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ABSTRACT

The valorization of biorefinery downstream lignin fractions is a key issue in order to 

increase the sustainability of Second Generation Biofuels. The development of reliable 

methodologies for the selective determination of apparent masses of the poly-(hydroxy)-

aromatic ethers arising from lignin depolymerization reaction is crucial. Diffusion Ordered 

Spectroscopy (DOSY) has been tested to estimate the molecular weight in biorefinery 

downstream lignins and base catalyzed depolymerization reaction mixtures. Excellent 

correlation was found in the calibration of molecular weight and diffusion coefficients with 

standards. DOSY permitted the selective estimation of the apparent masses of different 

fractions in the lignin and in the depolymerization reaction mixtures, providing a more 

profound knowledge of the reaction mixture composition than traditional Size Exclusion 

Chromatography (SEC). Excellent correlations have been achieved in the estimation of 

the apparent masses of poly-(hydroxy)-aromatic ethers between SEC and DOSY. This 

permits a reliable estimation of the molecular weight of different fractions in the lignin and 

in the depolymerization product, which is essential for their further applications.
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INTRODUCTION

In recent years, Second Generation Biofuels, produced in biorefineries from 

lignocellulosic biomass, have emerged as a promising alternative1,2 to replace fossil fuels. 

This lignocellulosic material is widely available at relatively low cost, as it is produced from 

forestry and agricultural residues, without having to compete with human nutrition. 

Generally speaking, , the treatment of biomass raw materials in biorefineries is focused 

on the separation of its main constituent fractions and is comprised of two processes:3 i) 

pretreatment to increase the accessibility of cellulose, hemicelluloses and lignins, ii) 

enzymatic hydrolysis of the cellulosic components to monomeric sugars that are 

fermented to ethanol or butanol. Downstream lignin fraction is mainly burned to produce 

energy,2 as its efficient valorization has not been developed yet. 

Lignin represents about 30% mass in softwoods, while in hardwoods this share is in the 

range of 20-25%.4 Lignin is a complex polymer comprised of three monomeric phenols, 

coumaryl, sinapyl and coniferyl alcohols, which, through plant cell synthesis, become 

linked by β-O-4, β-5, β-β, or C-C bonds. 
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Lignin fraction is a promising alternative for replacing fossil-fuels derived chemicals. 

Indeed, lignin is deemed as the largest source of aromatic building blocks. The 

development of efficient lignin depolymerization methodologies can contribute, not only 

to the economic and environmental viability of biorefineries, but also to the development 

of new sustainable strategies for the synthesis of aromatics, as an alternative to 

petrochemistry industry. This has boosted the development of new depolymerization 

methodologies like hydrogenolysis, oxidation or hydrodeoxygenation.5–7 However, most 

of these strategies are conceived for technical or paper industry derived lignins

Depolymerization of downstream lignin fraction from the biorefineries is even more 

challenging. The acidic thermochemical pretreatment modifies lignin structure by the 

formation of C-C bonds which renders these lignins even more recalcitrant.6 Base 

catalyzed depolymerization (BCD) is a valuable option for lignin valorization,8 as the basic 

medium improves lignin solubility via formation of phenolate anions.9 Although BCD is a 

well-established methodology it is still far from being completely optimized. Up to 18 w% 

yield in low molecular weight compounds has been reported using basic zeolite as 

catalyst,10 but monomer yields are below 10 w% in most cases. The origin of these 
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relative low yields is, partly, the high reaction temperature 240 ºC -300 ºC,6,8,11–13 which 

boost repolymerization of reactive monomeric phenolate anions causing a decrease in 

monomer yields. Repolymerization can be prevented by the addition of capping agents 

such as boric acid or phenol.14

Besides monomeric phenols, a fraction of poly-(hydroxy)-aromatic ethers is produced 

on BCD. This fraction can find application in the preparation of polyurethanes or resins, 

among others.15,16 Further application of these oligomeric fractions is strongly dependent 

on their average or number molecular weight, Mw or Mn respectively. Mw and Mn are 

determined by Size Exclusion Chromatography (SEC). Nevertheless, during the last 

years, it was found that SEC determination is very sensitive to the interaction between 

the stationary phase and the analytes17 and can present large standard deviations even 

using refraction index detectors.18 Furthermore, SEC is unable to discriminate between 

poly-(hydroxy)-aromatic ethers and other fractions. Downstream biorefinery lignin present 

impurities, such as carbohydrates, whose degradation products cannot be discriminated 

by SEC leading to misinterpretation of SEC chromatograms and, particularly, Mw and 

Mn.19
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Nuclear Magnetic Resonance (NMR) spectroscopy has become a powerful tool in the 

characterization of lignin and bio-oils. Many studies include systematic Heteronuclear 

Single Quantum Coherence (HSQC-NMR)20–26 or even 31P NMR in lignin 

characterization.20,23,27,28 Diffusion Ordered Spectroscopy (DOSY-NMR), is a pseudo 2D 

experiment that correlates chemical shifts and the diffusion coefficient, D, at a given 

temperature. The Stokes-Einstein equation relates D coefficient to the hydrodynamic 

radium of the diffusate.29 Therefore, DOSY-NMR can provide similar information than 

SEC.20 Consequently, DOSY allows correlating chemical shift and molecular weight and 

can be envisaged as a NMR-chromatographical tool.30 DOSY spectroscopy has been 

successfully used in the analysis of proteins,31 in organometallic chemistry32 and even in 

the study of the surface chemistry of nanoparticles.33 Some studies already addressed 

the potential of DOSY showing the separation of phenol, guaiacol and 2,6-

dimethoxyphenol from a mixture prepared from commercial standards.30 More recently, 

good correlations of the apparent masses measured by SEC and DOSY were obtained 

for lignin fractions with narrow molecular weight distributions.34,35 However, few studies 

Page 6 of 56

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



7

were published using conventional 1H-DOSY or 31P-DOSY23,36,37 to estimate the 

molecular weight in depolymerization reaction mixtures using DOSY. 

