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Introduction

Spatio-temporal models for areal data have been extensively applied in epidemiology
and public health to study geographical and temporal patterns of incidence or
mortality of several diseases, mainly cancer. The utility of these models has become
crucial in public health, and methodological research has evolved in line with the
necessity of analyzing the increasingly more complex data registers. However, these
techniques have not been used to study crimes against women, a complex and
intricate problem where risk factors are not clearly identified. This dissertation is
aimed at improving and developing methodology to disentangle the phenomenon of
crimes against women in general and in India in particular. The dissertation pursues
the following main goals.

The first objective is to put the focus on the terrible problem of crimes against
women in India and to revise statistical methods that could be useful to understand
the dynamics of the phenomenon. In Chapter 1, a general introduction about crimes
against women in general and about particular forms of crimes in India is provided
to understand the relevance of the problem. In this chapter, we also review some
spatio-temporal models used in disease mapping that can be a valuable tool to study
violence on women.

The second objective of this dissertation is to compare some of the existing spatial
priors, analyzing their induced correlation structure and their impact on the final risk
estimates. A thourough inspection is carried out in Chapter 2. The models will be
used to study the spatio-temporal patterns of dowry deaths, a form of crime against
women very specific to India, in the state of Uttar Pradesh, the most populated
Indian state. Additionally, some spatio-temporal covariates have been included in
the model to assess their relationship with dowry deaths.

The third objective of this dissertation is to extend a class of multivariate spatial
models, known as M-based models (Botella-Rocamora et al., 2015) to the spatio-



2 Introduction

temporal setting. The novel proposals presented in Chapter 3 take into account
the correlations between the spatial and temporal patterns of the phenomena under
study, which may suggest connections between the different crimes that will certainly
benefit a comprehensive understanding of the problem. A key objective of this
chapter is the implementation of these models in a fully Bayesian context using
integrated nested Laplace approximations, a procedure known as INLA in short,
(Rue et al., 2009). Additionally, a comparison of the results obtained using INLA
and Markov chain Monte Carlo (MCMC) techniques is performed through the joint
analysis of dowry deaths and rapes in Uttar Pradesh.

The fourth objective of this dissertation is to broaden the class of existing
multivariate spatio-temporal models, beyond multivariate CAR priors. In particular,
in Chapter 4, we propose multivariate P-spline models to discover the spatio-temporal
evolution of different crimes. P-spline models have been used in univariate disease
mapping (Ugarte et al., 2010, 2017) with promising results, but they have not been
extended to the multivariate setting yet. The implementation of these models in
INLA is also a central goal of this chapter. The methodology is used to analyze four
different crimes against women in the Indian state of Maharashtra. Namely, rape,
assault or criminal force to woman with intent to outrage her modesty, cruelty by
husband or husband’s relatives, and kidnapping and abduction.

The fifth objective is transversal to all chapters. We have a strong commitment
with reproducibility, and the code developed in this dissertation is publicly available at
the GitHub of our research group. (https://github.com/spatialstatisticsupna)

The dissertation is closed with the main conclusions and further work.

https://github.com/spatialstatisticsupna


1
Gender-based violence and spatio-temporal areal

models

1.1 Introduction

Women are one of the most vulnerable groups in terms of violence (Powell and
Wahidin, 2007), and violence against them is considered at present, as one of the
most widespread violations of human rights, trascending the boundaries of culture,
race, age and religion. Such violence is an almost universal phenomenon and a public
health problem (Rose, 2012), which can develop in the public or private sphere,
and includes physical and psychological abuse with direct consequences for physical,
sexual and emotional health. However, years ago violence against women was not
perceived as a matter of international concern and research on gender violence was
scarce, to such an extent that Mukherjee et al. (2001) claimed that social scientists
had neglected the study of crimes against women. Fortunately, change is actually
taking place, mainly due to the emergence of organized women’s groups both locally
and internationally to demand attention to the physical and psychological abuse
of women, and to ensure that gender issues are included in the political agenda
(Heise et al., 1994; Niaz, 2003; Ellsberg and Heise, 2005). The news that we receive
practically every day about crimes committed against women, together with the
work of these groupings, began to raise society’s awareness of this terrible problem.

United Nations General Assembly (1993) defined the term violence against women
(VAW) as any act of gender violence that results in physical, sexual or psychological
harm to women. The same year, the World Conference on Human Rights in Vienna
recognized for the first time gender violence as a violation of human rights. In 1996,
the World Health Assembly declared VAW as a serious public health problem, and
as a result, the World Health Organization in 2002 published the first World Report
on Violence and Health. The WHO subsequently stated that violence against women
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is a “a public health problem of epidemic proportions that requires immediate action”
(Ellsberg and Heise, 2005) that takes the lives of more than 1.6 million women due
to domestic violence. Years later, the WHO (2013) also estimated that the global
lifetime prevalence of intimate partner violence among ever-partnered women is
30.0% (with a 95% confidence interval of 27.8% to 32.2%), but this rate is higher in
South-East Asia with an estimate of 37.7% (with a 95% confidence interval of 32.8%
to 42.6%).

Though crimes against women are found all over the world, there are countries
where this issue is particularly worrying for three main reasons: the large number of
affected women, the nature of certain forms of crimes, and the social acceptability
of violence against women. This is the case of India, one of the most populated
countries in the world (around 1380 million people in 2020 according to world
population prospects made by United Nations (2019) of which 663 million are women
approximately), where gender violence is deeply entrenched in society with very
specific forms of crimes against women.

1.2 Crimes against women in India
Crimes against women (CAW) vary according to the country’s culture (Kishor and
Johnson, 2005) and there are places where this problem is alarming. In South Asian
countries, and particularly in India, gender-based violence is deeply institutionalized
and it develops under the mantle of religious, cultural or social practices (Johnson
et al., 2007). In India the long standing power imbalance between men and women
contributes to legitimizing violence against them, especially sexual violence (see
Gupta et al., 2004; Rahman and Rao, 2004; Russo and Pirlott, 2006; Kaur, 2011;
Kohli, 2012; Solotaroff and Pande, 2014), and this kind of violence is considered
necessary for the preservation of the patriarchal structure of society (Watts and
Zimmerman, 2002). Indian sex-gender system operates exposing girls and young
women to different forms of violence including selective abortion and infanticide
practices, harassment, rape, kidnapping, dowry homicide, and murder, that preclude
them from having a dignified life (Patel, 2015).

Violence against women begins early in life in India through gender bias. South
Asia has the highest levels of excess female infant mortality in the world with India
being the country with the highest female infant mortality among all countries for
which data are available, (Solotaroff and Pande, 2014). Numerous studies agree that
the high infant mortality rate is a manifestation of a patriarchal environment with a
strong preference for boys, see for example Drèze and Khera (2000); Ghansham (2002);
Watts and Zimmerman (2002); Banerjee (2014). High rates of female mortality are
the result of selective abortion by sex, female infanticide and systematic neglect of
girls’ health and nutrition needs, (Das Gupta and Mari Bhat, 1997; Arnold et al.,
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1998; Watts and Zimmerman, 2002; Miller et al., 2011). According to Ghansham
(2002); Amin and Khondoker (2004); and Singh (2012), in patriarchal societies, girls
are prevented from receiving immunizations and treatment for childhood diseases. In
addition, as Banerjee (2014) states, they are denied the right to adequate nutrition.
This gender bias has decimated the female population in a worrying way, to such
an extent that India occupies the position 189 (of 201) in terms of the number of
women per 100 men, (United Nations, 2019). The dangers women face in such an
unbalanced society are terrifying.

Although women can be victims of any of the general crimes, the Indian Penal
Code (IPC) only characterizes gender-specific crimes as “crimes against women
(CAW)”. Namely, Cruelty by husband or relatives of husband, Rape, Kidnapping and
Abduction of Women, Dowry Deaths, Assault or Criminal Force to Woman with
Intent to Outrage Her Modesty, Insult to the Modesty of Women, Importation of
Girl from Foreign Country and Abetment of Suicide of Women. In this dissertation
some of these crimes are analyzed and they are detailed below briefly 1. Data on the
number of crimes against women used in this dissertation have been obtained from the
Indian National Crime Records Bureau, (https://ncrb.gov.in/crime-in-india),
the governmental agency responsible for collecting data on crimes defined by the
IPC and Special & Local Laws.

The crime Kidnapping and abduction is defined in sections 364, 364A and 366 of
the IPC, and comprises kidnapping in order to murder, kidnapping for ransom, or
kidnapping to compel a woman to marry a person against her will.

Violence in the marital sphere is framed, in the IPC, within Cruelty by husband
or relatives of husband, and refers to “any conduct to drive the woman to commit
suicide or to cause grave injury or danger to life, limb or health (whether mental or
physical) of the woman”. It also includes “harassment with the intention of coercing
her or any person related to her to meet any unlawful demand for any property or
valuable security...”. There are numerous studies in different countries that state that
the abuse of women by their intimate partner is the most endemic form of CAW,
and at the same time has one of the highest rates of underreporting, (see Jejeebhoy,
1998; Visaria, 1999; Heise et al., 1994, and references therein).

Sexual violence affects 27.5 million women, and the reported number of rapes
is increasing every year becoming a major issue (Raj and McDougal, 2014). The
promotion of patriarchal ideologies by political, community and religious leaders has
led to rape culture in India, (Kohli, 2012). According to the IPC, Rape is committed
if a “man penetrates his penis, to any extent, into the vagina, mouth, urethra or
anus of a woman or makes her to do so with him or any other person” (see the IPC

1For more information and details about the definition of these crimes, the reader is referred
to the Indian Penal Code sections 304B for dowry deaths, 375 for rape, 354 (A, B, C, D) for
assault, 498A for cruelty, and sections 364, 364A, and 366 for kidnapping and abduction (http:
//legislative.gov.in/sites/default/files/A1860-45.pdf).

https://ncrb.gov.in/crime-in-india
http://legislative.gov.in/sites/default/files/A1860-45.pdf
http://legislative.gov.in/sites/default/files/A1860-45.pdf
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for a more complete definition of Rape), and Assault or criminal force to women to
outrage her modesty includes sexual harassment, use of criminal force to a woman
with intent to disrobe, voyeurism, and stalking.

Studies have shown that most rape and sexual violence are perpetrated by
individuals known to the victim, such as the couple, male family members and known
individuals in positions of authority (see Heise et al., 1994; Watts and Zimmerman,
2002; Kaur, 2011). Moreover, according to Jewkes et al. (2013), rapes and sexual
aggressions are much more frequent within marriage, at the hands of her husband,
than outside of it. Around the world, sexual assaults by strangers are recognized as
crimes, however, rape and sexual assault in marriage are socially tolerated in many
countries. The almost universal stigma surrounding sexual assault, rape and other
sexual crimes, coupled with the fact that marital sexual violence is not seen as a
crime in India, causes sexual crimes to be noticeably less denounced.

Besides traditional forms of violence, in India women are exposed to crimes
associated with dowry 2. Haveripeth (2013) defines dowry as any form of wealth
(property, money, or ornaments) that a man or his family receives from his wife or
family at the time of marriage. Different authors consider that due to social heritage
and traditional mentality, the practice of dowry has become so deeply rooted in
Indian culture that the legal provisions that prohibit this practice have failed in
their attempt to eliminate or diminish it (see for example Parmar, 2014; Jeyaseelan
et al., 2015; Haroon, 2017). In many cases, if the dowry is considered insufficient,
the bride is harassed, abused and tortured. When this violence leads to death, it is
called dowry death. The practice of dowry is universally widespread in India and it
is present in all religions, socio-economic status, and educational levels despite de
existence of laws that prohibit it.

In this dissertion we aim at identifying spatio-temporal patterns of CAW in the
districts of some Indian states as well as at pinpointing high-risk districts within
a given state. As far as we know, it is the first time researchers analyse CAW in
India at this administrative level. Uncover spatial patterns and temporal trends can
be crucial to identify underlying risk factors that help to understand the dynamic
of this phenomenon, and to explore to what extent cases of CAW vary in different
communities over time. That is why we are convinced that spatio-temporal models
for areal data are an invaluable tool for studying and understanding crimes against
women.

1.3 Spatio-temporal models for areal data
Areal data appear when the study region is divided into a subset of smaller domains
or small areas in which the variable of interest is aggregated. A common example

2Dowry and dowry death are defined in detail in Chapter 2.
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arises when studying the number of mortality or incidence cases of certain diseases.
The statistical techniques for dealing with areal data have experienced a tremendous
evolution since the nineties, and they have been mainly used to analyze chronic
diseases like cancer. One of the reasons is that these techniques allow to estimate
spatial and temporal patterns, something crucial to deep into the study of new
plausible risk factors related to cancer, as known risk factors underlying most cancer
types only explain a small percentage of cases.

The statistical methodology to study spatio-temporal patterns of a disease has
been commonly known as spatio-temporal epidemiology or disease mapping (as the
estimated risks/rates are usually represented in maps). In this dissertation we will
use and also derive novel methodology to analyze areal data with a particular focus
on studying crimes against women in India, a phenomenon where risk factors are
not well stablished and understood as it is the case of certain cancer locations. The
main goal of these techniques is smoothing standardized incidence/mortality ratios or
crude rates to uncover geographical patterns and temporal trends of the phenomena
under study. Traditional measures such as standardized mortality/incidence ratio or
crude rates can be extremely variable for low populated areas or rare phenomena, and
models are required to smooth the risk or rates reducing variability. These models
borrow information from neighboring areas, nearby moments of time, or both, and
generate estimates in which the risk variation in space and time describes smooth
transitions. The research in spatial and spatio-temporal models for areal data is now
rich and abundant. Here we make a revision of univariate models to analyze one
single response, and multivariate models that allow the study of several outcomes
establishing connections between them.

1.3.1 Univariate areal models
One of the most influential papers in the field of spatial areal models, and possibly
the starting point of modern disease mapping, is that of Besag et al. (1991). These
authors propose the so call convolution model for the area effect. Specifically, this
model (named BYM hereafter in this dissertation) incorporates two spatial random
effects to model spatially structured and unstructured heterogeneity. The first of these
random effects accounts for spatial dependence through an intrinsic autoregressive
conditional distribution, iCAR, (Besag, 1974). In contrast, the second random effect
deals with spatially unstructured variability through an exchangeable Gaussian prior.
However, the data can only inform on the sum of the two components, not about the
two effects individually, and an identifiability issue arises (see, for example, Gelfand
and Sahu 1999; MacNab 2011, or Banerjee et al. 2015, Chap. 6). Hence, other
alternatives have been proposed to model both spatially structured and unstructured
heterogeneity. Two of these proposals are the Leroux et al. (1999) model (LCAR)
which is being widely used (e.g. Ugarte et al., 2014, 2016; Goicoa et al., 2016) and
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the model proposed by Dean et al. (2001) (DCAR), that has been revisited recently
to construct the so-called PC priors (Riebler et al., 2016). The main characteristic
of these proposals is that they consider only one spatial random effect and it is the
covariance (or precision) matrix that separates the type of dependence. While the
LCAR prior splits the precision matrix into two terms, one dealing with spatial
dependence and the other one with unstructured heterogeneity, the DCAR prior
splits the covariance matrix into the structured and unstructured parts.

The increasing availability of data over the years has caused the merely spatial
approach to be limited on many occasions, giving way to a much richer class of spatio-
temporal models. Spatio-temporal models borrow information from both neighboring
areas and nearby time points. A first extension of the spatial BYM model was given
by Bernardinelli et al. (1995) including linear temporal trends specific for each small
area. However, this model could be inadequate and very restrictive in many cases,
since temporal trends are not usually linear. A huge leap forward was made by
Knorr-Held (2000). This author proposes a non-parametric modeling approach where
conditional autoregressive (CAR) priors and random walks of first and second order
are considered for the spatial and temporal random effects, respectively. In addition,
to capture the specific temporal evolution of the incidence risk in each area, different
types of interactions between the spatial and temporal terms are introduced. Namely,
Type I interaction (independent effects), Type II interaction (effects structured in
time and unstructured in space), Type III interaction (effects structured in space
and unstructured in time), and Type IV interaction (effects structured in both space
and time). These four types of interaction will be considered along this dissertation
and will be explained in detail in the next chapter.

The work by Knorr-Held (2000) has been fundamental for the spatio-temporal
modeling, but new methodological contributions have also been made. For example,
Martínez-Beneito et al. (2008) combine a CAR model for space and an autoregressive
model for time. A novel and different form of modelling spatio-temporal areal count
data without relying on CAR prior is the use of P-splines for smoothing risks in space
and time. MacNab (2007) proposes one dimensional P-splines to smooth temporal
trends and space-time interactions allowing different spline coefficients for each area.
Later, Ugarte et al. (2010) consider a pure interaction three-dimensional P-spline
model, and Ugarte et al. (2012) extended this model including main effects and
different smoothing parameters for the interaction. From then on, the research on
P-spline models has been rich and fruitful. A recent paper by Goicoa et al. (2019a)
considers age-space-time models models based on one and two-dimensional P-splines
to study breast cancer mortality data in Spain during the period 1985-2010.

Although these models have experienced a great success to study incidence and
mortality of different diseases, their use to study gender-based violence is still very
scarce. Gracia et al. (2015) and Kelling et al. (2020) use spatial models to study
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intimate and domestic and sexual violence, respectively. As far as we now, the
first attempts to unveil spatio-temporal patterns of crimes against women using
spatio-temporal models for areal count data has been carried out by Vicente et al.
(2018, 2020) and Goicoa et al. (2019b).

1.3.2 Multivariate areal models
Univariate models are powerful tools to unveil spatial and temporal patterns and to
look into the underlying factors related to the crime under study. However modelling
different crimes jointly can broaden the goals of the study as not only is precision
improved, but also connections among the different crimes may be established. This is
relevant in the research of crimes against women, an extraordinary complex problem
in which the factors that may be related to the phenomenon are unclear. This
problem is even more arduous in India, a country with a huge diverse of people,
traditions, religious and social practices, where unravelling potential factors exerting
some influence on violence against women is a challenge. A multivariate modelling of
several crimes may be useful to provide correlations between the spatial and temporal
patterns of the crimes that may reflect the association with common factors and
the connections between them. This would help to narrow down the range of social,
religious or economic characteristics that may be related to the crimes.

There is a considerable amount of theoretical research about multivariate spatial
models for count data. However, their use is not widespread due to computational
burden and a lack of ready to use software. Joint modelling has mainly relied on
multivariate conditional autoregressive models (MCAR) within a fully Bayesian
perspective. The seminal work by Mardia (1988) establishes a theoretical framework
for multivariate CAR models (MCAR), extending the work of Besag (1974), and de-
velops a theoretical framework based on multivariate conditionals. This multivariate
approach considers spatial models with a separable covariance structure specified
as the Kronecker product of two matrices: one to capture spatial dependence and
the other to account for potential associations between the different responses. In
this way, the same spatial smoothing is considered for all responses, which makes
these models somewhat restrictive. Zhang et al. (2006) also use a separable spatial
dependence structure, and propose an MCAR model whose precision matrix is the
Kronecker product of three components: one that models the covariance structure of
some demographic factors such as age group and sex, another that models the spatial
correlation, and the third one modelling the temporal correlation. A non-separable
multivariate proper CAR (pCAR) model with different smoothing parameters for
each univariate response is given by Gelfand and Vounatsou (2003). This separable
structure adds flexibility to the model as it allows different spatial smoothing for the
responses. Later, Jin et al. (2005) propose a generalized MCAR (GMCAR) model
for areal data, in which dependence between responses is induced conditionally. This
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conditional specification has the inconvenience of imposing a potentially arbitrary
order on the responses, since different marginal distributions arise according to the
order of responses when the sequence of conditional probabilities is defined. The
same authors (Jin et al., 2007) solve this problem by formulating a linear model of
coregionalization that avoids undesired dependence on the responses order. Gener-
ally, this proposal does not allow the incorporation of univariate spatial dependence
structures beyond conditional autoregressive distributions, which turns out to be a
limitation of this methodology. A multivariate generalization of spatial structures
beyond conditional autoregressive distributions is proposed by MacNab (2011).

A general coregionalization framework for multivariate areal models that cov-
ers many of the proposals in the literature is derived by Martínez-Beneito (2013).
This author provides an attractive procedure in which the spatial and the between-
response dependence are including by pre and post multiplication of independent
Gaussian random effects by appropriate matrices. However, like most multivariate
areal models, this approach may seriously increase computational burden, which
makes simultaneous modeling of a moderate to large number of responses unap-
proachable. Botella-Rocamora et al. (2015) present an interesting alternative to
overcome this problem, the so-called M-based models. This approach is a reformula-
tion of the Martínez-Beneito framework developing a simpler and computationally
efficient technique that achieves a tradeoff between computational tractability and
model’s identification. Again, within the framework of linear coregionalization mod-
els, MacNab (2016a,b) presents a class of coregionalized multivariate conditional
autoregressive models that allow flexible modeling of multivariate spatial interactions.
A thorough review of the topic can be found in MacNab (2018), where the three
main lines on the construction of multivariate proposals are discussed. Namely, the
approach based on multivariate conditionals (Mardia, 1988), an approach based on
univariate conditionals (Sain et al., 2011), and a coregionalization framework (Jin
et al., 2007).

Most of the research on multivariate models for areal count data is focused in
the spatial setting. In this dissertation, we model different crimes against women at
the same time identifying correlations between the spatial and temporal patterns
of the crimes. In particular, we will consider two approaches: an spatio-temporal
extension of the M-based models (Chapter 3) and a multivariate approach based on
spatial and temporal P-splines (Chapter 4).

1.3.3 Model fitting and inference
Model fitting and inference for spatial and spatio-temporal models for count data
have been carried out within the general Bayesian framework following two main
approaches: the empirical and the full Bayes approach. The empirical Bayes or
classical approach provides point estimates and it relies on the penalized quasi-
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likelihood technique (see Breslow and Clayton, 1993). Though its use has been
extensive in univariate modelling (see for instance Dean et al., 2004), it has not
been popular in the multivariate framework. The full Bayes approach provides the
posterior distribution of the quantities of interest, and it has traditionally based on
Markov chain Monte Carlo (MCMC) techniques. This is the approach traditionally
followed in multivariate spatial models for count data. However, MCMC can be
computationally very demanding, particularly in multivariate settings, if the number
of responses, areas, and time periods increase.

Recently, a new fitting technique for approximate Bayesian inference known as
INLA in short, has been proposed (Rue et al., 2009). The method does not rely
on simulations, but on an integrated nested Laplace approximations and numerical
integration to compute the posterior marginals of the target parameters. This
technique provides accurate inference and reduces computing time substantially
in comparison to MCMC techniques. For theoretical details and nice applications
of spatio-temporal models fitted with INLA, the reader is referred to the book by
Blangiardo and Cameletti (2015). The paper by Ugarte et al. (2014) is the first
reference on how to fit spatio-temporal models with a LCAR prior for the spatial effect
and the four types of spatio-temporal interactions in INLA. One of the advantages of
the INLA technique is that it is implemented in R through the R-INLA package (see
Lindgren and Rue, 2015). The package allows to fit a wide range of models than can
cope with many applications in practice. In this dissertation we will develop some
functions to fit multivariate models in INLA that will be publicly available through
the GitHub of our research group.





2
Unveiling spatial patterns and temporal trends of

dowry deaths in the districts of Uttar Pradesh

2.1 Introduction

This chapter focuses on dowry death, a form of crime against women which is very
specific to India. Even though this form of violence is included in the Indian Penal
Code, and the Dowry Prohibition Act (1961) proscribes any form of dowry, it remains
a widespread practice in India, a country with the largest number of dowry deaths in
the world (8,455 deaths in 2014 according to NCRB, 2015). Dowry is defined in the
Dowry Prohibition Act (1961) as any property or valuable security given or agreed to
be given either directly or indirectly by one party to a marriage to the other party to
the marriage, or by the parents of either party to a marriage or by any other person
to either party to the marriage or to any other person; at or before or any time after
the marriage in connection with the marriage of said parities.

Whereas modern adoption of a dowry as the preferred marriage payment or
agreement is a significant issue to be addressed, a different but subsequent issue
revolves around its inflation (Banerjee, 1999). Dowries replaced bride-price in the
South (Bloch and Rao, 2002) but also became a cultural common practice transferred
from high castes to middle and low castes throughout the country (Shenk, 2007).
From a structural perspective, dowry system relates to kin and property as a
constructed and deployed rule to preserve social and economic advantage of socially
powerful groups (Banerjee, 1999). Some authors (see Shenk, 2007, and the references
therein) explain that during the British Raj (1858-1947), weddings represented a
large expenditure for peasants in Northwest India, leading to female infanticide in
that region. In addition to that, others claim that dowry-related violence can be
used as an instrument to redistribute resources (Bloch and Rao, 2002). Awarding
a large dowry to the groom’s family is a symbol of wealth and social status and
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historically, was devised as a form of inheritance for daughters in a culture where
women were not allowed to own immovable property (see, for example, Banerjee,
2014). Hence a dowry’s first purpose was to protect women from unfair traditions.
However, it is unclear why it has become a means of extortion and an instrument of
female exploitation.

