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Abstract—The design of an ensemble of classifiers involves
the definition of an aggregation mechanism that produces a
single response obtained from the information provided by the
classifiers. A specific aggregation methodology that has been
studied in the literature is the use of fuzzy integrals, such as
the Choquet or the Sugeno integral, where the associated fuzzy
measure tries to represent the interaction existing between the
classifiers of the ensemble. However, defining the big number of
coefficients of a fuzzy measure is not a trivial task and therefore,
many different algorithms have been proposed. These can be split
into supervised and unsupervised, each class having different
learning mechanisms and particularities. Since there is no clear
knowledge about the correct method to be used, in this work we
propose an experimental study for comparing the performance
of eight different learning algorithms under the same framework
of imbalanced dataset. Moreover, we also compare the specific
fuzzy integral (Choquet or Sugeno) and their synergies with the
different fuzzy measure construction methods.

Index Terms—ensembles, fuzzy measures, aggregations, Cho-
quet integral

I. INTRODUCTION

The combination of classifiers into an ensemble have proven
to be a good mechanism to outperform individual classifiers
when facing supervised classification problems [1]. When
dealing with ensembles, two aspects are crucial: how to
generate diversity among classifiers and how to combine their
outputs into a single response. In this work we will focus on
the latter.

Many authors have explored the aggregation of classifiers
of an ensemble [1]. The simplest approach, which can be
performed by some simple averaging function (such as the
arithmetic mean) is not able to capture the individual impor-
tance of each classifier in the ensemble, neither to exploit the
positive or negative interaction among coalitions of classifiers.
For this purpose, the use of fuzzy integrals (Choquet [2] or
Sugeno integrals [3]), which are based on an underlying fuzzy
measure, has been proposed and explored in many papers
by the fuzzy community [4], [5]. The key and possibly the
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hardest issue when using fuzzy integrals, is the definition of
the appropriate fuzzy measure.

Analyzing the literature, one can find two main method-
ologies for estimating fuzzy measures for the aggregation of
classifiers: supervised and unsupervised. Supervised methods
base the learning on a training set of pairs (x, y), where
x is the collection of evidences of a certain hypothesis.
i.e., probabilities of an instance belonging to a certain class
provided by the set of classifiers, and y is the desired target
output. Then, an optimization procedure is established in order
to conduct the learning of the fuzzy measure. Here again, there
exist many alternatives to optimize the cost function, such as
gradient-based iterative algorithms [6], quadratic programming
[7], neural networks [8] or genetic algorithms among others.

On the other side, we find unsupervised learning algorithms,
in which the estimation of the fuzzy parameters is conducted
by some a priori information about the problem itself or the
knowledge we have about the sources of information to be
fused (classifiers). In this context, the estimation is in general
based on both the confidence of each individual classifier and
the adequacy of coalitions of classifiers [4].

Having in mind the different scenarios for the learning
of the fuzzy measure, the main objective of this work is to
develop an extensive empirical study comparing the afore-
mentioned methodologies to deal with the estimation of the
fuzzy measure, under the assumption that the aggregation of
classifiers will be performed by a Choquet and a Sugeno
integral (where possible) based on the constructed measure.
In order to extract useful conclusions from the study, we will
apply all the methods in a common framework, of imbalanced
datasets [9].

The complete experimental study is formed of the thirty
three most imbalanced datasets from KEEL dataset reposi-
tory [10]. The UnderBagging ensemble method [11] is used
for classifier generation and the Reduced Error Pruning with
Geometric Mean [12] is applied to obtain the final ensemble.
The performance of each method has been measures by the
geometric mean (GM) of the performances of each class,
since this metric is appropriate for dealing with imbalanced
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datasets. The results are analyzed using non-parametric stastis-
cal tests [13].

The remainder of the work is organized as follows. In
Section II we recall the main preliminaries of the work,
focused on aggregation functions, ensemble and the class
imbalance problem. Later, in Section III, we explore in detail
different fuzzy measure learning algorithms, both supervised
and unsupervised. In Section IV, we explain the experimental
framework of our study and in Section V, we show the results
obtained as well as the conclusions obtained from it. We finish
with the concluding remarks and future lines in Section VI.

II. METHODS FOR FUZZY MEASURE LEARNING

A. Aggregation functions
When facing information fusion problems, aggregation

functions have been the most important mathematical tool to
deal with them. An aggregation function is a function that
takes n arguments and output a single value (function) which
tries to represent the input set satisfying certain criteria.

Definition 1: [14]–[17]A mapping f : [0, 1]N → [0, 1]
is called an aggregation function if it satisfies boundary
conditions, i.e., f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1, and
increasing monotonicity, i.e., if xi ≤ yi for all i ∈ {1, . . . , N},
then f(x1, . . . , xN ) ≤ f(y1, . . . , yN ).

Aggregation functions exhibit different behaviors. This
work focuses on averaging aggregation functions (also called
means), which are functions whose output is bounded
by the minimum and maximum of the input vector, i.e.,
min(x1, . . . , xn) ≤ f(x1, . . . , xn) ≤ max(x1, . . . , xn) for ev-
ery (x1, . . . , xn) ∈ [0, 1]n. Examples of averaging aggregation
functions are the arithmetic mean, the geometric mean, the
median, the minimum and the maximum, and many others.

