
Additional Feature Layers from Ordered
Aggregations for Deep Neural Networks

I. Dominguez-Catena, D. Paternain, M. Galar
Institute of Smart Cities

Public University of Navarre
Pamplona, Spain

{iris.dominguez, mikel.galar, daniel.paternain}@unavarra.es

Abstract—In the last years we have seen huge advancements
in the area of Machine Learning, specially with the use of Deep
Neural Networks. One of the most relevant examples is in image
classification, where convolutional neural networks have shown
to be a vital tool, hard to replace with any other techniques.
Although aggregation functions, such as OWA operators, have
been previously used on top of neural networks, usually to ag-
gregate the outputs of different networks or systems (ensembles),
in this paper we propose and explore a new way of using OWA
aggregations in deep learning. We implement OWA aggregations
as a new layer inside a convolutional neural network. These layers
are used to learn additional order-based information from the
feature maps of a certain layer, and then the newly generated
information is used as a complement input for the following
layers. We carry out several tests introducing the new layer
in a VGG13-based reference network and show that this layer
introduces new knowledge into the network without substantially
increasing training times.

Index Terms—Neural Nets, RNN, deep learning, OWA operator

I. INTRODUCTION

One of the most common problems to be solved with
Machine Learning are classification tasks, either supervised
or unsupervised. Among supervised classification problems,
an up-to-date example is image classification [1], [2]. In these
kinds of problems, we try to create a mathematical model
that learns over a set of labelled data (images), which can
then label new unseen data appropriately. Currently, the most
common technique for image classification is the use of deep
Convolutional Neural Networks (CNNs), which is the focus
of this paper.

The use of aggregation functions (see [3]–[6] for more
details about aggregation functions) in image processing and
computer vision is very common, specially focused on prepro-
cessing steps, such as noise reduction, filters, image enhance-
ment or image reduction and compression [7], [8]. A well-
known family of aggregation functions are Ordered Weight
Averaging (OWA) operators [9], which are very common
in fuzzy logic and machine learning as a parametric class
of aggregations. In fact, it is well known that depending
on the specific weighting vector we can recover important
aggregation functions such as the minimum, the median, etc.
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Moreover, OWA operators can be classified depending on its
behavior by means of an orness function, which shows whether
an OWA operator is closer to the pure OR operator (maximum)
or, on the contrary, is close to the minimum operator [9], [10].

In previous works, OWAs have been mainly used in deep
learning as a way to combine the outputs of different networks
as an ensemble [11]–[14]. OWA operators have also been used
with interesting results on the pooling layers of CNNs [15],
[16].

Different from the previous works, we attempt to employ
OWAs on the inner layers of a CNN to increase the amount
of information available for the next layer, adding very few
parameters and with a negligible increase in the computational
cost. Our aim is to generate cost-free information on the
network, getting the feature maps at a certain layer and adding
derived information that would be hard to get with regular
convolutions. For example, a global view of the activation
of a feature map is not easy to be computed and used in a
CNN, since the convolutions tend to provide local information,
and only stacking layers allows the network to capture more
global information. Therefore, we try to take advantage of
OWAs and use this type of global information to generate
additional order-based information. These two factors mean
that the network could benefit from information that would
otherwise be difficult to obtain.

This idea is inspired by the work done in [17], where a
similar approach is applied to image segmentation. Apart from
the target problem itself, the other main differences with our
work are the particular OWAs used and the layer architecture.
The original paper fixed by hand the weights to 6 specific
OWAs, while we will allow the model to learn the weights.
Also, while in the original approach, the information from the
previous layer was fully replaced, we will just append new
information derived by the OWA operators.

In order to test the goodness of our proposal we have
considered a VGG13 architecture [18], and inserted different
OWA layers on it. We test different configurations, based on
the insertion point (the layer of the original network where
we insert the new layer), the additional feature maps depth
and the order measure used in the new layer. Additionally,
we study the kind of OWAs that are learned by the network.
For implementation, we chose to use Fastai, a Pytorch based
library. This library is flexible enough to allow for an easy
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implementation of the new layer, and at the same time imple-
ments some of the latest developments in Deep Learning. In
particular, this allows us to use the 1cycle policy for learning
rate control [19] to speed up training. Thanks to this robust
base, we can run comprehensive tests with 50 repetitions for
each configuration, asserting the statistical significance of the
improvements of this new technique. For the tests we use the
well-known CIFAR10 and CIFAR100 datasets [20].