Social Anthropologists might agree that marriage in India is a virtually universal
institution, mainly monogamous and rather restrictive. While India is a secular state,
2011 Census showed nearly an 80% of Hindu population where social classification
perpetuates through caste system. Assuming caste as a colonial translation for
Hindu term varna (order, type, colour or class), marriage in India reproduces class
segmentation safeguarding caste endogamy. Indian prevalent kinship system follows
patrilocality, meaning a residence pattern where bride is required to migrate to the
groom’s clan location. Bride is consequently separated from her natal family at a
very early age to enter a completely new scenario that eventually may lead to a
greater subordination to her husband and in-laws. Indian Census 2001 shows female
migrants representing 218 million against 91 million for male (Khan, 2015).

Marriage in India is ruled by caste endogamy but also requires clan or lineage
exogamy, especially in North India where marriage becomes a complex arrangement
since matches are not to be found within the surrounding community but far away
from natal village where inner clan resides (Shenk, 2007; Prasad, 2016). For the case
of Northwest India, where our study is located, it is common that bride’s family
pursues a groom of higher status, rank or age. This hypergamy, as anthropologists
name it, might be considered either as cause or consequence of an even more restrictive
marriage system. Some economists would speak on that in terms of marriage squeeze,
as main cause for dowry inflation, subsequent extortion, violence against young
married women and deaths (Dang et al., 2018; South et al., 2014). Inflation can
be also related to dowry dynamics tending to what some authors have called the
groom-price, meaning that when desirable eligible men are scarce the competition
among brides becomes fierce (Bloch and Rao, 2002).

Shenk (2007) views dowry prohibition as problematic and maintains that a
major cause in effectiveness of the Indian dowry policy may be found in the lack of
understanding between those who view a dowry as a social evil and those who view
it as a form of positive investment. According to Srinivasan and Lee (2004) “(...) the
Indian dowry system should not be viewed simply as a traditional practice that will
eventually be eliminated by processes of social change, but rather as an important
component of a marriage system that is changing in response to a progressively
more materialistic culture”. Non-governmental organizations (NGO’s) and academics
also point out that the dowry system is related to discrimination against women
leading to female infanticide and sex-selective abortion preventing female births (see
Banerjee, 2014, and the references therein). Dowries are also related to violence
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against women by husbands and husbands’ relatives, and this is a way of blackmailing
the bride’s family if the dowry seems unsatisfactory. Unfortunately, this form of
violence against brides does not stop once the marriage has taken place but continues
over time, leading to what is called a dowry death. 304B Indian Penal Code considers
Dowry Death those young women deceased within seven years of marriage, either
murdered or driven to suicide by the husband and in-laws to force an amplified dowry
(Mohanty et al., 2013). A suicide committed by a woman who has suffered mental or
physical violence in relation to her dowry is also regarded as a dowry death. The
most common forms of dowry deaths are burning, drowning, and poisoning a bride as
they might easily be considered as accidents (see Banerjee, 2014, and the references
therein for more information about dowry and dowry violence).

Some studies have attempted to identify factors related to dowry deaths (see for
example Jeyaseelan et al., 2015) but their conclusions are rather limited. Regarding
sex ratio, female education, and their participation to the workforce, results are even
contradictory (Dang et al., 2018; Belur et al., 2014; Sharma et al., 2002).

The chapter aims to help reveal spatial patterns for dowry death and how these
patterns change over time, which in turn may be very helpful to identify unknown
potential risk factors and to assess the effects of political or legal actions in time.
Some district-level covariates have been considered to assess their relationship with
dowry deaths. We also look into different spatial priors and their effects on final
risk estimates. To our knowledge, no spatio-temporal analyses have been performed
on dowry deaths at district level in India yet. Here, we focus specifically on Uttar
Pradesh, the most populated Indian state, with the highest rate of death by dowry.

The rest of the chapter is organised as follows: Section 2.2 presents the data,
provides descriptive figures, and discusses some covariates that may be associated
to dowry deaths. Section 2.3 reviews the methodology to be used in the real data
analysis. As different spatial priors are possible, we study carefully their induced
correlation structures and their impact on the final risk estimates. Various priors for
the hyperparameters are also revised. In Section 2.4, we provide the results of the
real data analysis. A discussion is given in Section 2.5.

2.2 Dowry deaths in Uttar Pradesh
Dowry deaths are a deep-rooted form of violence against women in India. Here
we focus on Uttar Pradesh, the most populous state in India, located in the north
of the country. It borders Nepal and Uttarakhand to the North, Madhya Pradesh
and Chhattisgarh to the South, Bihar and Jharkhand to the East, and Haryana,
Delhi & NCR, and Rajasthan to the West. Nowadays, Uttar Pradesh is divided into
75 districts, but at the beginning of the study period there were 70 districts. We
maintain the original 70 districts because data is not available for the current 75



16 Crime against women in India

districts during the years of the study. Figure 2.1 displays a map of India with Uttar
Pradesh shaded (top right corner), and a map of Uttar Pradesh with the 70 districts
(main central map). The corresponding names of the districts can be found in Table
A.1 in Appendix A.
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Figure 2.1: Map of India with Uttar Pradesh shaded (top right corner), and districts
of Uttar Pradesh (main central map).

The total female population of Uttar Pradesh is 95,331,831 (data from 2011
census), but here we focus on 47,282,080 women between 15 and 49 years of age.
In Uttar Pradesh, the male literacy rate is 77.28%, whereas for females the figure
is notably lower, 57.18%. Dowry deaths figures for districts 24 (Farrukhabad) and
40 (Kanpur Dehat) are not available and consequently, they have been imputed
from neighbouring areas. A total of 8,455 dowry deaths were registered during
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2014 in India. This represents 2.50% of all crimes against women (CAW) in the
country. The percentage of dowry deaths over the total CAW is three times higher
in Uttar Pradesh, 6.42%, with 2,469 registered cases. Furthermore, the total number
of dowry deaths in Uttar Pradesh in 2014 represents 29.20% of all dowry deaths in
India. According to various studies, a serious problem here is incorrect reporting
and classification of dowry deaths, from a criminal and forensic perspective, when
dealing with unnatural deaths specially related to fire-related injuries and kitchen
accidents. In popular discourse, “bride burning” and dowry death are synonymous
(Sharma et al., 2002; Belur et al., 2014). Dang et al. (2018) argue that the police act
as “death brokers” when using culturally appropriated scripts to classify unnatural
death of female victims within seven years of marriage. Health care providers and
police officers construct dowry deaths based on the perception of the victim and
the need to protect themselves from accusations of incompetence and corruption
(Belur et al., 2014). Other authors also highlight parents’ attitude towards dowry
deaths, as on many occasions bride’s parents may be reluctant to report cases and
to demand prosecution to avoid social discredit that would ruin the possibilities of
marriage for other daughters (see Verma et al., 2015).

Figure 2.2 shows the temporal evolution of crude rates (per 100,000 women
between 15 and 49 years old) in India (brown), Uttar Pradesh (green), and the
districts of Uttar Pradesh (grey). Two districts are highlighted: Aligarth (orange)
and Kheri (blue) showing increasing and decreasing trends respectively. The crude
rates in Uttar Pradesh nearly double the crude rates in India, whereas the rates in
Aligarth are about four times the crude rates in India from 2008 onward. Clearly,
most of the districts present crude rates higher than global rates for the whole India.

Table 2.1 shows the minimum, first quartile, mean, standard deviation, third
quartile, and maximum of the number of dowry deaths in the districts of Uttar
Pradesh by year. The names of the districts with the minimum and maximum
number of dowry deaths in each year are displayed in brackets. The number of
registered deaths varies widely with minimum values between 1 and 7 and maximum
values ranging from 55 to 98. In general the mean value increases from 2003 to 2008,
and then it remains fairly stable until the end of the period when it shows a slight
increase.

Clearly, crude rates (see Figure 2.2) are highly variable and models to smooth
them are required. As the temporal evolution of rates by district is different, some
trends increase (see for example Aligarh) whereas some others decrease (see for
instance Kheri), models including space time interactions are considered.

The phenomenon of dowry deaths in India is complex and multifaceted, and
identifying potential risk factors could help to understand and combat this form of
violence against women. However, it is unclear which socio-economic indicators, or
some other covariates may be associated with dowry deaths. South et al. (2014)
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Figure 2.2: Evolution of crude rates in India (brown), Uttar Pradesh (green) and the
districts Aligarh (orange) and Kheri (blue). The lines in grey represent the crude
rates for the remaining districts of Uttar Pradesh.

find a surplus of male offenders correlated to gender violence. In the same way, and
according to Mukherjee et al. (2001), overall crime is expected to be associated with
crimes against women. Interestingly, these authors also find that the only crime that
seems to be clearly associated with sex ratio (defined as female to male ratio) is
dowry death, and the relationship is negative, that is, the lower the sex ratio, the
higher the rate of dowry deaths. South et al. (2014); Barakade (2012) and More
et al. (2012) also hypothesize a negative relationship between sex ratio with dowry
extorsion and violence against women. Yet, Dang et al. (2018) find the opposite
relationship when they approach marriage squeeze as one of the main factors that
might be driving to dowry inflation in India, along with population growth and
hypergamy. Literature also shows contradictory results on other potential risk factors,
like female education and their participation on the workforce (Mukherjee et al.,
2001; Dang et al., 2018; Belur et al., 2014; Sharma et al., 2002). As dowry deaths
are usually registered as counts at area level (district, state), most of the covariates
that have been contemplated to study this phenomenon are thought to operate at
area level. In general, they are population-based variables available from the Indian
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Table 2.1: Descriptive statistics. Minimum, first quartile (q.25), mean, standard
deviation (sd), third quartile (q.75), and maximum number of dowry deaths in the
districts of Uttar Pradesh by year. The names of the districts with the minimum
and maximum number of dowry deaths in each year are displayed in brackets.

Year min q.25 mean sd q.75 max
2001 4 (Shrawasti) 18.00 31.57 19.00 43.75 88 (Kheri)
2002 3 (Shrawasti) 14.25 27.04 18.08 34.75 83 (Sitapur)
2003 3 (Balrampur) 10.25 18.89 11.49 24.00 55 (Agra)
2004 3 (Balrampur) 14.25 24.40 15.34 29.00 71 (Sitapur)
2005 1 (Lalitpur) 12.25 22.33 13.93 26.75 70 (Sitapur)
2006 7 (Sant Kabir Nagar) 14.25 25.69 14.37 34.75 67 (Kanpur Nagar)
2007 4 (Shrawasti) 16.00 29.63 17.28 36.75 78 (Agra)
2008 5 (Balrampur) 17.25 31.96 18.73 38.75 88 (Aligarh)
2009 8 (Lalitpur) 19.25 31.87 17.98 40.75 83 (Agra, Aligarh)
2010 5 (Balrampur) 18.25 31.44 19.67 40.00 95 (Aligarh)
2011 6 (Sant Kabir Nagar) 17.00 33.16 18.69 41.75 95 (Aligarh)
2012 5 (Balrampur) 19.00 32.03 17.88 40.75 97 (Aligarh)
2013 5 (Sant Kabir Nagar) 19.00 33.31 19.52 41.25 98 (Agra)
2014 6 (Sonbhadra) 23.25 35.26 18.39 46.75 98 (Aligarh)

Census Bureau, or other variables collecting information about some form of crime
or deprivation, measured at area level and usually available from official registers.

In this chapter we consider several district-level covariates to evaluate their
association with dowry deaths (see Appendix A for a description). We consider sex
ratio (x1), population density (x2), and female literacy rate (x3) as population-based
variables obtained from the Indian Census Bureau. These variables are only available
for 2001 and 2011 and we have imputed the values for the remaining years using
linear interpolation. These population-based variables are spatio-temporal, but the
variation in time is not very pronounced, so they mainly capture spatial variability.
Although sex ratio is usually defined in other settings as the number of males per
1000 females, in this chapter, sex ratio is defined as the number of females per 1000
males as this is the way it is registered by the Indian Census Bureau. Sex ratio
and female literacy rate have been previously studied at state level (see for example
Mukherjee et al., 2001) and the aim here is to study the relationship at district level
in Uttar Pradesh.

In addition to these covariates we also consider a dummy variable indicating the
political party of the Uttar Pradesh Chief Minister during the study period (x0):
the Bharatiya Janata Party (BJP), a center right wing party (2001), the Bahujan
Samaj Party (BSP), a party that defends equality and social justice (2002-2003
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Table 2.2: Correlations between log crude rates of dowry deaths and the covariates
in the years 2001 and 2011.

Year Sex ratio
(x1)

Population
density (x2)

Female literacy
rate (x3)

Per capita
income (x4)

Murders
(x5)

Burglaries
(x6)

2001 -0.568 -0.289 0.274 0.206 0.608 0.278
2011 -0.721 -0.161 0.030 0.248 0.511 0.232

and 2007-2011), and Samajwadi Party (SP), of socialist ideology (2004-2006 and
2012-2014). Three more spatio-temporal variables are also considered: per capita
income (x4), number of murders per 100000 people (x5), and number of burglaries
per 100000 people (x6). Here burglary means entering a building or residence with
the intention to commit a theft or other crime. These two last covariates have
been included to assess relationships of dowry deaths with any other form of crime
(Mukherjee et al., 2001). Recently, sociologists and women’s organizations associate
an increase of dowry deaths with increase of consumerism in India (Verma et al.,
2015), and per capita income is included as a proxy.

As an initial descriptive approach, correlations between log crude rates of dowry
deaths and the standardized covariates are provided in Table 2.2 in the census years
2001 and 2011. At first glance, sex ratio (x1) and number of murders per 100000
inhabitants (x5) exhibit the strongest correlations, suggesting a potential negative
association between sex ratio and dowry deaths, and a positive association between
murders and dowry deaths (the spatial patterns of SMRs -standardized mortality
ratios- of dowry deaths, sex ratio, and murders is shown in Figure A.1 in Appendix
A for the years 2001 and 2011). The correlation between female literacy rate and
dowry deaths in 2011 is practically negligible. These preliminary results are in line
with those in Mukherjee et al. (2001). Moderate to low correlations are observed for
the rest of variables. Summary statistics of correlations in all the years of the study
period (not shown here to save space) reveal moderate to high correlations between
sex ratio and dowry deaths and between murders and dowry deaths.

2.3 Spatio-temporal models
Spatial and spatio-temporal models for count data have been widely applied to study
geographical and temporal patterns of incidence and mortality risks of many diseases,
particularly cancer (see for example Aragonés et al. 2013; Marí-Dell’Olmo et al. 2014;
Goicoa et al. 2016 or Ugarte et al. 2012). However, and to the best of our knowledge,
it has been only one attempt to reveal spatio-temporal patterns of crimes against
women in India. More precisely, Vicente et al. (2018) and Goicoa et al. (2019b) study
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rape incidence in Uttar Pradesh. Nowadays, the social awakening of concern for this
problem and institutional support for victims have encouraged reporting of these
crimes and hence the availability of records with data that can be further explored
and investigated.

Models incorporating fixed effects, the main spatial and temporal random effects,
and spatio-temporal interactions are valuable tools to reveal geographical patterns
of risk, global temporal trends, and region-specific temporal trends. Geographic
patterns may indicate the risk intrinsically related to a region, so that specific
traditions or cultural practices, for example, may be exerting some influence on
gender-based violence. Global temporal trends indicate how risk evolves over time
and they might be valuable to assess the effect of political actions, prevention or
intervention measures, as well as specific national laws to protect women. The
space-time interaction term describes the specific temporal evolution of the risk in
individual areas, and it may capture the effect of regional programmes, or the effect
of region-specific cultural practices over time. In general, random effects may be
proxies of unobserved or unknown spatial, temporal or spatio-temporal covariates
associated with dowry deaths.

In this chapter we consider spatio-temporal models with spatial and temporal
main effects, and spatio-temporal interactions. We review the LCAR and DCAR and
evaluate their impact on the final risk estimates. We also study the scaled version
of the DCAR model proposed by Riebler et al. (2016). These authors proposed
this scaled version because the interpretation of the hyperparameter distribution
does not depend on the graph. Moreover, the authors derive the so-called PC-priors
(Simpson et al., 2017) for the hyperparameters. Here, we also study the impact of
using different priors for the hyperparameters on the final inference that will be
carried out using INLA.

2.3.1 Model description

In this subsection we consider spatio-temporal models to study dowry death risks
including fixed effects, main spatial and temporal effects, and space-time interactions.
This class of models is flexible enough to assess the effects of covariates, to describe
spatial relationships between regions, to capture temporal trends that may be or
may not be linear, and to account for the idiosyncrasy of regions.

Let us assume that the study region, the Indian state of Uttar Pradesh in this
chapter, comprises S small areas or districts (S = 70 here) labelled as i = 1, . . . , S.
For each district, data on dowry deaths is available for T = 14 years denoted by
t = 1, . . . , T . In this setting, conditional on the rate pit, the number of dowry deaths
Oit in district i and time period t is assumed to follow a Poisson distribution with
mean µit = nit · pit, where nit is the population at risk in area i and time period t.
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That is,

Oit|pit ∼ Poisson(µit),
log µit = log(nit) + log pit. (2.1)

Note that in this case, the specific region-time rate pit and the relative risk, denoted as
Rit, are related through the global rate R = ∑

i

∑
tOit/

∑
i

∑
t nit, that is pit = R×Rit.

Then, posterior samples for Rit can be easily obtained. Different proposals to model
log pit can be found in the literature, the simplest ones being models with temporal
linear trends (see Bernardinelli et al., 1995). Nevertheless when temporal trends are
not linear these models may be very restrictive. Hence, we consider non-parametric
models with different space-time interactions (Knorr-Held, 2000). The log rate is
modelled as

log(pit) = α + x′itβ + ξi + γt + δit, (2.2)

where α is the overall rate, x′it = (x0it
, x1it

, x2it
, x3it

, x4it
, x5it

, x6it
) is the vector of

covariates outlined in Section 2, β is the coefficients of the covariates or fixed effects, ξi
and γt are the main spatial and temporal random effects capturing global spatial and
temporal patterns that may be associated with unobserved and unknown covariates,
and δit is the spatio-temporal interaction random effect dealing with specific temporal
trends in each district or changes in the global spatial pattern with time.

In this chapter we consider different conditional autoregressive (CAR) type priors
for the vector of spatial random effects ξ = (ξ1, . . . , ξS)′. Namely, the Leroux et al.
(1999) prior (LCAR) and the Dean et al. (2001) prior (DCAR).

LCAR prior: The LCAR prior assumes the following multivariate normal distri-
bution for the vector of spatial random effects ξ

ξ ∼ N
(
0, σ2

ξD−1
)
,

where σ2
ξD
−1 is the covariance matrix, D = λξQξ + (1 − λξ)IS, IS is the S × S

identity matrix, and Qξ is the neighbourhood matrix defined by contiguity, that is,
two districts are neighbours if they share a common border. The diagonal elements
are equal to the number of neighbours of each district, and non-diagonal elements
(Qξ)ij = −1 if districts i and j are neighbours and (Qξ)ij = 0 otherwise. The spatial
smoothing parameter λξ takes values between 0 and 1.

DCAR prior: The DCAR prior assumes the following multivariate normal distri-
bution for the vector of spatial random effects ξ

ξ ∼ N
(
0, σ2

ξM
)
,
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where σ2
ξM is the covariance matrix, M = λξQ−ξ + (1 − λξ)IS, and the symbol

− denotes the Moore-Penrose generalized inverse. Riebler et al. (2016) propose a
modified version of this prior with a scaled version of the covariance matrix. These
authors consider a scaled matrix Q−ξ? such that the geometric mean of its diagonal
elements is equal to one. Using this scaled matrix, the priors for the hyperparameters
have the same interpretation irrespective of the graph. This prior is implemented in
INLA as BYM2 and this is the acronym we adopt hereafter in the chapter. The three
priors, LCAR, DCAR, and BYM2 lead to the well known intrinsic CAR (iCAR) prior
when λξ = 1, and to an exchangeable prior when λξ = 0. The key difference between
the LCAR and the DCAR and BYM2 priors is that in the LCAR, λξ enters in the
precision matrix (and hence it is related to the conditional correlations), whereas
in the DCAR and BYM2, λξ enters in the covariance matrix (and it controls the
marginal correlations). When all the variability is spatially structured, the iCAR
would be a suitable prior, however if this is unknown the other priors are more
general.

For the vector of temporal random effects γ = (γ1, . . . , γT )′, random walks of
first or second order are considered. That is, γ is assumed to follow a multivariate
normal distribution

γ ∼ N
(
0, σ2

γR−γ
)
,

where Rγ is the structure matrix (see for example Rue and Held, 2005, pp. 95 and
110).

Finally, the interaction random effect δ = (δ11, . . . δS1, . . . , δ1T , . . . δST )′ is assumed
to follow a multivariate normal distribution, N

(
0, σ2

δR−δ
)
, with structure matrix Rδ

defined as the Kronecker product of the spatial and temporal structure matrices.
Depending on the definition of the precision (or covariance matrix), four different types
of interaction can be defined (Knorr-Held, 2000): Type I (independent interactions),
Rδ = IT ⊗ IS; Type II (structured in time and unstructured in space), Rδ = Rγ ⊗ IS;
Type III (structured in space and unstructured in time), Rδ = IT ⊗Qξ and Type IV
(structured in space and time), Rδ = Rγ ⊗Qξ. It is also worth noting that these
spatio-temporal models are not identifiable. The spatial and temporal random effects
have implicitly defined an intercept giving rise to an identifiability issue with the
model intercept. In addition, some of the interaction effects are confounded with
the main effects. In this chapter, we fit the models using appropriate constraints
following Goicoa et al. (2018). These authors provide the set of constraints for these
spatio-temporal models with the different types of interactions.
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2.3.2 A closer look into spatial priors

In this subsection we look into the the LCAR and DCAR spatial priors. The LCAR
has gained popularity in disease mapping as it copes with both spatially structured
and unstructured variability in one single random effect. In addition, Ugarte et al.
(2014) show how to fit this model with INLA, something that has encouraged
practitioners to use it. The LCAR prior considers a precision matrix that is a
weighted combination of a matrix capturing the spatial relationships and an identity
matrix to deal with spatially unstructured heterogeneity. The DCAR prior considers
the covariance matrix as a weighted combination of a matrix including the spatial
information and the identity matrix for the unstructured variability. This prior is
gaining popularity because PC-priors can be obtained preventing practitioners from
choosing priors for the hyperparameters. The DCAR prior has a modified version
where the spatial matrix is scaled (Riebler et al., 2016), so that the interpretation of
the priors for the hyperparameters is the same irrespective of the spatial graph.

Though CAR-type priors have been and still are widely used in disease mapping,
there are few studies about some of their non-intuitive and perhaps impractical
effects. For example, Wall (2004) states that there is no systematic structure in the
covariance implied by the CAR model and hence no way to examine the spatial
structure. Assunção and Krainski (2009) conclude that the entire neighbourhood
ensemble affects the correlation of two neighbouring areas, and the more densely
connected a graph is, the smaller the contribution of distant areas to this correlation.
They determine that the second eigenvalue of an adjacency matrix determines how
far away areas affect the correlation between adjacent areas. They conclude that in
maps with many areas, correlation between adjacent domains are more influenced by
far away areas than in maps with fewer regions. MacNab (2014) also shows that in
the LCAR the correlation between areas tends to zero with distance. These authors
use a series expansion of the adjacency matrix to approximate the covariance matrix
and study its properties. However, the DCAR model includes the covariance matrix
of an iCAR, which is rank deficient, and it does not seem possible to apply the same
series expansion to look into its properties. MacNab (2011) describes a convolution
prior with same covariance structure than the DCAR model and she finds that
regions located further apart can be negatively correlated. Botella-Rocamora et al.
(2013) also points out this unappealing property with the iCAR prior. These non
intuitive and undesired properties appear in analogous priors for time effects. For
example, a random walk of first order is a conditional autoregressive prior where one
time point (except the first and the last one) has two “neighbours”, the preceding
and the subsequent time points. Here we review the LCAR and DCAR prior and
look into their induced correlations using the graph of Uttar Pradesh, India (see the
map with the number of the districts in Figure 2.1, and the corresponding names of
the districts in Table A.1 in Appendix A).
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Figure 2.3: Induced correlations of the LCAR, DCAR, and BYM2 models for
districts Lalitpur (45) and Saharanpur (60) which have only one neighbour. Top row
corresponds to strong spatial correlation (λ = 0.9), middle row corresponds to weak
spatial correlation (λ = 0.1), and bottom row corresponds to (λ = 0.5).

Figure 2.3 displays the correlations of districts Lalitpur (45) and Saharanpur (60),
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the only districts with one neighbour, with the rest of districts sorted by distance
(in km) induced by the LCAR (red line), DCAR (green line) and BYM2 (blue line)
models. Top row corresponds to strong spatial correlation (λ = 0.9), middle row
relates to weak spatial correlation (λ = 0.1), and bottom row displays a situation
where the spatially structured and the unstructured variability are equally weighted
(λ = 0.5). It can be observed that locally, the three models behave similarly as
the correlation with the neighbouring district is similar. However, we see some
interesting differences. When the spatial correlation is high (λ = 0.9), we observe
similar correlations of districts 45 (Lalitpur) and 60 (Saharanpur) with their single
neighbour but the correlation decays with distance at a higher speed in the DCAR
and BYM2 models. The correlations seems to be more stable in the LCAR model
indicating that the correlations with areas located at similar distances are more alike.
A main difference between the LCAR and both the DCAR and BYM2 priors is
that the latter induce negative correlation between far away regions, whereas the
correlations induced by the LCAR model tend to zero with distance, something
which seems more sensible. When the spatial correlation is weak (λ = 0.1) (middle
row) the local behaviour of the three models is similar, but again we observe negative
correlations induced by the DCAR and BYM2 models. Moreover, in this case, the
decay of the correlation with distance is higher in the LCAR, being practically
zero for second order neighbours. Finally, when the spatially structured and the
unstructured variability are equally weighted, the LCAR correlations decay at a
faster speed than in the other models, which again produce negative correlations
with regions located far apart.