In this paper, we show the results of BCD for lignins obtained after thermochemical 

pretreatment of poplar and pine wood followed by polysaccharide deconstruction via 

enzymatic hydrolysis. The results of the calibration of diffusion coefficients and the 

molecular masses of two different families of standards as a function of their interaction 

with the solvent are presented. Finally, DOSY is systematically applied in the selective 

determination of the apparent molecular masses of the different fractions that are present 

in lignin and BCD reaction mixtures.

EXPERIMENTAL SECTION

All the chemicals were purchased from Fisher Chemicals and Sigma-Aldrich and used 

as received. 2-Phenoxy-1-phenylethanol (PE) was obtained as described elsewhere.38 

Biomass raw materials were processed at CENER facilities of Biorefinery and Bioenergy 

Centre (BIO2C), located in Aoiz (Spain). Poplar (Populus sp.) and pine (Pinus radiata) 

feedstocks were processed as described in a previous study39 to obtain the starting solids 

POPL and PINL respectively. For the samples used in this study, thermochemical 
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pretreatment was carried out using sulfuric acid at 4 w% against the dry weight of the total 

solid content at 192 ºC with a residence time of 5 minutes. Lignin content in POPL and 

PINL was determined according to NREL/TP 510-42618. The ratio of syringyl (S) and 

guaiacyl (G) units, S/G ratio, was determined as described in the literature.40,41

Depolymerization reactions were carried out in an Autoclave Engineers equipped with 

PID controller, using a total volume of 50 mL in a 100 mL stainless steel vessel. Reaction 

time started on reaching the target temperature. The resulting solutions were filtered and 

the liquid was acidified to pH 2 upon addition of 1M HCl. 25 mL of a solution of 

bromobenzene (0.0015 M) in ethyl acetate, and additional ethyl acetate when necessary 

for the extraction, were then added and the organic phase was separated. 1.0 mL of the 

organic phase was taken for the quantification of monomeric phenols by GC-FID. The 

rest was evaporated to dryness and the yield of the bio-oil was gravimetrically calculated 

(Scheme 1).
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Scheme 1. Overall procedure used in this study for obtaining BCD reaction mixtures. 

The yield of monomeric phenols was quantified by GC-FID on an Agilent 6890 equipped 

with a capillary column HP-5MS [(5%-phenyl)-methylpolysiloxane, 60 m × 0.32 mm] with 

helium as carrier gas. The temperature program started at 50 °C and followed by heating 

to 120 ºC, 280 ºC, and 300 °C at 10 °C min−1. During the program, temperature was held 

at 120 °C for 5 min, at 280 °C (8 min), and at 300 °C (2 min). Monomer yields gather the 

yield of 27 compounds, whose response factors in FID were calibrated using 

bromobenzene as internal standard. The monomers were grouped in phenols, guaiacols, 

syringols, cresols and vanillins (Table S1). Weight yield, w%, is referred to the weight of 

known monomers in the actual amount of lignin in the starting solid (POPL or PINL). The 
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0

identity of the monomeric phenols was confirmed by GC-MS on a Shimadzu GC-2010 

equipped with Shimadzu QP-2010 detector with the same analysis conditions.

Size exclusion chromatography (SEC) measurements were made on an Agilent 1100 

equipped with RID detector. PINL and POPL were analyzed using two coupled PolarGel-

M columns (300 x 7.5 mm) and PolarGel-M guard (50 x 7.5 mm) as stationary phase and 

0.1 % LiBr in DMF at 40 ºC at 0.7 mL·min -1 as eluent. Base catalyzed depolymerization 

(BCD) reaction mixtures were analyzed using Coupled HR-5 and HR-1 Styragel columns 

(Waters) at 30 ºC as stationary phase and tetrahydrofuran as mobile phase at 1 mL·min-

1 flow. 

NMR measurements were made at 300 K on a Bruker Ascend III spectrometer 

equipped with a PABBO 5 probe, at 400 MHz and 101 MHz for 1H and 13C respectively 

and were processed using Bruker Topspin 3.2 software. NMR samples were prepared at 

1 % w/v in DMSO-d6 and referenced using residual signal at 2.50 ppm and 39.52 ppm for 

1H and 13C measurements.42 PINL and POPL were acetylated for NMR measurements as 

described elsewhere.20 1H experiments were run using the zg30 pulse program at 16 

scans. Two-dimensional 1H- 13C correlation was carried out using HSQC and HSQC-
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1

TOCSY that run hsqcetgpsi2 and hsqcdietgpsisp.2 pulse program in an echo-antiecho 

acquisition mode with D1 = 1.48 s and D1= 2.0 s respectively. DOSY was run using 

stebpgp1s pulse program in QF acquisition mode. Diffusion delay (d20) in stebpgp1s was 

optimized using residual DMSO signal keeping gradient pulse length (p30) constant at 

1000 s, resulting in 160-170 ms. Each pseudo-2D experiment consisted on a series of 

16 spectra. DOSY experiments were made in DMSO-d6 at 300 K and at fixed low 

concentrations, 1 % w/v. The accuracy of the gradient was checked by the determination 

of the diffusion coefficient of residual DMSO in DMSO-d6. DOSY analysis were processed 

using TOPSPIN 3.2 software from Bruker. Once F2 were phased, automatic baseline 

correction was run using a 5th grade polynomial function. Using the T1/T2 relaxation 

module installed in the module permitted FID for the first spectrum (2 % gradient) to be 

extracted and to perform manual integration. The integration regions were exported to the 

relaxation module where decay values were fitted by area using the vargrad preinstalled 

function using a 5.35 G/mm as gradient calibration constant. Graphical processing was 

run using ‘Dynamic Center v. 2.6.1’ software from Bruker. Unless otherwise stated, 

