a temperature compensating refractometer RFM840 (Bellingham-Stanley Ltd., 

Kent, UK), pH and titratable acidity (TA) using a pH-Burette 24 auto-titrator (Crison, Barcelona, 

Spain), malic (MalA) and tartaric acid (TarA) concentration was measured enzymatically using 

an autoanalyzer (Easychem, Systeas.p.a., Italy), whereas yeast assimilable nitrogen (YAN) was 

estimated following the procedure described by Aerny (1996) with the modifications detailed 

in Garcia et al. (2011). Phenolic maturity was evaluated after 4 h extraction in two different 

media (pH = 1.0, pH = 3.2) following the methodology described in Glories and Augustin (1993) 

that allows estimating the concentration of total (TAnt) and extractable (EAnt) anthocyanins 

and of total phenolics (TP).  

Data analysis 

For both years of the experiment, the 60 SP were classified considering three clustering 

variables (NDVI, ECa and BN) and their possible combinations. Classes (i.e: clusters) were 

defined through fuzzy k-means analysis. The potential number of classes was considered to be 

2, 3 and 4, and the best-performing number was chosen taking into account the values 

obtained for fuzziness performance index (FPI) and modified partition entropy (MPE) (Boydell 

and McBratney 2002) for fuzzy exponents ranging from 1.0 to 1.9. Clustering was performed 

applying fuzzy k-means analysis to pixel values in NDVI, ECa and BN maps, obtained using 

ordinary kriging as detailed in Urretavizcaya et al. (2014) 

The oenological significance of the classes defined was evaluated with two different 

procedures, using yield, berry weight and the nine grape composition variables measured at 

harvest (TSS, pH, TA, MalA, TarA, YAN, TAnt, EAnt and TP). Firstly, a one-way ANOVA 

considering the classes as the factor was used, allowing a separated evaluation for each 

variable. When the ANOVA showed statistically significant differences (P<0.05), a Tukey-

Kramer’s test to determine post hoc separation between means was used, as it is a test 

suitable for unbalanced data sets (Sahai and Ojeda 2004). Secondly, MANOVA was done with 

the nine grape composition variables, considering as factors the classes defined by the seven 

input data (NDVI, ECa and BN, and their four possible combinations). ANOVAs were performed 

using IBM SPSS Statistics v.21 (IBM SPSS Statistics Inc., Chicago, IL), and MANOVAs with R (v. 

3.1.0, the R Foundation for Statistical Computing). 



Results and discussion 

Significance of NDVI measurements in gobelet trained vines 

NDVI was shown to be a good estimator of vegetative development in goblelet trained 

vines, since it was related to total shoot cross sectional area (SCSA) measured at the end of 

July in 2010, when apical growth was already stopped (SCSA = 122.9 + 1722.6*NDVI, R2=0.58, 

Fig 1). Although there were no earlier references on the performance of NDVI as a vegetative 

development surrogate in gobelet trained vines, it was reasonable to consider its usefulness 

since, some of NDVI limitations in vertical shoot positioned (VSP) canopies such as narrow 

canopies that create problems with aerial and satellite sensing (Taylor et al. 2005) or 

saturation effect of red NDVI when the canopies are big (Stamatiadis et al. 2010) apply to a 

much lower extent in a free-trained system.  

Within-vineyard variability for grape composition 

The average values observed for quality parameters were relatively similar in the two 

seasons considered (Table 1), the main differences being observed for TSS (25.2 vs. 24.0 ⁰Brix) 

and MalA (2.80 vs. 1.87 g L-1), as similarly reported by Baluja et al. (2013) for the same seasons 

for cv. Tempranillo, in a nearby area. The reason behind these differences may be that during 

the last part of the season in 2011, moderate to severe water deficit occurred across the 

vineyard, which resulted in a considerable basal shoot defoliation that probably implied a 

reduction coupled to a decrease in photosynthetic activity (Tomás et al. 2012) and an increase 

in malic acid degradation (De Souza et al. 2005). 