Figure 2.4 displays the correlations of district Sultanpur (68), a fully connected
area with 7 neighbours, with the rest of districts for λ = 0.9 (top left), λ = 0.1 (top
right), and λ = 0.5 (bottom). When λ = 0.9, the LCAR induces a correlation around
0.6 between neighbouring areas and it decays slowly with distance. However, the
most interesting point here is that the DCAR and BYM2 models induce negative
correlations between -0.3 and -0.4 for very distant areas. When λ = 0.1, the LCAR
gives rise to correlations around 0.1 between region 68 and its neighbours, whereas
the DCAR and BYM2 induce practically null correlations. Finally, if λ = 0.5 we
again observe rather striking negative correlations of district 68 with far apart areas
induced by the DCAR and BYM2 models. MacNab (2011), following Assunção and
Krainski (2009), explains the dependence of regions located farther apart as the
combination of subsequent nearest-neighbours interactions in a proper CAR prior.
However the same reasoning, based on a series expansion of the covariance matrix,
does not apply to the DCAR and BYM2 due to the impropriety of matrix Qξ, and
the reason why these models lead to negative correlation remains unknown.

Figure 2.5 displays the correlations between neighbouring areas vs. the number
of neighbours for the three models LCAR (red triangles), DCAR (green crosses), and
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Figure 2.4: Induced correlations of the LCAR, DCAR, and BYM2 models for district
Sultanpur (68), a fully connected district with seven neighbours. Top left picture
corresponds to strong spatial correlation (λ = 0.9), top right plot corresponds to
weak spatial correlation (λ = 0.1), and bottom picture relates to (λ = 0.5).

BYM2 (blue dots). For example, the two correlations for one neighbour indicate the
correlations of district Lalitpur (45) and Saharanpur (60) with their single neighbours.
The two correlations for two neighbours indicate the correlation of district 67 (the
only one with two neighbours) with district 53 and 18, and so on. Clearly the
variability in the correlations is higher in the DCAR and BYM2 models than in the
LCAR model. This is not a desired property as the correlations of one area with
their neighbouring areas should be similar. This variability seems to increase with
λ. The higher the weight of the spatial matrix, the higher the variability in the
correlations between neighboring regions.

To better understand the behavior of these priors we consider a LCAR and
a DCAR type priors for a vector of temporal random effects of length 100 (100
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Figure 2.5: Pairwise correlation induced by the LCAR, DCAR, and BYM2 models
vs. the number of neighbours for λ = 0.9 (left), λ = 0.1 (middle), λ = 0.5 (right).

time points). Figure 2.6 displays the correlation of time point 50 with the rest for
the LCAR and DCAR priors with different degrees of correlation: strong (top row
with λ = 0.9), weak (middle row with λ = 0.1), and moderate (bottom row with
λ = 0.5). The temporal structure is more regular than the spatial one because all
the points have two neighbours, the previous and the subsequent time points (except
the first and last point that only have one neighbour). Here we can observe that the
correlations of point 50 with points 49 and 51 are practically identical with both the
LCAR and DCAR. This is expected given the symmetric relationship (but this is
not what we observed in space). The pairwise correlations decay faster in the LCAR
type prior than in the DCAR. This is particularly noticeable with low and moderate
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weight of the temporally structure covariance matrix (λ = 0.1 and λ = 0.5). Again
we observe that the DCAR type prior leads to negative correlations between distant
time points, something undesirable.

Though the behavior of these priors in time seems more appealing as we have
similar correlations between neighbouring time points, we still observe the undesired
property of negative correlations with the DCAR prior.
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Figure 2.6: Pairwise temporal correlation induced by LCAR and DCAR type priors
for the temporal random effects. Top row corresponds to strong temporal correlation
(λ = 0.9), middle row represents weak temporal correlation (λ = 0.1), and bottom
row displays moderate temporal correlation (λ = 0.5).

2.3.3 Hyperpriors
Given that models constitute a valuable tool to gain knowledge about the incidence
of crime against women, it seems sensible to evaluate these models appropriately.
This includes assessing the effects of different priors and hyperpriors on the final risk
estimates. Here we consider different sets of hyperpriors for the hyperparameters
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λ, τξ = 1/σ2
ξ , and τγ = 1/σ2

γ. On one hand, we consider a Unif(0, 1) prior for the
spatial parameter λ and logGamma(1, 0.00005) priors on the log-precisions. However,
as the log-Gamma priors may produce wrong results (Carroll et al., 2015), a uniform
prior on the positive real line is considered for the standard deviation (Ugarte et al.,
2017; Goicoa et al., 2019a). This agrees with the recommendation from Gelman et al.
(2006) about using non-informative uniform priors on the standard deviations.

Very recently, Simpson et al. (2017) proposed what they call PC-priors. These
priors cannot be derived for the LCAR model, but they can be obtained for the
BYM2 model. Riebler et al. (2016) explain that the PC-prior for the standard
deviation is exponential with rate θ and they choose the value of θ according to
P (σξ > U) = α, that is θ = −log(α)/U . If the risks are assumed to be smaller than
2 with probability 0.99, then U = 1 and α = 0.01. These are the default values in
INLA. The authors also provide a PC-prior for λ in the BYM2 models, but this prior
has not closed form. The authors propose the rule P (λ < 0.5) = 2/3 favouring a
simpler model without spatial variability unless the data supports the more complex
model.

2.4 Statistical Analysis: results
The spatio-temporal Model (2.2) has been fitted considering the LCAR, the DCAR,
the BYM2, and the iCAR (λξ = 1) priors for space, RW1 and RW2 priors for time,
and the four types of interactions. Different model selection criteria have been
proposed in the literature, for example DIC (Spiegelhalter et al., 2002) or WAIC
(Watanabe, 2010). Here the objective is local smoothing rather than goodness of
fit, and hence, these model selection criteria may not be the most appropriate. For
comparative purposes we also consider additive models, that is Model (2.2) without
the spatio-temporal interaction random effects (log(pit) = α+x′itβ+ ξi + γt) to show
that a lack of fit may lead to wrong results. Additionally we also compute cross
validation measures. We use the logarithmic score (LS) (Gneiting and Raftery, 2007),
which is a cross validation measure based on the conditional predictive ordinate or
CPO in short (Pettit, 1990). The mean log score is defined as − 1

ST

∑
i,t logCPOit,

where CPOit = p(Oit|O−it), O−it is the set of observations excluded observation -it-,
and p(·|O−it) is the predictive distribution of a new observation given O−it. So this
is a criterion to select a model in terms of its predictive ability.

Originally, we fitted Model (2.2) with the seven covariates introduced in Section
2.2. Uniform distributions on the positive real line have been considered for the
standard deviations in the iCAR and LCAR priors whereas default PC-priors have
been chosen for DCAR and BYM2 priors. (Results with loggamma priors on the
log-precisions are not shown here as they are nearly identical). Model selection
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criteria points toward a Type II interaction model with a RW1 prior for time (not
shown here). Table A.2 in Appendix A displays the posterior means for the fixed
effects, their standard deviations, the medians and 95% credible intervals obtained
from a Type II interaction model with a RW1 prior for time and an iCAR for space.
Only sex ratio (x1), murders (x5), and burglaries (x6) have a significant effect. Then,
we fitted Model (2.2) with these three variables. Model selection criteria (DIC, WAIC,
and LS) for the complete set of models are displayed in Table A.3 in Appendix A.
Clearly, Type II interaction models with a RW1 prior for time are selected. Although
all model selection criteria undoubtedly point to Type II interaction models with
a RW1 prior for time, they do not present differences among the different spatial
priors. The DIC for the Type II interaction model and RW1 for time is around 6171
for all spatial priors. Something similar happens with the WAIC (around 6180) and
the LS (about 3.17).

In addition to model selection criteria, the probability integral transform (PIT)
(Dawid, 1984) and its adjusted version for discrete data (Czado et al., 2009) can be
used as a diagnostic tool. The PIT is simply the value that the cumulative predictive
distribution function attains at the observation. Deviations from uniformity in
a PIT histogram point towards model deficiencies. U-shaped histograms mean
underdispersed predictive distributions and hump-shaped distributions indicate
overdispersed predictive distributions. Figure 2.7 displays the PIT histograms for
the additive model (left) and a model with Type II interaction (right). The models
include the three significant covariates and iCAR and RW1 priors for space and time,
respectively. Clearly, the additive model shows a U-shaped histogram indicating an
underdispersed predictive distribution. On the other hand, the Type II interaction
model seems to behave reasonably well.

Figure 2.8 shows the estimated log relative risks with the additive model (left)
and with the Type II interaction model (right) for six districts in Uttar Pradesh:
Aligarth, Kanpur Dehat, Kheri, Shrawasti, Sitapur, and Varanasi. The estimated
risk trends with the additive model are all parallel (in fact this is the global trend
shifted according to the estimated spatial effect ξi). On the other hand, the Type II
interaction model is more flexible and it allows different estimated risk trends for
each district, something that seems more plausible in this study. (See also Figure
A.2 in Appendix A and the corresponding comments there).

In the following, and given that the iCAR spatial prior is the simplest model and
there is no difference with the other spatial priors, we will display the results for the
Type II interaction model with an iCAR spatial prior, a RW1 prior for the temporal
effect, and the three significant covariates. For comparison purposes, Figure A.3 in
Appendix A displays the estimated relative risks with a Type II interaction model
with an iCAR spatial prior vs. the same Type II interaction model with LCAR,
DCAR, and BYM2 spatial priors. The estimated relative risks are identical.
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Figure 2.7: PIT histograms for the additive model (left) and the Type II interaction
model (right).
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Figure 2.8: Relative risk temporal trends for six selected districts in Uttar Pradesh:
Aligarth, Kanpur Dehat, Kheri, Shrawasti, Sitapur, and Varanasi. The additive
model (left) and Type II interaction model (right).

Table 2.3 displays the posterior means, standard deviation, and medians of the
fixed effects together with 95% credible intervals. A negative association of dowry
deaths with sex ratio and a positive association with murders and burglary is obtained.
Consequently, areas with low sex ratio tend to have a high risk of dowry deaths
and areas with high number of murders and burglaries also have high risk of dowry
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Table 2.3: Posterior means, standard deviations and medians of the fixed effects
together with a 95% credible interval.

mean sd median 95% C.I.
α -10.026 0.007 -10.026 (-10.040,-10.013)
x1 (sex ratio) -0.094 0.046 -0.094 (-0.183 , -0.004)
x5 (murders) 0.089 0.020 0.090 (0.050 , 0.129)
x6 (burglaries) 0.054 0.016 0.054 (0.023 , 0.084)

deaths. These results agree with those in Mukherjee et al. (2001).
The spatio-temporal models described in Section 2.3.1, and consequently the

fitted model, are very useful and interesting because once the covariate effects are
accounted for, they allow to split the final risk into different components with a
valuable interpretation. Namely, an overall risk level given by R−1 · exp(α) (or
an overall rate level if we do not divide by R), an spatial component ζi = exp(ξi)
indicating the risk associated to each district (this may be capturing unknown or
unobserved spatial covariates), a temporal component exp(γt) that may capture the
effect of unobserved temporal covariates such as long-term policies, intervention or
prevention programmes over time, and finally, a spatio-temporal component exp(δit)
related to each district idiosyncrasy. In our case, after the effect of sex ratio, murders,
and burglaries has been discounted, most of the variability is explained by the spatial
effect, 78% of the variability. The temporal effect accounts for 13% of the variability,
and the remaining 9% is captured by the space-time interaction effect.

Figure 2.9 displays posterior means of the district-specific relative risks ζi = exp(ξi)
(left), and posterior probabilities that these district-specific risks are greater than
1, P (ζi > 1|O) (right). The spatial pattern (ζi) can be interpreted as the basic risk
associated with a district, and the strong spatial pattern is evident. Midwestern and
some northern districts present a greater risk than the other districts. In addition,
most of the eastern districts present a small district-specific risk. There is also a
group of districts with low spatial risk located in the north-west of the state. The
map of posterior probabilities is clearly divided into two groups: one with districts
whose posterior probabilities are greater than 0.9, and another group of districts
with posterior probabilities smaller than 0.1. This indicates that the districts with
posterior probabilities over 0.9 are classified as high-risk districts (see Richardson
et al., 2004; Ugarte et al., 2009a,b). The spatial pattern and posterior probabilities
obtained with the LCAR, DCAR, and BYM2 and with PC or loggamma priors are
practically identical indicating robustness with regard to the choice of spatial priors
and hyperpriors in this particular data analysis.

Figure 2.10 presents the overall temporal trend common to all districts, that
is the posterior mean of exp(γt). This common temporal pattern may capture the
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Figure 2.9: Posterior mean of the distric-specific relative risk, ζi = exp(ξi) (left),
and posterior probabilities P (ζi > 1|O) that the relative risks are greater than one
(right).

effect of public policies or laws against CAW affecting the whole state. An abrupt
fall is observed from 2001 to 2003. From then on, the “temporal” risk increases until
2008 and then it stabilizes around 1.1. Though the effect of the ruling party in Uttar
Pradesh during the studied period was not significant, we could hypothesize that
these variations may be due to past governmental actions, as typically their effects
are usually noticeable some years later. The flat temporal trend around 1.1 from
2008 onwards indicates that the temporal component tend to slightly increase the
final risks in this part of the period.

Area-specific temporal trends, i.e., the posterior means of exp(δit), (with 95%
credible intervals) are shown in Figure 2.11 for Aligarh (district 2), Kheri (district 43),
Shrawasti (district 64), and Varanasi (district 70). The specific temporal evolution in
each area is clearly different indicating that in some districts (Aligarh and Shrawasti)
this trend increases, whereas in other districts the area-specific temporal trend
decreases (Kheri) or is flat (Varanasi). This may indicate that perhaps district-
specific policies are affecting the incidence of dowry deaths over time.

The geographical patterns of dowry deaths incidence (posterior mean of the
relative risk exp(Rit)) in the study period are shown in Figure 2.12. The posterior
probabilities that these relative risks are greater than 1, P (Rit > 1|O), are shown in
Figure 2.13. From 2001 to 2003 the maps become lighter (Figure 2.12) indicating a
decrease in risk. However, from 2003 to 2008 the maps start to get darker and from
2008 onward the geographical pattern seems to stabilize. Looking at Figure 2.13,
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Figure 2.10: Temporal pattern (posterior mean of exp(γt)) of dowry death risks in
Uttar Pradesh.
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Figure 2.11: Specific temporal trends (posterior mean of exp(δit)) for four selected
districts: Aligarh (district 2), Kheri (district 43), Saharanpur (district 64), and
Varanasi (district 70).
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most of the low-risk districts are in the eastern part of Uttar Pradesh. There are
also a few low-risk districts in the north-western corner. High-risk districts are in
the western-central part of the state.
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Figure 2.12: Map of estimated risks for dowry deaths in Uttar Pradesh (posterior
means of Rit).

Finally, Figure 2.14 displays the temporal evolution of the final risk (posterior
means of exp(Rit)) and 95% credible intervals for several districts: Aligarh, Kanpur
Dehat, Kheri, Shrawasti, Sitapur, and Varanasi. The colours in the credible bands
correspond to the posterior probabilities in Figure 2.13 and indicate whether the risk
is significantly high. Clearly, Aligarh is a high-risk district and the risk increased
from 2003 to 2008. Then it stabilized around 2, indicating a risk of dowry deaths
about twice as high as the risk of whole Uttar Pradesh. Other districts such as Kheri
or Sitapur show a decrease in risk with similar behaviour to Uttar Pradesh as a whole
at the end of the period (a risk around one). These differences in the risk evolution
suggest a close inspection of the districts to hypothesize about potential risk factors
and possible protection factors that might be related to the districts with increasing
and decreasing risks trends respectively. To have an idea about the magnitude of
dowry deaths rates, the estimated rates (per 100,000 women aged between 15 and
49) for these 6 districts are displayed in Table A.4 in Appendix A.
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Figure 2.13: Map of posterior probabilities that the relative risks are greater than
one, P (Rit > 1|O).

2.5 Discussion

Statistical techniques other than simple descriptive statistics are necessary to reveal
patterns of CAW in general, and dowry deaths in particular, and to calibrate to what
extent this is a problem of epidemic proportions. Spatio-temporal disease mapping
models are powerful and useful techniques to shed light on this problem, to localise
hot spots, and to help discover the underlying risk factors. In this chapter, we fit
spatio-temporal models with different spatial CAR priors to assess their effects on
the final risk estimates. Although CAR priors have been and still are widely used to
deal with spatial heterogeneity, they also have some counterintuitive and undesired
effects. Here we study the LCAR, DCAR and BYM2 priors. They seem to be
rather similar but the induced correlations are different. In particular, the DCAR
and its scaled version BYM2 priors lead to non-intuitive and difficult to interpret
negative correlations between regions located farther apart. On the other hand,
the LCAR correlations tend to zero with distance, something more appealing. The
interpretation of these priors is clearer in one dimension (time) where the correlation
of one point with the preceding and subsequent points are practically identical,
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Figure 2.14: Temporal evolution of final risk estimates for some districts in Uttar
Pradesh: Aligarh, Kanpur Dehat, Kheri, Shrawasti, Sitapur, and Varanasi. The range
of blue colors in the credible intervals is the same as in Figure 2.13, and indicates
the posterior probability that the relative risk is greater one (P (Rit > 1|O)). Dark
blue colour means that this posterior probability is greater than 0.9, light blue colour
means that the posterior probability is between 0.1 and 0.9, and grey colour means
that the posterior probability is less than 0.1.

something expected as both points play the same “neighbouring” role. In the spatial
case, this “symmetry” is not so evident as the correlation of one area with their
neighbours is not the same. Here, the LCAR prior seems to be preferable as the
variability among the correlations is much smaller than with the DCAR and BYM2
priors. The other issue related to the spatial prior is the effect of the hyperpriors. The
DCAR and BYM2 are attractive as PC-prior can be derived preventing non-expert
practitioner of subjective choices. Deriving PC-priors for the LCAR does not seem
possible. In any case, and according to the analysis of dowry deaths in Uttar Pradesh,
neither the undesired effects of the induced correlation matrix of the DCAR and
BYM2 nor the different set of hyperpriors change the final risk estimates. That is,
the relative risk estimates are robust to the choice of spatial priors and hyperpriors.

These priors are more general than the iCAR prior as they can cope with both
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spatially structured and unstructured variability, so they would be preferred in
general. However, if the parameter λξ is close to 1, all the spatial priors lead
essentially to the iCAR prior. In the dowry death data analysis, the posterior mean
of λξ is practically equal to one if covariates are not included in the model. When
covariates are included in the model, the posterior mean of λξ is around 0.7. However,
despite of this decrease in the value of the spatial parameter λξ, the iCAR prior was
selected as results with the different spatial priors were nearly identical.

Speculating on potential causes or risk factors related to the district-specific
risks is very difficult in India, a country with hugely diverse traditions, a complex
social structure, and high population density. Establishing mechanisms other than
existing literature to link certain covariates with dowry deaths is indeed a challenge.
Moreover, covariates that may be related to dowry demand (and perhaps with dowry
deaths), such as man or woman’s age at marriage or some characteristics related to
the mother in law (Jeyaseelan et al., 2015), have been studied at individual or family
level but cannot be obtained at area level. In general it is expected that crimes
against women are associated with overall crime (Mukherjee et al., 2001), but, as far
as we know, there are no specific studies suggesting that certain offenders are more
prone to commit dowry deaths, though some literature points toward higher rates of
offending in unmarried men than in married men (King et al., 2007; Sampson et al.,
2006). In general, the covariates analysed in this chapter have been contemplated
according to two criteria: availability and previous research. Consequently, and
according to some existing literature, we have considered the following covariates:
political party of the Uttar Pradesh’s Chief Minister during the study period, sex
ratio, population density, female literacy rate, per capita income, number of murders
per 100000 inhabitants, and number of burglaries per 100000 inhabitants.

In our analysis, only sex ratio and number of murders and burglaries are statisti-
cally significant. This is consistent with the reference literature relating low child sex
ratio to discrimination against daughters and sex-selective abortion (Shenk, 2007),
and with literature relating low sex ratio to dowry and violence against women in
the state of Maharashtra (Barakade, 2012; More et al., 2012). Moreover, Mukherjee
et al. (2001) indicate that dowry deaths is the only crime against women that seems
to be associated with sex ratio, and this association is negative. These authors also
conclude that crimes against women are also expected to be positively associated
with overall crime and that there is not a relationship with female literacy rate. Other
studies investigate the higher rates of murder in western districts of Uttar Pradesh
and its correlation with low sex ratio (see Oldenburg, 1992). Strong correlations
of murder rate and low female to male sex ratio have been also reported (Drèze
and Khera, 2000). Our analysis goes in this direction as female literacy rate is not
significant whereas murders and burglaries are (with higher rates in western districts).
In any case, more research is needed to disentangle social dynamics in areas with
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higher rates of crime that may have an impact on the dowry deaths phenomenon.
The other two covariates in our analysis, population density and per capita income,
were not found to be significant. The latter was included as Verma et al. (2015) reveal
an association between dowry deaths and a rising in consumerism in India, dowry
being a way to obtain certain goods still unaffordable for many families. With respect
to the estimated global temporal trend, it is suspected that the observed variations
could be due to changes in policies caused by alternations in power between political
parties. Regarding the state political regime, Dang et al. (2018) find that where
BJP party or its coalition rule, a lack of evidence on the process of implementation
of laws protecting women from cruelty is revealed. In our analysis, the covariate
related to the political party ruling Uttar Pradesh was not found to be significant.
However, we think that it may be problematic to assess the effect of the political
party in a short term. In general, policies are usually oriented to a change of mind
in the society, meaning a lengthy process whose effects in practice may appear only
several years after their implementation. The BJD party that was governing the
state in 2001 (in fact since 1998) could have shaped a significant underreporting of
cases thereafter. That could certainly explain the sudden fall of the temporal trend
observed between 2001 and 2003.

Our findings should help authorities and social researchers to plan surveys to
collect information in those districts with higher risks in order to look into other
covariates (risk factors) that are not available at district level, such as the role of
the mother in law or the age of marriage for brides and grooms from distant cohorts
associated to marriage squeeze, as stated in Dang et al. (2018). Other covariates
derived from low sex ratio might also be explored such as ratio of unmarried males,
under the “supply of offenders” hypothesis (South et al., 2014), female migration
rate (Khan, 2015), or figures on female dry thermal burn death (Pandey et al., 2014).
All this research and our own analysis reveal the complexity of the problem and the
difficulty in finding the underlying risk factors. A different attempt would be to use
more general indicators comprising different covariates. This is the approach followed
by Tanwar et al. (2016) and Kumar et al. (2018) who construct composite indexes
of agricultural, social, and industrial development for 28 eastern and 25 western
districts of Uttar Pradesh respectively. Their findings could give an explanation to
the persistent spatial pattern that we have found in our data analysis, where districts
in the east show low risks of dowry deaths whereas western districts have high risks.
In general, eastern districts have better social and industrial development indexes
than western districts. As an example, Sant Ravidas Nagar Bhadohi, one of the
worst eastern districts in the social index (25th position), has a better index than
Hathras, the best ranked western district in the same index. Similarly, concerning
the industrial index, the third best district in the west, Meerut, has a value of this
index worse than Sant Kabir Nagar, that is ranked 25 within the eastern districts.
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Comparisons regarding the agricultural development index are not so clear, with
some districts in the west showing better scores than some districts in the east. In
any case, there are eleven districts in the west with less agricultural development
than 25 out of 28 districts in the east.

In summary, our study is a first attempt to unveil spatio-temporal patterns of
dowry deaths in the districts of Uttar Pradesh, the most populous state in India,
and to figure out underlying risk factors. We have currently detected significant
associations between dowry deaths and sex ratio, murders, and burglaries. The
positive association between dowry deaths and murders and burglaries confirms that
in general, areas with high overall crime rates also have high rates of crimes against
women.

The utility and benefit of our research is clear though the study may have some
limitations. The first one is the problem of possible underreported cases. Some
studies attest underreported cases of crimes against women (see for example Ellsberg
et al. 2001; McNally et al. 1998, and Mukherjee et al. 2001). The social stigma related
to sexual crimes makes underreporting noticeably high. Also, when violence involves
family members, it is not reported because the victims do not consider such incidents
as crimes (Koss, 1992). Regarding dowry deaths, Verma et al. (2015) suggest that
some underreporting could be related to natal relatives fear to scandal and discredit
that would ruin the possibilities of marriage for other daughters. However, Mukherjee
et al. (2001) states that while some crimes such as rape are little reported, others
such as dowry death rarely go unreported. Even in the case of underreporting, if
we accept that regions highlighted as high-risk regions in official records are likely
to be high risk regions, the discovered spatio-temporal patterns may be very useful.
This debate about whether dowry deaths are underreported or not, lead us to raise
some questions about how the National Bureau gets local crime statistics; if there
are multiple police agencies within the state acting in the districts, or to what extent
the perceptions of health care providers, forensic doctors, police or witnesses affects
the classification of a dowry death (Dang et al., 2018; Belur et al., 2014). Answer to
these questions could shed light on the problem.