Stejskal-Tanner equation was fitted using the intensity obtained after the peak peaking of 
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the first spectrum corresponding to 2% gradient. NOESY experiments were carried out 

using the noesyphrv sequence with random mixing time (285 ms – 315 ms) to prevent 

coupling artifacts. 31P measures were made using a proton decoupled experiment running 

the zgpg30 pulse program. Derivatization prior to 31P measurements was carried out 

following the protocol described by Pu.28

RESULTS AND DISCUSSION

Base Catalyzed Depolymerization (BCD)

Two different feedstocks, pine (Pinus radiata) and poplar (Populus sp.) were chosen as 

soft and hard-wood models respectively, given their natural abundance in Navarre 

forestry. Feedstock chips were subjected to acidic thermochemical pretreatment followed 

by enzymatic hydrolysis to produce lignin rich solids, which were then named as PINL and 

POPL for pine and poplar downstream lignin respectively.39 Lignin content in these solids 

was 69 w% and 51 w% respectively (Table 1). The rest of the solids corresponded mainly 

to saccharides, 24 w% and 39 w% respectively. Lignin contents in these solids are lower 

than in technical lignins12 but within the range of biorefinery downstream lignin fractions.8 

The syringyl/guaiacyl ratio (S/G) was 1.5 for POPL, and 0.1 for PINL. This S/G value for 
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PINL is not consistent with most of the literature which reveals that no syringyl units are 

present in pine wood.5,6 Coniferyl alcohols constitute approximately 90% of softwood lignin, 

although many exceptions are known.43 Indeed, it has been  stated that S/G ratio can be as 

high as 0.25 in Pinus Pinaster bark.44 This causes an increase in S/G ratio when bark is 

used, as in this case. 

Parameter POPL PINL

Glycan (w%) 38.8 23.2

Xylan-mannan 
(w%)

- 0.8

Lignin AI (w%) 51.1 69.1

S (w%) 0.74 0.33

Mw (Da) 5216 2950

Mn(Da) 514 435

Dispersity 10.1 6.8

S/G ratio 1.5 0.1

Table 1. Characterization of downstream lignins from poplar (POPL) and pine (PINL)
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The low solubility of PINL and POPL was critical in HSQC analysis. Although acetylation 

increased the solubility of the corresponding solids this was not complete. Thus, HSQC 

on acetylated PINL and POPL presented only a few signals in the aliphatic and methoxy 

regions while none could be detected in the aromatic region, even using long acquisition 

times. In both cases, cross-peaks corresponding to the methoxy moiety turned up at ca. 

3.75 ppm-55.4 ppm together with cross-peaks corresponding to C and C in -O-4 bonds. 

PINL was slightly soluble in DMSO that allowed HSQC-TOCSY analysis of the soluble 

fraction. Besides the cross-peaks corresponding to the methoxy moiety that turned up at 

ca. 3.75 ppm-55.4 ppm, the H-C cross peak that can correspond to the anomeric carbon 

of saccharides could be detected. This suggested that the detected signals in the range 

3.0-5.0 ppm/ 60-100 ppm corresponded to H-C and long-distance correlations from 

partially degraded cellulose (Figure S1). 

Optimization of the BCD reaction conditions was done using POPL and NaOH as a base. 

Other bases like LiOH, KOH and CsOH45 and organic bases were also tested but no 

improvements were found compared to NaOH (data not shown). Fixed NaOH 
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1
5

concentrations, 0.25 M (1 % w/v; pH 13.4), NaOH/solid ratios 25:1 and reaction 

temperature in the range of 150 ºC to 300 ºC during 240 min were tested. 

A steady increase of known monomer yields from 3.2 w% to 9.1 w% was observed from 

150 ºC to 200 ºC (Figure 1). Monomer yields steadily decreased thereafter due to 

repolymerization as did the soluble fraction. The effect of reaction time was also studied 

at different temperatures (Table S2). Monomer yields increased with longer reaction times 

at 200 ºC or lower temperatures and decreased at higher temperatures. Best overall 

reaction yields were obtained at 200 ºC, reaching 9.5 w% and 9.7 w% after 300 min and 

400 min respectively (Table S2). It is worth noting that the product distribution at a given 

temperature in the range 150 ºC-225 ºC was constant regardless of the reaction time 

(Table S2, Figure 1). At low reaction temperatures, syringols are the predominant 

monomers with noticeable amounts of vanillins (44 % and 14 % at 150 ºC respectively). 

A decrease in syringols and vanillins together with an increase of guaiacols was observed 

in the range 175 ºC- 250 ºC. Monomeric phenols distribution was much more sensitive to 

reaction times at higher temperature. Increasing reaction times to 240 min caused the 

total disappearance of vanillins and syringols beyond 250 ºC and a drastic reduction of 
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guaiacols, which is counterbalanced with an increase of catechols and phenols to 14 %-

19 % and 65 %-71 % respectively. The high reactivity of the carbonyl group explains the 

decrease in vanillins with increasing temperatures. The acidic thermochemical 

pretreatment of the biomass is probably in the origin of the increase in guaiacols and the 

decrease in syringols. It has been described that the acidic pretreatment causes the 

formation of C-C bonds between aromatics.8,46 Syringyl units may form less C-C bounds 

upon acidic pretreatment and, consequently, at low temperatures are more easily 

released from lignin structures than guaiacols. Furthermore, it has also been stated that 

demethoxylation of syringols may occur with increasing temperature leading to the 

formation of syringols.13 

Optimal reaction conditions for POPL (200 ºC, 240-360 min) were used for PINL but 

phenolic monomer yield drastically decreased to 4.1 w%. As expected, guaiacols were 

the main products with 81 %, followed by phenols with only 6 %, and no guaiacols were 

detected. Lower monomer yield can be attributed to higher recalcitrance of the lignin due 

to higher cross-linking upon acidic thermal pretreatment. 