As a whole, the range and variability observed for grape composition parameters was high 

(Table 1), particularly for TSS, YAN, and for all parameters related to phenolic maturity (TAnt, 

EAnt and TP), for which nearly two-fold differences were observed between the lowest and 

the highest values each season. On the contrary, a much lower range was observed for must 

acidity (TA, MalA, TarA), for which the difference between the highest and lowest values 

within the same year was ≈1 g L-1. The range of variability of grape composition within this 

vineyard can be therefore considered large enough to justify grape segregation into batches 

with different quality and, as a consequence, a good target vineyard for PV implementation. 

The SP with higher anthocyanin and phenolics concentrations would be suitable for aged 

wines, those within the lower range would have been suitable only for generic wine. Similarly, 

grapes within the lower range of soluble solids content would have benefited from a later 

harvest to reach TSS > 23.5 ⁰Brix, the threshold for harvesting in the region.  CV values were 

between 1/2 and 1/3 of the CV values observed during the same year in samples taken from a 

network of 74 cv. Tempranillo vineyards in the same area (data not shown), which gives an 

idea of the the magnitude of the variability in grape composition that can be found within a 

single vineyard. 



Significance of the zones defined  

The zones delineated with the 7 different input data, i.e. NDVI, ECa, BN and their 

combinations (Fig. 2), showed a very different performance when the agronomic significance 

of the classes was evaluated through ANOVA analyses of yield and the grape composition 

parameters obtained at harvest. Results are summarized in Table 2, and given in detail as 

Supplementary Material in Table S1. The zones delineated when NDVI, ECa and BN were 

considered individually performed poorly: NDVI was the single variable that allowed the 

differentiation between classes for more grape composition variables (4 in 2010, 4 in 2011), 

whereas the classes defined solely with ECa discriminated for none of the grape composition 

parameters, and BN discriminated for only 1 parameter in 2010 and for 2 in 2012. Quite 

surprisingly, BN classification performed poorly even for yield and BW discrimination, only 

being able to discriminate classes with different yield and BW in 2010. BN plays only a 

moderate role in yield definition, which is more closely relatedo to berry number (Dunn and 

Martin 1998).  

However, the classifications obtained by fuzzy k-means analysis when combining two out 

of the three variable clustering variables considered (NDVI+BN, ECa+BN and NDVI+ECa) 

performed much better (Table 2). The classification that included the three variables 

(NDVI+ECa+BN) was the best-performing one (discriminated for 5 and 6 grape composition 

parameters in 2010 and 2011 respectively), followed by NDVI+BN and ECa+BN (4 and 6 in 2010 

and 2011 respectively). These three combinations also allowed discriminating for the two 

quantitative crop parameters considered (yield and BW) both seasons. The poorest-performing 

of the three combinations was the one that did not consider BN (NDVI+ECa), which only 

discriminated for 1 and 3 grape composition parameters in 2010 and 2011 respectively. 

Therefore, the inclusion of an easily measurable variable that estimates sink size improved 

significantly the zone delineation procedure. For all input data combinations the optimum 

number of classes was 2 or 3 according to FPI and MPE indices (results not shown). 

When the discrimination ability for grape composition of the zones delineated was tested 

according to MANOVA (Table 3), the trend observed with ANOVA was confirmed. NDVI was 

the only variable that, on its own, discriminated them significantly. The combination of 

variables resulted in general in an improvement, and particularly the inclusion of BN in the 

fuzzy k-means analysis increased the significance of the differences observed. 

As a whole, the results presented clearly demonstrate the importance of using within-field 

zone delineation procedures that combine variables that are representative for the main 

factors that condition grape composition This probably explains why zoning performed using a 

vegetation index as the only information source in previous studies (Santesteban et al. 2010; 

Acevedo-Opazo et al. 2008a; Acevedo-Opazo et al. 2008b; Acevedo-Opazo et al. 2010; Hall et 

al. 2003; Bramley 2005) resulted in only a moderate correspondence with grape composition. 