The second limitation is that data is not available for different age groups, pre-
venting us from studying age-specific spatio-temporal patterns. Some age-dependent
differences could be expected as some authors (Jeyaseelan et al., 2015) state that as
the bride’s age at marriage increases, the risk of dowry demand also increases, and
also that marriage squeeze depends on cohort imbalance and age gap between brides
and grooms (Dang et al., 2018).

Finally, the third limitation is the difficulty to assess the statistical significance of
the covariates in spatio-temporal models with spatial, temporal, and spatio-temporal
random effects, as confounding problems may be present (Reich et al., 2006; Hodges
and Reich, 2010; Adin et al., 2020).
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The contents of this chapter have been published in Journal of the Royal Statistical
Society, A.

The R code, data and shapefiles can be found in the GitHub of our research
group, Spatial Statistics UPNA. https://github.com/spatialstatisticsupna/
Dowry_JRSSA_article

https://github.com/spatialstatisticsupna/Dowry_JRSSA_article
https://github.com/spatialstatisticsupna/Dowry_JRSSA_article
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District identifiers of Uttar Pradesh

Table A.1: District identifiers (ID) of Uttar Pradesh

ID Dist ID Dist ID Dist
1 Agra 25 Fatehpur 49 Mainpuri
2 Aligarh 26 Firozabad 50 Mathura
3 Allahabad 27 Gautam Buddha Nagar 51 Mau
4 Ambedkar Nagar 28 Ghaziabad 52 Meerut
5 Auraiya 29 Ghazipur 53 Mirzapur
6 Azamgarh 30 Gonda 54 Moradabad
7 Baghpat 31 Gorakhpur 55 Muzaffarnagar
8 Bahraich 32 Hamirpur 56 Pilibhit
9 Ballia 33 Hardoi 57 Pratapgarh
10 Balrampur 34 Hathras 58 Rae Bareli
11 Banda 35 Jalaun 59 Rampur
12 Barabanki 36 Jaunpur 60 Saharanpur
13 Bareilly 37 Jhansi 61 Sant Kabir Nagar
14 Basti 38 Jyotiba Phule Nagar 62 Sant Ravidas Nagar Bhadohi
15 Bijnor 39 Kannauj 63 Shahjahanpur
16 Budaun 40 Kanpur Dehat 64 Shrawasti
17 Bulandshahr 41 Kanpur Nagar 65 Siddharthnagar
18 Chandauli 42 Kaushambi 66 Sitapur
19 Chitrakoot 43 Kheri 67 Sonbhadra
20 Deoria 44 Kushinagar 68 Sultanpur
21 Etah 45 Lalitpur 69 Unnao
22 Etawah 46 Lucknow 70 Varanasi
23 Faizabad 47 Mahoba
24 Farrukhabad 48 Mahrajganj

Description of the covariates
• x0: Political party of the Chief Minister ruling Uttar Pradesh during the study

period: Bharatiya Janata Party (BJP) during 2001; Bahujan Samaj Party
(BSP) during 2002-2003 and 2007-2011; Samajwadi Party (SP) during 2004-2006
and 2012-2014 (Source: https://www.mapsofindia.com/uttar-pradesh/chief-
ministers.html
or https://en.wikipedia.org/wiki/List_of_chief_ministers_of_Uttar_Pradesh)
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• x1: sex ratio. Number of females per 1000 males (Source: Office of the Registrar
General and Census Commissioner, India. http://censusindia.gov.in)

• x2: population density (People/Km2) (Source: Office of the Registrar General
and Census Commissioner, India. http://censusindia.gov.in)

• x3: female literacy rate (Source: Office of the Registrar General and Census
Commissioner, India. http://censusindia.gov.in)

• x4: per capita income referenced to year 2004 (Source: Directorate of Economics
And Statistics Government Of Uttar Pradesh. http://updes.up.nic.in)

• x5: number of murders per 100000 inhabitants (Source: Open Government
Data Platform India. https://data.gov.in )

• x6: number of burglaries per 100000 inhabitants (Source: Open Government
Data Platform India. https://data.gov.in)

2.25 to 3.00
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1.00 to 1.25
0.75 to 1.00
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0.50 to 2.88

2001 Murder
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Figure A.1: Geographical pattern of SMRs of dowry deaths (left column) for years
2001 and 2011 and spatial pattern of sex ratio (center column), and murders (right
column) in the same years.
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Fitted models with seven covariates
We fitted Model (2.2) with the seven covariates introduced in Section 2.2. Uniform
distributions on the positive real line have been considered for the standard deviations
in the iCAR and LCAR priors whereas default PC-priors have been chosen for DCAR
and BYM2 priors. Results with loggamma priors on the log-precisions were almost
identical. Table A.2 displays the posterior means for the fixed effects, their standard
deviations, the medians and 95% credible intervals obtained from a Type II interaction
model with a RW1 prior for time and an iCAR for space. Only sex ratio (x1), murders
(x5), and burglaries (x6) have a significant effect.

Table A.2: Posterior means, standard deviations and medians of the complete set of
fixed effects together with a 95% credible interval. Results correspond to a type II
interaction model with a RW1 for time and an iCAR prior for space.

mean sd median 95% C.I.
α (x0 BJP) -9.918 0.134 -9.917 (-10.189,-9.653)
x0 (BSP) -0.115 0.139 -0.115 (-0.392, 0.166)
x0 (SP) -0.118 0.161 -0.120 (-0.436, 0.208)
x1 (sex ratio) -0.098 0.046 -0.098 (-0.188, -0.007)
x2 (population density) -0.027 0.032 -0.027 (-0.088, 0.036)
x3 (female literacy) -0.012 0.047 -0.012 (-0.106, 0.080)
x4 (per capita income) -0.021 0.030 -0.022 (-0.080, 0.037)
x5 (murders) 0.086 0.020 0.086 (0.046, 0.126)
x6 (burglaries) 0.059 0.016 0.059 (0.027, 0.091)

Fitted models with sex ratio, murders, and burglaries
We fitted Model (2.2) with sex ratio (x1), murders (x5), and burglaries (x6) covariables.
Model selection criteria (DIC, WAIC, and LS) for the complete set of models are
displayed in Table A.3.

In Figure A.2 risk trends, standardized mortality ratios (SMRs) and credible
intervals are displayed for three different districts in Uttar Pradesh: Aligarth, Kheri,
and Varanasi. On the left, we show the relative risk estimates with the additive
model (solid black line) and the credible intervals (grey band). We also display the
SMRs (solid orange line) and the estimated relative risk estimate with the Type II
interaction model (purple line). On the right, we show the relative risk estimates
with the type II interaction model (solid purple line) and the credible intervals (grey
band). We also display the SMRs (solid orange line) and the estimated relative risk
estimate with the additive model (black line). The credible intervals for the additive
model are too narrow (indicating underdispersion of the predictive distribution as
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Table A.3: Model selection criteria for different models that include covariates
x1 (sex ratio), x5 (murders), and x6 (burglaries). Posterior deviance (D), effective
number of parameters (pD), DIC, WAIC, and logarithmic score (LS)

δ ξ γ D pD DIC WAIC LS

Additive

LCAR RW1 6395.549 80.765 6476.314 6526.625 3.331
RW2 6397.755 80.733 6478.488 6529.162 3.332

BYM2 RW1 6395.637 80.563 6476.200 6526.445 3.331
RW2 6398.594 80.379 6478.972 6529.561 3.333

DCAR RW1 6395.615 80.575 6476.190 6526.441 3.331
RW2 6398.130 80.481 6478.612 6529.220 3.332

iCAR RW1 6395.962 80.443 6476.405 6526.574 3.331
RW2 6398.189 80.403 6478.592 6529.097 3.332

Type I

LCAR RW1 5910.991 373.334 6284.325 6282.101 3.265
RW2 5910.260 375.708 6285.969 6283.226 3.267

BYM2 RW1 5911.928 372.315 6284.242 6282.566 3.265
RW2 5911.361 374.862 6286.223 6284.099 3.267

DCAR RW1 5911.653 372.582 6284.235 6282.377 3.265
RW2 5911.592 374.436 6286.028 6284.086 3.267

iCAR RW1 5909.702 374.435 6284.137 6281.185 3.265
RW2 5909.508 376.289 6285.796 6282.682 3.267

Type II

LCAR RW1 5920.320 250.875 6171.195 6180.267 3.173
RW2 6024.192 188.442 6212.634 6239.570 3.197

BYM2 RW1 5920.723 250.321 6171.045 6180.284 3.173
RW2 6014.395 175.743 6190.137 6217.171 3.186

DCAR RW1 5920.367 250.689 6171.056 6180.169 3.173
RW2 6018.060 180.010 6198.069 6224.701 3.190

iCAR RW1 5919.992 251.036 6171.028 6179.839 3.173
RW2 6024.570 187.736 6212.306 6239.424 3.197

Type III

LCAR RW1 6041.688 296.785 6338.473 6389.560 3.295
RW2 6040.566 299.232 6339.798 6390.939 3.297

BYM2 RW1 6043.307 295.461 6338.767 6390.310 3.295
RW2 6044.678 296.366 6341.044 6393.427 3.297

DCAR RW1 6044.377 294.595 6338.972 6390.827 3.295
RW2 6045.448 295.481 6340.929 6393.511 3.297

iCAR RW1 6041.037 296.713 6337.751 6388.626 3.295
RW2 6041.550 297.841 6339.391 6390.788 3.296

Type IV

LCAR RW1 5961.428 239.282 6200.710 6220.315 3.191
RW2 6035.421 181.923 6217.344 6246.072 3.199

BYM2 RW1 5962.441 238.325 6200.766 6220.394 3.191
RW2 6036.816 180.974 6217.790 6246.766 3.199

DCAR RW1 5962.394 238.202 6200.596 6220.472 3.191
RW2 6036.147 181.321 6217.469 6246.336 3.199

iCAR RW1 5961.758 238.775 6200.532 6220.062 3.191
RW2 6036.122 181.656 6217.778 6246.202 3.199
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suggested by the PIT histogram) and the estimated relative risks does not track the
SMRs very well for Alligarth and Kheri. It is observed that the estimated relative
risks with the type II interaction model track the SMRs much better and the credible
intervals are wider. The estimated relative risk for the district of Varanasi are nearly
identical with both models. In general, for those districts with rather flat trends,
both models produce similar estimates. However, for those districts with increasing
or decreasing trends, the Type II interaction model leads to more satisfactory results
than the additive model.

Figure A.3 displays the estimated relative risks with a Type II interaction model
with an iCAR spatial prior vs. the same Type II interaction model with LCAR,
DCAR, and BYM2 spatial priors. The estimated relative risks are identical.

Estimated dowry deaths rates (per 100,000 women aged between 15 and 49) for
districts of Aligarh, Kanpur Dehat, Kheri, Shrawasti, Sitapur, and Varanasise are
displayed in Table A.4.
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Figure A.2: Relative risk temporal trends for three different districts in Uttar Pradesh:
Aligarth, Kheri, and Varanasi. On the top, estimated relative risk for the additive
model (solid black line) with corresponding credible bands in grey together with the
SMRs (solid orange line) and the estimated relative risk with the Type II interaction
model (solid purple line). On the bottom, estimated relative risk for the Type
II interaction model (solid purple line) with corresponding credible bands in grey
together with the SMRs (solid orange line) and the estimated relative risk with the
additive model (solid black line).
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Figure A.3: Dispersion plots of the final relative risks obtained with the Type II
interaction model with an iCAR spatial prior vs. Type II interaction models with
LCAR (top left), DCAR (top right), and BYM2 (bottom).
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Table A.4: Estimated incidence rate of dowry deaths by year per 100,000 women aged
between 15 and 49 in districts Aligarh, Kanpur Dehat, Kheri, Shrawasti, Sitapur,
and Varanasi

District 2001 2002 2003 2004 2005 2006 2007
Aligarh 7.552 6.173 4.584 5.918 5.865 7.070 8.678
Kanpur Dehat 11.882 9.608 6.596 7.934 7.568 8.698 8.725
Kheri 11.888 9.112 6.018 7.318 6.771 6.796 6.775
Shrawasti 3.182 2.669 2.052 2.608 2.674 3.102 3.737
Sitapur 11.046 9.625 6.428 8.005 7.011 6.957 7.309
Varanasi 4.593 4.038 2.878 3.443 2.965 3.337 3.935
District 2008 2009 2010 2011 2012 2013 2014
Aligarh 9.868 10.560 10.656 10.768 10.336 10.822 10.771
Kanpur Dehat 8.435 7.109 6.613 6.947 6.567 6.811 7.155
Kheri 6.241 5.498 5.188 5.613 5.362 5.441 5.458
Shrawasti 4.181 4.312 4.715 5.186 5.145 5.404 5.273
Sitapur 7.391 6.948 5.715 5.693 5.121 5.119 4.941
Varanasi 4.047 3.686 3.523 3.817 3.722 3.953 4.022



3
Bayesian inference in multivariate spatio-temporal

areal models

3.1 Introduction

The complex and multifaceted nature of crimes against women makes it difficult to
establish relationships between certain crimes, something crucial to understand the
phenomenon and to develop prevention or intervention policies. To gain knowledge
about crimes against women, establishing relationships between different forms of
crimes can set the way forward. These relationships may be expressed in terms of
similar or completely different spatial and temporal patterns, that is, in terms of
correlations between spatial and temporal patterns of different crimes. This would
indicate whether or not the high incidence of a particular type of crime in one specific
region goes in hand with another one, or if the temporal trends of two different crimes
increase or decrease in parallel. The joint analysis of different forms of crimes can be
carried out using multivariate spatio-temporal models. Not only could multivariate
models account for the correlations between crimes, but they would also improve
estimates by borrowing information from nearby areas and time points related to
the different crimes or phenomena under study.

In this chapter we extend the M-based proposal of Botella-Rocamora et al.
(2015) to the spatio-temporal setting, and besides the correlation between spatial
patterns of different responses, correlation between temporal trends are also included.
M-based models have been derived to overcome some computational difficulties
of the multivariate models propsed by Martínez-Beneito (2013). The M-based
approach reduces computing time at the cost of not being able to identify some
terms. Additionally, a space-time interaction term with different variance parameters
for each crime is considered. Though multivariate models have been traditionally
fitted using MCMC, here we also show how to fit these models using INLA with the
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aim of investigating if computational cost improves with respect to Gibbs sampling
(the MCMC technique used by Botella-Rocamora et al. 2015).

The rest of the chapter is structured as follows: Section 3.2 reviews the M-model
proposals and presents a spatio-temporal extension. Identifiability issues as well as
prior specifications are also discussed in this section. Section 3.3 brings to light the
problem of rapes and dowry deaths in India and gives the results of a joint analysis of
rapes and dowry deaths during the period 2001-2014 in the districts of Uttar Pradesh.
A comparison of the results obtained when implementing alternative models using
WinBUGS (Lunn et al., 2000) and INLA is also discussed in this section. The chapter
closes with a discussion.

3.2 M-models for multivariate spatio-temporal mod-
elling

Let Oitj and Eitj be the number of observed and expected cases, respectively, in the
i-th geographic unit (i = 1, . . . , I), the t-th period (t = 1, . . . , T ), and the j-th crime
(j = 1, . . . , J). We assume that conditional on the relative risk, Ritj, the number of
observed cases in each area-time-crime stratum follows a Poisson distribution

Oitj|Ritj ∼ Poisson(µitj = Eitj ·Ritj), log µitj = logEitj + logRitj,

where, the log-risk is modelled as

log(Ritj) = αj + θij + γtj + δitj.

Here αj is an intercept for the j-th crime, θij and γtj are the spatial and temporal
main effects for the j-th crime, and δitj is the spatio-temporal interaction within
the j-th crime. Denoting by Θ = {θij : i = 1, . . . , I; j = 1, . . . , J} and Γ =
{γtj : t = 1, . . . , T ; j = 1, . . . , J} two matrices whose columns are the spatial and
temporal random effects respectively, and by ∆j = {δitj : i = 1, . . . , I; t = 1, . . . , T} a
matrix capturing the spatio-temporal interaction within each crime, the advantage of
multivariate modelling is that dependency between the spatial and temporal patterns
of the different crimes can be included in the model so that a latent association
between crimes can help to improve the estimates and to discover risk factors related
to the phenomena being studied.

Below, we address how to incorporate into the model spatial and temporal
dependencies within crimes and correlation between the spatial and temporal patterns
of the crimes. Firstly, dependence between spatial patterns of the crimes is addressed
through the use of M-models (Botella-Rocamora et al., 2015), and the same idea is
used to deal with temporal dependence between crimes. Secondly, a disease-specific
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spatio-temporal interaction is included, and finally, some identifiability issues are
raised.

3.2.1 Inducing spatial and temporal dependence within and
between crimes

To understand how dependence between the spatial risks and between the global
temporal trends of the different crimes are included in the model, let us express the
matrices Θ and Γ as

Θ = ΦθMθ,
Γ = ΦγMγ,

(3.1)

where Φθ and Φγ are random effects matrices of order I ×Kθ and T ×Kγ whose
columns are distributed independently following a spatially correlated distribution
and a temporally correlated distribution respectively. Usually Kθ and Kγ are
considered equal to J , i.e., as many spatial/temporal effects as crimes, although
they may be different. For example, Kθ = 2J for the multivariate formulation of the
Besag et al. (1991) model, BYM, that includes two random effects to incorporate
spatially structured and unstructured variability respectively. On the other hand,
the dimension of the model can be reduced (Kθ < J , Kγ < J ) in situations
where it is believed that several crimes share a common spatial/temporal pattern,
obtaining computationally more efficient models (see Corpas-Burgos et al., 2019, for a
discussion). The matrices Mθ and Mγ , of orders Kθ× J and Kγ × J , are responsible
for inducing dependence between the different columns of Θ and Γ. More precisely,
dependence between the columns of Θ means correlation between spatial patterns
of the crimes under study, whereas the dependence between their rows indicates
spatial correlation within crimes. Similarly, dependence between columns of Γ means
correlation between the temporal patterns of the crimes, and dependence between
rows leads to temporal correlation within crimes. We refer to (3.1) as the M-model
where Mθ and Mγ are nonsingular but arbitrary matrices.

Different spatial priors have been considered in the literature to deal with spatial
dependence. In the field of multivariate models, Botella-Rocamora et al. (2015)
use a proper conditional autoregressive (pCAR) prior and Corpas-Burgos et al.
(2019) consider an M-based version of the BYM. In this chapter we take into
consideration both the pCAR and the BYM models. In addition, we also examine
the intrinsic conditional autoregressive prior (iCAR) and the Leroux et al. (1999)
prior (LCAR) for the columns of Φθ. In the Corpas-Burgos et al.’s proposal they
consider Φθ = [Φs : Φh], where Φs is the (I×J) matrix of spatially correlated random
effects following an iCAR distribution, and Φh is the (I × J) matrix of spatially
unstructured terms. As previously mentioned Kθ = 2J with this formulation. In
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synthesis, the columns of Φθ follow a multivariate normal distribution with mean 0
and covariance matrix Ω whose expression depends on the spatial prior. Namely,

• iCAR:

ΩiCAR = σ2
s(Dw −W)− = σ2

sQ−θ ,

where W = (wil) is the spatial proximity matrix defined as wii = 0, wil =
1 if the i-th and the l-th areas are neighbours and 0 otherwise, Dw =
diag(w1+, · · · , wI+), with the diagonal elements wi+ being the number of
neighbours of the i-th area, and σ2

s is the variance parameter. The symbol −
refers to the Moore-Penrose generalized inverse.

• pCAR:

ΩpCAR = σ2
s(Dw − ρW)−1,

which defines a proper distribution if and only if 1/dmin < ρ < 1/dmax (see for
example Jin et al., 2007), where dmin and dmax are the minimum and maximum
eigenvalues of D−1/2

w WD−1/2
w .

• LCAR:

ΩLCAR = σ2
s [λ(Dw −W) + (1− λ)II ]−1 = σ2

s [λQθ + (1− λ)II ]−1 ,

where II is the I × I identity matrix. The covariance matrix ΩLCAR is of full
rank if λ ∈ [0, 1).

Note that the pCAR and the LCAR priors become the iCAR prior if ρ = 1 and
λ = 1 respectively.

Regarding the temporal component, random walk priors of first order (RW1)
are assumed for the columns of Φγ i.e., each column follows a multivariate normal
distribution with mean 0 and covariance matrix given by σ2

tQ−γ , where Qγ is the
structure matrix (see Rue and Held, 2005, pp. 95). This matrix is similarly defined
as the spatial structure matrix Qθ but in time, that is two contiguous time points
are neighbours. The variance parameters for the columns of Φθ and Φγ are fixed at
one, so the degree of spatial and temporal smoothing relies on the matrices Mθ and
Mγ. Otherwise, these variance parameters and the cells of the M-matrices would
not be identifiable (Martínez-Beneito, 2013).

The multivariate approach allows the estimation of the correlation between the
spatial patterns of the crimes, an interesting and useful feature, as a high positive
correlation would support the hypotheses of common risk factors. As shown in
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Botella-Rocamora et al. (2015), for models with a separable structure, this covariance
matrix between the spatial patterns can be estimated as M′

θMθ. However, for BYM
M-models this condition is not satisfied, as the spatial component is split into two
terms with two M-matrices, so it is not reasonable to use M′

θMθ to estimate the
covariance matrix between spatial patterns of the different crimes. For this reason,
Corpas-Burgos et al. (2019) recommend using the covariance matrix of the log(Θ)
columns as the covariance matrix between the spatial patterns. On the other hand,
a high positive correlation between the temporal patterns would indicate that risk
factors intrinsically related to the time dimension, such as certain policies, affect
both crimes rather similarly and hence provide valuable information to deal with the
phenomenon being studied. Employing RW1 prior distributions ensures that the Φγ

columns share a common distribution which guarantees that the covariance matrix
between the temporal patterns can be estimated using M′

γMγ . The temporal trend
could be modelled as the sum of a fixed linear term and a non linear term (random
effect), similar to the work by Lombardo et al. (2018) in a different context. In such
a case, one could assess if there is a significant slope. However, the final temporal
trend would be the sum of the linear and the non-linear part and a positive slope
might not result in a clear increase or decrease in the trend. Moreover, the matrix
M′

γMγ would no longer represent the covariance matrix of the temporal trends, but
the covariance matrix of the non linear part. An alternative proposal would be
to consider a random walk prior of second order (RW2) for time, which implicitly
includes a linear term. However, in the real data analysed in this chapter, DIC and
other selection criteria point towards a RW1.

3.2.2 Spatio-temporal interaction
Multivariate spatio-temporal models including the effects of area and time additively
can be very restrictive in practice as the same temporal evolution is assumed for
all areas within the same crime. The incorporation of a random effect for the
spatio-temporal interaction models the specific behaviour of a geographical unit at
a given year, thus allowing each area to have its own specific temporal evolution.
Consequently, the assumption of equal time evolution for all areas is relaxed, obtaining
more flexible models. Martínez-Beneito et al. (2017) propose a multidimensional
framework where different dependence structures can be considered for multiple
factors (space, time, and crime here). However, this procedure is computationally
expensive and it is not clear how to approach this situation using M models. Given
that our model already includes crime-specific spatial and temporal patterns with
induced dependence between crimes, the spatio-temporal interaction within crimes
is a residual term and simpler models capturing the space-time dependence can be
more convenient. Here we contemplate independent spatio-temporal interactions for
each crime. These spatio-temporal interactions only consider dependence in space
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and time and may have the same or different amount of smoothing for each crime.
Recalling that ∆j , j = 1, . . . , J , is a (I × T ) matrix with the interaction random

effects for the j-th crime, it is assumed that its vectorization follows a multivariate
normal distribution with mean 0 and covariance matrix Σδj

= σ2
δj

Q−δ , i.e.,

vec(∆j) ∼ N(0, σ2
δj

Q−δ ).

Here we consider the four types of interactions defined by Knorr-Held (2000) and
explained in Chapter 2. The interactions considered here are separable as they
are defined in terms of Kronecker products of covariance/precision matrices. The
difference between them is whether or not the elements of the interaction terms
have any correlation structure in space, time or both. Regardless the correlation
structure, the interaction term allows different temporal trends for each area (or
different spatial pattern for each year). Other non-separable models, such as P-spline
interaction models, have been proposed in the literature. Adin et al. (2017) compare
the Type IV interaction with P-spline models and show that the area-specific trends
are similar.