Although this is just a preliminary study of how to approach
the insertion of OWA based layers on CNNs, we believe that
the results show the goodness of OWA-based layers in this
specific experimental framework and target problem proposed.
We think that this new approach opens a new line of work to
be explored.

The remainder of this work is organized as follows. Section
II describes related work relevant to our proposal. Section III
recalls some preliminaries on both OWAs and CNNs. Then,
Section IV specifies our methodology for the insertion of
an OWA layer and defines how the layer works. Section V
presents the experiments that we have designed to test the
OWA layers and our experimental framework. In Section VI
we gather the experimental results and analyze them. Finally,
Section VII concludes this work and proposes some future
work.

II. RELATED WORK

In the literature several ways of combining OWAs and
neural networks have been previously explored [11]–[16]. The
most common way is using OWAs at the output of the network
[11]–[14], but other approaches try to replace the aggregation
in the pooling layers of a network [15], [16].

Using fuzzy measure-based aggregation operators [21], such
as the Choquet or Sugeno integrals, to aggregate an ensemble
of neural networks has been explored multiple times in the
recent literature [11]–[14]. Recall that OWA operators are
particular cases of Choquet integrals based on symmetric
measures. On these systems, the underlying classifiers are
trained independently and can potentially be of any type, even
though CNNs are the most commonly used classifier when
dealing with image classification. After all the predictions
from the classifiers are collected, the results are aggregated,
and here is where OWA operators or other fuzzy measure-
based aggregation operators are used. For example, in [11],
Fuzzy Integrals are used to improve the ensemble performance
over more classical voting methods, such as simple voting or
arrogance.

Another explored technique is using Fuzzy Measure-based
operators in pooling layers of CNNs [15], [16]. In this case,
the usual aggregations used on pooling layers are replaced
by Fuzzy Measure-based operators. The idea is to have more
meaningful representations of an image after the size reduction
that happens in a pooling layer. More specifically, in [16], the
authors show how a Choquet-like integral can improve the
results of a mean and max aggregated pooling layer inside a
CNN.

Finally, the main inspiration for this work can be found in
[17], where the authors propose the creation of what they call
a ”Fuzzy layer”. This layer, inserted on different points of a
network, performs six predetermined OWA operations (max,
min, soft-max, soft-min, average and a random operator) over
the channels of the network, sorted by a measure of the entropy
of the channel. In our experience, such a specific approach
does not translate well to more general classification problems.
While the authors applied their methodology to a semantic
segmentation problem [22], following the same procedure in
the image classification task did not achieve the expected
performance. We think that, specially for classification CNNs,
there is a large amount of information encoded in the order
of the feature maps of a layer that is lost when applying an
OWA operator. Therefore, we design our system with the idea
of augmenting the feature maps of a layer instead of replacing
them, concatenating the new feature maps to the previous
ones. This way, we use the output of our OWA layers as a
complement to the output of regular convolutions, giving the
next layers information that would be difficult to extract via
convolution (global information derived from channel metrics).
Furthermore, we also include the OWA weights as parameters
of the network, learning them, instead of keeping them fixed
as in [17].

It is also worth mentioning the work developed by Veal
et al. [23], where they developed a Linear Order Statistic
Neuron, an artificial neuron based on an OWA operator. This
is another interesting approach to the idea of implementing
OWAs on neural networks. This proposal is still a work
in progress showing the potential of OWAs in this area.
However, we focus on CNN architectures aiming to augment
the existing information, rather than substituting or changing
the convolution operator.

III. PRELIMINARIES

In this section we present some basic theory on which we
base the rest of our work. Section III-A recalls OWA operators,
and Section III-B CNNs.