Page 16 of 56

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



1
7

Optimal conditions for POPL were much milder compared with other studies with 

biorefinery8 and Organosolv11,45 lignins. This is a significant improvement as energy 

requirements are lower and the use of capping agents is avoided.

Figure 1. Monomer distribution and overall yields (w%) in BCD of POPL in the range 150 

ºC -250 ºC. Overall yields correspond to the maximum yield at given temperatures. Error 

bars are given at 95 % confidence level. 
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Six representative samples from BCD (Table 2) were analyzed by HSQC. In all cases, 

spectra presented cross-peaks in the range of 3.60-3.85 ppm/ 55-56 ppm as the major 

signals. These H-C cross-peaks corresponded to the presence of methoxy groups. BCD 

samples 1-4 from POPL presented, in all cases similar spectra in the aromatic region 

where all the cross-peaks could be assigned to phenyl, guaiacyl and syringyl units (Figure 

S2). As expected, only guaiacyl moieties were detected in sample 6, which came from 

PINL (Figure S2). Besides methoxy groups, C-H signals corresponding to -O-4 bonds, 

together with C-H signals, were detected in the aliphatic region. 

Signals at ca. 2.30 ppm -35 ppm and 1.25ppm - 29 ppm correspond to saturated 

aliphatic chains. These signals may correspond to  and  positions in aliphatic chains 

bounded to guaiacyl or syringyl units47 from the poly-(hydroxy)-aromatic ether fraction. 

Additionally, the corresponding cross-peaks from saccharides previously detected in PINL 

vanished whereas H-C cross-peaks in the range 2.0-2.5 ppm/20-30 ppm appeared. 

These H-C cross-peaks can be assigned to C and C in carbonyl compounds, which is 

consistent with the degradation of cellulose that accompanies lignin in POPL and PINL. 

Indeed, it is known that carbohydrates are degraded through peeling reactions in basic 
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conditions, providing aliphatic and cyclic ketones.19 This behavior explains the presence 

of signals in the range of 1.0-1.5 ppm/ 10-25 ppm that correspond to long alkyl chains. 

The presence of aliphatic compounds, such as nonanol, 5-hydroxy-4-octanone or 

cyclohexanone derivatives, was suggested by GC-MS, but quantification of these 

products is beyond the scope of this study.

Size Exclusion Chromatography (SEC)

Neither PINL nor POPL can be completely solubilized in DMF for SEC measurement. 

This low solubility is mainly attributed to the formation of C-C bonds between phenolic 

units upon acidic pre-treatment.8 SEC analysis for POPL and PINL (Figure S3) and after 

BCD were at least intriguing. Mw values, 2948 Da and 5216 Da for POPL and PINL, 

decreased to ca. 1000 Da after BCD, that is rather consistent. However, Mn values were 

contradictory, since they were slightly higher after BCD (ca. 700 Da) than in the starting 

materials (514 Da and 435 Da for POPL and PINL respectively). The reason for the low 

Mn values lies in the higher solubility in DMF of the low molecular weight fractions in the 

samples that may correspond to partially degraded cellulose residues after enzymatic 

hydrolysis. Apparent mass values in the crude reaction mixtures are more realistic 
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because of the total solubility of the samples consisting mainly of poly-(hydroxy)-aromatic 

ethers (Figure 2, Figure S4). SEC analysis showed the evolution of BCD with reaction 

time. When BCD of POPL was run at 200 ºC it could be observed that mass distribution 

shifted to lower molecular weights (Figure 2, left) at longer reaction times. Two maxima 

were observed at apparent masses of 500 Da and 250 Da, whose relative intensity also 

increased with reaction time.

Figure 2. Normalized SEC for BCD of POPL at left) 200 ºC and right) 300 ºC

An increase of the relative intensity of the signal at ca. 130 Da was also observed, 

corresponding to monomers with longer reaction time. A similar profile was noticed after 

ramping (0 min) when the reaction was run at 300 ºC. Longer reaction times produced a 
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slight increase of the peak at 250 Da and a broadening of the curve at higher molecular 

weight. 

DOSY calibration

Some studies on small organometallic molecules and aggregates had already 

correlated the diffusion coefficient (D) of diffusates with its molecular weight (MW) as 

MW1/3,29 but this relation can only be used in small molecules.48 However, the molecular 

weight of phenolic poly-(hydroxy)- ethers in BCD reaction mixtures are in the range of 

200-1500 Da, according to SEC measurements. Assuming a spherical shape for 

oligomers, log D and log MW must correlate according to the Mark-Houwink equation,36 

as has been already reported for a series of -O-4 vanillin oligomers.23 

DOSY spectroscopy is sensitive to the concentration of the diffusate, artifacts arising 

from changes of viscosity or convection phenomena in the solvent,29 which makes the 

determination of molecular weight not trivial. Therefore, all experiments were made using 

DMSO-d6 at 300 K and at a fixed 1 % w/v diffusate concentration. These conditions 

prevented convection phenomena in the solvent and allowed free diffusion of the analyte. 

In a similar approach to that of SEC,17 two calibration curves for log MW vs log D were 
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prepared according to different diffusate-solvent interactions. The first one corresponded 

to linear polystyrene (PS) standards used in SEC calibrations. The second one 

corresponded to poliethylenglycol (PEG),49 phenolic monomers, 2-phenoxy-1-

phenylethanol (PE) and guaiacylglycerol--guaiacyl ether (VG). The first curve accounted 

for intermolecular dispersion forces whereas the second accounted for strong Van der 

Waals interactions and, occasionally, hydrogen bonds with residual water. 