According to wine managers in the area, the differences in grape composition between the 

zones delineated with the best performing classifications would justify up to 2.5-fold 

differences in grape price (from 0.8 to 2 €/kg), which clearly could lead to segregated harvest. 



Grape ripening is a very complex process, driven by a wide set of factors that directly or 

indirectly affect it (Champagnol 1984, Jackson and Lombard 1993). Not taking into account any 

of the most relevant ones (such as the amount of fruit) hinders a good evaluation of grape 

quality potential. Vegetative development is certainly a relevant parameter for grape quality, 

since it is related to light interception and also to competition between vegetative and 

reproductive sinks during ripening (Smart and Robinson 1991) but, according to the results 

presented, it has been proved not to be –on its own– efficient enough to discriminate zones of 

different berry composition. Water availability is also one of the factors conditioning 

differences in grape quality; particularly in areas where summer conditions are dry 

(Santesteban and Royo 2006). The inclusion of ECa is probably integrating several soil 

characteristics directly related to soil water holding capacity due to differences in soil texture 

and depth (Brevik et al. 2006, Friedman 2005), and has been proved to be useful for 

classification under our study conditions.  

Lastly, the relevance of considering a parameter that estimated sink size has been 

particularly highlighted by the results obtained, since the performance of the classification 

method using BN performed better than those not considering it. The balance between fruit 

level and vegetative development is known to be very decisive for grape quality (Howell 2001), 

and therefore needs to be included for successful zoning. Although pruning, when skilfully 

performed, does somehow balance source to sink ratios (more fruiting buds are maintained in 

the more vigorous parts of the vineyard), differences in this balance still occur from year to 

year and within-vineyard for the same year, which justifies the inclusion of BN for zone 

delineation. All this supports the hypothesis set up in Santesteban et al. (2013), who 

considered sink size to be an essential aspect to be considered for classifications. Our results 

suggest that, although nowadays it is not possible to obtain a fruit-load related parameter 

remotely, it is worthwhile including it in any PV work aimed at grape quality estimation, since it 

is not a very time consuming measurement when it has to be done in field. These results 

support the necessity of developing procedures to estimate fruit load automatically, and 

highlights the importance of relevant works conducted in order to determine the number and 

weight of the clusters through artificial vision (Diago et al. 2012; Nuske et al. 2011; Fernandez 

et al. 2013; Grocholsky et al. 2011).  

 

Conclusion 

The early definition of within vineyard zones combining NDVI, ECa and BN data was 

successful, since the zones delineated allowed a differentiation of grape batches with different 

characteristics at harvest. Interestingly, the inclusion of a variable related to sink size (in this 

case the number of bunches per plant) provided the most efficient classification, which makes 

its consideration highly advisable for any PV work aimed at zone delineation for grape quality 

estimation. 
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Table 1 Descriptive statistics for grape composition parameters in samples gathered at harvest in the 
whole field 

  Mean   Range   CV (%)   Spread (%) 

  2010 2011   2010 2011   2010 2011   2010 2011 

TSS (ºBrix) 25.16 24.00   23.34-26.52 21.8-25.4   2.80 2.87   12.48 14.96 

pH 3.50 3.55   3.38-3.61 3.41-3.69   1.49 1.67   6.58 7.88 

TA (g AT L -1) 3.86 3.52   3.11-4.58 3.04-4.58   9.19 9.08   38.28 44.80 

MalA (g L -1) 2.80 1.87   2.20-3.40 1.32-2.33   10.47 14.49   42.93 53.43 

TarA (g L -1) 6.22 5.92   5.82-6.93 5.53-6.51   3.54 3.68   17.68 16.89 

YAN (mg L -1) 118.26 104.18   80.02-195.15 73.36-153.85   15.74 17.42   97.64 76.74 

TAnt (mg L -1) 896.48 930.20   646.25-1238.84 731.41-1137.48   12.99 9.79   66.09 43.68 

EAnt (mg L -1) 347.77 343.84   251.31-437.26 261.52-444.33   12.33 12.71   53.54 53.39 

TP (mg L-1) 1149.11 1144.31   949.20-1474.36 870.25-1400.45   9.01 9.08   45.73 46.31 