A special family of averaging aggregation functions are
weighted aggregation functions, in which the inputs may
have different importance according to a weighting vector
w = (w1, . . . , wN ), wi ∈ [0, 1] and

∑N
i=1 wi = 1.

A more general framework of aggregation functions that
offer more flexibility than weighted aggregation functions are
fuzzy measure-based fuzzy integrals, such as the Choquet or
the Sugeno integral. The non-additivity of the fuzzy measure
[18] that models the interaction among input sources allow
to create versatile aggregation functions that consider not
only the individual importance, but also the interaction among
coalitions.

Definition 2: Let N = {1, . . . , N}. A discrete fuzzy
measure is a set function m : 2N → [0, 1] satisfying boundary
conditions m(∅) = 0, m(N ) = 1 and monotonicity with
respect to the inclusion, i.e. m(A) ≤ m(B) whenever A ⊂ B
for every A,B ⊆ N .

Definition 3: Given a fuzzy measure m : 2N → [0, 1], the
discrete Choquet integral is given by

Cm(x1, . . . , xN ) =

N∑
i=1

(xσ(i)−xσ(i−1))m({σ(i), . . . , σ(N)})

where σ : N → N is a permutation such that xσ(1) ≤ . . . ≤
xσ(N) and xσ(0) = 0 for convention.

Remark 1: Recall that the Choquet integral recovers the
weighted arithmetic mean if m is additive, i.e. for any A,B ⊂
N , A ∩ B = ∅ then m(A ∪ B) = m(A) +m(B). Moreover,
it recovers OWA operators if m is symmetric, i.e. for any
A,B ⊆ N , m(A) = m(B) whenever |A| = |B|, then the
Choquet integral is an OWA operator. Finally, the Choquet
integral reduces to the arithmetic mean if m is symmetric and
additive.

Definition 4: Given a fuzzy measure m : 2N → [0, 1], the
discrete Sugeno integral is given by

Sm(x1, . . . , xN ) =
N

max
i=1

min{xσ(i),m({σ(i), . . . , σ(N)})}

where σ : N → N is a permutation such that xσ(1) ≤ . . . ≤
xσ(N).

B. Classifier ensembles

Ensembles of classifiers in Machine learning refers to the
combination of several classifiers with the assumption that
their combination will perform better than any single clas-
sifier in the set. Classifiers forming an ensemble need to be
diverse enough so as to result in a successful combination.
Although one usually has a single data source available for a
given problem, several ways for constructing sets of diverse
classifiers out of the same data have been developed [1]. Once
the ensemble has been built, examples are classified querying
all classifiers and aggregating their outputs. This aggregation
phase is also known as combination or fusion [1] and is the
main focus of this work.

Bagging [19] is a well-known method for generating en-
semble. In Bagging, all the base classifiers are a priori similar
and therefore, no weights are assigned to the classifiers (as it
is done in Boosting). To learn each base classifier, Bagging
simply takes a bootstrapped replica of the dataset, that is,
samples the dataset with replacement until the same dataset
size is achieved. This way, some examples will appear more
than once in the replica, whereas others will not appear at all.
Algorithm 1 shows the pseudo-code of this method.

Algorithm 1 Bagging
Input: S: Training set; N : Number of iterations; n: Bootstrap size; I: Weak learner

Output: Bagged classifier: Class(x) = argmax
y∈C

(
1

N

N∑
i=1

pci (y|x)
)

where

pci (y|x) ∈ [0, 1] is the probability of x belonging to class y given by the classifier
ci

1: for i = 1 to N do
2: Si ← RandomSampleReplacement(n,S)
3: ci ← I(Si)
4: end for

The most straightforward way to combine the outputs of
Bagging-based classifiers is by means of weighted majority
voting, where the confidences or probabilities of each classifier
for each class are summed up and the class with highest
confidence is predicted:

Class(x) = argmax
y∈C

(
1

N

N∑
i=1

pci(y|x)

)
(1)



where pci(y|x) ∈ [0, 1] is the output probability given by
classifier ci for class y and C is the set of classes (denote the
number of classes |C| with C). Notice that classifiers not giving
probabilities as outputs but confidence degrees in favor of each
class can also be used (which would substitute pci(y|x)).

Assuming that there is not independence between classifier
outputs, a fuzzy measure based aggregation procedure is pro-
posed. It is hypothesized that considering such dependencies,
it will perform better than standard averging formulae.

C. The class imbalance problem

A dataset is considered to be imbalanced when the number
of examples from the different classes are not evenly dis-
tributed. This scenario poses a challenge for most classifier
learning algorithms [20] due to their accuracy-oriented design.
In the case of two-class problems, the class of interest is
usually under-represented [9] hindering classifier learning.

Ensembles specifically designed for this problem have been
successfully applied to imbalanced scenarios [21], [22]. They
mainly combine an ensemble learning algorithm like Bag-
ging with preprocessing techniques. Among these ensem-
bles, UnderBagging RE-GM (UnderBagging with Reduced
Error Pruning with Geometric Mean) [12] is a state-of-the-
art method combining Bagging with random undersampling.
Moreover, after learning a large pool of classifiers (100 in this
work), a pruning is applied to reduce the number of classifiers
to 21 (a number recommended in [23] after a thorough exper-
imental study). Readers are referred to [12] for more details.
This challenging scenario is seleted to understand whether
fuzzy measure-based aggregations can make a difference in
a difficult framework, but where there may still be room for
improvement due to its inherent difficulties.

