Supplementary Material

Modulation of *Haemophilus influenzae* interaction with hydrophobic molecules by the VacJ/MlaA lipoprotein impacts strongly on its interplay with the airways

Ariadna Fernández-Calvet¹, Irene Rodríguez-Arce¹, Goizeder Almagro¹, Javier Moleres¹, Begoña Euba^{1,2}, Lucía Caballero¹, Sara Martí^{2,3}, José Ramos-Vivas^{4,5}, Toby Leigh Bartholomew⁶, Xabier Morales⁷, Carlos Ortíz-de-Solórzano^{7,8}, José Enrique Yuste^{2,9}, José Antonio Bengoechea⁶, Raquel Conde-Álvarez¹⁰, Junkal Garmendia^{1,2}

¹Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno Navarra,
Spain; ²Centro de Investigación Biomédica en Red de Enfermedades Respiratorias
(CIBERES), Madrid, Spain; ³Departamento Microbiología, Hospital Universitari Bellvitge,
University of Barcelona, IDIBELL, Barcelona, Spain; ⁴Servicio Microbiología, Hospital
Universitario Marqués de Valdecilla and Instituto de Investigación Marqués de Valdecilla
(IDIVAL), Santander, Spain; ⁵Red Española de Investigación en Patología Infecciosa (REIPI),
ISCIII, Madrid, Spain; ⁶Centre for Experimental Medicine, Queen's University Belfast,
Belfast, UK; ⁷Laboratory of Preclinical Models and Analytical Tools, Division of Solid
Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain;
⁸Centro de Investigación Biomédica en Red de Enfermedades Oncológicas (CIBERONC),
Madrid, Spain; ⁹Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII),
Madrid, Spain; ¹⁰Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra
and Dpto. Microbiología y Parasitología, Universidad de Navarra, Edificio de Investigación,

1

Figure S1. (A) Morphology of bacterial colonies rendered by NTHi375 and RdKW20 WT and *vacJ* mutant strains, grown on chocolate agar for 16 h at 37°C with 5% CO₂. Colony size and morphology was comparable between WT and mutant strains. **(B)** Sodium deoxycholate bactericidal effect on NTHi depends on VacJ. NTHi WT and $\Delta vacJ$ strains grown on chocolate agar were used to generate OD₆₀₀-normalized bacterial suspensions for further incubation with sodium deoxycholate. After 20 min, deoxycholate dose dependent bactericidal effect was higher on the $\Delta vacJ$ mutant than on the WT strains, as measured by assessing turbidity (for NTHi375, p<0.005; for RdKW20, p<0.0005) (WT strains, circle;

 2.47 ± 0.2

 2.97 ± 0.4

1.00

 1.43 ± 0.1

1.00

1.30

12.5

25

 2.48 ± 0.2

 2.88 ± 0.3

 $\Delta vacJ$ mutants, triangle; $\Delta vacJ$ complemented strains, square). Phenotypic restoration in $\Delta vacJ$ complemented strains ($\Delta vacJ$ -C) could be observed. Experiments were performed in quadruplicate, in three independent occasions (n=12). Results are shown as means ± SE; statistical comparisons were performed with two-way ANOVA (Tukey's multiple comparisons test). (C) Multiple sequence alignment of the 5' end of the *lic1A* gene containing (5'-CAAT)_n tetranucleotide repeats. Primers Lic1prF1-HindIII/858 (5'-

