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Abstract. Some aggregation functions that are not necessarily associative, namely
overlap and grouping functions, have called the attention of many researchers in
the recent past. This is probably due to the fact that they are a richer class of
operators whenever one compares with other classes of aggregation functions,
such as t-norms and t-conorms, respectively. In the present work we introduce a
more general proposal for disjunctive n-ary aggregation functions entitled gen-
eral grouping functions, in order to be used in problems that admit n dimensional
inputs in a more flexible manner, allowing their application in different contexts.
We present some new interesting results, like the characterization of that operator
and also provide different construction methods.

Keywords: Grouping functions · n-dimensional grouping functions · General
grouping functions · General overlap functions.

1 Introduction

Overlap functions are a kind of aggregation functions [3] that are not required to be
associative, and they were introduced by Bustince et al. in [4] to measure the degree
of overlapping between two classes or objects. Grouping functions are the dual notion
of overlap function. They were introduced by Bustince et al. [5] in order to express the
measure of the amount of evidence in favor of either of two alternatives when perform-
ing pairwise comparisons [1] in decision making based on fuzzy preference relations
[6]. They have also been used as the disjunction operator in some important problems,
such as image thresholding [17] and the construction of a class of implication functions
for the generation of fuzzy subsethood and entropy measures [8].
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Overlap and grouping have been largely studied since they are richer than t-norms
and t-conorms [18], respectively, in many aspects, considering, for example, some
properties like idempotency, homogeneity, and, mainly, the self-closeness feature with
respect to the convex sum and the aggregation by generalized composition of over-
lap/grouping functions [9,10,12,7]. For example, there is just one idempotent t-conorm
(namely, the maximum t-conorm) and two homogeneous t-conorms (namely, the max-
imum and the probabilistic sum of t-conorms). On the contrary, there are uncountable
numbers of idempotent, as well as homogenous, grouping functions [2,13]. For com-
parisons among properties of grouping functions and t-conorms, see [2,5,17]

However, grouping functions are bivariate functions. Since they may be non asso-
ciative, they can only be applied in bi-dimensional problems (that is, when just two
classes or objects are considered). In order to solve this drawback, Gómez et al. [16] in-
troduced the concept of n-dimensional grouping functions, with an application to fuzzy
community detection.

Recently, De Miguel et al. [20] introduced general overlap functions, by relaxing
some boundary conditions, in order to apply to an n-ary problem, namely, fuzzy rule
based classification systems, more specifically, in the determination of the matching
degree in the fuzzy reasoning method. Then, inspired on the paper by De Miguel et al.
[20], the objective of this present paper is to introduce the concept of general grouping
functions, providing their characterization and different construction methods. The aim
is to define the theoretical basis of a tool that can be used to express the measure of
the amount of evidence in favor of one of multiple alternatives when performing n-
ary comparisons in multi-criteria decision making based on n-ary fuzzy heterogeneous,
incomplete preference relations [14,19,26], which we let for future work.

The paper is organized as follows. Section 2 presents some preliminary concepts. In
Sect. 3, we define general grouping functions, studying some properties. In Sect. 4, we
study the characterization of general grouping functions, providing some construction
methods. Section 5 is the Conclusion.

2 Preliminary concepts

In this section, we highlight some relevant concepts used in this work.

Definition 1. A function N : [0, 1] → [0, 1] is a fuzzy negation if it holds: (N1) N is
antitonic, i.e. N(x) ≤ N(y) whenever y ≤ x and (N2) N(0) = 1 and N(1) = 0.

Definition 2. [3] An n-ary aggregation function is a mapping A : [0, 1]n → [0, 1] sat-
isfying: (A1) A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1; (A2) increasingness: for each
i ∈ {1, . . . , n}, if xi ≤ y then A(x1, . . . , xn) ≤ A(x1, . . . , xi−1, y, xi+1, . . . , xn).

Definition 3. An n-ary aggregation functionA : [0, 1]n → [0, 1] is called conjunctive if,
for any #„x = (x1, . . . , xn) ∈ [0, 1]n, it holds thatA( #„x ) ≤ min( #„x ) = min{x1, . . . , xn}.
And A is called disjunctive if, for any #„x = (x1, . . . , xn) ∈ [0, 1]n, it holds that
A( #„x ) ≥ max( #„x ) = max{x1, . . . , xn}.