A. OWA operators

Ordered Weighted Averaging operators (OWAs for short)
were proposed first by Yager [9]. OWA operators are map-
pings F : Rn → R, based on a collection of weights
W = [w1, . . . , wn], with the condition wi ∈ [0, 1] for every
i = 1, . . . , n and

∑n
i=1 = 1, and defined by:

F (a1, . . . , an) =

n∑
j=1

wjbj (1)

where bj represents the j-th largest element of ai.
Some notable examples of OWA operators would be max

(W = [1, 0, . . . , 0]), min (W = [0, . . . , 0, 1]), and the
arithmetic mean (W =

[
1
n , . . . ,

1
n

]
).



B. Deep Convolutional Neural Networks

Neural networks (NN) [24] are a set of algorithms designed
to recognize patterns. The basic building block for most NNs
is the perceptron, an algorithm that processes an input by
performing first a linear combination (a simple aggregation)
of the components of the input, and then applying a nonlinear
activation function to the single output. This simple perceptron
is quite limited on its own, but we are able to build more
complex networks with it, where multiple perceptrons work
over the same input composing a layer, and several layers of
perceptrons are stacked on top of each other.

CNNs modify the regular architecture to specialize on
spatial based data [25], [26]. The most common use, image
processing, means recognizing the 2D spatial relationship of
the information, and employing a convolutional operation that
operates only between neighboring pixels of the image. This
also means losing the large scale information, as the output of
a convolutional layer on a pixel is unaware of the information
of the image outside of its neighborhood.

Another important feature of CNNs are the pooling layers
[1]. This layers, as convolutions, recognise the spatial structure
of images and feature maps, but instead of aggregating maps
together (as convolutions do), they operate on a single channel,
summarizing the information in blocks and reducing the size
of the image.

Some well-known CNN architectures that have been de-
veloped for image classifications are LeNet [27], the VGG
family [18], ResNet [2] or DenseNet [28]. On this paper we
will focus on VGG, but our methodology could be potentially
extrapolated to most other CNN architectures.

IV. METHODOLOGY

In this section, we present the proposed OWA layer and the
way it fits into a regular CNN. In section IV-A, we present
the basic building block of our proposal, the OWA Layer. In
Section IV-B, we present the sorting functions that we are
going to use to apply the OWAs. Finally, In Section IV-C, we
will explain how the aggregation is performed and how the
aggregation weights are initialized.

A. OWA Layer

Our proposed OWA layer will work by taking an input of
N images, with a resolution of I rows and J columns and Cin

channels (input feature maps), and appending Cf new channels
to those, Cf ∈ [0, Cin]. The output will be N images with the
same I×J resolution, but Cout = Cin+Cf channels of depth,
Cout ≥ Cin. To generate those Cf new feature maps, we
will apply Cf OWA operators over the input channels. These
OWA operators will share the same ordering function, which
will use channel metrics to reorder the channels. Then, each
one of these OWA operators will generate a new feature map
as a linear combination of the sorted channels, based on its
own independent weighting vector. These weighting vectors,
one for each Cf learned OWA, will be learned and updated
as parameters of the network. We explain more about this in
Section IV-C. The general architecture of the layer is depicted

in Figure 1. It is important to mention that all these operations
are performed on a per-channel basis.

This methodology is different from that originally proposed
in [17], since we realized early in our experiments that trying
to replace the source Cin channels with a number of Cout

channels, all of them obtained from the aggregation of the
Cin channels by different OWA operators (as was originally
proposed in [17]), resulted in high penalties on the training of
the network, achieving very poor results in this application.
Thus, we opted for this alternative scheme where the new
channels just augment the input, without removing information
from it.

Layer N-1

N × Cin × I × J

Input data

N × Cin × I × J

Ordered
channels

N × Cin × I × J

Aggregated
channels

N × Cf × I × J

concatenate

Concatenated
channels

N × (Cin + Cf )× I × J

Layer N+1

N × (Cin + Cf )× I × J

order

aggregate

Fig. 1. Proposed OWA layer structure.