Excellent correlation was found using PS (r2= 0.999, see SI). In the case of the second 

curve, correlation was somewhat worse (r2= 0.988, see SI) with a loss in linearity in the 

monomeric phenol region. Small changes due to interaction with residual H2O must be 

taken into account in low molecular weight phenols. Indeed, NOESY measurements in 

phenol, vanillin and guaiacol showed weak interaction between one orto-hydrogen to the 

hydroxy group and residual water in the deuterated solvent (Figure 3 and Figure S6). 

These interactions produced an increase in the hydrodynamic radii of these molecules. 

Thus, when  these water molecules were included in the molecular weights of the 

monomeric phenols excellent correlation between log D and log MW was observed 

(r2=0.996, n=10, s.e,=0.040, F1,8 = 1880.3, p<0.001, SI.8). This last curve permits the 
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estimation of molecular weight with less than 6% error in discrete molecules and lower 

than 15% for PEG polymers (MW ≤ 8000 Da).

Figure 3. NOESY spectra for phenol in DMSO-d6

DOSY analysis

The most important feature of DOSY spectrometry is that it permits the diffusion 

coefficient and the chemical shifts to be correlated. Therefore, DOSY allows using 

exclusively those signals corresponding to the aromatic hydrogen atoms to determine the 

molecular weight of the aromatic oligomeric fraction, disregarding other signals that are 
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not interesting (i.e. aliphatic signals). This is particularly advantageous in our case, where 

the starting solids presented an important amount of saccharides that may produce side-

products.

PINL, POPL and six representative reaction mixtures from BCD were analyzed using 

DOSY (Table 2). Average diffusion coefficients were calculated by fitting the Stejskal-

Tanner equation using the intensity of the area of the integration corresponding to the 

aromatic region and two aliphatic regions (Table S.3). Therefore, apparent mass values 

should correspond to Mn values obtained by SEC. Experimental and predicted areas 

showed excellent correlations (r2> 0.99, Table S3) in all cases except in the case of POPL 

due to the low solubility of the sample. 

The solubility of PINL and POPL in DMSO-d6 was very low, which complicated the 

analysis. Acetylation of both solids and dissolution in DMSO-d6 at 75 ºC overnight was 

inefficient, as part of the solids remained insoluble. Most of the signals in DOSY spectra 

corresponded to aliphatic hydrogen atoms. Aliphatic signals in the range of 4.0- 5.0 ppm 

were assigned to the cellulosic fraction that is already present in the lignin fraction and 

that cannot be discriminated using SEC. It is worth noting that these traces presented 
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significantly lower apparent masses than those from the aromatic region. Apparent mass 

in the aromatic region in POPL (Table 2) was determined graphically as the signal 

integration was very low and fitting was inconsistent. Apparent masses in the aromatic 

region for PINL were 1274 Da and 928 Da for PS, and PEG-phenols (PS, PEG) calibration 

curves respectively. In the case of POPL, apparent masses in the aromatic region were 

7239 Da, and 6664 Da respectively. These values are much higher than those measured 

by SEC in PINL and POPL (435 Da and 514 Da respectively) which is due to the higher 

solubility of the aliphatic and the saccharide fractions. Apparent masses for the 

saccharide region (4.5 – 3.0 ppm) ranged from 443 Da and 6132 Da in POPL and from 

250 Da to 2200 Da in PINL which is in line with the SEC measurements (Figure 2 and 

Figure S4). 

Diffusion coefficients for samples 1-6 were higher than those measured in POPL, PINL 

(Table 2, Figure 4) and PEG-1500 too, evidencing lignin depolymerization. At first sight, 

it could also be observed that diffusion coefficients are strongly different in the aromatic 

and in the aliphatic regions of the spectra. Thus, in the case of 1 diffusion projections 

associated to aromatic 1H NMR signals turned up in the range of -9.46 log(m2/s) and -
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9.92 log(m2/s), thus in the range of 242 Da – 1300 Da and 146 Da-950 Da according to 

PS and PEG. Diffusion coefficients were averaged to -9.73 log(m2/s) resulting in apparent 

masses of 658 Da (PS), which are in the same order of magnitude as those measured by 

SEC, 719 Da. Some of the traces presented similar log D as monomeric phenols or PE, 

that is to say, in the range of phenolic monomers and dimers (Figure 4). Signals 

corresponding to proton exchange with residual water could also be observed at low fields 

and -9.35 log (m2/s).

Figure 4. Left) DOSY for POPL (red) and sample 1 (blue). Right) DOSY for sample 1. 

Green and blue figures correspond to molecular weights obtained with PEG and PS 
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calibration respectively. This spectrum was obtained after fitting the intensities of 

manually defined integration regions.

A similar observation can be made for sample 4 (Figure 5). When the aromatic traces 

were analyzed it could be observed that most diffusion traces for the aromatic moieties 

ranged between 455 Da and 1045 Da according to PS calibration. Traces corresponding 

to low apparent masses, 250 Da to 340 Da were observed in samples 3 and 4, which 

reveals the presence of dimeric and even monomeric fractions according to PEG 

calibration. The average apparent mass, which can be compared with Mn measured by 

SEC, in the aromatic region corresponded to 824 Da and 592 Da (PS, PEG) for 2, 648 

Da and 453 Da for 3 and 513 Da, 349 Da for 4, which is, at least, in range with the values 

measured by SEC. Average apparent masses of 764 Da and 544 Da (PS, PEG) were 

found for sample 6 obtained from PINL with masses ranging between 565 Da and 1163 Da. 