Definition 4. [4] A binary functionO : [0, 1]2 → [0, 1] is said to be an overlap function
if it satisfies the following conditions, for all x, y, z ∈ [0, 1]:



General grouping functions 3

(O1) O(x, y) = O(y, x);
(O2) O(x, y) = 0 if and only if x = 0 or y = 0;
(O3) O(x, y) = 1 if and only if x = y = 1;
(O4) if x ≤ y then O(x, z) ≤ O(y, z);
(O5) O is continuous;

Definition 5. [5] A binary functionG : [0, 1]2 → [0, 1] is said to be a grouping function
if it satisfies the following conditions, for all x, y, z ∈ [0, 1]:

(G1) G(x, y) = G(y, x);
(G2) G(x, y) = 0 if and only if x = y = 0;
(G3) G(x, y) = 1 if and only if x = 1 or y = 1;
(G4) If x ≤ y then G(x, z) ≤ G(y, z);
(G5) G is continuous;

For all properties and related concepts on overlap functions and grouping functions,
see [2,5,9,11,12,21,23,24,25].

Definition 6. [22] A function G : [0, 1]2 → [0, 1] is a 0-grouping function if the second
condition in Def. 5 is replaced by: (G2′) If x = y = 0 then G(x, y) = 0. Analogously,
a function G : [0, 1]2 → [0, 1] is a 1-grouping function if the third condition in Def. 5 is
replaced by: (G3′) If x = 1 or y = 1 then G(x, y) = 1.

Both notions were extended in several ways and some of them are presented in the
following definitions.

Definition 7. [15] An n-ary function G : [0, 1]n → [0, 1] is called an n-dimensional
grouping function if for all #„x = (x1, ..., xn) ∈ [0, 1]n:

1. G is commutative;
2. G( #„x ) = 0 if and only if xi = 0, for all i = 1, . . . , n;
3. G( #„x ) = 1 if and only if there exists i ∈ {1, . . . , n} with xi = 1;
4. G is increasing;
5. G is continuous.

Definition 8. [20] A function GO : [0, 1]n → [0, 1] is said to be a general overlap
function if it satisfies the following conditions, for all #„x = (x1, . . . , xn) ∈ [0, 1]n:

(GO1) GO is commutative;

(GO2) If
n∏
i=1

xi = 0 then GO( #„x ) = 0;

(GO3) If
n∏
i=1

xi = 1 then GO( #„x ) = 1;

(GO4) GO is increasing;
(GO5) GO is continuous.
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3 General grouping functions

Following the ideas given in [20], we can also generalize the idea of general group-
ing functions as follows.

Definition 9. A function GG : [0, 1]n → [0, 1] is called a general grouping function if
the following conditions hold, for all #„x = (x1, . . . , xn) ∈ [0, 1]n:

(GG1) GG is commutative;

(GG2) If
n∑
i=1

xi = 0 then GG( #„x ) = 0;

(GG3) If there exists i ∈ {1, . . . , n} such that xi = 1 then GG( #„x ) = 1;
(GG4) GG is increasing;
(GG5) GG is continuous.

Note that (GG2) is the same of saying that 0 is an anhilator of the general grouping
function GG.

Proposition 1. If G : [0, 1]n → [0, 1] is an n-dimensional grouping function, then G is
also a general grouping function.

Proof. Straighforward. ut

From this proposition, we can conclude that the concept of general grouping func-
tions is a generalization of n-dimensional grouping functions, which on its turn is a
generalization of the concepts of 0-grouping functions and 1-grouping functions.

Example 1. 1. Every grouping function G : [0, 1]2 → [0, 1] is a general grouping
function, but the converse does not hold.

2. The function GG(x, y) = min{1, 2 − (1 − x)2 − (1 − y)2} is a general grouping
function, but it is not a bidimensional grouping function, since GG(0.5, 0.5) = 1.

3. Consider G(x, y) = max{1− (1− x)p, 1− (1− y)p}, for p > 0 and SL(x, y) =
min{1, x + y}. Then, the function GGSL(x, y) = G(x, y)SL(x, y) is a general
grouping function.