B. Sorting function

As we are working on a per-channel basis (not on a per-
pixel basis), we need to firstly define the ordering function,
that is, how to order the Cin channels in a decreasing way.
Given a channel X of size I × J , we consider the following
channel metrics:

• Channel entropy. We use the Shannon entropy [29]
formula applied to the pixel values of the channel across
all rows and columns,

H(X) = −
I∑

i=1

J∑
j=1

xij log xij (2)

As this function is designed to work in vectors of ele-
ments in the range xij ∈ [0, 1] and

∑I
i=1

∑J
j=1 xij = 1,

we first apply the softmax function to the input X to
normalize the input feature map,

Softmax(xkl) =
exkl∑I

i=1

∑J
j=1 e

xij

(3)



Intuitively, the entropy is a measure of disorder, of the
amount of information codified in a channel. A higher
value of entropy means more uniformity in the input data,
while a smaller entropy value means more contrast and
information in that input.

• Sum of channel values. We also consider the sum of all
the channel pixel values,

S(X) =

I∑
i=1

J∑
j=1

xij (4)

• Total variation [30]. Considering the spatial characteris-
tics of the image, we calculate the differences between
each pixel and its horizontal and vertical neighbors, and
aggregate the absolute differences over the image.

TVv(X) =

I∑
i=2

J∑
j=1

|xi,j − xi−1,j | (5)

TVh(X) =

I∑
i=1

J∑
j=2

|xi,j − xi,j−1| (6)

TV (X) = TVv(X) + TVh(X) (7)

The Total Variation (TV), as defined in [30], is a measure
that considers the spatial nature of images, and tell us how
much variance is between a pixel and its neighbors. The
TV measure will be high for images with a lot of crisp
borders, where there are high differences between a pixel
and its neighbors, and low for channels where every pixel
is surrounded by pixels with similar values.

• Median of channel values. Another common OWA oper-
ator is the median,

M(X) = median(x11, . . . , xIJ) (8)

where the median operator returns the ceil(I ·J/2) largest
element of X if I · J is odd or the arithmetic mean of
the I · J/2 and the I · J/2 + 1 largest elements of X , if
I · J is even.

• Maximum of channel values. In this context, the most
activated pixel of the channel,

MAX(X) = max(x11, . . . , xIJ) (9)

We have also used two additional sorting methods which
are not based on the channel themselves:

• No sorting. As a reference system, and in order to check
the impact of the additional complexity (added layers)
on the system, we have implemented an identity function
that does not sort the layers, and returns them as they are
given.

• Random sorting. We randomly sort the values, to have a
reference of the impact of random noise on the system
(that could have some potential regularization effect).

C. Weighted aggregation

Once we have the input sorted, we need to define the weight-
ing vectors of the Cf OWA operators, each of them composed
by Cin weights. In our proposal, we will randomly initialize
the weights of the OWA layer following a uniform distribution
U(0, 1). We treat the OWA layer weights as parameters of the
NN, and hence they are learned through back-propagation at
the same time as the rest of the parameters.

These weights are not directly constrained and, as they are
learned, can take any real value. To comply with the definition
of an OWA given in Section III-A, where for each wi, i ∈
1, . . . , Cf , we require that wi ∈ [0, 1] and

∑Cf

i=1 wi = 1, we
apply some transformations. First, we apply a ReLU function
on the raw weights to ensure that they are all positive. We then
normalize the matrix by dividing each weight by the total sum
of the positive weights to ensure that they add up to one.

ReLU(x) = max(x, 0) (10)

wj =
ReLU(xj)∑Cf

i=1 ReLU(xi)
(11)

The result is a proper OWA weighting vector, that can be
directly applied.

V. EXPERIMENTAL FRAMEWORK

In this section, we explain how we have performed our
experiments to test the validity of our new methodology. In
Section V-A, we present our chosen datasets, and the reasons
that support this choice. Then, in Section V-B, we explain the
base architecture, a modification of VGG13, and how we insert
our OWA layers in it. Section V-C explains more about our
specific implementation, tools used and learning hyperparam-
eters. In Section V-D, we explain our evaluation methodology.
Finally, in Section V-E, we present the configurations tested
in our three experiments.

A. Dataset

For testing, we have opted to use the CIFAR10 and CI-
FAR100 datasets [20]. CIFAR10 is a well-known dataset
composed of 60,000 color images in a 32x32 pixel resolu-
tion, sorted into 10 different classes (airplanes, cars, birds,
cats, deer, dogs, frogs, horses, ships, and trucks) with 6,000
examples each. CIFAR100 is a similar dataset composed of
another 60,000 color images of 32x32 pixel resolution, but this
time distributed in 100 classes, each one with 600 examples.
Both datasets are already split in train and test partitions, with
50,000 training examples and 10,000 testing examples each,
with an even class distribution.