3.2.3 Identifiability issues and hyperprior specification
Univariate spatio-temporal models present some identifiability issues that can be
overcome for example using constraints. These problems also arise in the multivariate
setting, and to achieve identifiability between the crime-specific intercept and the
corresponding main spatial and temporal random effects, sum to zero constraints
are considered over these components of the model. In addition, because the main
spatial and temporal effects are also included in the spatio-temporal interaction
random effects, sum to zero constraints are also considered for this latter term. For
more details about the required constraints for the different type of interactions
(Type I, II, III, and IV), see Goicoa et al. (2018). In the multivariate setting,
additional identifiability concerns emerge. As pointed out in Botella-Rocamora
et al. (2015), any orthogonal transformation of the columns of Φθ (and Φγ) and
the equivalent orthogonal transformation of the rows of Mθ (and Mγ), causes an
alternative decomposition of Θ (and Γ), and therefore these quantities are not
identifiable. However, Θ, Γ, and the covariance matrices Mθ

′Mθ and Mγ
′Mγ are

perfectly identifiable. Consequently, inference is confined to those quantities.
The cells of the M-matrices act as coefficients (weights) in the decomposition of

Θ and Γ in Equation (3.1), so they can be seen as regression coefficients and treated
as fixed effects with a normal prior with mean 0 and a large fixed variance leading
to what is call fixed effects M-models (FE). Note that, assigning N(0, σ2) priors to
the cells of the M-matrices is equivalent to assigning a Wishart prior to M′M, i.e.,
Mθ

′Mθ ∼ Wishart(J, σ2
θIJ) and Mγ

′Mγ ∼ Wishart(J, σ2
γIJ) (see Botella-Rocamora



3.3 Joint analysis of crimes against women in Uttar Pradesh 57

et al., 2015, for further details). Alternatively, random effects M-models (RE) can
be considered in which the entries of the M-matrices are treated as independent
normal random variables with mean 0 and standard deviation σ. In this case, a
uniform prior between 0 and a large number is considered for σ. In our analysis, for
RE M-models, Gaussian distributions with mean 0 and standard deviations σθs (for
the spatially structured part), σθh

(for the spatially unstructured part in the BYM
model), and σγ (for the temporally structured part) are considered for the cells of
the M-matrices with uniform priors between 0 and 100 for the standard deviations.
The same vague uniform priors are considered for the standard deviation σδj

of the
spatio-temporal interaction. For FE M-models, and following Corpas-Burgos et al.
(2019), improper Mij ∝ 1 distributions (this means that σ is set to ∞) are used for
the cells of the M-matrices with WinBUGS. When fitting the models using INLA, a
Wishart prior for M′M is considered.

3.3 Joint analysis of crimes against women in Ut-
tar Pradesh

3.3.1 Descriptive analysis
Uttar Pradesh accounts for the highest percentage of overall crimes against women
in India, which has been increasing in the last years (11.4% in 2014; 10.9% in 2015;
14.5% in 2016 and 15.6% in 2017 according to National Crime Records Bureau (2015,
2016, 2017, 2019).

During this period, the number of rapes increased by 77% in Uttar Pradesh (1,956
in 2001, 3,462 in 2014), and this growth was even higher in the country as a whole,
138%. The increase is particularly remarkable in the last two years of the period,
probably due to an improvement in the victim support system (Raj and McDougal,
2014). According to the NCRB, India is the country with the highest number of
dowry deaths in the world. Some descriptive statistics about the number of rapes
and dowry deaths in the districts of Uttar Pradesh by year are provided in Table
3.1. The number of rapes registered per district is highly variable, with minimum
values ranging from 0 to 5 cases and maximum values between 51 and 164 cases.
Figures for dowry deaths are somewhat more stable, but still coefficients of variation
per year are very high. Crude rates (per 100000 women) of rapes and dowry deaths
in Uttar Pradesh during the studied period are shown in Figure 3.1. An increase
in rates, particularly noticeable for rapes, is observed from 2003 onward. In 2008,
dowry deaths rates seem to stabilize.

The similarities between the temporal rate trends of rapes and dowry deaths
during the study period leads us to hypothesize the existence of a relationship
between the risk of rapes and dowry deaths. This apparent relationship may indicate
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Table 3.1: Descriptive statistics. Minimum (min), first quartile (q.25), mean, third
quartile (q.75), maximum (max), standard desviation (sd), and coefficient of variation
(cv) of the number of rapes and dowry deaths in the districts of Uttar Pradesh per
year.

Year Rapes Dowry deaths
min q.25 mean q.75 max sd cv min q.25 mean q.75 max sd cv

2001 1 13.0 27.9 41.0 93 21.5 0.8 4 18.0 31.6 43.8 88 19.0 0.6
2002 0 9.0 20.2 30.8 73 14.7 0.7 3 14.2 27.0 34.8 83 18.1 0.7
2003 0 5.0 13.0 19.5 47 11.1 0.9 3 10.2 18.9 24.0 55 11.5 0.6
2004 3 9.2 19.9 25.8 72 15.0 0.8 3 14.2 24.4 29.0 71 15.3 0.6
2005 1 7.0 17.3 24.0 61 14.2 0.8 1 12.2 22.3 26.8 70 13.9 0.6
2006 2 9.0 18.8 26.0 51 12.1 0.6 7 14.2 25.7 34.8 67 14.4 0.6
2007 1 10.0 23.5 32.5 82 16.6 0.7 4 16.0 29.6 36.8 78 17.3 0.6
2008 2 12.0 26.7 35.8 82 19.0 0.7 5 17.2 32.0 38.8 88 18.7 0.6
2009 3 13.0 25.1 35.2 77 17.5 0.7 8 19.2 31.9 40.8 83 18.0 0.6
2010 1 10.2 21.9 26.0 75 17.4 0.8 5 18.2 31.4 40.0 95 19.7 0.6
2011 2 14.2 29.1 39.0 89 20.6 0.7 6 17.0 33.2 41.8 95 18.7 0.6
2012 4 15.0 28.0 35.8 86 17.4 0.6 5 19.0 32.0 40.8 97 17.9 0.6
2013 5 23.2 43.5 53.8 119 28.5 0.7 5 19.0 33.3 41.2 98 19.5 0.6
2014 5 23.0 49.5 69.0 164 31.7 0.6 6 23.2 35.3 46.8 98 18.4 0.5

that certain facts in time (public policies, intervention programs, laws to protect
women) may be exerting some influence on these phenomena. For this reason we have
calculated the correlation between the standardized incidence ratio (SIR) of rapes
and dowry deaths. On one hand, the SIR for rapes and dowry deaths in all districts
has been obtained for each year of the period, and the correlation between the SIR
vectors for rapes and dowry deaths (correlation between crude spatial patterns) has
been computed. On the other hand, for each district, we have obtained the SIR vector
of rapes and dowry deaths between 2001 and 2014, and the correlation between crude
temporal trends has been calculated. Some summary statistics are displayed in Table
3.2. The correlations between the crude spatial patterns range between 0.32 and 0.62.
We have also computed the global crude spatial patterns of rapes and dowry deaths
in the whole period and the correlation is 0.53. This would indicate that certain
districts are more prone to the occurrence of both crimes. The correlations between
the crude temporal patterns range between -0.37 and 0.87 indicating that, depending
on the district, both crimes evolve in the same or the opposite direction. We have
also calculated the crude temporal trends of rapes and dowry deaths in all of Uttar
Pradesh and the correlation between them is 0.59, indicating that the correlation
between overall temporal patterns may be high. The correlations observed between
both crimes indicate that it might be advantageous to analyse these crimes jointly.
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Figure 3.1: Evolution of the crude rates (per 100000 women) of rapes and dowry
deaths in Uttar Pradesh in the period 2001-2014.

Table 3.2: Correlations between spatial (by year) and temporal patterns (by district)
of rapes and dowry deaths based on crude standardized incidence ratios (SIR).

Correlation min q.25 median mean q.75 max sd cv

Spatial patterns 0.319 0.371 0.449 0.449 0.538 0.621 0.099 0.220
Temporal trends -0.369 0.142 0.396 0.378 0.630 0.865 0.300 0.793

3.3.2 Model fitting using WinBUGS and INLA

Model fitting

The multivariate M-based proposal presented in Section 3.2 has been implemented
to study the joint spatio-temporal distribution of rapes and dowry deaths in Uttar
Pradesh between 2001 and 2014. Both specifications of M models are contemplated
for the spatial and temporal effects, the fixed effects (FE) and the random effects
(RE) M-models. We use BYM, iCAR, LCAR, and pCAR priors to model the
spatial patterns and a RW1 prior to model the temporal effects. The four types of
interactions have been considered for the spatio-temporal interaction random effect.
A vague normal distribution with a precision close to zero was used for the intercepts
(αj), and uniform vague prior distributions for the standard deviations.
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Initially, the models were implemented in WinBUGS. Three chains were run
for each model with 30000 iterations each and a burn-in period of 5000 iterations.
One out of every 75 iterations has been saved, leading to a final sample size of
1002 iterations. The Brooks-Gelman-Rubin statistic, the effective sample size, and
an examination of the simulated chains were used to evaluate the convergence of
the identifiable variables in the model. Convergence was checked for the standard
deviations, the crime-specific intercepts, and the elements of matrices Θ, Γ and ∆.
We require that the Brooks-Gelman-Rubin statistic is less than 1.1, and that the
effective sample size is at least 100 for each variable. The simulated chains produced
practically independent posterior draws with first order autocorrelations close to 0.
Corpas-Burgos et al. (2019) present the R-code to implement spatial FE M-models
and RE M-models in WinBUGS, when BYM is used to model the spatial pattern. We
have extended this code to spatio-temporal M-models, and we have also considered
the pCAR, LCAR, and iCAR distributions for the spatial effects.

As it is widely acknowledged that MCMC techniques can be computationally
very demanding in certain cases, particularly in multivariate spatio-temporal models
when the number of areas and time periods increase, the well-known INLA technique
has been also considered here (Rue et al., 2009). Recently, Palmí-Perales et al.
(2019) have developed the R package ‘INLAMSM’ (https://CRAN.R-project.org/
package=INLAMSM) to implement multivariate spatial models for lattice data using
INLA. In particular these authors consider two versions of an improper multivariate
CAR and a proper multivariate CAR priors: the first version assumes a diagonal
matrix for the covariance between diseases (that would indicate independence between
diseases), and the second version considers more general multivariate priors with
a dense symmetric matrix to model the covariance between diseases. In addition,
this package includes the FE M-model (Botella-Rocamora et al., 2015) with different
proper CAR priors for each disease. In this work, we have modified the INLA
function for the pCAR, so that FE M-models and RE M-models with BYM, iCAR
and LCAR priors for the spatial effects can be conveniently fitted. So most of
the spatial priors used in the literature are extended to the multivariate setting
and can be conveniently used within INLA. Moreover, these authors use a Wishart
distribution for M′M and here we also consider a N(0, σ2) distribution for each cell
of the M-matrices. While both alternatives are equivalent, the assignment of normal
priors to each cell of the M-matrices allows to fit more flexible models, such as those
specified in Corpas-Burgos et al. (2019), relaxing the assumption of a common scale
parameter for the cells of the M-matrices. Though the advantages of INLA are
clear, it may have some inconveniences in this particular setting. The computational
convenience of M-models is based on the reformulation of Kronecker products of
the covariance matrices as simple matrix products. However, to implement the FE
M-models in INLA, INLAMSM uses a class of generic models that define the latent

https://CRAN.R-project.org/package=INLAMSM
https://CRAN.R-project.org/package=INLAMSM
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component moving away from the original philosophy of M-models as they do not
replace Kronecker products by simple matrix products. In our case, with two crimes,
the computational time is substantially reduced with certain spatial priors.

In what follows, a succinct comparison of the results obtained in the joint analysis
of rapes and dowry deaths in Uttar Pradesh using INLA and WinBUGS is presented.

Comparing results using WinBUGS and INLA

We begin by comparing the estimated relative risks (posterior means) obtained with
INLA (simplified Laplace strategy) and WinBUGS using the library pbugs to run
the models in parallel (Martínez-Beneito and Vergara-Hernández, 2019). Figure 3.2
displays dispersion plots of posterior means of rapes and dowry deaths relative risks
obtained with INLA vs. those obtained with WinBUGS. The estimated relative
risks correspond to a FE M-model with an iCAR prior for space, a RW1 prior for
time, and a Type II spatio-temporal interaction. Clearly, the relative risk estimates
obtained with INLA and WinBUGS are identical. As it will be detailed later, models
with a Type II spatio-temporal interaction are the most suitable candidates in terms
of model selection criteria. Similar findings were obtained for the spatial (exp (θij)),
temporal (exp (γtj)), and spatio-temporal pattern estimates (exp (δitj)). Identical
fits with INLA and WinBUGS were also observed for additive models and models
with Type I, Type III, and Type IV interactions.

Regarding computing times for the models presented in Section 3.2, models with
Type II and Type IV interactions are the slowest regardless the fitting technique,
INLA or WinBUGS. One reason for this may be that the number of constraints
is much higher for Type II and Type IV spatio-temporal interactions than for the
Type I and Type III counterparts. The number of constraints on the spatio-temporal
interaction random effect for Type II and Type IV are 70 (number of regions) and
84 (number of regions+number of time periods) respectively, whereas for Type I and
Type III interactions the number of constraints are 1 and 14 respectively (see Goicoa
et al., 2018). Given that adding restrictions entails computational cost, models with
Type II and Type IV interactions are expected to run more slowly. In general, models
in INLA run faster, particularly with pCAR, LCAR, and BYM priors. Computations
were run on a twin superserver with two processors, Intel Xeon 4108 and 96GB RAM.
For these models, the computing time ranges between 15 minutes (additive models)
and 69 minutes (Type IV interaction) with INLA and between 400 minutes (additive)
and 620 minutes (Type IV interaction) with WinBUGS. This indicates that the
fit with INLA is between 9 and about 25 times faster than the fit with WinBUGS.
Here, we would like to clarify that the pCAR and LCAR spatial priors are proper
and hence WinBUGS does not place sum-to-zero constraints. However, as pointed
out by Goicoa et al. (2018) a milder confounding issue still remains between the
intercept and the spatial term. Consequently, sum-to-zero constraints are required.
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Figure 3.2: Dispersion plots of the final relative risks for rapes and dowry deaths
obtained with the Type II interaction RE M-model with in INLA (y-axis) vs. Win-
BUGS (x-axis), using the BYM (first column), iCAR (second column), LCAR (third
column) and the pCAR (last column) spatial priors.

Though this is rather simple in INLA, it is not so straightforward in WinBUGS,
and we have centered the spatial random effects in each iteration of the MCMC
algorithm, which in turn produces an increase in computing time. This does not
happen with the iCAR (where in general WinBUGS is slightly faster than INLA)
because WinBUGS internally places sum-to-zero constraints in this prior. The reason
why INLA seems to be slightly slower in this case may be that constraints in this
case are well handled in WinBUGS and INLA uses Kronecker instead of simple
matrix products. The exception is the Type IV interaction, where the constraints
slow down the computations in WinBUGS as they have to be defined manually. In
summary, INLA seems to be a more efficient tool regarding computing time for the
implementation of M-models.

Posterior means and 95% credible intervals for the crime-specific intercepts have
been obtained and are displayed in Table 3.3. Pretty similar results are obtained
with all the models and fitting techniques. We also fitted the models with the LCAR
and BYM priors in WinBUGS without centering, and the final relative risk estimates
were identical to the ones obtained with INLA, but differences were observed in the
crime specific intercepts and the spatial patterns. Regarding the hyperparameters of
the models with a spatio-temporal Type II interaction term, Table 3.4 provides the
posterior mean, the posterior standard deviation, and 95% credible intervals. It is
very clear that crime-specific standard deviations of the interaction term (σδj

) do not
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Table 3.3: Posterior means, standard deviations, and 95% credible intervals for the
crime-specific intercepts (αj, j = 1, 2) of the models with a spatio-temporal Type II
interaction term.
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practically change when using INLA and WinBUGS. Small differences are observed
in the estimates of σθ and σγ.

Table 3.4: Posterior means, standard deviations, and 95% credible intervals for the
hyperparameters of the models with a spatio-temporal Type II interaction term.

INLA MCMC
Model Parameter mean q.025 q.975 mean q.025 q.975

iCAR

FE M-models σδ1 0.212 0.187 0.233 0.210 0.190 0.232
σδ2 0.093 0.080 0.107 0.093 0.080 0.108

RE M-models

σθ 0.605 0.268 1.343 0.669 0.266 1.748
σγ 0.222 0.095 0.488 0.242 0.094 0.626

σδ1 0.210 0.190 0.237 0.210 0.190 0.233
σδ2 0.092 0.080 0.109 0.094 0.080 0.108

pCAR

FE M-models

σδ1 0.210 0.191 0.234 0.209 0.189 0.231
σδ2 0.092 0.081 0.104 0.093 0.080 0.108

ρ1 0.928 0.773 0.992 0.965 0.856 0.999
ρ2 0.985 0.948 0.999 0.968 0.833 0.999

RE M-models

σθ 0.756 0.346 1.570 0.674 0.280 1.822
σγ 0.292 0.198 0.397 0.256 0.089 0.713

σδ1 0.214 0.189 0.252 0.210 0.188 0.232
σδ2 0.094 0.079 0.117 0.093 0.080 0.107

ρ1 0.911 0.731 0.990 0.961 0.827 0.999
ρ2 0.921 0.734 0.984 0.967 0.841 0.999

LCAR

FE M-models

σδ1 0.206 0.189 0.230 0.209 0.188 0.232
σδ2 0.092 0.080 0.107 0.093 0.080 0.106

λ1 0.830 0.558 0.980 0.860 0.568 0.996
λ2 0.920 0.746 0.992 0.868 0.588 0.996

RE M-models

σθ 0.528 0.231 1.108 0.647 0.258 1.782
σγ 0.184 0.142 0.261 0.258 0.094 0.741

σδ1 0.212 0.199 0.226 0.209 0.187 0.230
σδ2 0.093 0.082 0.104 0.093 0.080 0.108

λ1 0.730 0.409 0.942 0.844 0.560 0.995
λ2 0.945 0.808 0.996 0.853 0.548 0.996

BYM

FE M-models σδ1 0.210 0.200 0.219 0.210 0.189 0.232
σδ2 0.094 0.087 0.101 0.093 0.081 0.107

RE M-models

σθs
0.591 0.261 1.285 0.681 0.265 1.831

σθh
0.042 0.017 0.079 0.053 0.002 0.199

σγ 0.209 0.113 0.372 0.246 0.089 0.629

σδ1 0.211 0.190 0.233 0.210 0.189 0.231
σδ2 0.093 0.080 0.109 0.093 0.080 0.107
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In summary, results obtained with INLA and WinBUGS are practically identical,
and given that INLA is, in general, much faster than WinBUGS, and constraints
are easily handled in INLA, we consider that fitting multivariate models using INLA
is an interesting alternative to WinBUGS. In the next section, we provide all the
results of the real data analysis using INLA.

3.3.3 Joint analysis of rapes and dowry deaths using M-
Models in INLA

Multivariate models presented in Section 3.2, including the different spatial priors
and space-time interaction types, have been fitted to study rapes and dowry deaths
in Uttar Pradesh during the period 2001-2014. The models are compared in terms
of DIC, WAIC, and LS. The values are displayed in Table 3.5.

The same multivariate models with the same standard deviation for the spatio-
temporal interaction of both crimes have been fitted, but poorer results were obtained
and results have been omitted. Additive models exhibit the highest values of all the
criteria, indicating that they are not flexible enough to model the data. Models with
Type II spatio-temporal interaction are the most suitable candidates with notable
differences in terms of DIC, WAIC, and LS with the rest of models including other
interaction types. Overall, and according to all criteria, the differences between
distinct models with the same Type II interaction are not very large, and it is
very difficult to select the best one in terms of goodness of fit (DIC and WAIC)
or prediction ability (LS). However, we notice that estimates of spatial parameters
ρj (j = 1, 2) within crimes in models with a pCAR prior, and estimates of the
spatial tuning parameter within crimes λj (j = 1, 2) with a LCAR prior, are close
to 1 (see Table 3.4). This means that the differences between these models and the
model with an iCAR prior tend to vanish completely. That is, the pCAR and the
LCAR are essentially the iCAR, but the latter is a simpler model with a substantial
reduction in computing time (about two times faster). On the other hand, estimated
incidence risks using all models with Type II interaction are practically identical.
Then, M-models (FE and RE) with an iCAR prior for the spatial random effect
present the best tradeoff between complexity and goodness of fit. Moreover, FE
M-models are in general faster than RE M-models, and consequently, we have finally
selected a FE-M model with an iCAR spatial prior and a Type II spatio-temporal
interaction to display the results.

The spatio-temporal multivariate model proposed in this chapter also permits
to split the final risk for each crime into the spatial, temporal, and spatio-temporal
component, each providing information that may be related to different issues.
The crime-specific intercepts exp(αj) can be interpreted as an overall risk for each
crime; the district-specific spatial risk for each crime, exp(θij), can be related to the



66 Multivariate spatio-temporal areal models

Table 3.5: Model selection criteria, DIC, WAIC and LS, for the proposed models.
Within each class, iCAR, pCAR, LCAR, and BYM, the best model according to the
different criteria are highlighted in bold.

Θ Type DIC WAIC LS

iCAR

FE M-models

Additive 14160.929 14413.494 7210.957
Type I 12608.167 12522.138 6608.222
Type II 12355.856 12379.212 6338.481
Type III 12663.282 12707.279 6624.992
Type IV 12405.457 12479.757 6370.050

RE M-models

Additive 14161.084 14413.314 7210.853
Type I 12607.161 12521.936 6607.393
Type II 12356.652 12387.969 6338.562
Type III 12661.840 12710.519 6623.163
Type IV 12403.473 12472.729 6369.541

pCAR

FE M-models

Additive 14161.376 14415.178 7211.860
Type I 12606.321 12507.739 6607.746
Type II 12356.132 12373.483 6338.431
Type III 12660.066 12693.335 6622.705
Type IV 12403.443 12476.556 6369.834

RE M-models

Additive 14161.125 14414.223 7211.355
Type I 12607.587 12522.777 6608.033
Type II 12362.337 12399.167 6342.436
Type III 12660.802 12699.595 6622.373
Type IV 12393.019 12441.440 6365.348

LCAR

FE M-models

Additive 14160.912 14413.994 7211.237
Type I 12608.498 12529.463 6609.148
Type II 12358.354 12392.021 6339.574
Type III 12663.113 12715.302 6623.690
Type IV 12396.433 12455.568 6366.125

RE M-models

Additive 14159.901 14412.886 7210.686
Type I 12609.721 12522.181 6609.431
Type II 12354.983 12374.041 6337.927
Type III 12657.593 12696.315 6621.781
Type IV 12404.071 12479.757 6369.211

BYM

FE M-models

Additive 14160.500 14413.932 7211.210
Type I 12608.295 12541.938 6609.303
Type II 12353.168 12375.668 6337.332
Type III 12664.510 12722.878 6623.983
Type IV 12400.066 12463.970 6368.017

RE M-models

Additive 14161.078 14413.632 7211.020
Type I 12607.490 12522.248 6607.727
Type II 12354.795 12380.401 6337.246
Type III 12663.906 12707.357 6625.187
Type IV 12402.443 12473.332 6368.702
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idiosyncrasy of the districts and may be reflecting the effect of certain traditions,
demographic and socio-economic characteristics, or religious practices. The crime-
specific temporal component exp(γtj) indicates a global evolution of the crime in
the state and may reflect the effect of factors that change over time such as policies,
women supportive plans, or laws to protect women. Finally, the spatio-temporal risk
exp(δitj) is a residual term that may be modelling heterogeneity related to differences
in the effect of certain actions in time in each area. In general, similar spatial and
temporal patterns would indicate a relationship between the crimes being studied.
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Figure 3.3: Posterior mean of the district-specific spatial risk, exp(θij) (left column),
and the exceedence probabilities, i.e., P (exp(θij) > 1|O) (right column), for rapes
(top) and dowry deaths (bottom).

Figure 3.3 displays the posterior mean of the district-specific spatial risk, exp(θij)
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(left column), and the exceedence probabilities, i.e., P (exp(θij) > 1|O) (right column),
for rapes (top) and dowry deaths (bottom). A clear Northwest-Southeast gradient
(the largest diagonal axis of the map) is observed in the relative risk estimates for
both crimes, although the spatial patterns present some differences. Whereas most of
the areas in the Northwest part of the state exhibit a high risk of rapes, districts with
high risk of dowry deaths are mainly located in the central part of the map. In fact, a
Southwest-Northeast gradient is observed for dowry deaths in the central part of the
map, something that is not clear for rapes. However, the maps reveal an interesting
fact: most eastern districts present a small district-specific risk for both crimes, and
this would require further insight to understand why the risk of both crimes is lower
in these districts than in Uttar Pradesh as a whole. INLA allows to produce samples
from the approximated joint posterior for the hyperparameters. From them, we have
been able to obtain samples of the estimated correlation matrices (between spatial
and between temporal patterns). The estimated posterior mean of the correlation
between the spatial patterns is 0.30, with a 95% credible interval (0.08, 0.50). Similar
results were obtained using WinBUGS. This positive correlation would indicate that
certain districts are more prone to the occurrence of both crimes. However, finding
common spatial risk factors is a challenge.
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Figure 3.4: Temporal pattern of incidence risks (posterior means of exp (γtj)) for
rapes and dowry deaths in Uttar Pradesh.

Figure 3.4 displays the global temporal trends common to all districts (posterior
means of exp (γtj)) for each crime. Both trends exhibit a marked decrease from 2001
to 2003, and a constant increase until 2008. From then on, a remarkable increase is
observed for rapes, whereas the trend remains stable for dowry deaths. The positive
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correlation here is evident, when one crime increases (decreases), the other one also
increases (decreases). This is confirmed with the estimated posterior mean of the
correlation between the temporal trends: 0.82 with a 95% credible interval (0.38,
1.00). This estimated high correlation indicates that rape risks keep pace with dowry
death risks, indicating that some events in time may have affected the two crimes
similarly. It is suspected that changes in government (and consequently in policies)
may have had some influence on both crimes. During the study period, three different
parties held government in India, and another three different parties ruled the state of
Uttar Pradesh. A tentative hypothesis is that female protection policies (Protection
of Women from Domestic Violence Act 2005) may have encouraged women to report
rapes, a well known underreported crime (Vogelman and Eagle, 1991; Koss, 1992),
and hence led to an increase in rape risk in the last years of the study period. It may
also be responsible for the stabilization of dowry deaths, a crime where underreported
cases are not expected (Mukherjee et al., 2001). However, these are mere hypotheses
as evaluating the effects of certain policies requires a longer time period, and it is
even more complicated to include such information in the model unless covariates
about investment on plans to protect women and give them support are available.