Nevertheless, in sample 6 traces with apparent masses under 565 Da were less intense 

than in 1, 3 and 4, which suggests that lignin depolymerization proceeded to a greater 

extent in poplar derived lignin, POPL, under these conditions. SEC analysis for 6 also 
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showed a broad distribution with most of the oligomers at masses beyond 800 Da (Figure 

2 and Figure S4).

Figure 5. DOSY spectra for top left) sample 3; top right) sample 4; bottom left) sample 6; 

bottom right) sample 5. Green and blue figures correspond to molecular weights obtained 

with PEG and PS calibration respectively.
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POPL was also reacted under microwave irradiation at 200 ºC during 60 min, sample 5, 

and almost negligible monomer yields were measured. Apparent masses determined by 

SEC were in line with the former although two prominent peaks turned up in SEC at 

120 Da and 190 Da. It is noteworthy, that no signal was detected in the aromatic region 

by HSQC nor by HSQC-TOCSY, but in the aliphatic region, cross-peaks corresponding 

to C from carbonyl and aliphatic chains were predominant (Figure S5). When sample 5 

was analyzed using DOSY, it was difficult to find representative diffusion projections in 

the aromatic region (Figure 5). These aromatic traces presented apparent values in the 

range of 924 Da to 1730 Da showing that lignin depolymerization did not occur under 

these conditions. Diffusion traces in the aliphatic region were, however, intense with 

apparent masses ranging from 87 Da to 376 Da according to PEG, which showed that, 

although no depolymerization of lignin took place, degradation of the cellulosic fraction 

did. Samples 2, 3 and 5 were derivatized with 2-chloro-4,4,5,5-tetramethyl-1,3,2-

dioxaphospholane (TMDP) and analyzed using 31P NMR (Figure S7) and it could be seen 

that the amount of aromatic hydroxyl groups in 5 is much lower than in samples 2 and 3, 
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which confirmed the low amount of phenolic –OH in the reaction mixture under in the 

reaction mixture after microwave irradiation, as suggested by DOSY and HSQC-TOCSY.

Samples 1-4 and 6 showed representative traces in the aliphatic region too. The 

diffusion coefficients were significantly higher than those of the aromatic region. This 

proved that the aliphatic traces were not part of the poly-(hydroxy)-aromatic ethers 

fraction but of the degradation products from the cellulosic residue. Apparent masses for 

the aliphatic traces were, in most of the cases, in the range of 200 Da- 500 Da according 

to PS calibration or 130 Da – 300 Da according to PEG calibration. Integration values in 

the 1H NMR spectra are higher in this region than in the aromatic, which suggests that 

peeling reaction of saccharides is more intense than lignin depolymerization in the starting 

solids. Hence, DOSY spectra can be interpreted, as in the case of SEC chromatograms, 

as a bimodal distribution. Furthermore, DOSY allowed selective determination of the 

molecular masses corresponding to the reaction products providing additional information. 

This is particularly important when dealing with downstream biorefinery lignins whose 

purity is relatively low. 
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Apparent mass values measured by DOSY were, in samples 1-4 and 6, in the same 

range than Mn values determined by SEC. Small differences can be found between the 

apparent masses of the aromatic regions which can be attributed to the presence of the 

degraded saccharide fraction and the different nature of the used techniques. Indeed, 

these differences can even be found using the well-established SEC with refraction index 

detectors18 as a consequence of the calibration with PS.17
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SEC Aromatic region Aliphatic region 1 Aliphatic region

Sampl
e

T 
(ºC
)

t 
(min
)

Mn 

(Da
)

Mw 

(Da)
n

PS 
(Da)

PEG 
(Da)

1010·D 
(m2/s)

PS 
(Da)

PEG 
(Da)

1010·D 
(m2/s)

PS 
(Da)

PEG 
(Da)

1010·D 
(m2/s)

POPLa
- -

435
295
0

6.8 7239 6664 0.421 4102 3540 0.599 292 186 3.09

1
20
0

240
719

105
1

1.5 658 461 1.86 482 326 2.26 418 278 2.47

2
20
0

360
785

111
2

1.4 824 592 1.62 330 213 2.86 428 285 2.43

3
25
0

60
869

176
8

2 648 453 1.88 353 231 2.74 401 265 2.53

4
30
0

10
615 959 1.6 513 349 2.18 345 225 2.78 389 256 2.58
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3

5b
20
0

30
874

124
6

1.4 - 94 53 6.22 248 156 3.41

PINLa
- -

514
521
6

10.
1

1274 928 1.24 681 478 1.83 242 151 3.47

6
20
0

210
720

117
3

1.6 764 544 1.70 494 335 2.23 520 355 2.16

a) Acetylated sample was used in NMR measurements. b) Sample was prepared using microwave irradiation during 60 
minutes

Table 2. Apparent masses estimated by SEC and NMR DOSY for the starting solids and samples 1-6 

Page 33 of 56

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3
4

DOSY spectroscopy is a valuable tool for the selective determination of apparent 

masses in the different fractions arising from BCD of downstream biorefinery lignins. 

Nevertheless, as in the case of SEC, attention must be paid to diffusate-diffusate and 

diffusate-solvent interactions which are of paramount importance. Nice correlations 

between log D and log MW were found when the nature of the diffusate-solvent 

interactions are similar (ie. PS and phenols-PEG). Discrepancies in the mass values were 

found in low mass molecules because of significant differences in the hydrodynamic radii 

that arise from the interaction of monomeric phenols with the residual H2O in the sample 

through the formation of hydrogen bonds. Despite the good correlation found for 

monomeric phenols and PEG, the apparent mass values provided by DOSY for most 

reaction mixtures are closer to Mn when PS calibration was used. The increase in the 

molecular weight of the poly-(hydroxy)-aromatic chain renders these diffusates more 

hydrophobic and therefore more similar to PS than to PEG or monomeric phenols with 

regard to their interaction with DMSO.