GCGGATTATTACAATCTATTTAACCTC) and Lic1ART-Rv/1099 (5'-

AAGTAGAACATTTTGATTGGTCATTCC) were used for DNA amplification using NTHi375 and RdKW20 WT and *vacJ* mutant strains as template, and Sanger sequencing. The *vacJ* gene inactivation did not vary the number of repeats, i.e. 21 in NTHi375 and 16 in RdKW20 strains. **(D)** Effect of H_2O_2 on NTHi growth inhibition, measured by disc diffusion assay. NTHi cells were scraped from freshly grown chocolate agar plates into PBS, and adjusted to OD_{600} =1. Normalized suspensions containing ~7x10⁸ c.f.u./ml were plated on sBHI agar. H_2O_2 9.8 M (Sigma-Aldrich) was used as stock solution to be further diluted in sterile distilled water. Sterile paper discs soaked on 10 µl H_2O_2 containing 3.15, 6.25, 12.5 or 25 µmol were located on the sBHI agar and plates were incubated. Results are shown as diameter of bacterial growth inhibition (cm). Experiments were performed three times (n=3). No significant differences were observed between WT and mutant strains by means comparison with two-tail *t*-test.

Figure S2. Total fatty acids and phospholipids in NTHi WT and *vacJ* mutant strains. (A) Total fatty acid composition, as methyl esters (shown as means \pm SE). Bacteria grown on chocolate agar were used to extract fatty acids, by following saponification, methylation, extraction and washing steps. vacJ mutants showed increased fatty acid amounts (for NTHi375 and RdKW20, p<0.005). Phenotypic alterations were not restored in the *vacJ* complemented strains ($\Delta vacJ$ -C) (for NTHi375 and RdKW20, *p<0.005). Measures were performed in duplicate, in three independent occasions (n=6). Two-way ANOVA (Sidak's multiple comparisons test) was used for statistical analysis. (B) TLC bands corresponding to PE and PG phospholipids, in NTHi375 and RdKW20 WT, $\Delta vacJ$ and $\Delta vacJ$ complemented strains. (C) Bacterial surface hydrophobicity. Bacteria grown on chocolate agar were processed to measure their hydrophobicity (shown as means \pm SD). Bacterial surface hydrophobicity showed a trend to be higher for ΔvacJ (NTHi375ΔvacJ, 67.2±10.2%; RdKW20ΔvacJ, 68.2±3.5%) than for their isogenic WT strains (NTHi375, 62.1±10.9%; RdKW20, 65.4±4.1%). Hydrophobicity rendered values of 64±10.4 and 63.3±1.7% for NTHi375*\DeltavacJ*-complemented and RdKW20*\DeltavacJ*-complemented strains. Surface hydrophobicity was higher for $\Delta vacJ$ than for NTHi375 WT strain (*p<0.0005).

Measures were performed in duplicate, in three independent occasions (n=6). Two-way ANOVA (Sidak's multiple comparisons test) was used for statistical analysis.

Figure S3. Elastase instillation induces a lesion compatible with lung emphysema in CD1 mice ($n \ge 8$ per group). Emphysema was induced by intratracheal instillation of 6 U/mouse of porcine pancreatic elastase. In parallel, control animals were instillated with vehicle solution. Lung emphysema was evaluated 17 days after elastase/vehicle administration using X-ray Micro-CT (**A**) and pulmonary function tests (PFT) (**B**). (**A**) Representative images for longitudinal (left panels) and transversal (right panels) micro-CT slices are shown. Elastase-treated animals presented lower tissue density and abnormally expanded lungs compared to vehicle animals. (**B**) Elastase-treated animals (black circles) showed higher compliance (C), lower resistance (R) and lower elastance (E) than vehicle-treated animals (white circle). Means \pm SD are shown, compared by *t*-test, *p<0.0005.

Figure S4. Heterologous expression of the *vacJ*_{NTHi} gene in *E. coli* TOP10 does not modulate bacterial epithelial adhesion. **(A)** The *vacJ*_{NTHi375} gene with a HA tail in its 3'end, together with its predicted promoter region, were PCR amplified using NTHi375 genomic DNA as template and primers vacJ-F1/931 (5'-ATGACTGAAGAAACAACPAGTATCAAAA) and *Pr-vacJ*-HA-R/1440 (5'-