Figure 3.5 shows the geographical risk patterns (posterior mean of the relative
risk) of rapes (top) and posterior probabilities of risk exceedance, P (Ritj > 1|O)
(bottom) in the study period. The same information for dowry deaths is displayed
in Figure 3.6. The increase in risk in rapes is clearly observed in the maps, which
become darker from 2003 to 2014. The increase is particularly remarkable from 2010
onwards. The maps for dowry deaths also reveal a stable pattern in the last years
of the period. Both figures show that most eastern districts exhibit a low risk for
both crimes. The pattern of high risk areas (those with P (Ritj > 1|O) > 0.9) of
rapes is more irregular. In some years of the period (2003 and 2010 mainly), most of
the areas do not exhibit high risk. However, at the end of the period, nearly all the
areas do have a high risk with the exception of some districts in the eastern part of
Uttar Pradesh. Regarding dowry deaths, most of the high risk areas are located in
the central-western part of the state and the pattern remains fairly stable during the
study period.

Finally, the temporal evolution of the final risk (posterior means of Ritj) and 95%
credible intervals for several districts, Aligarh, Ghazlabad, Kheri, Mainpuri, Sant
Kabir Nagar, and Varanasi are shown in Figure 3.7. These districts are interesting
because the risk evolution is very different. Aligarh exhibits high relative risks for
both crimes. In particular, the risk of rapes does not stabilize and continues growing,
standing about three times higher than the overall risk in Uttar Pradesh at the end
of the period. Regarding dowry deaths, the risk is significantly high, but it stabilizes
over time around twice the risk of whole Uttar Pradesh. Kheri shows a decreasing
evolution of risks for both crimes that stabilizes around one at the end of the period.
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Figure 3.5: Map of estimated incidence risks for rapes (top) and posterior probabilities
that the relative risk is greater than one (P (Ritj > 1|O)) (bottom) in Uttar Pradesh.
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Dowry deaths
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Figure 3.6: Map of estimated incidence risks for dowry deaths (top) and posterior
probabilities that the relative risk is greater than one (P (Ritj > 1|O)) (bottom) in
Uttar Pradesh.
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In Mainpuri, the risk of dowry deaths is significantly high during the whole period
in contrast to rapes. Sant Kabir Nagar has a significant low risk of both crimes until
2009 approximately. From then on, the trends start to diverge due to a significant
increase of the risk of rapes. Varanasi has significant low risks with a fairly stable
evolution for both crimes, though they tend to one at the end of the period.
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Figure 3.7: Temporal evolution of final risk estimates for rapes and dowry deaths in
some districts in Uttar Pradesh: Ghazlabad, Kheri, Mainpuri, Sant Kabir Nagar,
and Varanasi.

3.4 Discussion
The use of spatio-temporal areal models to analyze crimes against women has been
the exception rather than the rule. Multivariate models are powerful techniques that
provide valuable information to locate hot spots and may help social researchers to
make hypotheses about potential risk factors related to certain forms of violence



3.4 Discussion 73

against women. Given the multifaceted dimension of crimes against women and the
difficulty to determine relationships between crimes and socio-economic, demographic,
religious factors, and other transitory or circumstantial elements, a multivariate
approach may help to reveal relationships between different crimes that can shed light
on this complex phenomenon. Moreover, if it is believed that different crimes against
women could share risk factors, a rather sensible approach, the use of multivariate
spatio-temporal models will make it possible to estimate these dependencies and
improve understanding of the problem.

In this chapter, we extend the spatial M-models proposed by Botella-Rocamora
et al. (2015) to a spatio-temporal setting. In addition to the spatial M-model,
we introduce a temporal M-model and a spatio-temporal interaction. The model
makes it possible to estimate correlations between spatial and temporal patterns
which would respectively indicate potential geographical factors and transitory events
related to both crimes. As the interaction term is a residual term, we do not consider
inter-crime dependence for this term because variability is mainly captured by the
main effects. Instead, we use different variance parameters for both crimes leading to
a different amount of spatio-temporal smoothing. This model provides better results
than a model with the same variance parameter. This seems sensible as the standard
deviation of the spatio-temporal random effects for rapes is about twice the standard
deviation for dowry deaths. Different models have been considered to analyse the
data, but those that achieve the best tradeoff between complexity and goodness of fit
(measured in terms of DIC and WAIC), and prediction ability (measured with the
LS) are the so called M-models with an iCAR prior for space, a RW1 prior for time,
and a Type II interaction. In fact, the crime-specific spatial parameters of the pCAR
and LCAR model are very close to one pointing towards the iCAR prior for space.

The analysis of rapes and dowry deaths in Uttar Pradesh reveals interesting
findings. On one hand, the correlation between the estimated spatial patterns is
positive and significant, though not very strong (0.30). This indicates that certain
districts tend to present high risks of both crimes, but the underlying spatial patterns
are not similar. The estimated pattern reveals that the risks of rapes and dowry
deaths in the most eastern districts of Uttar Pradesh are significantly low, and
consequently further insight is needed to study the characteristics of these regions
which could bring light to the understanding of the phenomena being studied. On the
other hand, the estimated correlation between temporal patterns is 0.82, indicating
a strong, positive association and that the two crimes evolve in line. We could
hypothesize that certain policies or laws, such as the Protection of Women from
Domestic Violence Act 2005, has had some influence on both crimes, but it is rather
complex to validate such hypothesis.

Finally, model fitting has been implemented using WinBUGS and INLA. In
particular, we have implemented the LCAR and BYM M-models in INLA. The
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implementation of our multivariate proposal using R-INLA allows non-expert users to
fit these models without difficulty, as they are integrated in the usual package syntax.
Our study indicates that there are practically no differences between WinBUGS
and INLA in the data analysis considered in this chapter in terms of relative risk
estimates, and the derived spatial and temporal patterns. Small differences were
only observed in the model hyperparameter estimates. In addition, we have seen
that in the cases analyzed here, INLA is, in general, a computationally more efficient
alternative than WinBUGS. However, further research is needed when the number
of areas, time periods, and crimes increases as INLA does not replace Kronecker
products by simple matrix products. We are currently investigating this issue.

The contents of this chapter have been accepted for publication in Stochastic
Environmental Research and Risk Assessment.

The WinBUGS and INLA code to fit all models presented in this chapter is avail-
able at https://github.com/spatialstatisticsupna/Mmodels_SERRA_article.

The univariate analysis of rapes in the districts of Uttar Pradesh has
been published in Statistics and Aplications. See https://www.ssca.org.in/
journalvolumes/1/.

https://github.com/spatialstatisticsupna/Mmodels_SERRA_article
https://www.ssca.org.in/journalvolumes/1/
https://www.ssca.org.in/journalvolumes/1/


4
Multivariate spatio-temporal splines

4.1 Introduction
The statistical toolkit for analyzing spatial and spatio-temporal areal count data
has been enriched during the last years with relevant advances in model proposals,
algorithms for inference and the realm of applications (see for example Lawson et al.,
2016; Martínez-Beneito and Botella-Rocamora, 2019). The research on multivariate
models for spatial count data, and in particular for disease mapping, is now rich,
though the use of multivariate models is still limited due to the computational burden
and a lack of software that can be adopted by practitioners without advanced com-
puter skills. Most of the research extends univariate CAR models to the multivariate
setting.

Research on multivariate splines models for spatio-temporal count data is not
so abundant, and it focuses on multivariate structures to deal with spatial and
temporal dependence for one response. MacNab (2007) and MacNab and Gustafson
(2007) consider B-splines to model temporal trends. In particular, they consider
different B splines for the different small areas and they introduce spatial correlation
in the coefficients of the B splines. Ugarte et al. (2017) consider spatial P-splines
to smooth geographical patterns, and they introduce temporal dependence through
the coefficients of the P-splines, such that smooth surfaces in close time points are
similar. Analogously, they consider temporal P-splines with spatial dependence on
the coefficients so that temporal trends from neighbouring areas are similar. As far
as we know, there is no research about multivariate P-spline models for areal count
data in which different responses are analysed at the same time.

In this chapter, we propose multivariate P-spline models to analyse different
forms of violence on women jointly. We consider spatial and temporal P-splines to
model the geographical and temporal patterns respectively. Correlations among the
coefficients of the P-splines for the different crimes are introduced to look into spatial
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and temporal associations between the crimes. In particular, we illustrate the results
analysing four distinct crimes against women in the Indian state of Maharashtra
during the period 2001-2013. Namely, rape, assault, cruelty by husband or relatives,
and kidnapping and abduction. In this chapter, we also include the implementation
of these models in R-INLA using the “rgeneric” fuction to build our multivariate
proposal.

The rest of the chapter has the following structure: Section 4.2 proposes mul-
tivariate spatial and temporal P-splines accounting for correlations between the
different responses of interest (crimes against women here). Section 4.3 explains some
identifiability issues, prior specifications and implementation in R-INLA. Section 4.4
presents the real data analysis. We close the chapter with a discussion.

4.2 Multivariate P-spline models
Denoting by Oitj and by Eitj the observed and expected number of cases respectively
in area i = 1, . . . , I, time t = 1, . . . , T , and crime j = 1, . . . J , and assuming a Poisson
distribution for the number of observed cases conditional on the relative risks Ritj,
we have

Oitj|Ritj ∼ Poisson(µitj = Eitj ·Ritj).
Usually, in multivariate spatial count data, the log risk is modelled using CAR
models. Here we use P-spline models to smooth the spatial and temporal patterns.
That is

log(Ritj) = αj + fj(x1i, x2i) + fj(xt) + δitj, (4.1)
where αj is the intercept for the jth crime, x1i and x2i are the longitude and
latitude of the centroid of the ith area; xt indicates the time point, and fj(x1i, x2i)
and fj(xt) are a smooth spatial surface and a smooth temporal trend respectively
for the jth crime that are well approximated using P-splines. Finally, δitj is the
spatio-temporal interaction for crime j. The smooth surface for each crime is
specified as fj(x1, x2) = Bsψ

(j), where Bs = B2�B1 is a two-dimensional B-spline
basis of dimension I × k1k2 arising from the row-wise Kronecker product (Eilers
et al., 2006) of the marginal B-splines basis for longitud, B1, and latitud B2, and
ψ(j) = (ψj1, . . . , ψjk1k2)′, j = 1, . . . , J . Note that k1 and k2 are the number of columns
of the marginal basis B1 and B2 respectively, and depend on the number of knots and
the degree of the polynomials to construct these bases. To achieve smoothness, the
following prior distribution is considered for the coefficients of the two-dimensional
B-splines

p(ψ(j)) ∝ exp
(
−1

2ψ
(j)′Psψ

(j)
)
. (4.2)
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Here Ps = λ1(Ik2 ⊗D′1D1) + λ2(D′2D2 ⊗ Ik1), Ik1 and Ik2 are k1 × k1 and k2 × k2
identity matrices, λ1 and λ2 control the amount of smoothing in longitude and
latitude, and D1 and D2 are difference matrices (of order 1 or 2) of dimension k1×k1
and k2 × k2 respectively. Similarly, the smooth temporal trend for each crime is
specified as fj(xt) = Btγ

(j), where now Bt is the temporal B-spline basis of dimension
T × kt, where kt depends on the number of knots and the degree of the polynomials
in the basis, and γ(j) = (γj1, . . . , γjkt

)′, j = 1, . . . , J . As in the spatial case, smoothing
is achieved through the prior distribution for the coefficients of the B-splines. Here
the following prior distribution with Gaussian kernel is considered

p(γ(j)) ∝ exp
(
−1

2γ
(j)′Ptγ

(j)
)
, (4.3)

where Pt = λtD′tDt, λt controls the temporal smoothing and Dt is a difference matrix
(of order 1 or 2) of dimension kt × kt. Note that the prior distributions in Equations
(4.2) and (4.3) are the Bayesian analogues to the penalty on the coefficients proposed
by Eilers and Marx (1996) to achieve smoothness. This is clear as the matrices D′lDl,
l = 1, 2, t are the precision matrices of a random walk of first or second order (see
Rue and Held, 2005, pp. 95 and 110). For more details about bases and penalties in
a disease mapping context, see for example Ugarte et al. (2010, 2017).

To take account of the potential relationships between the different crimes,
correlations among the coefficients of the P-splines (spatial or temporal) of the
different crimes are introduced in the model. That is, we rearrange the coefficients of
spatial and temporal P-splines for each crime in the matrices Ψ = (ψ(1), . . . ,ψ(J)) and
Γ = (γ(1), . . . ,γ(J)), so that each column represents the set of P-spline coefficients
(spatial and temporal respectively) for each crime. Then, the following J × J
covariance matrices between the sets of spatial and temporal P-splines coefficients
are assumed

Cov(Ψ) = Σψ

Cov(Γ) = Σγ.

The diagonal elements of Σψ are (Σψ)jj = σ2
ψj, j = 1, . . . , J , and the off-diagonal

elements are given by (Σψ)jk = ρψjkσψjσψk, where ρψjk is the correlation between the
coefficients of the spatial P-splines for crimes j and k. Similarly, the diagonal elements
of Σγ are (Σγ)jj = σ2

γj, j = 1, . . . , J , and the off-diagonal elements are expressed
as (Σγ)jk = ργjkσγjσγk, where analogously to the spatial case, ργjk represents the
correlation between the coefficients of the temporal P-splines for crimes j and k.
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In matrix form, the joint multivariate P-spline model can be expressed as

log(r) = (IJ ⊗ 1T ⊗ 1I)α+ (IJ ⊗ 1T ⊗Bs) vec(Ψ) + (IJ ⊗Bt ⊗ 1I) vec(Γ)
+(IJ ⊗ IT ⊗ II) vec(∆) (4.4)

where r = (r′1, . . . , r′J)′, r′j = (r11,j, . . . , rS1,j, . . . , r1T,j, . . . , rST,j), j = 1, . . . , J , IJ is
a J × J identity matrix, and 1I and 1T are column vectors of ones of length I and T
respectively. The vec operator stacks the columns of a matrix one under the other,
hence vec(Ψ) = (ψ(1)′

, . . . ,ψ(J)′)′ and vec(Γ) = (γ(1)′
, . . . ,γ(J)′)′. The precision

matrix for vec(Ψ) is given by Σ−1
ψ ⊗Ps, and the precision matrix for vec(Γ) is given

by Σ−1
γ ⊗Pt. Here, ∆ = (δ(1), . . . , δ(J)), where δ(j) = (δ(j)

11 , . . . , δ
(j)
S1 , . . . , δ

(j)
1T , . . . , δ

(j)
ST )′

is the spatio-temporal interaction for the jth crime, j = 1 . . . , J , and vec(∆) =
(δ(1)′

, . . . , δ(J)′)′. For the interaction term, the following prior distribution is assumed

p(δ(j)) ∝ exp
(
−1

2δ
(j)′Rδ(j)

)
,

where R is a precision matrix that can take different forms according to the four
types of interactions defined by Knorr-Held (2000) and already explained in Chapter
2.

4.3 INLA fit, prior distributions, and identifiabil-
ity

In this chapter, the models are fitted using INLA. Here we put random walks pri-
ors of first or second order (RW1 or RW2 respectively) on the coefficients of the
B-splines to achieve smoothness. The models are fitted using the “rgeneric” function
in R-INLA. In particular, a modification of the “inla.rgeneric.IMCAR.model” from the
R package “INLAMSM” (https://CRAN.R-project.org/package=INLAMSM) devel-
oped by Palmí-Perales et al. (2019) and designed for fitting multivariate extensions
of intrinsic conditional autoregressive models (Besag, 1974) has been used. This
function has been modified to fit P-splines. The function requires to parameterize the
covariance matrix between crimes in terms of internal parameters, and the variances
and correlations can be conveniently recovered through appropriate transformations.
More precisely, the rgeneric function defined for the multivariate setting requires
internal generic parameters θ. In particular, for the covariance matrix between the
set of P-splines coefficients (spatial or temporal), J(J + 1)/2 parameters are needed,
where J is the number of crimes, that is, θ = (θ1, . . . , θJ(J+1)/2). Then to recover the
standard deviations σ’s and the correlations ρ’s between the crimes, the following
transformations are used

https://CRAN.R-project.org/package=INLAMSM
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σ = g(θ) = exp(−0.5 ∗ θ)
ρ = g(θ) = 2 exp(θ)/(1 + exp(θ))− 1,

where θ is the corresponding element of the internal parameters θ. These transforma-
tions guarantee that the standard deviations are positive and the correlation param-
eters take values between -1 and 1. The code used to fit the models is available in
the GitHub of our research team (https://github.com/spatialstatisticsupna).
Users only have to download the rgeneric function created to fit the multivariate
P-splines and then to write INLA formulas as usual.

4.3.1 Prior distributions and identifiability issues
Prior distributions for the hyperparamerters are always a controversial issue in
Bayesian statistics due to sensitivity of result to the prior choice. Regarding the
covariance matrix of the coefficients of the spatial and temporal P-splines for the
different crimes, a Wishart distribution has been considered, that is Σψ,Σγ ∼
Wishart(υ, IJ), where J indicates the number of crimes, and υ the degrees of freedom.
Hence, the prior mean is υIJ . Here, the degrees of freedom are set equal to υ = 2J+1
(see Palmí-Perales et al., 2019). Regarding the smoothing/precision parameters λ
in the precision matrices of the P-splines coefficients, uniform distributions in the
interval (0, 100) are considered for 1/

√
λ1, 1/

√
λ2, and 1/

√
λt. Also improper uniform

distributions in (0,∞) are considered for the standard deviations σδj
= 1/√τj of the

spatio-temporal interaction (Ugarte et al., 2017).
Our models incorporate crime-specific intercepts, P-splines for space, P-splines for

time, and spatio-temporal interactions of the type proposed by Knorr-Held (2000). As
the crime-specific spatial surfaces (spatial P-splines) and the crime-specific temporal
trends (temporal P-splines) also include an intercept, identifiability issues arise. To
overcome this problem, constraints on the coefficients of the crime-specific spatial
and temporal P-splines are considered. In particular, and regardless the prior for the
coefficients is a RW1 or a RW2, the following constraints are considered

k1k2∑
m=1

ψ(j)
m = 0, ∀j = 1, . . . , J,

kt∑
m=1

γ(j)
m = 0, ∀j = 1, . . . , J.

Also, the interaction effects overlap with the main spatial and temporal P-splines

https://github.com/spatialstatisticsupna
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terms and additional constraints are required. The constraints for the interaction
terms are based on the work by Goicoa et al. (2018).

Additionally, the λt parameter in the precision matrix of the temporal P-splines is
not identifiable as it can be subsumed in the matrix Σ−1

γ (or σ2
t = 1/λt is subsumed

in Σγ). Similarly, the parameters σγj, j = 1, . . . , J are not identifiable, so inferences
on these quantities should be precluded. On the contrary, the correlation parameters
ργjk are identifiable. This is clear as ργjk = σγjk/(σγjσγj), where σγjk is the covariance
between the coefficients of the temporal P-splines of crimes j and k. Suppose that
σ2
t = 1/λt is subsumed in the between-crimes covariance matrix, denoted now by Σ∗γ .

Then, the correlation parameters are identifiable as

ρ∗γjk = σ∗γjk/(σ∗γjσ∗γj) = (σγjkσ2
t )/(σtσγjσtσγj) = ργjk.

4.4 Case study: rape, assault, cruelty by husband
and relatives, and kidnapping and abduction
in Maharashtra, India

In this section, data on crimes against women in the Indian state of Maharashtra over
the period 2001-2013 are analyzed using the methodology developed in the previous
sections. Data consist of the observed number of cases in each of the 34 districts
of Maharashtra for four crimes described in the Indian Penal Code (IPC). Namely,
Rape, Assault or criminal force to woman with intent to outrage her modesty, Cruelty
by husband or relatives of husband, and Kidnapping and abduction.

4.4.1 Descriptive analysis
Maharashtra is located in the middle west of the Indian peninsula, see Figure 4.1,
and according to the 2011 census (see https://www.census2011.co.in), it is the second
most highly populated state in the country (112,374,333 inhabitants), surpassed
only by Uttar Pradesh. It is also the third largest state of India with a total of
307,713 km2. The overall literacy rate is 82.34%, about 8 percentage points over the
overall literacy rate in India (74.04%). Similar to all Indian states, male literacy
rate (88.38%) is greater than female literacy rate (75.87%), though these figures are
well above the Indian male (82.14%) and female (65.46%) literacy rates. Sex ratio
(number of females per 1000 males) is 922, slightly lower than the sex ratio in whole
India (933). The majority religion (79.83%) is Hindu.

In the last years, the number of crimes against women in Maharashtra has grown
horrifyingly. According to National Crime Record Bureau (NCRB), in the study
period the incidence of crimes against women has doubled, from 12,524 in 2001 to
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Figure 4.1: Map of the administrative division of Maharashtra into districts and its
location in the west middle of India (bottom right corner).

24,895 in 2013. In terms of rates, the increase is even worse as the overall rate of
crimes against women in 2013 (44.9) is about 3.5 higher than in 2001 (12.9).

One of the most endemic form of violence against women in different countries
of the world is the abuse of women by their intimate partner. The problem is even
more serious as it has one of the highest rates of underreporting, (see Jejeebhoy,
1998; Visaria, 1999; Heise et al., 1994, and the references therein). Unfortunately, the
state of Maharashtra is not the exception. Figure 4.2 displays a circular barplot with
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the crude rates (per 100000 women between the age of 15 and 49 years) of the four
different crimes considered in this chapter by district. Clearly, cruelty by husband or
relatives is the crime against women with the highest incidence, followed by assault
on women. During the thirteen years of the study period, a total of 21,049 rapes,
47,351 assaults, 12,727 kidnappings and 88,905 cases of cruelty by the husband were
committed in this state. Interestingly, differences are found among the districts. In
general, the lowest rates of crimes correspond to the most western districts with the
exception of Great Bombay, whereas districts in the central and northeastern part of
the state have the highest rates of crimes. Some descriptive statistics regarding the
number of cases of the four crimes in the first and last year of the study period are
shown in Table 4.1.
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Figure 4.2: Incidence rates of crimes against women in Maharashtra between 2001
and 2013.

Figure 4.3 displays the evolution of the standardized incidence ratio (SIR) for
the four crimes. A SIR over one indicates that the number of cases for one crime
in a particular year is greater than expected in comparison with the whole study
period. A close inspection to this figure reveals rather flat trends for rapes, assault



4.4 Case study 83

Table 4.1: Minimum (min), first quartile (q.25), mean, third quartile (q.75), maximum
(max), standard desviation (sd), and coefficient of variation (cv) of the number of
crimes against women in the districts of Maharastra in 2001 and 2013.

Crime Year min mean q.25 median q.75 max sd cv

Rape 2001 7 25.50 16.75 38.29 43.75 146 33.15 1.30
2013 11 58.00 40.00 90.09 101.00 466 96.51 1.66

Assault on women 2001 17 72.50 50.50 83.03 101.00 302 56.39 0.78
2013 44 166.00 99.50 239.18 283.50 1342 247.74 1.49

Cruelty by husband
or relatives

2001 8 148.50 90.75 179.12 217.75 496 119.58 0.81
2013 12 202.50 117.25 251.24 373.50 741 187.74 0.93

Kidnapping and
abduction

2001 1 13.50 7.00 17.97 21.50 67 15.71 1.16
2013 5 37.50 21.00 55.12 52.00 292 64.66 1.72

and cruelty until 2012. Then, a strong rise is observed in 2013 for rape and assault.
Regarding kidnapping and abduction, a steady growth in SIR is observed along the
period, with a pronounced increase in the last year. According to some authors, this
increase may be attributed to an improvement in the victim support system (Raj
and McDougal, 2014) or studies trying to identify and localize the problem (see, for
example Jain et al., 2004).

1.0
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2.0

2002 2004 2006 2008 2010 2012
Year

S
IR

Assault on women
Cruelty by husband or relatives
Kidnapping and abduction
Rape

Figure 4.3: Standardized incidence rate (SIR) by crime.
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To identify any potential relationship between the crimes, we have computed
Pearson correlations between the overall spatial patterns of each crime. That is, we
have computed the SIR for each district and crime in the study period and calculated
the corresponding correlations. The greatest correlations were found between rapes
and assaults (0.79), rapes and kidnapping (0.72) and assaults and kidnapping (0.81).
The correlation of these three crimes with cruelty were low. Similarly, we have
computed Pearson correlations between the overall temporal trends shown in Figure
4.3. Again, the highest correlations are found between rapes and assaults (0.99), rapes
and kidnapping (0.87), and assaults and kidnapping (0.90). The high correlations
between these three crimes may be explained because all of them are related in a
greater or less extent to sexual offences. However, the statistical analysis has to
confirm this exploratory analysis and then social researchers should look for potential
factors that might be related to these crimes.