4. Take any grouping function G, and a continuous t-conorm S. Then, the gener-
alization of the previous item is the binary general grouping function given by:
GG(x, y) = G(x, y)S(x, y)

5. Other examples are:

Prod S Luk(x1, . . . , xn) =

(
1−

n∏
i=1

(1− xi)

)
∗

(
min

{
n∑
i=1

xi, 1

})

GM S Luk(x1, . . . , xn) =

1− n

√√√√ n∏
i=1

(1− xi)

 ∗(min

{
n∑
i=1

xi, 1

})
.

The generalization of the third item of Example 1 can be seen as follows.

Proposition 2. Take any grouping function G, and any t-conorm S. Then, the binary
general grouping function given by: GG(x, y) = G(x, y)S(x, y).
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Proposition 3. Let F : [0, 1]n → [0, 1] be a commutative and continuous aggregation
function. Then the following statements hold:

(i) If F is disjunctive, then F is a general grouping function.
(ii) IfF is conjunctive, thenF is neither a general grouping function nor an n-dimensional

grouping function.

Proof. Consider a commutative and continuous aggregation function F : [0, 1]n →
[0, 1]. It follows that:
(i) Since F is commutative (GG1), continuous (GG5) and clearly increasing (GG4), then
it remains to prove the following:

(GG2) Suppose that
n∑
i=1

xi = 0. Then, since F is an aggregation function, it holds that

F (0, . . . , 0) = 0.
(GG3) Suppose that, for some #„x = (x1, . . . , xn) ∈ [0, 1]n, there exists i ∈ {1, . . . , n}
such that xi = 1. Then, sinceF is disjunctive, thenF ( #„x ) ≥ max{x1, . . . , 1, . . . , xn} =
1, which means that F ( #„x ) = 1.
(ii) Suppose that F is a conjunctive aggregation function and it is either a general
grouping function or an n-dimensional grouping function. Then, by either (GG3) or
(G3), if for some #„x = (x1 . . . , xn) ∈ [0, 1]n, there exists i ∈ {1, . . . , n} such that
xi = 1, then F ( #„x ) = 1. Take #„x = (1, 0 . . . , 0), it follows that F (1, 0 . . . , 0) = 1 =
max{1, 0 . . . , 0} 6≤ 0 = min{1, 0 . . . , 0}, which is a contradiction with the conjunctive
property. Thus, one concludes that F is neither a general grouping function nor an n-
dimensional grouping function. ut

We say that an element a ∈ [0, 1] is a neutral element of GG if for each x ∈ [0, 1],
GG(x, a, . . . , a︸ ︷︷ ︸

(n−1)

) = x.

Proposition 4. Let GG : [0, 1]n → [0, 1] be a general grouping function with a neutral
element a ∈ [0, 1]. Then, a = 0 if and only if GG satisfies, for all #„x = (x1, . . . , xn) ∈
[0, 1]n, the following condition:

(GG2′) If GG( #„x ) = 0, then
n∑
i=1

xi = 0.

Proof. (⇒) Suppose that (i) the neutral element of GG is a = 0 and (ii) GG(x1, . . . , xn)
= 0. Then, by (i), one has that, for each x1 ∈ [0, 1], it holds that x1 = GG(x1, 0 . . . , 0).
By (ii) and since GG is increasing, it follows that

x1 = GG(x1, 0 . . . , 0) ≤ GG(x1, . . . , xn) = 0.

Similarly, one shows that x2, . . . , xn = 0, that is
n∑
i=1

xi = 0.

(⇐) Suppose that GG satisfies (GG2′) and that GG(x1, . . . , xn) = 0, for (x1, . . . , xn) ∈
[0, 1]n. Then, by (GG2′), it holds that

n∑
i=1

xi = 0. Since a is the neutral element of GG,

one has that GG(0, a, . . . , a) = 0, which means that a = 0, by (GG2′). ut
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Remark 1. Observe that the result stated by Proposition 4 does not mean that when a
general general grouping function has a neutral element, then it is necessarily equal
to 0. In fact, for each a ∈ (0, 1), the function GG : [0, 1]n → [0, 1], for all #„x =
(x1 . . . , xn) ∈ [0, 1]n, defined by:

GG( #„x ) =


min{ #„x}, if max{ #„x} ≤ a
max{ #„x}, if min{ #„x} ≥ a
min{ #„x }+max{ #„x }

(
1−min{ #„x }

)
−a

1−a , if min{ #„x} < a < max{ #„x}

is a general grouping function with a as neutral element.