The choice of dataset is motivated by the amount of
configurations that we want to try, making a small dataset
like this one faster to test multiple hypothesis. Also, it is
important to note that most simple architectures have room
for improvement on this dataset, unlike on smaller ones like
MNIST (where error rates of under 1% are already common,
making hard to appreciate new improvements).



B. Architecture

For testing, we decided to employ the VGG family of
architectures [18]. Our idea was to use an architecture that
already gave good results on our datasets, but still had room for
improvement. The VGG architectures are also relatively quick
to train, allowing us to do all the experiments on a reasonable
time-frame with untrained networks. Also, because of their
linear structure, they give us a simple choice of insertion points
for the OWA layers.

As the base we have chosen the VGG13 configuration, a
good middle point between the lightweight VGG11 and the
largest and more common VGG16 presented on the original
paper [18]. In our initial tests, we have found that the VGG13
achieved similar results for our dataset to those of the VGG16
network with a much smaller training time, so we settled up
for the VGG13 configuration.

The CIFAR10 dataset has a small image size (32 × 32
pixels), while the initial VGG experiments where run on larger
224 × 224 pixel images. Thus, we have slightly adapted the
VGG architecture, replacing the final 3 layer classifier stage
with a simpler classifier, with only one fully connected layer,
in the same way as in [31]. In our initial tests, this reduced
training times at no cost for the accuracy for our specific
dataset. As we will only modify the convolutional blocks,
this classifier will be the same for our reference and modified
results.

The network itself has a total of 10 convolutional layers,
with an additional linear layer for classification. The 10
convolutions are distributed on 5 blocks, each one finished
by a MaxPool layer that halves the size of the image. For our
experiments, we will consider potential insertion points for
the OWA layers just before each of the convolutional blocks,
with the exception of the first convolution. This results in 9
potential insertion points, presented in Table I.

In this configuration, each convolutional layer is composed
of the convolution itself, followed by a batch normalization
layer and a ReLU layer.

C. Implementation Details

The implementation of these experiments was made using
PyTorch 1.3.1 and Fastai 1.0.58.

For all the configurations we use the same hyperparameters,
namely, a maximum learning rate of 1e−2 with a 1cycle
policy (as described in [19] and implemented in Fastai). This
parameter was decided by using the lr finder tool in Fastai on
the reference network (without OWA layers). Later, we tested
again on the modified versions of the network to check that it
was also an adequate parameter for those networks. We used
1024 as batch size for all the experiments. In this particular
implementation, no dropout layers have been used.

We have also used basic data augmentation, as described in
[32]. The particular augmentations are left-right flipping with
a 0.5 probability, and a random padding of 4 pixels (using
mirroring to fill the padding), followed by a random crop to
the initial size of 32× 32 pixels.

TABLE I
NETWORK ARCHITECTURE*.

Name Kernel Size Stride Output Size
input data - - 32 × 32 × 3

conv1 1 3 × 3 1 32 × 32 × 64
OWA1 - - 32 × 32 × (64 + Cf )
conv1 2 3 × 3 1 32 × 32 × 64
maxpool 2 × 2 2 16 × 16 × 64

OWA2 - - 16 × 16 × (64 + Cf )
conv2 1 3 × 3 1 16 × 16 × 128
OWA3 - - 16 × 16 × (128 + Cf )
conv2 2 3 × 3 1 16 × 16 × 128
maxpool 2 × 2 2 8 × 8 × 128

OWA4 - - 8 × 8 × (128 + Cf )
conv3 1 3 × 3 1 8 × 8 × 256
OWA5 - - 8 × 8 × (256 + Cf )
conv3 2 3 × 3 1 8 × 8 × 256
maxpool 2 × 2 2 4 × 4 × 256

OWA6 - - 4 × 4 × (256 + Cf )
conv4 1 3 × 3 1 4 × 4 × 512
OWA7 - - 4 × 4 × (512 + Cf )
conv4 2 3 × 3 1 4 × 4 × 512
maxpool 2 × 2 2 2 × 2 × 512

OWA8 - - 2 × 2 × (512 + Cf )
conv5 1 3 × 3 1 2 × 2 × 512
OWA9 - - 2 × 2 × (512 + Cf )
conv5 2 3 × 3 1 2 × 2 × 512
maxpool 2 × 2 2 1 × 1 × 512

flatten - - 512
linear - - 10

* The layers marked as OWAx are the possible insertion points for the new OWA layers.