4.4.2 Model fitting using INLA
The spatial and temporal P-splines proposed in Section 4.2 are implemented for
the joint spatio-temporal analysis of the incidence of four crimes against women
in Maharashtra during the years 2001 and 2013. To fit the P-spline model, cubic
B-splines with first and second order penalties have been used for the spatial and
temporal dimensions. For longitude and latitude, 10 equidistant internal knots have
been considered, and for the temporal dimension, 5 internal knots have been chosen.
The final dimensions of the spatial and temporal B-spline bases are 34×144 and 13×7
respectively. Previous to fit the multivariate P-spline models, a battery of univariate
P-spline models for each crime has been run. In particular, different combinations of
first and second order random walks prior for the spatial and temporal coefficients
have been considered. The four types of interactions defined by Knorr-Held (2000)
and commented in previous chapters have also been examined. According to the
model selection criteria, DIC, WAIC, and LS, first order penalties for space and time
together with Type II interactions for the spatio-temporal term are the best option
for all crimes. Consequently, and on the basis of these results, the joint multivariate
P-spline model given in Equation (4.4) is fitted considering a Type II spatio-temporal
interaction for all crimes. We also examine RW1 and RW2 prior distributions
for the coefficients. To account for potential relationships between the different
crimes, between-crime correlations among the coefficients of the P-splines (spatial
and temporal) are introduced in the model. Additionally, and given that the temporal
trends for some crimes are rather flat, we also consider models without correlation
between the coefficients of the temporal P-splines, that is, Σγ = diag(σ2

γ1, · · · , σ2
γJ).

Table 4.2 displays model selection criteria for the multivariate P-spline models fitted
with different combinations of RW1 and RW2 priors for the coefficients of the spatial
and temporal P-splines. According to DIC, WAIC, and LS, the best candidate is a
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model accounting for correlation between the coefficients of the spatial and temporal
B-splines, and RW1 prior distribution for the coefficients. This is the model we
finally select to analyse the four crimes.

Table 4.2: Model selection criteria, DIC, WAIC and LS, for multivariate models.

vec(∆) Temporal Prior DIC WAIC LS
correlations Spat. Temp.

Type
II

TRUE
RW1 RW1 13081.023 13094.365 3.881

RW2 13292.101 13514.950 3.965

RW2 RW1 13091.986 13104.106 3.887
RW2 13290.992 13508.344 3.965

FALSE
RW1 RW1 13090.897 13105.697 3.888

RW2 13265.264 13472.533 3.952

RW2 RW1 13103.418 13118.459 3.894
RW2 13263.815 13470.391 3.951

Model selection criteria in Table 4.2 point towards multivariate models, as models
with independent temporal trends clearly perform worse. Besides these criteria,
multivariate models provide posterior correlations between crimes and hence it is
possible to establish relationships between them. That is, those crimes with high
posterior correlations could share some risk factors. There is one more advantage
of the multivariate models over the univariate counterparts. The joint modelling
of several crimes allows borrowing information not only from neighbouring areas
and time points, but also from other crimes. In general, posterior medians of the
quantities of interest (relative risks, spatial, temporal and spatio-temporal patterns)
are rather similar using the multivariate proposal and the univariate models (not
shown here). However, estimates are more precise with the multivariate proposal.

We have computed 95% credible intervals for the relative risks, the spatial
pattern, the temporal trends, and the spatio-temporal interaction term for each of
the four crimes analysed in Maharashtra (not shown here). On average, the selected
multivariate P-spline model provides narrower credible intervals for all quantities
of interest. This is specially noticeable for the temporal pattern and for rapes and
kidnapping and abduction, which have the lowest incidence rate of the four crimes
examined here. Figure 4.4 displays violin plots of the widths for the 95% credible
intervals of the temporal patterns obtained with the selected multivariate P-spline
model and the univariate counterparts (univariate P-splines models with RW1 prior
distributions and a Type II interaction). From this picture, it is clear that 95%
credible intervals for the temporal component obtained with the multivariate model
are narrower than the ones obtained with the univariate counterparts, particularly
for rapes and kidnapping and abduction.
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Figure 4.4: Violin plots representing the widths of the 95% credible intervals for the
temporal pattern of incidence risks obtained with the multivariate and univariate
P-splines.

Computations were run on a twin superserver with four processors, Intel Xeon
6C and 96GB RAM, using the R-INLA (stable) version 19.09.03. All models in
the chapter have been fitted using a simplified Laplace strategy, which provides a
tradeoff between computing time and accuracy. Computing times for the multivariate
models range between 100 and 115 minutes for models with independent temporal
P-splines and between 194 and 210 minutes for models including correlations in
both the spatial and the temporal P-splines. In particular, the computing time for
the selected model in this chapter is 195.979 minutes. Models have also been fitted
using a Gaussian strategy, which is faster though less precise. Computing times are
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significantly reduced ranging between 5 and 11 minutes. Some small differences are
found in model selection criteria, but the same model is selected and results are
pretty similar. Along the chapter, results correspond to a simplified Laplace strategy.

4.4.3 Joint analysis of four crimes against a women in Ma-
harashtra using multivariate P-spline model

In this subsection, the spatio-temporal patterns of the four crimes in the state of
Maharashtra are examined using the selected multivariate P-spline model.

The underlying spatial patterns and the global temporal trends may be very
informative as similarities between crimes could be detected. The district-specific
spatial risk for each crime, exp(fj(x1i, x2i)), is related to the idiosyncrasy of the
districts. It captures the risk associated to a spatial location, and it may reflect
the effect of potential spatial risk factors such as certain traditions or demographic
and socio-economic characteristics specific to certain districts or regions in the
state of Maharashtra. Posterior medians of the district-specific spatial risk for each
crime are displayed in Figure 4.5. The maps with the exceedance probability, i.e.,
P (exp(fj(x1i, x2i)) > 1|O) are shown in Figure B.1 in Appendix B. A Northeast-
Southwest gradient (following the largest diagonal axis of the map) can be observed
very clearly for rape, assault and kidnapping and abduction, the pattern being
smoother for kidnapping. Though some differences exists, the spatial patterns of
these three crimes are rather similar. On the other hand, the spatial pattern of
cruelty by husband and relatives is different. For this crime, districts with high
risk are mainly located in the central part of the map, and a Northwest-Southeast
gradient can be envisaged.

The estimated posterior medians of the correlations between the coefficients
of the spatial P-splines confirm these findings. Table 4.3 displays these posterior
correlations below the main diagonal. Significant correlations are highlighted in
bold. The posterior correlation between rape and assault is particularly high with
a posterior median of 0.782. This may point towards underlying spatial factors
affecting both crimes. The posterior correlations between rape and kidnapping,
and between assault and kidnapping are weaker though significant, with estimated
posterior medians of 0.384 and 0.411, respectively. The spatial pattern for cruelty is
different. Whereas most of the districts in the Northeast part of the state exhibit
a high risk of rape, assault, and kidnapping, districts with high risk of cruelty by
husband are mainly located in the central part of the map. In fact, as we move away
from the center, the map is becoming increasingly lighter. The posterior correlations
between the coefficients of the spatial P-splines of cruelty by husband and the rest
of crimes are not significant.

The global temporal evolution of each crime in Maharashtra is revealed by the
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Figure 4.5: Posterior median of the district-specific spatial risk for rapes (top left),
assault (top right), cruelty (bottom left), and kidnapping (bottom right).

crime-specific temporal component, exp(fj(xt)), and may reflect if time-referenced
events, such as certain policies, change in Government, or general social changes
affect the incidence of the crimes in different ways. Figure 4.6 displays the posterior
medians of exp (fj(xt)), for each crime. The shaded regions represent the 95%
credible intervals. Trends for rapes and assaults are fairly flat from 2001 to 2012 with
a marked growth in the last year. The temporal trend for cruelty is also rather flat,
but it shows a wave-shape, something that is not observed in rapes and assaults. An
slight upturn is observed at the end of the period. A different behaviour is observed
for kidnapping, which shows a steady growth throughout the period.

The posterior correlation between the coefficients of the temporal P-splines
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Table 4.3: Estimated correlations (posterior medians and 95% credible intervals)
between the spatial P-spline coefficients (below main diagonal) and between the
temporal P-spline coefficients (above main diagonal). Significant correlations are
highlighted in bold.

Crime Rapes Assaults Cruelty Kidnapping

Rapes
. . . 0.609 0.344 0.354

(0.445, 0.676) (0.112, 0.714) (0.322, 0.372)

Assaults 0.782 . . . 0.370 0.420
(0.604, 0.890) (0.304, 0.407) (-0.124, 0.602)

Cruelty 0.037 0.233 . . . 0.157
(-0.278, 0.335) (-0.078, 0.489) (0.132, 0.206)

Kidnapping 0.384 0.411 0.238 . . .
(0.049, 0.645) (0.099, 0.653) (-0.071 0.509 )

are displayed above the main diagonal in Table 4.3. Significant correlations are
highlighted in bold. The posterior correlation between the coefficients of the temporal
P-splines for rapes and assaults is moderate-high (0.609). Lower correlations are
observed between rape and cruelty (0.344) and between cruelty and assault (0.370).
Regarding kidnapping, the posterior correlation with assault is not significant, and
it is moderate or mild with rape (0.354) and cruelty (0.157).

The interaction term δijt allows a different time evolution for each area and
disease. Note that although the same type of interaction (Type II) is considered for
the four crimes, different precision/variance parameters are allowed for each crime.
More precisely, the posterior medians of the standard deviations with a 95% credible
interval are 0.109 (0.093, 0.131) for rapes, 0.132 (0.116, 0.151) for assault, 0.150
(0.136, 0.166) for cruelty, and 0.181 (0.154, 0.213) for kidnapping. This indicates
a different amount of smoothing for each crime. Area-specific temporal trends,
i.e. the posterior medians of exp(δijt), (with 95% credible intervals) are shown in
Figure B.2 (Appendix B) for three districts located in different areas of Maharashtra:
Aurangabad (central part of the state), Garhchiroli (in the northeast corner) and
Greater Bombay (in the middle western coast). The specific temporal evolution
in each area is clearly different indicating that in some districts (Greater Bombay)
this trend increases, whereas in other districts (Aurangabad and Garhchiroli) the
area-specific temporal trend decreases or it is flat.

To save space, the evolution of the geographical distribution of the relative risk is
provided in Appendix B. Figures B.3, B.4, B.5, and B.6 show the posterior medians of
the relative risks, Ritj , (top) and posterior probabilities of risk exceedance, P (Ritj >
1|O) (bottom) in the study period, for rapes, assaults, cruelty and kidnapping
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Figure 4.6: Temporal pattern of incidence risks for rapes, assaults, cruelty by husband
or relatives, and kidnappings.

respectively. In general, the risk distribution for rapes, assaults and cruelty remains
stable during the period with an increase in the last year. The pattern for kidnapping
is different with a steady increase of the risk along the period. In summary, these risk
patterns confirm the Northeast-Southwest gradient for rapes, assault and kidnapping,
with most of the high risk area in the northeast of the state, and a Northwest-
Southeast gradient for cruelty with most of the high risk areas concentrated in the
central part of the map.

Figure 4.7 displays the relative risk evolution of the four crimes in Aurangabad,
Garhchiroli and Greater Bombay. The relative risk of cruelty in Araungabad remains
nearly constant and is about twice the risk of whole Maharashtra. Garhchiroli has
low relative risks for all crimes, though an upturn is observed for rapes and assaults
at the end of the period. Finally, Greater Bombay shows increasing and significantly
high risk for rapes, assaults and kidnapping. The risk for cruelty remains low during
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Figure 4.7: Relative risk evolution (posterior median of Rijt) for three selected
districts: Aurangabad, Garhchiroli, and Greater Bombay.
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the study period.
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Figure 4.8: Functional boxplots of the final relative risk trends for rape (top left),
assault (top right), cruelty (bottom left), and kidnapping (bottom right).

To conclude the analysis, it would be helpful to identify outlying districts regarding
their relative risk temporal evolution. Sun and Genton (2011) propose a functional
boxplot to visualize functional data and to detect outlying functions. If a function is
outside the 1.5 times the 50% central region, it is considered an outlier. Figure 4.8
displays the functional boxplots of the final relative risk trends for rape (top left),
assault (top right), cruelty (bottom left), and kidnapping (bottom right). According
to the functional boxplot, the district of Wardha, in the northeastern corner of
Maharashtra, is an outlying district with regard to rape and assault on women, with
a risk greater than the rest of districts. Interestingly, any outlying district is found in
relation to cruelty by husband and kidnapping and abduction. It remains unknown
why this particular district is an outlier regarding rapes and assaults and it is a
matter of investigation for social researchers and anthropologists. Some infrastructure
indicators (Directorate of Economics & Statistics, 2017) in the period 2013-2014
(2013 is the last year of our study period) reveal that Wardha was one of the districts
with the lowest number of total road kilometers, and also with less post offices. This
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could indicate some form of isolation that could favour a sense of impunity about
sexual crimes. However this is mere speculation and further insight into this district
is needed.

4.5 Discussion
In this chapter we consider multivariate spatio-temporal P-spline models to analyse
jointly four crimes against women in the Indian state of Maharashtra. More precisely,
we propose two-dimensional spatial and one-dimensional temporal P-splines to model
the geographical patterns and the temporal trends respectively. Correlations among
the coefficients of the P-splines for the different crimes are introduced to look into
spatial and temporal associations between the crimes that could point towards
connections between the crimes.

The models are fitted using integrated nested Laplace approximations in R-INLA.
As far as we know, this is the first attempt to fit multivariate P-spline models with
R-INLA. The model has been built using the rgeneric function. A modification
of the function inla.rgeneric.IMCAR.model from the package INLAMSM has been
written and it is at user disposal. In our data analysis, cubic B-splines with 10
inner knots have been considered for longitude and latitude whereas cubic B-splines
with 5 internal knots have been chosen for time. RW1 and RW2 priors for the
coefficients have been examined (this is equivalent to first or second order penalties
in a frequentist setting). The models have been fitted using a simplified Laplace
strategy, but a Gaussian approximation reduces computing time significantly and
at least in this application, results are pretty similar. DIC, WAIC and LS criteria
points towards RW1 priors. To make the models more flexible, an interaction term
structured in time (Type II) has also been introduced to allow for different trends in
each district. The models are complex and some issues deserve some comments. First,
the smoothing parameter of the temporal P-spline is subsumed in the covariance
matrix between the coefficients and hence this parameter and the variance parameters
of this matrix are not identifiable. It could be possible to fix that parameter to 1, but
this is arbitrary and we obtain a better fit including it in the model. Consequently
inference about the non-identifiable parameters is avoided. However, the more
relevant correlation parameters are identifiable. Second, the spatial and temporal
effects include an intercept, and sum-to-zero constraints are needed. Additional
sum-to-zero constraints are required to identify the interaction terms.

Regarding the real case study in Maharashtra, the results are very interesting.
The analysis reveals similarities between the spatial patterns of rapes, assaults and
kidnapping with a Northeast-Southwest gradient, whereas the spatial pattern for
cruelty is different and a Northwest-Southeast gradient is observed. The temporal
evolution reveals similarities between rapes and assaults. Again, cruelty seems to
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differ from the other crimes. Our study identifies districts with high risk for some
or all crimes examined here. Morover, functional boxplots discover Wardha as an
outliying district with a risk of rape and assault greater than the rest of districts. We
firmly believe that our findings will be useful for social researchers and anthropologists
to disentangle the complex phenomenon of violence on women. Additional research
in those districts could bring light to identify potential risk factors that may be
related with the crimes. So far, we could only make hypotheses based on our results
and existing literature. For example, it has been documented that in urban slums in
Bombay, the risk of cruelty increases if the man in the household consumes alcohol
(see, for example Begum et al., 2015). Other descriptive studies in rural villages (see
Jain et al., 2004) points towards the predominant role of men over women, economic
stress, many people living in one room, or complaints of the mother in law as reasons
for the abuse.

Finally, and despite the undoubted value of this research, it suffers from the same
limitations commented in previous chapters. Namely, underreporting of crimes, and
the difficulty to find covariates and to evaluate their effect in multivariate models.
Further research is needed in this direction.
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Figure B.1: Exceedance probabilities for rapes (top left), assault (top right), cruelty
(bottom left), and kidnapping (bottom right).
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Figure B.2: Specific temporal trends (posterior median of exp(δijt)) for three selected
districts: Aurangabad, Garhchiroli, and Greater Bombay.
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Rape
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Figure B.3: Map of estimated incidence risks for rape (top) and posterior probabilities
that the relative risk is greater than one in Maharashtra between 2001 and 2013.
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Assault on women
2001 2002 2003 2004 2005

2006 2007 2008 2009 2010

2011 2012 2013

3.57 to 4.42
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1.86 to 2.71
1.00 to 1.86
0.78 to 1.00
0.56 to 0.78
0.34 to 0.56
0.11 to 0.34

Assault on women
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2006 2007 2008 2009 2010

2011 2012 2013

0.9 to 1.0
0.8 to 0.9
0.2 to 0.8
0.1 to 0.2
0.0 to 0.1

Figure B.4: Map of estimated incidence risks for assault on women (top) and posterior
probabilities that the relative risk is greater than one in Maharashtra between 2001
and 2013.
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Cruelty by husband or relatives
2001 2002 2003 2004 2005

2006 2007 2008 2009 2010

2011 2012 2013

3.57 to 4.42
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Figure B.5: Map of estimated incidence risks for cruelty by husband or relatives (top)
and posterior probabilities that the relative risk is greater than one in Maharashtra
between 2001 and 2013.



100 Multivariate spatio-temporal splines

Kidnapping and abduction
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Figure B.6: Map of estimated incidence risks for kidnapping and abduction (top)
and posterior probabilities that the relative risk is greater than one in Maharashtra
between 2001 and 2013.
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Spatio-temporal models for areal data have a long tradition to study mortality or
incidence risk of certain diseases. However, its use to discover geographical patterns
and temporal trends of crimes against women is scarce. In this dissertation, spatio-
temporal areal models are proposed to shed light on this terrible and current problem
in India, a country with hugely diverse traditions and complex social structures that
hamper the comprehension of the phenomenon.

Chapter 2 compares univariate spatio-temporal models that include different
spatial CAR priors to assess their effects on the final risk estimates. In particular,
we focus on the LCAR, DCAR and BYM2 priors and their induced correlations
between the regions of the graph. The DCAR and BYM2 priors induced an undesired
negative correlation between regions located farther apart. On the other hand, the
LCAR prior leads to a sensible pattern of correlation which tends to zero as distance
between regions increases. In addition, the variability in the correlation of one
region with its neighbours is reduced with this prior, something desirable as we
expect similar correlation between neighbours. In the analysis of dowry deaths in
Uttar Pradesh, neither the undesired effects of the induced correlation matrix of the
DCAR and BYM2 nor the different set of hyperpriors change the final risk estimates.
That is, the relative risk estimates are robust to the choice of spatial priors and
hyperpriors. The analysis of dowry deaths in this chapter reveals interesting findings
with important practical implications. First, our study reveals the association of
sex-ratio and other general forms of crime with dowry deaths, and it also discovers,
two clearly different zones in Uttar Pradesh, the eastern districts with low risk of
dowry deaths, and the western districts with a high risk. Some hypothesis about the
reasons underlying these differences in risk are highlighted.

The multifaceted nature of crimes against women and the difficulty in determining
the relationships between crimes and socio-economic, demographic and religious
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factors, lead us to use multivariate spatio-temporal models to look for connections
between different crimes that can shed light on this complex phenomenon. In
Chapter 3, we introduce multivariate spatio-temporal models to study crimes against
women. In particular, we propose a spatio-temporal extension of the spatial M-models
presented by Botella-Rocamora et al. (2015). Our multivariate extension allows us
to estimate correlations between spatial patterns and temporal trends of different
crimes, something relevant from a practical point of view as these correlations may
indicate that crimes share risk factors. This is what we observe in the joint analysis
of dowry deaths and rapes in Uttar Pradesh, where a strong and positive correlation
between the temporal trends indicates that certain policies, intervention programs or
any governmental action are affecting both crimes. In this chapter, we also implement
our multivariate proposal in INLA using generic functions. Though these functions
are rather complex, they can be used for non-expert users as they are integrated in
the usual syntax of INLA.

CAR priors have been widely used in univariate spatio-temporal models. As a
natural extension, multivariate models are also based on CAR structures. However,
other models, such as P-splines, have been proposed to model one response. In
Chapter 4, we propose multivariate P-spline models to analyze different forms of
crimes against women. The goal is to propose a new battery of multivariate models
based on P-splines to see if they offer advantages over univariates counterparts. Our
proposal accounts for the correlation of the spatial and temporal patterns of the
different responses. The technique has been implemented in INLA and it is publicly
available in the GitHub of our research group. Some complex generic functions
have been created, and similar to the M-based models, can be included routinely
in INLA. The methodology has been used to analyze four different crimes against
women in the Indian state of Maharashtra. Our study shows that our multivariate
P-spline models overcome the univariate counterparts in terms of precision and model
selection criteria. The results show a strong relationship between sexual-type crimes,
whereas cruelty by husband seems to behave differently. The computational cost
of the proposed multivariate models, while not excessive, can become a problem
when considering a relatively large number of crimes. In our case study, similar
results have been obtained with a Gaussian and a simplified Laplace strategy. If the
Gaussian strategy works well, it can be a solution to save computing time.
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Further work
In this dissertation we focus on multivariate models to discover spatial and temporal
patterns of crimes against women and the relationship between them. The techniques
provide valuable information to discover risk factors that may be related to the
crimes. The next step is the inclusion of covariates in the multivariate models to
stablish their relationships with the crimes in a formal way. This is not an easy task
for several reasons. The first one is the difficulty to obtain relevant covariates of
high quality. The second one has to do with theoretical aspects that require further
research. Here, we highlight two relevant issues that should be addressed before
including covariates in the multivariate models.

The first one is that one covariate may not be related with all the crimes under
study or it relationship with each crime may be different. This requires further
research about how to include different covariates for each crime in the multivariate
models or how to estimate a different relationship of the covariate with the crimes.
A research line could be to select a range of covariates with spatial and temporal
patterns compatible with certain crimes. Then, fit univariate models as a first guess
to estimate the fixed effects coefficients and finally, use these estimates to weight the
covariates in the multivariate models.

The second, and possibly the most important issue is confounding fixed effects
by random effects. It is well known that in spatial disease mapping, the effect of
a covariate may be confounded with the spatial random effect leading to biased
estimates of the fixed effects and to variance inflation (Reich et al., 2006; Hodges and
Reich, 2010). Consequently, if a risk factor is included in the model, the estimation
may not be valid (see for example Kelling et al., 2020). This is even worse in
the spatio-temporal setting where confounding may be present due to the spatial,
temporal, and the interaction random effects. Adin et al. (2020) are currently working
on how to address this relevant issue in univariate spatio-temporal models, where a
reparameterization is proposed. However, including this reparameterization to deal
with confounding in the multivariate setting is not straightforward, as the spatial and
temporal main effects become time and spatially varying random effects, and it is not
clear how correlations between crimes should be incorporated and, more importantly,
interpreted. Dealing with these two issues regarding covariates in multivariate models
is indeed a challenge.

The high rate of underreporting in certain crimes against women is an issue that
may hinder the true extent of the problem. Trying to estimate this underreporting
or to explore ways to include it in the models is also relevant for future research.

Multivariate models are computing intensive. Though INLA is a technique for
approximate Bayesian inference, computing burden may be a problem, particularly
if the number of areas, time periods, and crimes increases. A further insight on how
to implement the models to save computational burden is recommended.
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Finally, our research team has created a web application using Shiny that cur-
rently fits univariate spatial and spatio-temporal areal models. Implementing our
multivariate proposals in this web application is also in our “to-do list”.



References

Adin, A., Goicoa, T., Hodges, J., Schnell, P., and Ugarte, M. D. (2020). Alleviating
confounding in spatio-temporal areal models with an application on crimes against
women in India. arXiv:2003.01946v2.

Adin, A., Martínez-Beneito, M., Botella-Rocamora, P., Goicoa, T., and Ugarte, M. D.
(2017). Smoothing and high risk areas detection in space-time disease mapping: a
comparison of P-splines, autoregressive, and moving average models. Stochastic
Environmental Research and Risk Assessment, 31(2):403–415.

Amin, M. and Khondoker, F. (2004). A contingent valuation study to estimate the
parental willingness-to-pay for childhood diarrhoea and gender bias among rural
households in India. Health Research Policy and Systems, 2(1):3.

Aragonés, N., Goicoa, T., Pollán, M., Militino, A. F., Pérez-Gómez, B., López-
Abente, G., and Ugarte, M. D. (2013). Spatio-temporal trends in gastric cancer
mortality in Spain: 1975–2008. Cancer Epidemiology, 37(4):360–369.

Arnold, F., Choe, M. K., and Roy, T. K. (1998). Son preference, the family-building
process and child mortality in India. Population Studies, 52(3):301–315.

Assunção, R. and Krainski, E. (2009). Neighborhood dependence in Bayesian spatial
models. Biometrical Journal, 51(5):851–869.

Banerjee, K. (1999). Gender stratification and the contemporary marriage market in
India. Journal of Family Issues, 20(5):648–676.



106 References

Banerjee, P. R. (2014). Dowry in 21st-century India: the sociocultural face of
exploitation. Trauma, Violence, & Abuse, 15(1):34–40.

Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2015). Hierarchical Modelling and
Analysis for Spatial Data. Second Edition. Chapman and Hall/CRC.

Barakade, A. (2012). Declining sex ratio: an analysis with special reference to
Maharashtra state. Geoscience Research, 3(1):92–95.

Begum, S., Danta, B., Nair, S., and Prakasam, C. (2015). Socio-demographic factors
associated with domestic violence in urban slums, Mumbai, Maharashtra, India.
Rural and Remote Health, 141:783–788.

Belur, J., Tilley, N., Daruwalla, N., Kumar, M., Tiwari, V., and Osrin, D. (2014).
The social construction of ‘dowry deaths’. Social Science & Medicine, 119:1–9.

Bernardinelli, L., Clayton, D., Pascutto, C., Montomoli, C., Ghislandi, M., and
Songini, M. (1995). Bayesian analysis of space-time variation in disease risk.
Statistics in Medicine, 14(21-22):2433–2443.

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems
(with discussion). Journal of the Royal Statistical Society: Series B (Methodologi-
cal), 36:192–236.

Besag, J., York, J., and Mollié, A. (1991). A Bayesian image restoration, with two
applications in spatial statistics. Annals of the Institute of Statistical Mathemathics,
43(1):1–21.

Blangiardo, M. and Cameletti, M. (2015). Spatial and Spatio-temporal Bayesian
Models with R-INLA. Chichester: Wiley.

Bloch, F. and Rao, V. (2002). Terror as a bargaining instrument: a case study of
dowry violence in rural India. American Economic Review, 92(4):1029–1043.

Botella-Rocamora, P., López-Quílez, A., and Martínez-Beneito, M. (2013). Spatial
moving average risk smoothing. Statistics in Medicine, 32(15):2595–2612.

Botella-Rocamora, P., Martínez-Beneito, M. A., and Banerjee, S. (2015). A unifying
modeling framework for highly multivariate disease mapping. Statistics in Medicine,
34(9):1548–1559.

Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized
linear mixed models. Journal of the American Statistical Association, 88(421):9–25.



107

Carroll, R., Lawson, A., Faes, C., Kirby, R., Aregay, M., and Watjou, K. (2015).
Comparing INLA and OpenBUGS for hierarchical Poisson modeling in disease
mapping. Spatial and Spatio-temporal Epidemiology, 14:45–54.

Corpas-Burgos, F., Botella-Rocamora, P., and Martínez-Beneito, M. (2019). On the
convenience of heteroscedasticity in highly multivariate disease mapping. Test,
28(4):1229–1250.

Czado, C., Gneiting, T., and Held, L. (2009). Predictive model assessment for count
data. Biometrics, 65(4):1254–1261.

Dang, G., Kulkarni, V. S., and Gaiha, R. (2018). Why have dowry deaths risen in
India? Working Paper 2018/03. Australia South Asia Research Centre, Australian
National University, Canberra.

Das Gupta, M. and Mari Bhat, P. (1997). Fertility decline and increased manifestation
of sex bias in India. Population Studies, 51(3):307–315.

Dawid, A. P. (1984). Statistical theory: the prequential approach. Journal of the
Royal Statistical Society: Series A (General), 147(2):278–292.

Dean, C., Ugarte, M. D., and Militino, A. (2001). Detecting interaction between
random region and fixed age effects in disease mapping. Biometrics, 57(1):197–202.

Dean, C. B., Ugarte, M. D., and Militino, A. F. (2004). Penalized quasi-likelihood with
spatially correlated data. Computational Statistics & Data Analysis, 45(2):235–248.

Directorate of Economics & Statistics (2017). Infrastructure Statistics of Maharashtra
State, 2013-14 and 2014-15.

Drèze, J. and Khera, R. (2000). Crime, gender, and society in India: Insights from
homicide data. Population and Development Review, 26(2):335–352.

Eilers, P. H., Currie, I. D., and Durbán, M. (2006). Fast and compact smoothing on
large multidimensional grids. Computational Statistics & Data Analysis, 50(1):61–
76.

Eilers, P. H. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties.
Statistical Science, 11(2):89–102.

Ellsberg, M., Heise, L., Pena, R., Agurto, S., and Winkvist, A. (2001). Researching
domestic violence against women: methodological and ethical considerations.
Studies in Family Planning, 32(1):1–16.



108 References

Ellsberg, M. C. and Heise, L. (2005). Researching Violence Against Women: Practical
Guidelines for Researchers and Activists. Geneva: World Health Organization.

Gelfand, A. E. and Sahu, S. K. (1999). Identifiability, improper priors, and Gibbs sam-
pling for generalized linear models. Journal of the American Statistical Association,
94(445):247–253.

Gelfand, A. E. and Vounatsou, P. (2003). Proper multivariate conditional autore-
gressive models for spatial data analysis. Biostatistics, 4(1):11–15.

Gelman, A. et al. (2006). Prior distributions for variance parameters in hierarchical
models (comment on article by Browne and Draper). Bayesian Analysis, 1(3):515–
534.

Ghansham, D. M. (2002). Female foeticide and the dowry system in India. In
Townsville International Womens Conference. Australia: James Cook Union.

Gneiting, T. and Raftery, A. (2007). Strictly proper scoring rules, prediction, and
estimation. Journal of the American Statistical Association, 102(477):359–378.

Goicoa, T., Adin, A., Etxeberria, J., Militino, A., and Ugarte, M. D. (2019a). Flexible
Bayesian P-splines for smoothing age-specific spatio-temporal mortality patterns.
Statistical Methods in Medical Research, 28(2):384–403.

Goicoa, T., Adin, A., Ugarte, M. D., and Hodges, J. (2018). In spatio-temporal
disease mapping models, identifiability constraints affect PQL and INLA results.
Stochastic Environmental Research and Risk Assessment, 32(3):749–770.

Goicoa, T., Ugarte, M. D., Etxeberria, J., and Militino, A. (2016). Age–space–time
CAR models in Bayesian disease mapping. Statistics in Medicine, 35(14):2391–
2405.

Goicoa, T., Ugarte, M. D., and Vicente, G. (2019b). On using disease mapping
models to analyze crimes against women: the paradigmatic case of India. BEIO,
35(2):86–105.

Gracia, E., López-Quílez, A., Marco, M., Lladosa, S., and Lila, M. (2015). The
spatial epidemiology of intimate partner violence: do neighbourhoods matter?
American Journal of Epidemiology, 18(1):58–66.

Gupta, M. D., Lee, S., Uberoi, P., Wang, D., Wang, L., and Zhang, X. (2004).
State Policies and Women’s Agency in China, The Republic of Korea, and India,
1950–2000: Lessons from Contrasting Experiences. Stanford University Press.



109

Haroon, A. (2017). A study of epidemiological profile of dowry death victims in
Aligarh. International Archives of BioMedical and Clinical Research, 3(3):6–9.

Haveripeth, P. (2013). Causes and consequences of dowry menace in India–a crimi-
nological perspective. Radix International Journal of Research in Social Science,
2(2):1–15.

Heise, L. L., Raikes, A., Watts, C. H., and Zwi, A. B. (1994). Violence against
women: a neglected public health issue in less developed countries. Social Science
& Medicine, 39(9):1165–1179.

Hodges, J. S. and Reich, B. J. (2010). Adding spatially-correlated errors can mess
up the fixed effect you love. The American Statistician, 64(4):325–334.

Jain, D., Sanon, S., Sadowski, L., and Hunter, W. (2004). Violence against women in
India: evidence from rural Maharashtra, India. Rural and Remote Health, 4(304).

Jejeebhoy, S. J. (1998). Associations between wife-beating and fetal and infant
death: impressions from a survey in rural India. Studies in Family Planning,
29(3):300–308.

Jewkes, R., Fulu, E., Roselli, T., Garcia-Moreno, C., et al. (2013). Prevalence of
and factors associated with non-partner rape perpetration: findings from the UN
Multi-country cross-sectional study on men and violence in Asia and the Pacific.
The Lancet Global Health, 1(4):e208–e218.

Jeyaseelan, V., Kumar, S., Jeyaseelan, L., Shankar, V., Yadav, B. K., and Bangdiwala,
S. I. (2015). Dowry demand and harassment: prevalence and risk factors in India.
Journal of Biosocial Science, 47(6):727–745.

Jin, X., Banerjee, S., and Carlin, B. P. (2007). Order-free co-regionalized areal
data models with application to multiple-disease mapping. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 69(5):817–838.

Jin, X., Carlin, B. P., and Banerjee, S. (2005). Generalized hierarchical multivariate
CAR models for areal data. Biometrics, 61(4):950–961.

Johnson, H., Ollus, N., and Nevala, S. (2007). Violence Against Women: An
International Perspective. Springer Science & Business Media.

Kaur, P. (2011). Crime, gender and society in India. Higher Education of Social
Science, 1(1):24–32.



110 References

Kelling, C., Graif, C., Korkmaz, G., and Haran, M. (2020). Modeling the social and
spatial proximity of crime: domestic and sexual violence across neighborhoods.
Journal of Quantitative Criminology.

Khan, N. A. (2015). Migrant women, maternal health and HIV/AIDS: a study of
Aligarh suburbs. PhD thesis, Aligarh Muslim University. Aligarh.

King, R. D., Massoglia, M., and MacMillan, R. (2007). The context of marriage
and crime: gender, the propensity to marry, and offending in early adulthood.
Criminology, 45(1):33–65.

Kishor, S. and Johnson, K. (2005). Profiling domestic violence: a multi-country
study. Studies in Family Planning, 36(3):259–261.

Knorr-Held, L. (2000). Bayesian modelling of inseparable space-time variation in
disease risk. Statistics in Medicine, 19(17-18):2555–2567.

Kohli, A. (2012). Gang rapes and molestation cases in India: creating mores for
eve-teasing. Te Awatea Review: The Journal of Te Awatea Violence Research
Centre, 10(1-2):13–17.

Koss, M. P. (1992). The under detection of rape: methodological choices influence
incidence estimates. Journal of Social Issues, 48(1):61–75.

Kumar, S., Mourya, K., Gupta, R. P., and Singh, S. (2018). Dynamics of socio-
economic development of districts of western Uttar Pradesh, India. International
Journal of Current Microbiology and Applied Sciences, Special Issue 7:838–843.

Lawson, A., Banerjee, S., Haining, R., and Ugarte, M. D., editors (2016). Handbook
of Spatial Epidemiology. Chapman and Hall/CRC, New York.

Leroux, B., Lei, X., and N, B. (1999). Estimation of disease rates in small areas:
a new mixed model for spatial dependence. In , Halloran, M. Berry, D. (eds).
Statistical Models in Epidemiology, the Environment, and Clinical Trials, pages
179–192.

Lindgren, F. and Rue, H. (2015). Bayesian spatial modelling with R-INLA. Journal
of Statistical Software, 63(19):1–25.

Lombardo, L., Opitz, T., and Huser, R. (2018). Point process-based modeling of
multiple debris flow landslides using INLA: an application to the 2009 Messina
disaster. Stochastic Environmental Research and Risk Assessment, 32(7):2179–
2198.



111

Lunn, D. J., Thomas, A., Best, N., and Spiegelhalter, D. (2000). Winbugs - a
Bayesian modelling framework: concepts, structure, and extensibility. Statistics
and Computing, 10(4):325–337.

MacNab, Y. C. (2007). Spline smoothing in Bayesian disease mapping. Envi-
ronmetrics: The Official Journal of the International Environmetrics Society,
18(7):727–744.

MacNab, Y. C. (2011). On Gaussian Markov random fields and Bayesian disease
mapping. Statistical Methods in Medical Research, 20(1):49–68.

MacNab, Y. C. (2014). On identification in Bayesian disease mapping and ecological–
spatial regression models. Statistical Methods in Medical Research, 23(2):134–155.

MacNab, Y. C. (2016a). Linear models of coregionalization for multivariate lattice
data: a general framework for coregionalized multivariate CAR models. Statistics
in Medicine, 35(21):3827–3850.

MacNab, Y. C. (2016b). Linear models of coregionalization for multivariate lattice
data: order-dependent and order-free cMCARs. Statistical Methods in Medical
Research, 25(4):1118–1144.

MacNab, Y. C. (2018). Some recent work on multivariate Gaussian Markov random
fields. Test, 27(3):497–541.

MacNab, Y. C. and Gustafson, P. (2007). Regression B-spline smoothing in Bayesian
disease mapping: with an application to patient safety surveillance. Statistics in
Medicine, 26(24):4455–4474.

Mardia, K. (1988). Multi-dimensional multivariate Gaussian Markov random fields
with application to image processing. Journal of Multivariate Analysis, 24(2):265–
284.

Marí-Dell’Olmo, M., Martínez-Beneito, M. A., Gotsens, M., and Palència, L. (2014).
A smoothed ANOVA model for multivariate ecological regression. Stochastic
Environmental Research and Risk Assessment, 28(3):695–706.

Martínez-Beneito, M. and Vergara-Hernández, C. (2019). pbugs: Run ’WinBUGS’
or ’OpenBUGS’ Models in Parallel. https://github.com/fisabio/pbugs.

Martínez-Beneito, M. A. (2013). A general modelling framework for multivariate
disease mapping. Biometrika, 100(3):539–553.

Martínez-Beneito, M. A. and Botella-Rocamora, P. (2019). Disease Mapping: From
Foundations to Multidimensional Modeling. CRC Press, Boca Raton.



112 References

Martínez-Beneito, M. A., Botella-Rocamora, P., and Banerjee, S. (2017). Towards
a multidimensional approach to Bayesian disease mapping. Bayesian Analysis,
12(1):239–259.

Martínez-Beneito, M. A., López-Quilez, A., and Botella-Rocamora, P. (2008). An
autoregressive approach to spatio-temporal disease mapping. Statistics in Medicine,
27(15):2874–2889.

McNally, R. J., Metzger, L. J., Lasko, N. B., Clancy, S. A., and Pitman, R. K. (1998).
Directed forgetting of trauma cues in adult survivors of childhood sexual abuse
with and without posttraumatic stress disorder. Journal of Abnormal Psychology,
107(4):596.

Miller, E., Decker, M. R., McCauley, H. L., Tancredi, D. J., Levenson, R. R.,
Waldman, J., Schoenwald, P., and Silverman, J. G. (2011). A family planning
clinic partner violence intervention to reduce risk associated with reproductive
coercion. Contraception, 83(3):274–280.

Mohanty, S., Sen, M., and Sahu, G. (2013). Analysis of risk factors of dowry death–a
south Indian study. Journal of Forensic and Legal Medicine, 20(4):316–320.

More, V. P., Ingale, A. R., and Shinde, V. S. (2012). Generation and district-
wise study of sex ratio. International Journal of Health Sciences and Research,
2(7):7–13.

Mukherjee, C., Rustagi, P., and Krishnaji, N. (2001). Crimes against women in India:
analysis of official statistics. Economic and Political Weekly, 36(43):4070–4080.

National Crime Records Bureau (2015). Crime in India 2014. Compendium.

National Crime Records Bureau (2016). Crime in India 2015. Compendium.

National Crime Records Bureau (2017). Crime in India 2016. Compendium.

National Crime Records Bureau (2019). Crime in India 2017. Compendium.

Niaz, U. (2003). Violence against women in South Asian countries. Archives of
Women’s Mental Health, 6(3):173–184.

Oldenburg, P. (1992). Sex ratio, son preference and violence in India: a research
note. Economic and Political Weekly, 27(49/50):2657–2662.

Palmí-Perales, F., Gómez-Rubio, V., and Martínez-Beneito, M. A. (2019). Bayesian
multivariate spatial models for lattice data with INLA. arXiv:1909.10804v1, 71.



113

Pandey, S. K., Kumar, A., and Gupta, M. (2014). An epidemiological retrospective
study of autopsied dry thermal burn. Journal of Indian Academy of Forensic
Medicine, 36(4):363–366.

Parmar, P. (2014). Dowry death and law - Indian scenario. International Archives
of Integrated Medicine, 1(2):44–49.

Patel, A. B. (2015). The under detection of rape: methodological choices influence
incidence estimates. Forensic Research & Criminology International Journal,
1(4):151–155.

Pettit, L. (1990). The conditional predictive ordinate for the normal distribution.
Journal of the Royal Statistical Society: Series B (Methodological), 52(1):175–184.

Powell, J. and Wahidin, A. (2007). Old age and victims: a critical exegesis and an
agenda for change. Internet Journal of Criminology, pages 1–14.

Prasad, D. (2016). Symbiosis, reciprocity and village exogamy in two villages of
Uttar Pradesh. Sth Asn Anthr, 16:185–194.

Rahman, L. and Rao, V. (2004). The determinants of gender equity in India:
examining Dyson and Moore’s thesis with new data. Population and Development
Review, 30(2):239–268.

Raj, A. and McDougal, L. (2014). Sexual violence and rape in India. The Lancet
(Correspondence), 383:865.

Reich, B. J., Hodges, J. S., and Zadnik, V. (2006). Effects of residual smoothing on
the posterior of the fixed effects in disease-mapping models. Biometrics, 62(4):1197–
1206.

Richardson, S., Thomson, A., Best, N., and Elliott, P. (2004). Interpreting pos-
terior relative risk estimates in disease-mapping studies. Environmental Health
Perspectives, 112(9):1016–1025.

Riebler, A., Sørbye, S. H., Simpson, D., and Rue, H. (2016). An intuitive Bayesian
spatial model for disease mapping that accounts for scaling. Statistical Methods in
Medical Research, 25(4):1145–1165.

Rose, S. D. (2012). Gender violence: using culture as a resource in the process of
decolonisation. The Journal of Te Awatea Violence Research Centre, 10(1/2):3–7.

Rue, H. and Held, L. (2005). Gaussian Markov Random Fields: Theory and Applica-
tions. Chapman & Hall/CRC.



114 References

Rue, H., Martino, S., and Chopin, N. (2009). Approximate Bayesian inference for
latent Gaussian models by using integrated nested Laplace approximations. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 71(2):319–392.

Russo, N. F. and Pirlott, A. (2006). Gender-based violence. Annals of the New York
Academy of Sciences, 1087(1):178–205.

Sain, S. R., Furrer, R., and Cressie, N. (2011). A spatial analysis of multivariate
output from regional climate models. The Annals of Applied Statistics, 5(1):150–
175.

Sampson, R. J., Laub, J. H., and Wimer, C. (2006). Does marriage reduce crime?
Criminology, 44(3):465–508.

Sharma, B., Harish, D., Sharma, V., and Vij, K. (2002). Kitchen accidents vis-a-vis
dowry deaths. Burns, 28(3):250–253.

Shenk, M. K. (2007). Dowry and public policy in contemporary India. The behavioral
ecology of a “social evil”. Human Nature, 18(3):242–263.

Simpson, D., Rue, H., Riebler, A., Martins, T. G., Sørbye, S. H., et al. (2017).
Penalising model component complexity: a principled, practical approach to
constructing priors. Statistical Science, 32(1):1–28.

Singh, A. (2012). Gender based within-household inequality in childhood immuniza-
tion in India: changes over time and across regions. PloS One, 7(4):e35045.

Solotaroff, J. L. and Pande, R. P. (2014). Violence Against Women and Girls:
Lessons from South Asia. The World Bank.

South, S. J., Trent, K., and Bose, S. (2014). Skewed sex ratios and criminal
victimization in India. Demography, 51(3):1019–1040.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van Der Linde, A. (2002).
Bayesian measures of model complexity and fit. Journal of the Royal Statistical
Society. Series B (Statistical Methodology), 64(4):583–639.

Srinivasan, P. and Lee, G. R. (2004). The dowry system in Northern India: women’s
attitudes and social change. Journal of Marriage and Family, 66(5):1108–1117.

Sun, Y. and Genton, M. G. (2011). Functional boxplots. Journal of Computational
and Graphical Statistics, 20(2):316–334.

Tanwar, N., Kumar, S., Sisodia, B., and Hooda, B. (2016). Dynamics of socio-
economic development of districts of eastern Uttar Pradesh. Journal of Applied
and Natural Science, 8(1):5–9.



115

Ugarte, M. D., Adin, A., and Goicoa, T. (2016). Two-level spatially structured models
in spatio-temporal disease mapping. Statistical Methods in Medical Research,
25(4):1080–1100.

Ugarte, M. D., Adin, A., and Goicoa, T. (2017). One-dimensional, two-dimensional,
and three dimensional B-splines to specify space-time interactions in Bayesian
disease mapping: model fitting and model identifiability. Spatial Statistics, 22:451–
468.

Ugarte, M. D., Adin, A., Goicoa, T., and Militino, A. F. (2014). On fitting spatio-
temporal disease mapping models using approximate Bayesian inference. Statistical
Methods in Medical Research, 23(6):507–530.

Ugarte, M. D., Goicoa, T., Etxeberria, J., and Militino, A. (2012). A P-spline
ANOVA type model in space-time disease mapping. Stochastic Environmental
Research and Risk Assessment, 26(6):835–845.

Ugarte, M. D., Goicoa, T., Ibanez, B., and Militino, A. (2009a). Evaluating the per-
formance of spatio-temporal Bayesian models in disease mapping. Environmetrics,
20(6):647–665.

Ugarte, M. D., Goicoa, T., and Militino, A. (2010). Spatio-temporal modeling of
mortality risks using penalized splines. Environmetrics: The Official Journal of
the International Environmetrics Society, 21(3-4):270–289.

Ugarte, M. D., Goicoa, T., and Militino, A. F. (2009b). Empirical Bayes and fully
Bayes procedures to detect high-risk areas in disease mapping. Computational
Statistics & Data Analysis, 53(8):2938–2949.

United Nations, Department of Economic and Social Affairs, P. D. (2019). World Pop-
ulation Prospects 2019, custom data acquired via website. https://population.
un.org/wpp/.

United Nations General Assembly (1993). Declaration on the Elimination of Violence
Against Women. http://www.un.org/documents/ga/res/48/a48r104.htm.

Verma, R. K., Srivastava, P., Sinha, U., and Kaul, A. (2015). Study of unnatural
deaths in married females within seven years of marriage in Allahabad. Journal of
Indian Academy of Forensic Medicine, 37(4):405–409.

Vicente, G., Goicoa, T., Fernández-Rasines, P., and Ugarte, M. D. (2020). Crime
against women in India: unveiling spatial patterns and temporal trends of dowry
deaths in the districts of Uttar Pradesh. Journal of the Royal Statistical Society:
Series A (Statistics in Society), 183(2):655–679.

https://population.un.org/wpp/
https://population.un.org/wpp/
http://www.un.org/documents/ga/res/48/a48r104.htm


116 References

Vicente, G., Goicoa, T., Puranik, A., and Ugarte, M. D. (2018). Small area estimation
of gender-based violence: rape incidence risks in Uttar Pradesh, India. Statistics
and Applications, 16(1):71–90.

Visaria, L. (1999). Violence against women in India: evidence from rural Gujarat.
In Domestic Violence in India: A Summary Report of Three Studies, pages 9–17.
International Center for Research on Women: Washington, DC, September, 1999.

Vogelman, L. and Eagle, G. (1991). Overcoming endemic violence against women in
South Africa. Social Justice, 18(1/2 (43-44)):209–229.

Wall, M. M. (2004). A close look at the spatial structure implied by the CAR and
SAR models. Journal of Statistical Planning and Inference, 121(2):311–324.

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely
applicable information criterion in singular learning theory. Journal of Machine
Learning Research, 11(Dec):3571–3594.

Watts, C. and Zimmerman, C. (2002). Violence against women: global scope and
magnitude. The Lancet, 359(9313):1232–1237.

World Conference on Human Rights (1993). Vienna Declaration and Programme of
Action.

World Health Organization (2002). World Report on Violence and Health. WHO
Library Cataloguing in Publication Data.

World Health Organization (2013). Global and Regional Estimates of Violence
Against Women: Prevalence and Health Effects of Intimate Partner Violence and
Nonpartner Sexual Violence.

Zhang, S., Sun, D., He, C. Z., and Schootman, M. (2006). A Bayesian semi-parametric
model for colorectal cancer incidences. Statistics in Medicine, 25(2):285–309.


	List of Figures
	List of Tables
	Introduction
	Gender-based violence and spatio-temporal areal models
	Introduction
	Crimes against women in India
	Spatio-temporal models for areal data
	Univariate areal models
	Multivariate areal models
	Model fitting and inference


	Crime against women in India
	Introduction
	Dowry deaths in Uttar Pradesh
	Spatio-temporal models
	Model description
	A closer look into spatial priors
	Hyperpriors

	Statistical Analysis
	Discussion
	Appendix

	Multivariate spatio-temporal areal models
	Introduction
	M-models for multivariate spatio-temporal modelling
	Inducing spatial and temporal dependence within and between crimes
	Spatio-temporal interaction
	Identifiability issues and hyperprior specification

	Joint analysis of crimes against women in Uttar Pradesh
	Descriptive analysis
	Model fitting using WinBUGS and INLA
	Joint analysis of rapes and dowry deaths using M-Models in INLA

	Discussion

	Multivariate spatio-temporal splines
	Introduction
	Multivariate P-spline models
	INLA fit, prior distributions, and identifiability
	Prior distributions and identifiability issues

	Case study
	Descriptive analysis
	Model fitting using INLA
	Joint analysis of four crimes against a women in Maharashtra using multivariate P-spline model

	Discussion
	Appendix

	Conclusions and further work
	References