Proposition 5. If 0 is the neutral element of a general grouping function GG : [0, 1]n →
[0, 1] and GG is idempotent, then GG is the maximum.

Proof. Since GG is idempotent and increasing in each argument, then one has that for
all #„x = (x1, . . . , xn) ∈ [0, 1]n: (1) GG(x1, . . . , xn) ≤ GG(max( #„x ), . . . ,max( #„x )) =
max{ #„x}. Then we have that xk = max{ #„x} for some k = 1, . . . , n; so we have
xk = GG(0, . . . , xk, . . . , 0) ≤ GG(x1, . . . , xk, . . . , xn) and then (2) GG(x1, . . . , xn) ≥
xk = max{ #„x}. So, from (1) and (2) one has that GG(x1, . . . , xn) = max{ #„x}, for each
#„x ∈ [0, 1]n. ut

3.1 General grouping functions on lattices

Following a similar procedure described in [20] for general overlap functions on
lattices, it is possible to characterize general grouping functions. In order to do that,
first we introduce some properties and notations.

Let us denote by Gn the set of all general grouping functions. Define the ordering
relation ≤Gn∈ Gn ×Gn, for all GG1,GG2 ∈ Gn by:

GG1 ≤Gn GG2 ⇔ GG1( #„x ) ≤ GG2( #„x ), for all #„x = (x1, . . . , xn) ∈ [0, 1]n.

The supremum and infimum of two arbitrary general grouping functions GG1,GG2 ∈
Gn are, respectively, the general grouping functions GG1 ∨GG2,GG1 ∧GG2 ∈ Gn, de-
fined, for all #„x = (x1, . . . , xn) ∈ [0, 1]n by: GG1∨GG2( #„x ) = max{GG1( #„x ),GG2( #„x )}
and GG1 ∧ GG2( #„x ) = min{GG1( #„x ),GG2( #„x )}.

The following result is immediate:

Theorem 1. The ordered set (Gn,≤Gn) is a lattice.

Remark 2. Note that the supremum of the lattice (Gn,≤Gn) is given, for all #„x =
(x1, . . . , xn) ∈ [0, 1]n, by:

GGsup(
#„x ) =

0, if
n∑
i=1

xi = 0

1, otherwise.

On the other hand, the infimum of (Gn,≤Gn) is given, for all #„x = (x1, . . . , xn) ∈
[0, 1]n, by:
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GGinf(
#„x ) =

{
1, if ∃i ∈ {1, . . . , n} : xi = 1

0, otherwise.
.

However, neither GGsup nor GGinf are general grouping functions, since they are not
continuous. Thus, in the lattice (Gn,≤Gn) there is no bottom neither top elements.
Then, similarly to general overlap functions, the lattice (Gn,≤Gn ) is not complete.

4 Characterization of General Grouping Functions and
Construction Methods

In this section we provide a characterization and some constructions methods for
general grouping functions.

Theorem 2. The mapping GG : [0, 1]n → [0, 1] is a general grouping function if and
only if

GG( #„x ) =
f( #„x )

f( #„x ) + h( #„x )
(1)

for some f, h : [0, 1]n → [0, 1] the following properties hold, for all #„x ∈ [0, 1]n:

(i) f and h are commutative;
(ii) f is increasing and h is decreasing.

(iii) If
n∑
i=1

xi = 0, then f( #„x ) = 0.

(iv) If there exists i ∈ {1, . . . , n} such that xi = 1, then h( #„x ) = 0.
(v) f and h are continuous.
(vi) f( #„x ) + h( #„x ) 6= 0 for any #„x ∈ [0, 1]n.

Proof. It follows that:
(⇒) Suppose that GG is a general grouping function, and take f( #„x ) = GG( #„x ) and
h( #„x ) = 1 − f( #„x ). Then one always have f( #„x ) + h( #„x ) 6= 0, and so Equation (1) is
well defined. Also, conditions (i)-(v) trivially hold.
(⇐) Consider f, h : [0, 1]n → [0, 1] satisfying conditions (i)-(v). We will show that GG
defined according to Equation (1) is a general grouping function. It is immediate that GG
is commutative (GG1) and continuous (GG5). To prove (GG2), notice that if

n∑
i=1

xi = 0

then f( #„x ) = 0 and thus GG( #„x ) = 0. Now, let us prove that (GG3) holds. For that,
observe that if there exists i ∈ {1, . . . , n} such that xi = 1, then h( #„x ) = 0, and, thus,
it is immediate that GG( #„x ) = 1. The proof of (GG4) is similar to [20, Theorem 3]. ut