CONCLUSIONS
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Careful optimization of BCD reaction conditions provided excellent phenolic monomer 

yields (> 9.7 w%) at low reaction temperature (200 ºC) using 25:1 base/solid ratio 

Phenolic monomer distribution were tuned with temperature and reaction time. DOSY 

spectroscopy provided excellent log D vs log MW correlation in standards with similar 

intermolecular interactions and was successfully used in the determination of the 

molecular weight of poly-(hydroxy)-aromatic ethers in lignins and bio-oil samples. 

Additional information provided by DOSY could be invaluable in order to discriminate the 

molecular weight of different fractions in lignins and the bio-oils arising from BCD. 

ASSOCIATED CONTENT
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DOSY for PEG and monomeric phenols, VG and PE. · NOESY spectra for phenol, 
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Scheme 1 
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Figure 1. Monomer distribution and overall yields (w%) in BCD of POPL in the range 150 ºC -250 ºC. Overall 
yields correspond to the maximum yield at a given temperatures. Error bars are given at 95 % confidence 

level. 
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Figure 2. Normalized SEC for BCD of POPL at left) 200 ºC and right) 300 ºC 
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Figure 3. NOESY spectra for phenol in DMSO-d6 
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Figure 4. Left) DOSY for POPL (red) and sample 1 (blue). Right) DOSY for sample 1. Green and blue figures 
correspond to molecular weights obtained with PEG and PS calibration respectively. This spectrum was 

obtained after fitting the intensities of manually defined integration regions. 
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Figure 5. DOSY spectra for top left) sample 3; top right) sample 4; bottom left) sample 6; bottom right) 
sample 5. Green and blue figures correspond to molecular weights obtained with PEG and PS calibration 

respectively. 
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1. Monomer Groups and retention times
Table S1. Monomer groups and retention times.

Group Compound Retention time (min)

Internal Standard Bromobenzene 8.67
Phenols Phenol 9.22
Phenols o-cresol 11.06
Phenols p-cresol/m-cresol 11.55/11.88
Guaiacols Guaiacylglycerol--guaiacyl ether 12.12
Vanillins Vanillic acid 12.12
Guaiacols Guaiacol 12.26
Phenols 2-ethylphenol 13.22
Phenols 3-ethylphenol 14.03
Phenols 4-ethylphenol 14.10
Catechols Catechol 14.89
Others 3,4-dimethoxyphenol 14.90
Guaicols 4-methylguaiacol 14.95
Guaicols 4-ethylguaiacol 17.18
Catechols 4-methylcatechol 17.33
Syringols Syringic acid 18.83
Syringols 2,6 dimethoxyphenol (Syringol) 18.88
Guaicols 4-Allylguaiacol, Eugenol 19.12
Phenols 4-hydroxybenzaldehyde 19.25
Guaicols 4-Propylguaiacol 19.33
Catechols 4-ethylcatechol 19.57
Vanillins Vanillin 20.04
Others Diphenylether 20.43
Guaicols Guaiacylketone 22.40
Vanillins Syringaldehyde 24.50
Vanillins Acetosyringone 25.60
Syringols 4-methylsyringol 20.82
Vanillins Acetovanillin 21.79
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2. Optimization of the BCD reaction conditions

Table S2. Optimization of the BCD reaction conditions using 0.25 M NaOH (1 % w/v; pH 

13.4) and NaOH/ POPL 25:1. Error is given at 95 % confidence level.

Tª t 
(min)

Soluble 
fraction 
(%w)

Monomer 
(%w yield)

Phenol's 
(%)

Guaiacol's 
(%)

Catechol’s 
(%)

Syringol's 
(%)

Vanillin's 
(%)

150 60 58 2.2 23 20 0 45 14
120 63 2.3 27 21 0 40 13
240 32 3.2 18 18 0 48 15

22.7 ± 4.0 19.4 ± 1.5 0.0 43.9 ± 3.9 13.8 ± 1.0
175 0 53 1.4 25 16 0 37 21
175 60 61 4.9 24 29 0 39 7
175 120 67 6.8 24 26 0 40 10
175 180 67 8.2 20 29 0 37 9
175 240 39 5.1 27 27 0 37 8
175 300 50 7.1 27 30 0 34 11

24.5 ± 2.2 26.1 ± 4.2 0.0 37.4 ± 2.0 11.1 ± 4.2
200 0 42 3.1 26 26 0 37 10
200 60 36 6.4 19 36 0 37 8
200 120 40 5.4 22 37 0 34 7
200 180 41 6.6 24 38 0 31 8
200 240 59 9.1 22 36 0 31 11
200 300 61 9.5 23 38 0 29 10
200 360 64 9.7 19 37 0 34 9
200 480 42 6.4 28 44 0 21 7
200 1200 34 5.4 23 48 0 23 6

22.8 ± 1.9 37.9 ± 3.9 0.0 30.8 ± 3.7 8.5 ± 1.1
200 

(PINL) 240 4.1 6 81 0 0 3

225 60 67 7.8 22 41 0 31 7
225 60 51 8.2 22 41 1 29 7
225 180 42 6.6 25 45 0 23 7
225 240 54 7.2 20 43 0 27 11

22.3 ± 2.1 42.2 ± 1.7 0.2 ± 0.4 27.6 ± 3.1 7.8 ± 1.9
250 60 40 6.5 30 48 0 16 6
250 120 48 5.1 27 48 0 18 7

28.1 ± 2.3 48.4 ± 0.1 0.0 16.8 ± 2.0 6.8 ± 0.5
275 0 51 7.5 19 40 0 31 9
275 60 57 4.9 43 35 8 5 10
275 120 36 2.4 59 26 6 3 6
275 240 58 5.9 65 19 17 0 0
300 0 40 4.4 50 33 6 2 9
300 60 35 3.2 55 18 15 5 6



S5

300 120 44 3.4 66 18 12 3 0
300 240 46 2.5 71 14 14 0 0

.