One key point when dealing with imbalanced datasets is
that one should make use of the proper measures to evaluate
the performance of the methods. Accordingly, the geometric
mean (GM) [24] between the True Positive Rate (TPrate =

TP
TP+FN ) and the True Negative Rate (TNrate = TN

FP+TN ) (the
accuracy over the positive and negative classes, respectively)
is selected to more appropriately measure the successes over
both classes [9].

III. RELATED WORK

Fuzzy integrals, such as Choquet or Sugeno integrals, re-
quire the construction of a fuzzy measure in order to model
the sources of information to be fused. When applying these
integrals to a specific problem, as classification or ensemble
aggregation, the coefficients of the fuzzy measure must be
specified. Since it is not easy (from an expert point of view)
to decide the value of each coefficient, the value of the fuzzy
measure is typically computed by some algorithm. There are
two different ways to learn these coefficients: supervised and
unsupervised. The supervised learning algorithms are based
on some previously known (ideal) values that must be fit by
some optimization algorithm. On the contrary, unsupervised
algorithms use some kind of external (a priori) knowledge to
estimate the value of the coefficients.

In the following subsections we will detail several super-
vised and unsupervised learning algorithms for estimating the
coefficients of a fuzzy measure.

A. Supervised learning of the fuzzy measure

1) Revised Heuristic Least Mean Squares algorithm: One
of the first supervised algorithms for learning a fuzzy measure
was given in [6] as an iterative gradient-based learning algo-
rithm, which is called Heuristic Least Mean Squares algorithm
(HLMS). The algorithm starts from a set of m training
examples (x(j), y(j)), where x(j) is a n-dimensional input
vector and y(j) is the target output to be obtained by a fuzzy
measure-based aggregation applied over x(j). For example,
focusing on the Choquet integral, the algorithm tries to learn
the parameters of a fuzzy measure such that Cµ(x(j)) = y(j)

for every j = 1, . . . ,m. This requires calculating, for each
training example, the individual error

e(j) = Cµ(x
(j))− y(j).

From e(j), the corresponding coefficients of the fuzzy measure
that have been involved in the calculation of Cµ(x(j)) are
updated so as to minimize the individual error e(j). Finally, the
monotonicity, that may be violated in the update, is corrected
(see [6], [25] for more details about monotonicity correction).

The algorithm was improved in [25] by proposing a pure
gradient-based update formula, as well as some improvements
regarding the untouched coefficients and their influence in the
monotonicity correction. This algorithm is the so called revised
heuristic least mean squares algorithm (rHLMS for short).

2) Quadratic programming based optimization of fuzzy
measures: The idea of using quadratic programming (QP) for
learning a fuzzy measure was explored in [26]. Later, in [27],
the authors recover these ideas and under the assumption that
QP is appropriate for learning sparse matrices, they propose
a new methodology to learn the fuzzy measure. Here again,
they start from a training set (x(j), y(j)), j = 1, . . . ,m and try
to minimize the Sum of Squared Error (SSE) given by

SSE =

m∑
j=1

(Cµ(x
(j))− y(j))2.

The monotonicity constraints of the coefficients of the fuzzy
measure are incorporated in a compact linear algebra form,
avoiding the necessity of monotonicy checking.

However, it is known that fuzzy measures learned by
the minimization of SSE tend to suffer from over-fitting or
converge to very complex solutions. In order to solve this
problem, the authors propose to add a L1-norm regularization
term in the cost function to reduce the complexity of the
obtained fuzzy measure.

3) Fuzzy measure as neural networks: Artificial Neural
Networks have proven to be very useful in machine learning
applications. Especially now, deep neural networks are con-
sidered to be one of the most powerful techniques for solving
a great variety of problems. In [8], the authors propose to
construct a neural network that is able to represent a fuzzy



measure (NNFM). Due to the use of the back-propagation
algorithm, the learning of the fuzzy measure can be easily
done, specially if considering new programming and learning
frameworks, such as PyTorch.

The main idea under the neural network is to model the
coefficients of the fuzzy measure as learnable parameters.
Specifically, and taking monotonicity constraints into con-
sideration, the learnable parameters of the neural network
represent, in fact, increments of the fuzzy measure. That is,
a synapse represents how much a coefficient of the fuzzy
measure increments when we add a new member to the
coalition. Due to this way of modeling the fuzzy measure,
there are no problems with monotonicity constraints during
learning. Finally, positiveness of parameters are easily forced
by ReLU activation functions.

B. Unsupervised learning of the fuzzy measure

The methods presented in this subsection have been specif-
ically designed for being applied to ensemble aggregation by
means of the Choquet integral. However, the underlying learn-
ing algorithm can be easily exported to any other application
under the basis that we have some prior knowledge about the
sources of information to be aggregated.

1) Coalition-based performance measure: The coalition-
based performance (CPM) fuzzy measure learning algorithm
was first given in [28] and later in [29]. Basically, the accu-
racy of every classifier and any combination of classifiers is
collected (estimated in the training set). Then, starting from
a trivial fuzzy measure in which each coefficient is set to the
normalized cardinality (m(a) = |A|/n), the coefficients are
increased or decreased according to the following behavior: if
a coalition A of i classifiers (i varying from 1 to n) performs
better (PA) than the average accuracy of the coalitions of i
classifiers (µ|A|), its corresponding coefficient is increased;
otherwise, the coefficient is decreased. The increase/decrease
is modeled by an hyperbolic tangent function given by:

m(A) = mU (A) +
tanh(100(PA − µ|A|))

2n
,

where mU (A) = |A|/n is the trivial starting fuzzy measure
and n is the total number of classifiers. The CPM algorithm
is described in Alg. 2.