Example 2. Observe that Theorem 2 provides a method for constructing general group-
ing functions. For example, take the maximum powered by p, defined by:

maxp( #„x ) = max1≤i≤n{xpi },

with p > 0. So, if we take the function Tmaxpα : [0, 1]n → [0, 1], called α-truncated
maximum powered by p, given, for all #„x ∈ [0, 1]n and α ∈ (0, 1), by:

Tmaxpα(
#„x ) =

{
0, if maxp( #„x ) ≤ α
maxp( #„x ), if maxp( #„x ) > α

(2)
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then it is clear that Tmaxpα is not continuous. However, one can consider the function
CTmaxpα,ε : [0, 1]

n → [0, 1], called the continuous truncated maximum powered by p,
for all #„x ∈ [0, 1]n, α ∈ [0, 1] and ε ∈ (0, α], which is defined by:

CTmaxpα,ε(
#„x ) =


0, if maxp( #„x ) ≤ α− ε
α
ε (maxp( #„x )− (α− ε)) , if α− ε < maxp( #„x ) < α

maxp( #„x ), if maxp( #„x ) ≥ α.
(3)

Observe that taking f = CTmaxpα,ε, then f satisfies conditions (i)-(iii) and (v) in
Theorem 2. Now, take h( #„x ) = min1≤i≤n{1 − xi}, which satisfies conditions (i)-(ii)
and (iv)-(v) required in Theorem 2. Thus, this assures that

GG( #„x ) =
CTmaxpα,ε(

#„x )

CTmaxpα,ε(
#„x ) + min1≤i≤n{1− xi}

is a general grouping function.

Remark 3. Observe that the maximum powered by p is an n-dimensional grouping
function [15] and that CTmaxpα,ε is a general grouping function. However, CTmaxpα,ε
is not an n-dimensional grouping function, for α − ε > 0, since CTmaxpα,ε(α −
ε, . . . , α− ε) = 0.

Corollary 1. Consider the functions f, h : [0, 1]n → [0, 1] and let GG : [0, 1]n → [0, 1]
be a general grouping function constructed according to Theorem 2, and taking into
account functions f and h. Then GG is idempotent if and only if, for all x ∈ [0, 1), it
holds that:

f(x, . . . , x) =
x

1− x
h(x, . . . , x).

Proof. (⇒) If GG is idempotent, then by Theorem 2 it holds that:

GG(x, . . . , x) = f(x, . . . , x)

f(x, . . . , x) + h(x, . . . , x)
= x.

It follows that: f(x, . . . , x) = x(f(x, . . . , x) + h(x, . . . , x))

(1− x)f(x, . . . , x) = x h(x, . . . , x)

f(x, . . . , x) =
x

1− x
h(x, . . . , x).

(⇐) It is immediate. ut

Example 3. Take the function αβ-truncated maximum powered by p, Tmaxpαβ : [0, 1]
n

→ [0, 1], for all #„x ∈ [0, 1]n; α, β ∈ (0, 1) and α < β, defined by:

Tmaxpαβ(
#„x ) =


0, maxp( #„x ) ≤ α
maxp( #„x ), α < maxp( #„x ) < β

1, maxp( #„x ) ≥ β
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It is clear that Tmaxpαβ is not continuous. However, we can define its continuous ver-
sion, CTmaxpαβ,εδ : [0, 1]

n → [0, 1], for all #„x ∈ [0, 1]n; α ∈ [0, 1); β, ε, δ ∈ (0, 1];
α+ ε, β − δ ∈ (0, 1) and α+ ε < β − δ, as follows:

CTmaxpαβ,εδ(
#„x ) =



0, maxp( #„x ) ≤ α
1−(α+ε)

ε
(α−maxp( #„x )), α < maxp( #„x ) < α+ ε

1−maxp( #„x ), α+ ε ≤ maxp( #„x ) ≤ β − δ
1− (β − δ)− β−δ

δ
(β − δ −maxp( #„x )), β − δ < maxp( #„x ) < β

1, maxp( #„x ) ≥ β

Observe that CTmaxpαβ,εδ satisfies conditions (GG1)-(GG5) from Def. 9, and then it
is a general grouping function. But, whenever α 6= 0 or β 6= 1, then CTmaxpαβ,εδ is
not an n-dimensional grouping function, once CTmaxpαβ,εδ(α− ε, . . . , α− ε) = 0, for
α− ε > 0, because maxp(α− ε, . . . , α− ε) = α− ε < α.