GATGACATACTAAAAGAAATTGATTACCCATACGACGTCCCAGACTACGCTTAA). The 1,487 bp PCR product was cloned into Hinc*II* digested pSU20, generating pSU20-*Pr::vacJ*-HA. VacJ_{NTHi} protein was monitored in *E. coli* TOP10 by western blot. To this end, whole cell extracts were prepared from bacterial suspensions recovered from LB+Cm 30 µg/ml cultures, adjusted to OD₆₀₀=1 in PBS, lysed by ultrasounds sonication, two-fold diluted with 2X loading buffer (Tris-HCl 62.5mM pH 6.8, SDS 2% w/v, glycerol 10%, DTT 50 mM; Bromophenol Blue 0.01% w/v), and heated to 95°C for 5 min. Proteins were separated on 12% SDS-PAGE gels (BioRad, MINI PROTEAN Tetra System) and transferred to a nitrocellulose membrane. VacJ protein (~28 KDa) was monitored with primary rabbit anti-HA antibody (Sigma-Aldrich) diluted 1:4000, and secondary goat anti-rabbit IgG (whole molecule, Sigma-Aldrich) antibody conjugated to horseradish peroxidase, diluted 1:1000. Lane 1, untransformed bacteria; lane 2, bacteria transformed with empty pSU20 vector; lanes 3 and 4, bacteria transformed with pSU20-*Pr::vacJ*-HA, two clones were tested. **(B)** A549 cells were infected with *E. coli* TOP10 (MOI~50:1) to quantify adhesion (means \pm SD are shown). After infection (30 min at 37°C and 5% CO₂), wells were washed three times with PBS and incubated with saponin 0.025% during 10 min for cell lysis. Lysates were 10-fold serially diluted in PBS and plated on LB agar. Adhesion assays were performed in triplicate, in three independent occasions (n=9). No significant differences were observed (two-tail *t*-test).

Table S1. Minimal inhibitory concentration (MIC) of 12 hydrophilic antibiotics against NTHi WT and *vacJ* mutant strains by the microdilution method.

_	MIC (mg/l)											
NTHi strain	Amnicillin	Amoxicillin/ Clavulanic	Cefuroxime	Cefenime	Cefotaxime	Ceftriaxone	Iminenem	Meronenem	Chloranfenicol	Tetracycline	Ciprofloyacin	Cotrimoxazole
i i i i i sti alli	mpremin	Clavulanie	Ceruroxime	cereprine	Celotaxiiite	Certriaxone	Imperen	Meropenem	Chiorantenicor	Tetracychite	Сіргополасій	Cott intoxuzoite
NTHi375 WT	0,25	<0,5/0,25	2	<0,25	<0,06	<0,12	1	<0,25	<1	<1	<0,03	<0,5/9,5
NTHi375∆vacJ	0,25	<0,5/0,25	2	<0,25	<0,06	<0,12	0,5	<0,25	<1	<1	<0,03	<0,5/9,5
RdKW20 WT	0,25	<0,5/0,25	2	<0,25	<0,06	<0,12	0,5	<0,25	<1	<1	<0,03	>2/38
RdKW20∆ <i>vacJ</i>	0,25	<0,5/0,25	1	<0,25	<0,06	<0,12	0,5	<0,25	<1	<1	<0,03	>2/38