CV, Coefficient of variation; Spread, the range divided by the median, expressed as a percentage; TSS, Total Soluble 
Solids; TA, Titratable Acidity; MalA, Malic Acid concentration; TarA, Tartaric Acid concentration; YAN, Yeast 
Assimilable Nitrogen; TAnt, Total Anthocyanins; EAnt, Extractable Anthocyanins; TP, Total Phenolics 



 

Table 2 Evaluation of the agronomical significance the classes obtained through ANOVA from NDVI, ECa, 
BN and their combinations 

  NDVI EC a BN ECa+BN NDVI+EC a NDVI+BN NDVI+EC a+BN 

  2010 2011 2010 2011 2010 2011 2010 2011 2010 2011 2010 2011 2010 2011 

Yield (kg) * ns ns ns * ns * * * * * * * * 

BW (g) * ns ns ns * ns * * * ns * * * * 

TSS (ºBrix) ns * ns ns ns ns * ns ns * ns * * * 

pH * * ns ns * ns * ns * * * * * * 

TA (g AT L -1) * ns ns ns ns ns * * ns * * ns ns * 

MalA (g L -1) ns * ns ns ns ns ns * ns ns ns ns ns ns 

TarA (g L -1) ns ns ns ns ns ns ns * ns ns ns ns ns ns 

YAN (mg L -1) ns * ns ns ns * ns * ns ns ns * ns * 

TAnt (mg L -1) * ns ns ns ns * * * ns ns * * * * 

EAnt (mg L -1) ns ns ns ns ns ns * ns ns ns ns * * * 

TP (mg L-1) * ns ns ns ns ns ns * ns ns * * * ns 

TOTAL Q 4 4 0 0 1 2 4 6 1 3 4 6 5 6 

TOTAL 6 4 0 0 3 2 6 8 3 4 6 8 7 8 

NDVI, Normalized Difference Vegetation Index; BN, Bunch number; ECa, Soil apparent Electric Conductivity; BW, 
Berry Weight; TSS, Total Soluble Solids; TA, Titratable Acidity; MalA, Malic Acid concentration; TarA, Tartaric Acid 
concentration; YAN, Yeast Assimilable Nitrogen; TAnt, Total Anthocyanins; EAnt, Extractable Anthocyanins; TP, Total 
Phenolics; TOTAL Q: number of berry composition variables for which significant differences appeared; TOTAL 
number of variables for which significant differences appeared;* Significant differences between classes (P<0.05); 
ns, non-significant (P>0.05). The number of classes was always 3, except for NDVI+BN in 2011 and for NDVI+ECa+BN 
in 2010 and 2011, for which it was 2. 



 

 

Table 3 Evaluation of the significance of the classes obtained from NDVI, ECa, BN and their combinations 
to delineate zones with different grape composition using MANOVA 

     2010   2011 

  df 
Df 

error F P     F P  

NDVI 18 98 2.343 0.004   3.410 <0.001  

ECa 18 98 1.305 0.202   0.832 0.659  

BN 18 98 1.164 0.306   0.907 0.572  

ECa+BN 18 98 2.988 0.006   2.440 0.003  

NDVI+EC a 18 98 2.032 0.014   1.020 0.445  

NDVI+BN 9 50 2.622 0.014   4.989 <0.001  

NDVI+EC a+BN 18 98 2.200 0.038    2.784 0.010  
NDVI, Normalized Difference Vegetation Index; BN, Bunch number; ECa, Soil apparent Electric 

Conductivity; df; degrees of Freedom; F, Fisher's F-ratio; P, P-value. The number of classes was always 3, 

except for NDVI+BN in 2011 and for NDVI+ECa+BN in 2010 and 2011, for which it was 2. 



 

FIGURE CAPTIONS 

Figure 1 Relationship between NDVI and the sum of shoot cross-sectional area (SCSA) 



 

 

Figure 2 Maps of zones delineated using NDVI, ECa, BN and their in 2010 and 2011 

 