The following Theorem generalizes Example 3 providing a construction method for
general grouping functions from truncated n-dimensional grouping functions.

Theorem 3. Consider α ∈ [0, 1); β, ε, δ ∈ (0, 1]; α + ε, β − δ ∈ (0, 1) and α < β,
α + ε < β − δ. Let G be an n-dimensional grouping function, whose αβ-truncated
version is defined, for all #„x = (x1, . . . , xn) ∈ [0, 1]n, by:

TGαβ( #„x ) =


0, G( #„x ) ≤ α
G( #„x ), α < G( #„x ) < β

1, G( #„x ) ≥ β

Then, the continuous version of TGαβ , for all #„x = (x1, . . . , xn) ∈ [0, 1]n, is given by:

CTGαβ,εδ( #„x ) =



0, G( #„x ) ≤ α
1−(α+ε)

ε (α− G( #„x )), α < G( #„x ) < α+ ε

1− G( #„x ), α+ ε ≤ G( #„x ) ≤ β − δ
1− (β − δ)− β−δ

δ (β − δ − G( #„x )), β − δ < G( #„x ) < β

1, G( #„x ) ≥ β

and it is a general grouping function. Besides that, whenever α = 0 and β = 1, then
CTGαβ,εδ is an n-dimensional grouping function.

The following proposition shows a construction method of general grouping func-
tions that generalizes Example 1(4).

Proposition 6. Let G : [0, 1]n → [0, 1] be an n-dimensional grouping function and let
F : [0, 1]n → [0, 1] be a commutative and continuous aggregation function such that,
for all #„x = (x1, . . . , xn) ∈ [0, 1]n, if there exists i ∈ {1, . . . , n} such that xi = 1, then
F ( #„x ) = 1. Then GGGF ( #„x ) = G( #„x )F ( #„x ) is a general grouping function.
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Proof. It is immediate that GGGF is well defined, (GG1) commutative, (GG4) increasing
and (GG5) continuous, since G, F and the product operation are commutative, increas-

ing and continuous. To prove (GG2), whenever
n∑
i=1

xi = 0, then by (G2), it holds that

G( #„x ) = 0, and, thus, GGGF ( #„x ) = G( #„x )F ( #„x ) = 0. For (GG3), whenever there exists
i ∈ {1, . . . , n} such that xi = 1, then, by (G3), one has that G( #„x ) = 1, and, by the
property of F , it holds that F ( #„x ) = 1. It follows that: GGGF ( #„x ) = G( #„x )F ( #„x ) = 1.

ut

The following result is immediate.

Corollary 2. Let GH : [0, 1]n → [0, 1] be a general grouping function and let F : [0, 1]
→ [0, 1] be a commutative and continuous aggregation function such that, for all #„x =
(x1, . . . , xn) ∈ [0, 1]n, if there exists i ∈ {1, . . . , n} such that xi = 1, then F ( #„x ) = 1.
Then GGGH,F ( #„x ) = GH( #„x )F ( #„x ) is a general grouping function.

Note that Gn is closed with respect to some aggregation functions, as stated by the
following results, which provide a construction methods of general grouping functions.

Theorem 4. Consider M : [0, 1]2 → [0, 1]. For any GG1,GG2 ∈ Gn, define the map-
ping MGG1,GG2

: [0, 1]n → [0, 1], for all #„x ∈ [0, 1]n, by:

MGG1,GG2
( #„x ) =M(GG1( #„x ),GG2( #„x )).

Then, MGG1,GG2
∈ Gn if and only if M is a continuous aggregation function.