D. Evaluation

For evaluation purposes, we have run a large set of ex-
periments with different configurations. All the experiments
have been run 50 times, each one training for 30 epochs over
the dataset. From these results, we use the test accuracy on
the last epoch of each repetition and get both the average
and standard deviation of those accuracy values. In order to
test whether a configuration works better than the reference,
we also perform a statistical test. As we cannot assert the
normality of the distribution of results, we consider the non-
parametric Mann-Whitney U test [33]. We run this test against
the reference, with then null hypothesis that the reference
configuration works better or equal than the modified version,
for additional statistical confirmation.

The reference for all the experiments is an unmodified
version of the network, without OWA layers. In the last
experiment, where we compare the order functions, we also
include an additional reference, performing the same aggrega-
tion on the unsorted channels. This way, we can check whether
the improvement comes from the increase in the number of
parameters or the usage of OWA layers.

E. Configuration of experiments

Since there is a large combination of possible configura-
tions, we have decided to run 3 experiments. Each experiment
corresponds to an important parameter in OWA layers: posi-
tion, feature depth and the order metric. For each experiment,
we run it both on CIFAR10 and CIFAR100:



1) Layer position configurations: In the first experiment,
we try a predefined feature depth (Cf = 16) across all the
possible OWA layer positions (OWA1 to OWA9), with two
different order functions, activation sum and total variation.

2) Feature configurations: In the second experiment, we
try variable feature depths (Cf = 4, Cf = 8, Cf = 16 and
Cf = 32) across two of the better performing OWA layer
insertion points of Experiment 1, using the activation sum as
order function.

3) Order configurations: For the third experiment, we try
to focus on the order functions. We fix the configuration
to the best layer and feature depth combination for each
dataset, and try the full array of order functions. These include
two ”reference” methods, random sorting (sort the layers
randomly) and no sorting (do not sort the layers, just apply
the linear aggregation). These two reference functions should
show the impact of the additional parameters on the network
if we were to use regular unordered aggregations instead of
OWAs. We also use this experiment to analyze the weight
matrices learned by the OWA operators.

VI. EXPERIMENTAL STUDY

In this Section, we present the results found on the experi-
ments detailed in Section V-E. Section VI-A refers to the first
experiment on the influence of the layer position. Section VI-B
refers to the second experiment, testing different feature depths
for the OWA layers. Section VI-C covers the last experiment
on order configurations. Finally, in Section VI-D, we study the
patterns developed on weight matrices learned by the OWA
layers under different ordering methods.

A. Insertion point for the OWA layer

The results of the first experiment are summarized in Table
II. We can observe a high dependence of the result on the
insertion point chosen for the OWA layer. On the CIFAR10
dataset we see that all of the configurations on layers OWA2

to OWA5 improve the reference accuracy, with the best one
at OWA4. On the CIFAR100 dataset we can observe similar
results, with the best configurations at OWA3 and OWA5.
All of the configurations with activation sum as order met-
ric and insertion point between OWA2 and OWA5 have a
better accuracy than the reference with statistical significance
(p-value < 0.05). In general, we observe better performance
on the configurations that have activation sum as order metric
than on those with total variance.

We suspect that this tendency to perform better on the lower
insertion points is tied to the small image size of our dataset,
at just 32 × 32 pixels. This, in combination with the VGG
architecture halving the image size after every block, makes
the images at the upper layers very small (from OWA6 to
OWA9 we have image sizes of 4×4 and 2×2 pixels), making
our channel metrics much less meaningful.

B. Feature configurations

The results of the second experiment are summarized in
Table III. From the results of Experiment 1, we chose to stick

TABLE II
LAYER CONFIGURATION RESULTS.