Algorithm 2 CPM
Input: N : Set of classifiers; PA: accuracy of any coalition A ⊆ N .
Output: fuzzy measure: m : 2N → [0, 1].
1: Create mU : 2N → [0, 1] a uniform fuzzy measure
2: for A ⊆ N do
3: µ|A| ← (1/

( n
|A|
)
)
∑
B⊆N ,|B|=|A| PB

4: m(A) = mU (A)
tanh(100(PA−µ|A|))

2n
5: end for

2) A priori fuzzy measure: The A Priori Fuzzy Measure
(APFM) was given in [30] and it starts from the accuracy of
every classifier and any combination of classifiers (as in CPM).
The accuracy is then normalized between 0.5 and 1 under
the assumption that any combination performs better than a
random classifier. Then, the coefficients of singletons are set

to their corresponding normalized accuracy. When considering
coalitions of classifiers, each coalition gets its normalized
accuracy only if it is greater than the accuracy of every sub-
coalition (to enforce monotonicity). Otherwise, the coalition
inherits the maximum accuracy of any sub-coalition, implying
that the coalition is no worse in performance than its best
performing subset. The APFM algorithm is described in Alg.
3.

Algorithm 3 APFM
Input: N : Set of classifiers; PA: accuracy of any coalition A ⊆ N .
Output: fuzzy measure: m : 2N → [0, 1].
1: MaxP ← maxA⊆N PA
2: for A ⊆ N do
3: nmA ← 1− MaxP−PA

MaxP−0.5

4: if |A| == 1 then
5: m(A)← nmA
6: else
7: MaxB ← maxB⊆A nmB
8: if nmA < nmB then
9: m(A)← nmB

10: else
11: m(A)← nmA
12: end if
13: end if
14: end for

3) Interaction-Sensitive Fuzzy Measure: The Interaction-
Sensitive fuzzy mesure (ISFM) is based on both a confidence
degree of each classifier and a pairwise similarity measure
that represents the diversity of each pair of classifiers. At the
beginning, the coefficient of the more confident classifier is
set to its corresponding degree. Coefficients of less confident
classifiers get their degree decreased inversely proportional to
the similarity between them and the rest of more confident
classifiers. The ISFM algorithm is described in Alg. 4.

Algorithm 4 ISFM
Input: N : Set of classifiers; κ: confidence vector; S: similarity measure.
Output: fuzzy measure: m : 2N → [0, 1].
1: σ ← permutation such that κσ(1) ≤ · · · ≤ κσ(N)

2: for i = 1, . . . , N do
3: m({σ(i)}) = κσ(i)

(
1−maxj=σ(i)+1,...,σ(n) S(σ(i), j)

)
4: end for
5: for each A ⊆ N do
6: m(A)←

∑
i∈Am({i})

7: end for
8: Normalize m to have m(N ) = 1

4) Modified Hüllermeier Measure: The Modified
Hüllermeier Measure (MHM) was first given in [31]
for an application of the Choquet integral in k-NN. However,
in [4], the authors considered the same fuzzy measure
with certain modifications for ensemble aggregation. In
this method, having again the confidence degree of each
classifier, we first construct an additive fuzzy measure where
the coefficients of singletons are given by the normalized
confidence degree. From this measure, the additivity is broken
by both a parameter α ≥ 0 and a measure of the relative
diversity of the collection of classifiers in the coalition. Thus,
the coefficient is reduced with lower diversity and increased
on the contrary. If α is set to zero, we recover the first
additive measure. The MHM algorithm is described in Alg.
5.



Algorithm 5 MHM
Input: N : Set of classifiers; m′ : 2N → [0, 1] original fuzzy measure; S: similarity

measure; α ∈ [0, 1] : parameter.
Output: fuzzy measure: m : 2N → [0, 1] associated to the instance x.
1: ds← maxi6=j∈N S(i, j) = 1−mini6=j∈N S(i, j)
2: for each A ⊆ N do
3: if |A| ≤ 1 then
4: div(A)← 0
5: rdiv(A)← 0
6: else
7: div(A)← 2

|A|2−|A|

∑
i<j∈A 1− S(i, j)

8: rdiv(A)← 2 · div(A) · ds− 1
9: end if

10: m(A)← m′(A)(1 + α · rdiv(A))
11: m(A) = maxB⊆Am(B)
12: end for
13: Normalize m to have m(N ) = 1

5) Overlap index-based fuzzy measure: As in the previous
method, the Overlap index-based fuzzy measure (OIFM) was
firstly given in [32] for combining fuzzy rules in fuzzy
rule-based classification systems. However, the usage of the
measure for ensemble aggregation is quite similar. Basically,
the fuzzy measure constructed is such that the coefficients of
each coalition are, up to some extent, proportional to the sum
of confidences of the classifiers belonging to it. In this sense,
diversity is not taken into account. The overlap index used in
the construction method allows one to increase flexibility and
to break the additivity of the fuzzy measure due to the use of
non-linear overlap indices. The OIFM algorithm is described
in Alg. 6.