Proof. It follows that:
(⇒) Suppose that MGG1,GG2

∈ Gn. Then it is immediate that M is continuous and

increasing (A2). Now consider #„x = (x1, . . . , xn) ∈ [0, 1]n and suppose that
n∑
i=1

xi =

0. Then, by (GG2), one has that: MGG1,GG2
( #„x ) = M(GG1( #„x ),GG2( #„x )) = 0 and

GG1( #„x ) = GG2( #„x ) = 0. Thus, it holds that M(0, 0) = 0. Now, consider #„x =
(x1, . . . , xn) ∈ [0, 1]n, such that there exists i ∈ {1, . . . , n} such that xi = 1. Then,
by (GG3), one has that: MGG1,GG2

( #„x ) = M(GG1( #„x ),GG2( #„x )) = 1 and GG1( #„x ) =
GG2( #„x ) = 1. Therefore, it holds that M(1, 1) = 1. This proves that M also satisfies
(A1), and, thus, M is a continuous aggregation function.
(⇐) Suppose that M is a continuous aggregation function. Then it is immediate that
MGG1,GG2

is (GG1) commutative, (GG4) increasing and (GG5) continuous. For (GG2),

consider #„x = (x1, . . . , xn) ∈ [0, 1]n such that
n∑
i=1

xi = 0. Then, by (GG2), one has that

GG1( #„x ) = GG2( #„x ) = 0. It follows that: MGG1,GG2
( #„x ) = M(GG1( #„x ),GG2( #„x ))=

M(0, 0) = 0, by (A1), since M is an aggregation function. Finally, for (GG3) consider
that there exists i ∈ {1, . . . , n} such that xi = 1 for some #„x = (x1, . . . , xn) ∈
[0, 1]n. Then, it holds that GG1( #„x ) = GG2( #„x ) = 1. It follows that: MGG1,GG2

( #„x )=
M(GG1( #„x ),GG2( #„x )) = M(1, 1) = 1, by (A1), since M is an aggregation function.
This proves that MGG1,GG2

∈ Gn. ut

Example 4. In the sense of Theorem 4, Gn is closed under any bidimensional overlap
functions, grouping functions and continuous t-norms and t-conorms [18].
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Corollary 3. Consider M : [0, 1]2 → [0, 1]. For any n-dimensional grouping functions
G1,G2 : [0, 1]n → [0, 1], define the mapping MG1,G2 : [0, 1]

n → [0, 1], for all #„x =
(x1, . . . , xn) ∈ [0, 1]n, by:

MG1,G2(
#„x ) =M(G1( #„x ),G2( #„x )).

Then, MG1,G2 ∈ Gn if and only if M is a continuous aggregation function.

Proof. It follows from Theorem 4, since any n-dimensional grouping function is a gen-
eral grouping function. ut

Theorem 4 can be easily extended for n-ary functions Mn : [0, 1]n → [0, 1]:

Theorem 5. Consider Mn : [0, 1]n → [0, 1]. For any GG1, . . . ,GGn ∈ Gn, define the
mapping MGG1,...,GGn

: [0, 1]n → [0, 1], for all #„x ∈ [0, 1]n, by:

MGG1,...,GGn
( #„x ) =Mn(GG1( #„x ), . . . ,GGn( #„x )).

Then, MGG1,...,GGn
∈ Gn if and only if Mn : [0, 1]n → [0, 1] is a continuous n-ary

aggregation function.

Proof. Analogous to the proof of Theorem 4. ut

This result can be extended for n-dimensional grouping functions.

Corollary 4. Consider Mn : [0, 1]n → [0, 1] and fr any n-dimensional grouping func-
tions G1, . . . ,Gn define the mappingMG1,...,Gn : [0, 1]

n → [0, 1], for all #„x = (x1, . . . , xn)
∈ [0, 1]n, by:

MG1,...,Gn(
#„x ) =Mn(G1( #„x ), . . . ,Gn( #„x )).

Then, MG1,...,Gn is a general grouping function if and only if Mn : [0, 1]n → [0, 1] is a
continuous n-ary aggregation function.

Corollary 5. Let GG1, . . . ,GGm : [0, 1]n → [0, 1] be general grouping functions and

consider weights w1, . . . , wm ∈ [0, 1] such that
m∑
i=1

wi = 1. Then the convex sum

GG =
m∑
i=1

wiGGi is also a general grouping function.