S21 (500 ml):		S22 (100 ml):		S23 (100 ml):				
L-Aspartic Acid	2 g	L-Cystine	0,04 g	CaCl ₂	1,1099 g			
L-Glutamic Acid	0,1 g	L-Tyrosine	0,1 g	dH_20	100 ml			
Fumaric Acid	0,5 g	Dissolve in 10 ml of HC	Cl 1N	Autoclave.				
NaCl 2,35 g		at 37°C.	Store at 4°C.					
K ₂ HPO ₄	0,435 g	Add dH ₂ O M-Q to 100 n	nl.					
KH ₂ PO _{4.}	0,335 g	Add to this mixture:						
Tween80	0,1 ml	L-Citruline	0,06 g	S24 (100 ml):				
Ajust pH to 7.4 with N	aOH 4N.	L-Phenylalanine	0,2 g	MgSO ₄	2,4648 g			
Add dH_2O to 500 ml.		L-Serine	0,3 g	dH_20	100 ml			
Autoclave and store at	RT.	L-Alanine	0,2 g	Autoclave.				
		Sterilize by filtration.		Store at 4°C.				
		Store at 4°C.						
MM-FFA preparation:								
1) Mix S21:S22:S23:S24 (volume rate, 100:1:1:1)								
2) Supplement the mix with hemin (10 μ g/ml) and β -NAD (10 μ g/ml)								
3) If necessary, add glucose 20 mM (stock solution: glucose 1M prepared in distilled water								
and sterilized by filtration)								

 Table S2. H. influenzae minimal medium free of fatty acids (MM-FFA): composition and preparation.

	<i>E. coli</i> gene	Gene ID	Protein ID	Hi gene	Gene ID RdKW20	Protein ID RdKW20	% identity <i>E. coli</i>	Gene ID NTHi375	Protein ID NTHi375	% identity <i>E. coli</i>
Fatty acid degradation	fadL	b2344	NP_416846.2	fadL	HI0401	NP_438563.1	40%	NF38_03050	AIT67229.1	39%
	fadD	b1805	NP_416319.1	fadD	HI0390.1	NP_438551.1	65%	NF38_03105	AIT67240.1	65%
	fadE	b0221	NP_414756.2							
	fadB	b3846	NP_418288.1							
	fadA	b3845	YP_026272.1							
	mlaA	b2346	NP_416848.1	vacJ	HI0718	NP_438876.1	42%	NF38_01540	AIT66950.1	42%
	mlaB	b3191	NP_417658.4	mlaB	HI1083	NP_439240	32%	NF38_08695	AIT68260	32%
Membrane	mlaC	b3192	NP_417659.1	mlaC	HI1084	NP_439241	42%	NF38_08690	AIT68259	43%
lipid	mlaD	b3193	NP_417660.1	mlaD	HI1085	NP_439242	60%	NF38_08685	AIT68258	58%
asymmetry	mlaE	b3194	NP_417661.1	mlaE	HI1086	NP_439243	73%	NF38_08680	AIT68257	72%
maintenance	mlaF	b3195	NP_417662.1	mlaF	HI1087	NP_439244	67%	NF38_08675	AIT68256	67%
	pqiA	b0950	NP_415470.1	pqiA	HI1671	NP_439813.1	37%	NF38_05885	AIT67735.1	37%
	pqiB	b0951	NP_415471.1	pqiB	HI1672	NP_439814.1	43%	NF38_05880	AIT67734.1	43%
Outer membrane phospholipase	pldA	b3821	NP_418265.1							
	lpxA	b0181	NP_414723.1	lpxA	HI1061	NP_439219.1	68%	NF38_08800	AIT68281.1	68%
	<i>lpxD</i>	b0179	NP_414721.1	<i>lpxD</i>	HI0915	NP_439075.1	65%	NF38_00400	AIT66742.1	65%
A avil	lpxL	b1054	NP_415572.1	htrB	HI1527	NP_439676.2	55%	NF38_07450	AIT68026.1	57%
Acyi- transferases	msbB	b1855	NP_416369.1	msbB	HI0199	NP_438368.1	45%	NF38_04430	AIT67476.1	45%
	plsB	b4041	NP_418465.4	plsB	HI0748	NP_438907.1	57%	NF38_01210	AIT66899.1	57%
	plsC	b3018	NP_417490.1	plsC	HI0734	NP_438893.1	62%	NF38_01275	AIT66912.1	62%
	pagP	b0622	NP_415155.1							

Table S3. Distribution and level of conservation of genes involved in fatty acid uptake, degradation and recycling in *H. influenzae* (protein BLAST).