Algorithm 6 OIFM
Input: N : Set of classifiers; O : [0, 1]N × [0, 1]N → [0, 1] overlap index; κ:

confidence vector;
Output: fuzzy measure: m : 2N → [0, 1].
1: Construct fuzzy set E = {(i, κi)|i = 1, . . . , N} associated to κ
2: for each A ⊆ N do
3: Create fuzzy set EA associated to A
4: for i = 1, . . . , N do
5: if i ∈ A then
6: EA(i) = κi
7: else
8: EA(i) = 0
9: end if

10: end for
11: m(A)← O(E,EA)
12: end for
13: Normalize m so that m(N ) = 1

IV. EXPERIMENTAL STUDY

This section introduces the experimental framework consid-
ered for the empirical study.

A. General settings

This study considers the thirty three most imbalanced
datasets from KEEL dataset repository [10], the most com-
mon benchmark for evaluating classifiers dealing with class
imbalance [12], [21]. In Table I the total number of examples,
number of features and IR (ratio between the majority and
minority class examples) for each dataset are presented.

The performance of each method in each dataset has been
estimated using a 5-fold cross-validation repeated 5 times
to account for the randomness in the partition and model

TABLE I
SUMMARY DESCRIPTION OF THE IMBALANCED DATASETS.

No. Data-sets #Ex. #Atts. IR No. Data-sets #Ex. #Atts. IR

1 glass1 214 9 1.82 34 Glass04vs5 92 9 9.22
2 ecoli-0 vs 1 220 7 1.86 35 Ecoli0346vs5 205 7 9.25
3 wisconsin 683 9 1.86 36 Ecoli0347vs56 257 7 9.28
4 pima 768 8 1.87 37 Yeast05679vs4 528 8 9.35
5 iris0 150 4 2 38 Ecoli067vs5 220 6 10.00
6 glass0 214 9 2.06 39 Vowel0 988 13 10.10
7 yeast1 1484 8 2.46 40 Glass016vs2 192 9 10.29
11 haberman 306 3 2.78 41 Glass2 214 9 10.39
8 vehicle2 846 18 2.88 42 Ecoli0147vs2356 336 7 10.59
9 vehicle1 846 18 2.9 43 Led7digit02456789vs1 443 7 10.97
10 vehicle3 846 18 2.99 44 Glass06vs5 108 9 11.00
12 glass-0-1-2-3 vs 4-5-6 214 9 3.2 45 Ecoli01vs5 240 6 11.00
13 vehicle0 846 18 3.25 46 Glass0146vs2 205 9 11.06
14 ecoli1 336 7 3.36 47 Ecoli0147vs56 332 6 12.28
16 new-thyroid1 215 5 5.14 48 Cleveland0vs4 177 13 12.62
15 new-thyroid2 215 5 5.14 49 Ecoli0146vs5 280 6 13.00
17 ecoli2 336 7 5.46 50 Ecoli4 336 7 13.84
18 segment0 2308 19 6.02 51 Yeast1vs7 459 8 13.87
19 glass6 214 9 6.38 52 Shuttlec0vsc4 1829 9 13.87
20 yeast3 1484 8 8.1 53 Glass4 214 9 15.47
21 ecoli3 336 7 8.6 54 Pageblocks13vs4 472 10 15.85
22 page-blocks0 5472 10 8.79 55 Abalone9vs18 731 8 16.68
23 ecoli-0-3-4 vs 5 200 7 9 56 Glass016vs5 184 9 19.44
24 yeast-2 vs 4 514 8 9.08 57 Shuttlec2vsc4 129 9 20.5
25 ecoli-0-6-7 vs 3-5 222 7 9.09 58 Yeast1458vs7 693 8 22.10
26 ecoli-0-2-3-4 vs 5 202 7 9.1 59 Glass5 214 9 22.81
27 glass-0-1-5 vs 2 172 9 9.12 60 Yeast2vs8 482 8 23.10
28 yeast-0-3-5-9 vs 7-8 506 8 9.12 61 Yeast4 1484 8 28.41
30 yeast-0-2-5-7-9 vs 3-6-8 1004 8 9.14 62 Yeast1289vs7 947 8 30.56
29 yeast-0-2-5-6 vs 3-7-8-9 1004 8 9.14 63 Yeast5 1484 8 32.78
31 ecoli-0-4-6 vs 5 203 6 9.15 64 Ecoli0137vs26 281 7 39.15
32 ecoli-0-1 vs 2-3-5 244 7 9.17 65 Yeast6 1484 8 39.15
33 ecoli-0-2-6-7 vs 3-5 224 7 9.18 66 Abalone19 4174 8 128.87

construction. That is, each result is computed as the average
of 25 runs. The GM is considered as performance measure,
although it should be mentioned that similar conclusions may
be drawn using the Area under the ROC Curve (AUC).

In accordance with other authors [13] and given that the
conditions for applying parametric statistical tests may not be
fulfilled, non-parametric statistical tests are used to support our
comparisons. For comparing pairs of methods, the Wilcoxon
test is considered, whereas the Friedman aligned-ranks test
is used for multiple comparisons. In this case, if significant
differences are found, Holm’s post-hoc test is applied to check
the null hypothesis of equivalence between a control method
and the rest of the methods.