Proof. Since the weighted sum is a continuous commutative n-ary aggregation func-
tion, the result follows from Theorem 5. ut

It is possible to obtain general grouping functions from the generalized composition
of general grouping functions and aggregation functions satisfying especial conditions:

Theorem 6. Let GG2 : [0, 1]n → [0, 1] be a general grouping function and let the
n-ary aggregation functions A1, . . . , An : [0, 1]

n → [0, 1] be continuous, commuta-
tive and disjunctive. Then, the function GG1 : [0, 1]n → [0, 1] defined, for all #„x =
(x1, . . . , xn) ∈ [0, 1]n, by: GG1( #„x ) = GG2(A1(

#„x ), . . . , An(
#„x )) is a general group-

ing function.
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Proof. Since GG2, A1, . . . , An are commutative, increasing and continuous functions,
then GG1 satisfies conditions (GG1), (GG4) and (GG5). So, it remains to prove:

(GG2) Let #„x = (x1, . . . , xn) ∈ [0, 1]n be such that
n∑
i=1

xi = 0. Then, since A1 is

disjunctive, we have that A1(
#„x ) ≥ max( #„x ) = 0, that is A1(

#„x ) = 0. Equivalently, one
obtains A2(

#„x ), . . . , An(
#„x ) = 0. Thus, since GG2 is a general grouping function, one

has that GG1( #„x ) = GG2(A1(
#„x ), . . . , An(

#„x )) = GG2(0, . . . , 0) = 0.
(GG3) Suppose that, for some #„x = (x1, . . . , xn) ∈ [0, 1]n, there exists i ∈ {1, . . . , n}
such that xi = 1. So, since A1 is disjunctive then A1(

#„x ) ≥ max( #„x ) = 1, that is
A1(

#„x ) = 1. Since GG2 is a general grouping function, it follows that GG1( #„x ) =
GG2(A1(

#„x ), . . . , An(
#„x )) = GG2(1, A2(

#„x ), . . . , An(
#„x )) = 1. ut

Next proposition uses the n-duality property.

Proposition 7. Consider a continuous fuzzy negation N : [0, 1]→ [0, 1] and a general
overlap function GO : [0, 1]n → [0, 1], then for all #„x = (x1, . . . , xn) ∈ [0, 1]n:

GG( #„x ) = N(GO(N(x1), . . . , N(xn))) (4)

is a general grouping function. Reciprocally, if GG : [0, 1]n → [0, 1] is a general group-
ing function, then for all #„x = (x1, . . . , xn) ∈ [0, 1]n:

GO( #„x ) = N(GG(N(x1), . . . , N(xn))) (5)

is a general overlap function.

Proof. Since we have a continuous fuzzy negation and bearing in mind that general
overlap functions and general grouping functions are commutative, increasing and con-
tinuous functions according to Def. 8 and Def. 9, respectively, then GO and GG satisfy
conditions (GO1), (GG1); (GO4), (GG4) and (GO5), (GG5). So, it remains to prove:
(GG2) For Eq. (4), take xi = 0, for all i ∈ {1, . . . , n}. Therefore,

GG( #„x ) = N(GO(N(0), . . . , N(0)))
N2
= N(GO(1, . . . , 1)) GO3

= N(1)
N2
= 0.

(GG3) If there exists a xi = 1, for some i ∈ {1, . . . , n}, then
GG( #„x ) = N(GO(N(x1), . . . , N(1), . . . , N(xn)))

N2
= N(GO(N(x1), . . . , 0, . . . , N(xn)))
GO2
= N(0)

N2
= 1.

(GO2) Similarly, for Eq. (5), take a xi = 0 for some i ∈ {1, . . . , n}. So,
GO( #„x ) = N(GG(N(x1), . . . , N(0), . . . , N(xn)))

N2
= N(GG(N(x1), . . . , 1, . . . , N(xn)))
GG3
= N(1)

N2
= 0.

(GO3) Now, consider that xi = 1, for all i ∈ {1, . . . , n}. Then,

GO( #„x ) = N(GG(N(1), . . . , N(1)))
N2
= N(GG(0, . . . , 0)) GG2= N(0)

N2
= 1.

ut
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5 Conclusions

In this paper, we first introduced the concept of general grouping functions and
studied some of their properties. Then we provide a characterization of general grouping
functions and some construction methods.

The theoretical developments presented here allow for a more flexible approach
when dealing with decision making problems with multiple alternatives. Immediate fu-
ture work is concerned with the development of an application in multi-criteria decision
making based on n-ary fuzzy heterogeneous, incomplete preference relations.
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