Order Layer CIFAR10 acc CIFAR100 acc

reference - 92.44 ± 0.17 69.74 ± 0.27

activ sum OWA1 92.40 ± 0.19 69.85 ± 0.29•

OWA2 92.53 ± 0.19• 69.87 ± 0.32•

OWA3 92.52 ± 0.18• 69.97 ± 0.27•

OWA4 92.5592.5592.55 ± 0.180.180.18• 69.95 ± 0.24•

OWA5 92.51 ± 0.17• 69.9769.9769.97 ± 0.280.280.28•

OWA6 92.45 ± 0.20 69.75 ± 0.33
OWA7 92.44 ± 0.17 69.82 ± 0.25
OWA8 92.44 ± 0.18 69.79 ± 0.30
OWA9 92.49 ± 0.20 69.78 ± 0.25

total var OWA1 92.45 ± 0.18 69.87 ± 0.26•

OWA2 92.53 ± 0.15• 69.86 ± 0.31•

OWA3 92.52 ± 0.18• 69.91 ± 0.24•

OWA4 92.47 ± 0.17 69.79 ± 0.23
OWA5 92.51 ± 0.19• 69.87 ± 0.31•

OWA6 92.43 ± 0.20 69.81 ± 0.27
OWA7 92.45 ± 0.18 69.82 ± 0.28
OWA8 92.43 ± 0.18 69.82 ± 0.29
OWA9 92.45 ± 0.19 69.76 ± 0.26

Results marked with • have better accuracy than the reference with p-value < 0.05.

with the insertion points at OWA3 and OWA4 and activation
sum as ordering metric, which give good results for both
CIFAR10 and CIFAR100 datasets.

On this second experiment, we can observe some variance
between the different feature depths for both layers and
datasets. We can observe a tendency to favor more features,
with the best results at Cf = 16, but it does not seem to hold
in all cases. In this experiment, we can observe that all the
configurations of Cf = 8 and Cf = 16 for both CIFAR10
and CIFAR100 have greater accuracy than the reference with
p-value < 0.05.

TABLE III
FEATURE CONFIGURATION RESULTS.

Layer Feat CIFAR10 acc CIFAR100 acc

reference - 92.44 ± 0.17 69.74 ± 0.27

OWA3 4 92.49 ± 0.19 69.82 ± 0.32
8 92.51 ± 0.21• 69.88 ± 0.26•

16 92.52 ± 0.18• 69.9769.9769.97 ± 0.270.270.27•

32 92.5792.5792.57 ± 0.160.160.16• 69.82 ± 0.28

OWA4 4 92.47 ± 0.17 69.81 ± 0.33
8 92.50 ± 0.19• 69.91 ± 0.31•

16 92.55 ± 0.18• 69.95 ± 0.24•

32 92.51 ± 0.17• 69.90 ± 0.29•

Results marked with • have better accuracy than the reference with p-value < 0.05.

C. Order configurations

The results of this final experiment are presented in Table
IV. Here, we test the different order configurations with the
best configurations of Experiment 2, OWA3 and Cf = 32 for
CIFAR10 and OWA3 and Cf = 16 for CIFAR100. We can
observe that the activation sum clearly outperforms the rest
of the measures, closely followed by the total variation of the
layer, on both CIFAR10 and CIFAR100. The entropy measure,



the one that was originally used in [17], performs poorly on
this application.

The two reference measurements, random and no sorting,
perform similarly to the global reference, proving that the
improvement that we are observing is not due to the increased
complexity of the network, but to the sorting nature of the
aggregation. The activation sum and total variation configura-
tions for both datasets outperform the reference accuracy with
statistical significance, p-value < 0.05.

TABLE IV
ORDER CONFIGURATION RESULTS.

Order CIFAR10 acc CIFAR100 acc

reference 92.44 ± 0.17 69.74 ± 0.27

activ sum 92.5792.5792.57 ± 0.160.160.16• 69.9769.9769.97 ± 0.270.270.27•

total var 92.55 ± 0.19• 69.91 ± 0.24•

max activ 92.51 ± 0.21• 69.74 ± 0.28
median activ 92.48 ± 0.19 69.84 ± 0.31
entropy 92.47 ± 0.16 69.80 ± 0.25
random 92.45 ± 0.17 69.76 ± 0.26
no sorting 92.43 ± 0.19 69.79 ± 0.30

Results marked with • have better accuracy than the reference with p-value < 0.05.