This experimental study is in line with previous works on
the topic of ensembles for the class imbalance problem [12].
Consequently, the C4.5 decision tree [33] is used as base
classifier. As has been explained, UnderBagging RE [12] is
applied, which performs a pruning phase after learning a large
pool of classifiers. All the required parameters are detailed in
Table II.

TABLE II
PARAMETERS FOR C4.5 AND UNDERBAGGING ALGORITHM.

Algorithm Parameters

C4.5 Prune = True, Confidence level = 0.25, Confidence = Laplace
Minimum number of item-sets per leaf = 2

UnderBagging Pool of classifiers = 100, Number of final classifiers = 21
Pruning method = RE GM

B. Summary of methods and parameter estimation

In this subsection the parameterization of the learning algo-
rithms exposed in Section III is presented, especially those that
concern the use of supervised algorithms. For unsupervised



learning algorithms refer to [29] for more details of the
implementation.

Due to the nature of the problem faced in this work, which
is classification, a modification of the supervised algorithms
is considered so as to learn two different measures (one for
each class) instead of a single measure. This approach using
several measures was proposed in [6] and seems to be the most
adequate, since it would be the best way to handle problems
with more than two classes.

rHLMS: following the indications in [6], the algorithm
is slightly modified to deal with classification problems. In
binary classification problems, the error to be minimized is
given by

E2 =

2∑
i=1

m∑
j=1

∣∣∣σ(C12(x
(j))− 1

∣∣∣2
where

C12(x
(j) =

{
Cµ1

(x(j))− Cµ2
(x(j)) if x(j) ∈ C1

Cµ2
(x(j))− Cµ1

(x(j)) if x(j) ∈ C2

and sigma is the sigmoid function given by σ(z) = 1/(1 +
exp−z).

QP: in this case the code provided by the authors1 is used.
The learning is divided into two steps. First, consider all
the training examples belonging to class 1 and perform the
learning. Afterwards, perform the same process with instances
of class 2 for learning the second fuzzy measure.

TorchNN: the implementation of [8] is provided in Python
language using PyTorch2. The algorithm learns a measure
for each class. The calculation of the error is adapted by
normalizing the output of each Choquet integral. The squared
error between the normalized output of the first method and
the true target is then considered.

Finally, is it is important to notice that when considering
fuzzy measures obtained by supervised algorithms, the un-
derlying aggregation function will be the Choquet integral.
However, on those fuzzy measures obtained by unsupervised
algorithms, both the Choquet or Sugeno integral will be
considered.

V. RESULTS AND DISCUSSION

In this section we carry out the experimental study to
evaluate the performance of the different fuzzy measure con-
struction methods in the framework of imbalanced datasets.
Table III presents the results obtained for each method in the
comparison in terms of GM. The best result in each dataset
is marked in bold-face. Finally, the last row summarizes the
results over all datasets for each method showing the average
performance.

Looking at Table III, one can observe that there are impor-
tant differences among the results of the different methods.
On the one hand, among unsupervised methods there are no
large differences in absolute terms either considering Choquet

1https://github.com/B-Mur/ChoquetIntegral
2https://github.com/aminb99/choquet-integral-NN

or Sugeno, although CISFM is below the rest. With respect to
supervised methods, TorchNN is performing much better than
rHLMS and QP, with comparable results with unsupervised
methods. Classic aggregations achieve also competitive per-
formances in average. Overall, CMHM achieves the highest
accuracy, but q proper statistical analysis must be considered
to better understand the differences among the methods.

A comment on the low performance of rHLMS and QP
is warranted. In the previous section, it was mentioned that
supervised methods are implemented in such a way that a
measure for each class is learned. Doing so in TorchNN allows
to learn both measures at the same time, taking their inter-
actions into account when learning the coefficients. However,
this is not easily integrated in rHLMS and QP, where the whole
learning procedure would need to be altered. Consequently,
this provokes favoring the majority class, hindering the final
performance of the ensemble.

Continuing with the empirical comparison, a hierarchi-
cal statistical analysis of the results was undertaken. First,
performing intra-family comparisons were considered. Later,
inter-family comparisons among the best methods of each
family were carried out. Figure 1 summarizes this study. The
result of each test is presented in each intersection among
methods, showing both the ranks obtained by each method
and the p-valued obtained by the statistical test. The Wilcoxon
test is applied when the comparison only involves pairs of
methods and both the ranks and the p-value are shown. In
this case, the larger the ranks, the better. Otherwise, when
multiple methods are compared, Friedman aligned-ranks test
is carried out, where the lower the ranks, the better. In case of
statistical differences being found, the p-value of Holm’s post-
hoc test is presented, comparing the best methods with each
one of the rest. The p-value is given in bold-face whenever
significant differences in favor of the winning method exists
(with α = 0.05).

In the comparison of unsupervised methods, both using
Choquet and Sugeno integrals, ISFM is statistically the worst
performer, performing worse than the best method in each
case, MHM with Choquet and OIFM with Sugeno. How-
ever, these methods do not obtain significant differences with
respect to the others. Overall, MHM, OIFM and CPM can
be highlighted, being the best in both cases, achieving high
p-values (no significant differences with the winner). When
comparing the winners of the previous comparisons, Choquet
integral with MHM gets a higher number of ranks, although
no statistical differences are found between the two integrals.