S accounts for syringyl groups; G account for guaiacyl groups; P accounts for phenyl units
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3. HSQC-NMR spectra and SEC chromatograms

Figure S1. HSQC spectra for acetylated POPL (top), acetylated PINL (middle) and HSQC-

TOCSY for PINL 



S7



S8

3. HSQC-NMR spectra and SEC chromatograms

Figure S2. HSQC for sample 1 (top) and sample 6 (bottom)
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3. HSQC-NMR spectra and SEC chromatograms

Figure S3. top) SEC for POPL; bottom) SEC for PINL
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3. HSQC-NMR spectra and SEC chromatograms

Figure S4. SEC for BCD of PINL at 200 ºC for 240 min, sample 6.

80160320640128025605120 Molecular weight (Da)
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3. HSQC-NMR spectra and SEC chromatograms

Figure S5. Normalized SEC (top) and HSQC-TOCSY(bottom) for BCD of POPL at 200 ºC 

for 30 min under microwave irradiation., sample 5

80160320640128025605120
Molecular weight (Da)
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4. Calibration curve of logMW and logD using DOSY for PS 

Compound MW (Da) log MW log D 
(m2·s-1)

DMSO 78 1.892 -9.155
PS 370 370 2.568 -9.586
PS 1300 1300 3.114 -9.900
PS 2600 2600 3.415 -10.109
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5. Calibration curve of log MW and log D using DOSY for PEG and monomeric 

phenols, VG and PE.

MW 
(Da)

LogD 
(m2/s)

log MW 
real

Predicted 
MW 

MW 
error

MW % 
error

Guaiacol+H2O 142 -9.440 2.153 133.4 -8.7 -6.1
Vanillin+H2O 170 -9.509 2.231 177.9 7.7 4.5
Phenol+H2O 112 -9.386 2.050 106.9 -5.2 -4.6

Syringol 154 -9.460 2.188 145.2 -8.9 -5.8
VG 320 -9.647 2.506 314.9 -5.5 -1.7
PE 214 -9.543 2.331 204.7 -9.6 -4.5

PEG200 200 -9.569 2.301 228.0 28.0 14.0
PEG600 600 -9.836 2.778 688.2 88.2 14.7
PEG1500 1500 -10.044 3.176 1627.5 127.5 8.5
PEG8000 8000 -10.403 3.903 7188.5 -811.5 -10.1

Multiple Linear Regression lunes, 18 de noviembre de 2019 16:21:21

Data source: Data 1 in Lignina2_calibracionDOSY_refDMSO.JNB

Log MW5 = -14,837 - (1,797 LogDdmso) 

N  = 10 Missing Observations = 1 

R = 0,998 Rsqr = 0,996 Adj Rsqr = 0,995

Standard Error of Estimate = 0,040 
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 Coefficient Std. Error t   P VIF
Constant -14,837 0,401 -36,960 <0,001
LogDdmso -1,797 0,0414 -43,363 <0,001 1,000

Analysis of Variance:
  DF  SS  MS   F   P 
Regression 1 3,013 3,013 1880,343 <0,001
Residual 8 0,0128 0,00160
Total 9 3,025 0,336

The dependent variable Col 7 can be predicted from a linear combination of the independent variables:
   P 
LogDdmso<0,001

All independent variables appear to contribute to predicting LogDdmso (P < 0.05). 
Normality Test (Shapiro-Wilk) Passed (P = 0,189)
Constant Variance Test (Spearman Rank Correlation): Passed (P = 0,199)
Power of performed test with alpha = 0,050: 1,000
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6. NOESY spectra for phenol (top) vanillin (middle) and guaiacol (bottom)
Figure S6. NOESY spectra for phenol (top) vanillin (middle) and guaiacol (bottom).
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7. Integration regions used in the determination of averaged diffusion coefficients

𝑙𝑛( 𝐼
𝐼0) =  ― 𝛾2𝛿2𝐺𝑧

2𝐷[∆ +  (4𝛿
3 + 3𝜏/2)]

I0: intensity at very low gradient value
I: intensity at a given gradient value

: gyromagnetic ratio

: length of the bipolar gradient pulse
Gz: gradient strength

: time between pulses (d20)

: gradient ringdown delay
Table S3. Integration regions used in the determination of averaged diffusion coefficients. R2 
correspond to the correlation between experimental and calculated values for I.

Aromatic Aliphatic 1 Aliphatic 2
Sample Chemical shift (ppm) R2 Chemical shift (ppm) R2 Chemical shift (ppm) R2

POPL 7.474 - 6.357 0.510 3.946 - 3.609 0.796 2.384 - 1.104 0.990
1 7.690 - 6.842 0.997 2.435 - 2.017 0.997 1.617 - 0.946 0.998
2 7.649 - 6.249 0.999 2.426 - 1.951 0.984 1.873 - 0.831 0.996
3 7.730 - 6.155 0.998 2.402 - 1.958 0.994 nm
4 7.663 - 6.33 1.000 2.453 - 1.951 0.995 1.851 - 0.726 0.999
5 nm nm 3.178 - 2.720 0.999 2.384 - 0.593 0.997

PINL 8.134 - 6.424 0.991 4.714 - 3.730 0.990 2.249 - 0.647 0.987
6 7.717 - 6.31 0.999 2.411 - 1.966 0.997 1.832 - 0.74 0.999
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8. 31P NMR spectra for derivatized samples
Figure S7. 31P spectra for derivatized samples 3 (top), 2 (middle),and 5 (bottom)
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