D. Weight matrices

There is an interesting analysis to be carried out from
the weight matrices of the learned OWAs, specially for the
third experiment, where we can compare different ordering
measures. In Figure 2, we show the value of the 8 learned
weighting vectors (each one composed of 64 weights) after 30
epochs, all obtained from the same configuration (CIFAR10,
insertion point in OWA2, Cf = 8) but using different ordering
functions. The size of these matrices is 8× 64, being Cf = 8
the number of OWA operators in the OWA layer and Cin = 64
the number of weights in each weighting vector.

We can appreciate that the system converges to very clear
patterns for most of the aggregations. These patterns tend to
be soft-min and soft-max operators, characterized by a set of
weights where one of the extremes has a maximum weight,
and the weight decreases towards the other extreme, where it
usually reaches zero.

Specifically, we can observe that the system converges to
soft-min OWAs for the total variation and activation sum
orderings (with one feature converging to a soft-max in the
case of activation sum), and soft-max OWAs for the entropy
ordering. In the case of the median activation, we can observe a
very steep soft-max, and more diffuse soft-mins for the rest of
the features. If we compare with the no sorting reference, we
can observe how it learns regular features, and on the random
sorting matrix we can observe that it does not converge to any
recognizable pattern.

E. Computational Complexity

To observe the impact of the OWA layer insertion, we run
several configurations on a reference machine, equipped with
a GeForce RTX 2060 GPU, 20GB of RAM, an Intel Core i5-
8500 CPU, and running Ubuntu 18.04. In Table V, we gather

the mean epoch times of the network on the CIFAR10 dataset
(the number of images is the same for CIFAR100, obtaining
equivalent epoch times). The configurations are run with the
different order functions and number of features, whereas the
insertion point is fixed in OWA3 for all of the runs.

We can observe no substantial variations between configu-
rations, neither because of the ordering function nor because
of the number of new features learned. There is an overall
increase in execution time of approximately 10%. The uniform
distribution of the time increases with respect to the reference
time hints at just a non-optimal implementation of the tech-
nique, that we expect to improve in the future. Although there
is an increase to be expected, because of the new parameters
of the network, the fact that there is no difference between
execution times between different number of features indicates
that its not a relevant factor here.

TABLE V
EXECUTION TIMES.

Order Feat Epoch time (s)

reference - 9.67

activation sum 4 10.70
activation sum 8 10.77
activation sum 16 10.77
activation sum 32 10.73

activation sum 16 10.77
total variation 16 11.00
max activation 16 10.86
median activation 16 11.33
entropy 16 10.93
random 16 11.10
no sorting 16 11.27

VII. CONCLUSION & FUTURE WORK

In this work we have proposed the insertion of OWA opera-
tors in deep CNNs as a method for feature map augmentation.
Although the results we have found are not enough to directly
push the state-of-the-art, we consider that this experiments
show the validity of an interesting approach towards the use of
OWAs and other complex aggregations as an additional source
of information for regular CNNs.

We have seen some improvements on simple networks,
and the approach seems to be quite sensible to the specific
configuration used, but once set up, it gives consistent im-
provements at little computational cost. The approach itself is
highly extensible (we have only tried a few ordering functions,
for example), and the same experiments could be performed
on different problems and different network architectures. In
particular, we suspect that higher image sizes could result in
larger improvements, thanks to the large scale information
provided by the sorting functions.

Additionally, it should be tested whether this approach
could be fine-tuned and applied to regular building blocks of
complex networks, in the fashion of ResNet [2] and other
architectures. Further research is needed about the way the
networks are taking advantage from this new addition, and
we hope that further understanding could help to stabilize and
increase the results reported in this work.



(a) Total Variation (b) Activation Sum

(c) Median (d) Entropy

(e) No sorting (f) Random sorting

Fig. 2. Learned OWA weights of the proposed layer for different ordering measures. The vertical axis represents the new feature maps, and the horizontal
axis the input feature maps.
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