Moving to supervised methods, as expected, TorchNN sta-
tistically outperforms the other two methods due to the already
explained reasons. In the case of classical aggregations, there
seems to be a tendency in favor of the WAM, although no
statistical differences are found with respect to the unweighted
alternative.

Finally, comparing the results of the best method for each
family: Choquet with MHM, TorchNN and WAM. Looking at
the p-values, one can observe that no statistical differences are
found, although ranks are in favor of Choquet with MHM. This



TABLE III
AVERAGE GM SCORE OF EACH METHOD FOR EACH DATASET

Unsupervised (Choquet) Unsupervised (Sugeno) Supervised (Choquet) Classic

Dataset CCPM CAPFM CISFM CMHM COIFM SCPM SAPFM SISFM SMHM SOIFM rHLMS QP TorchNN AM WAM

abalone19 0.6993 0.7078 0.7007 0.7037 0.7034 0.6792 0.7070 0.6916 0.6957 0.6979 0.4546 0.1913 0.6887 0.7052 0.7065
abalone9-18 0.7232 0.7092 0.7164 0.7271 0.7164 0.6968 0.7212 0.7074 0.7075 0.7239 0.6386 0.4704 0.7078 0.7260 0.7245
cleveland-0 vs 4 0.8405 0.7931 0.7466 0.8625 0.8293 0.8298 0.8118 0.7382 0.8316 0.8357 0.7284 0.6062 0.8296 0.8460 0.8485
ecoli-0-1-3-7 vs 2-6 0.7558 0.8227 0.7170 0.8755 0.7583 0.7461 0.8081 0.7068 0.8635 0.7357 0.7207 0.6191 0.7735 0.7953 0.7912
ecoli-0-1-4-6 vs 5 0.8839 0.8867 0.8377 0.8888 0.8855 0.8756 0.8791 0.8303 0.8901 0.8850 0.8412 0.7984 0.8861 0.8811 0.8826
ecoli-0-1-4-7 vs 2-3-5-6 0.8529 0.8379 0.8231 0.8428 0.8528 0.8599 0.8341 0.8144 0.8449 0.8608 0.8522 0.7667 0.8634 0.8520 0.8536
ecoli-0-1-4-7 vs 5-6 0.8750 0.8735 0.8518 0.8765 0.8770 0.8768 0.8757 0.8523 0.8791 0.8788 0.8793 0.8128 0.8920 0.8783 0.8807
ecoli-0-1 vs 5 0.8959 0.9141 0.8665 0.9168 0.8904 0.9071 0.8800 0.8665 0.9130 0.9009 0.8658 0.7945 0.8916 0.8925 0.8925
ecoli-0-3-4-6 vs 5 0.8787 0.9067 0.8864 0.8992 0.8825 0.8779 0.9026 0.8854 0.8913 0.8763 0.8372 0.7741 0.8838 0.8797 0.8791
ecoli-0-3-4-7 vs 5-6 0.8769 0.8705 0.8604 0.8673 0.8788 0.8779 0.8685 0.8600 0.8599 0.8843 0.8664 0.8201 0.8897 0.8775 0.8775
ecoli-0-6-7 vs 5 0.8818 0.8634 0.8468 0.8726 0.8748 0.8822 0.8600 0.8452 0.8685 0.8833 0.8680 0.8525 0.8880 0.8822 0.8822
ecoli4 0.9217 0.9342 0.8672 0.9283 0.9156 0.9169 0.8981 0.8672 0.9244 0.9147 0.9062 0.8081 0.9020 0.9182 0.9182
glass-0-1-4-6 vs 2 0.6830 0.7266 0.7105 0.6927 0.7079 0.6848 0.7212 0.7088 0.6900 0.6727 0.5455 0.3742 0.6885 0.7043 0.7005
glass-0-1-6 vs 2 0.6728 0.6921 0.6546 0.6851 0.6726 0.6840 0.6543 0.6317 0.6997 0.6811 0.5242 0.3503 0.6741 0.6709 0.6748
glass-0-1-6 vs 5 0.9464 0.9790 0.9561 0.9348 0.9464 0.9464 0.9784 0.9561 0.9476 0.9464 0.7844 0.8678 0.9784 0.9464 0.9464
glass-0-4 vs 5 0.9939 0.9939 0.9939 0.9939 0.9939 0.9939 0.9939 0.9939 0.9939 0.9939 0.9939 0.9939 0.9939 0.9939 0.9939
glass-0-6 vs 5 0.9224 0.9939 0.9949 0.9781 0.9224 0.9172 0.9939 0.9949 0.9645 0.9224 0.9715 0.9598 0.9949 0.9172 0.9204
glass2 0.6683 0.6978 0.6969 0.6354 0.6712 0.6244 0.6718 0.6900 0.6215 0.6855 0.5673 0.3494 0.6361 0.6234 0.6576
glass4 0.9104 0.8765 0.8456 0.9039 0.9120 0.9216 0.8991 0.8456 0.9033 0.9126 0.7444 0.7198 0.8839 0.9185 0.9203
glass5 0.9523 0.9852 0.9634 0.9587 0.9523 0.9513 0.9847 0.9634 0.9197 0.9513 0.8632 0.9032 0.9867 0.9513 0.9513
led7digit-0-2-4-5-6-7-8-9 vs 1 0.8152 0.8065 0.8206 0.8146 0.8148 0.8211 0.8171 0.8206 0.8110 0.8193 0.8477 0.8428 0.8366 0.8133 0.8135
page-blocks-1-3 vs 4 0.9797 0.9909 0.9943 0.9660 0.9806 0.9764 0.9884 0.9943 0.9676 0.9818 0.9910 0.9772 0.9939 0.9761 0.9761
shuttle-c0-vs-c4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
shuttle-c2-vs-c4 1.0000 1.0000 1.0000 0.9897 1.0000 1.0000 1.0000 1.0000 0.9897 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
vowel0 0.9664 0.9599 0.9588 0.9656 0.9658 0.9676 0.9581 0.9588 0.9658 0.9676 0.9702 0.9569 0.9700 0.9660 0.9660
yeast-0-5-6-7-9 vs 4 0.8023 0.8100 0.8004 0.8118 0.8026 0.8063 0.8086 0.8032 0.8099 0.8001 0.7757 0.6540 0.7969 0.8032 0.8054
yeast-1-2-8-9 vs 7 0.7331 0.7211 0.6982 0.7335 0.7269 0.6674 0.6968 0.6865 0.6879 0.7048 0.5496 0.2729 0.6794 0.7335 0.7347
yeast-1-4-5-8 vs 7 0.6227 0.5754 0.5850 0.6175 0.5991 0.5258 0.5899 0.5723 0.6227 0.5983 0.3324 0.1784 0.6003 0.6348 0.6260
yeast-1 vs 7 0.7671 0.7565 0.7292 0.7637 0.7704 0.7391 0.7422 0.7130 0.7719 0.7466 0.6209 0.5075 0.7337 0.7555 0.7590
yeast-2 vs 8 0.7751 0.7767 0.7606 0.7756 0.7765 0.7419 0.7821 0.7387 0.7808 0.7680 0.7408 0.7415 0.7355 0.7703 0.7694
yeast4 0.8546 0.8432 0.8198 0.8535 0.8571 0.8524 0.8292 0.8164 0.8507 0.8521 0.8125 0.6724 0.8383 0.8522 0.8525
yeast5 0.9577 0.9648 0.9533 0.9573 0.9571 0.9579 0.9562 0.9533 0.9582 0.9581 0.9497 0.9140 0.9581 0.9572 0.9571
yeast6 0.8604 0.8460 0.8296 0.8458 0.8605 0.8478 0.8406 0.8252 0.8347 0.8555 0.8322 0.7283 0.8541 0.8633 0.8637

Mean 0.8476 0.8520 0.8329 0.8527 0.8471 0.8380 0.8470 0.8282 0.8473 0.8453 0.7841 0.7054 0.8464 0.8480 0.8493

CCPM 79.15 0.8944

CAPFM 70.26 0.8760

CISFM 115.80 0.0002

CMHM 68.70

COIFM 81.09 0.8760

SCPM 89.15 1.0000

SAPFM 71.74 0.2032 355.50

SISFM 112.65 0.0005 205.50 0.1802 45.12

SMHM 73.79 1.0000 56.68 0.2041

SOIFM 67.67 48.20 0.6663

rHMLS 46.12 0.0020

QP 79.64 0.0000

TorchNN 24.24

AM 191.00 0.1082

WAM 370.00

Fig. 1. Hierarchical statistical study comparing the different fuzzy measure
construction methods and classical aggregation methods.

result is really interesting, as it shows that classical aggregation
methods can still compete with more complex ones in certain
scenarios. In this specific scenario, an ensemble of only 11
classifiers is being aggregated, due to the cost of learning
supervised fuzzy measures. Moreover, we are in a challeng-
ing framework of imbalanced dataset with highly optimized
classifiers learned with Bagging. For this reason, we expect
other frameworks to show the goodness of fuzzy measure-
based aggregations in terms of performance. Likewise, one
could expect better performance from supervised methods with
respect to unsupervised ones. However, these methods can
easily lead to overfitting and may not be suited to work with
imbalanced datasets unless their costs functions are adapted to
work with this problem, as in the case with the TorchNN.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have performed a study focused on different
existing algorithms for the estimation and learning of a fuzzy
measure, under the assumption that the fuzzy measure will
be used together with a fuzzy integral to aggregate several
classifiers of an ensemble.

By analyzing the literature, two different methodologies
for learning the coefficients of a fuzzy measure have been
found: supervised (data driven) and unsupervised (heuristic).



We have selected a representative number of algorithms which
are encompassed under these two methodologies.

From the experimental study we have shown that in the
current framework there are no great differences among the
methods that are able to cope with the class imbalance
problem. This result shows that there is still work to be done in
the context of fuzzy measures-based aggregation in ensembles.
We expect to found experimental frameworks better suited
for these approaches: either using more classifiers or other
ensemble learning models (Boosting or Gradient Boosting, for
example). Supervised methods may need a separate validation
set for learning, regularization strategies and adaptations to
specific problems such as imbalanced ones.
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[31] E. Hüllermeier, “Cho-k-nn: a method for combining interacting pieces of
evidence in case-based learning,” in 19th International Joint Conference
on Artificial Intelligence IJCAI05, 2005, pp. 3–8.

[32] D. Paternain, H. Bustince, M. Pagola, P. Sussner, A. Kolesárová, and
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