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1. Introduction24

Evaluations methods and theories are cornerstones25

of decision making models and practices. The appli-26

cations and developments of aggregation functions27

(also known as aggregation operators) [1, 3, 11, 20]28

and information fusion techniques [4, 9, 13, 23–26]29

play an underpinning role in a myriad of evaluation30
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problems [12, 14, 15, 21]. For several decades, schol- 31

ars deeply and widely have been studying aggregation 32

functions from different aspects [3, 6–8, 10, 16, 17, 33

19, 25]. In general, given a collection of finite pieces 34

of information under evaluation and aggregation, 35

aggregation functions always take those information 36

as inputs and then return an aggregated result; and the 37

result often serves as a comprehensive evaluation to 38

a related decision making problem. 39

There are numerous different types and classifi- 40

cations of aggregation functions such as averaging 41
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functions, conjunctive functions, disjunctive func-42

tions and mixture functions [3, 10, 11]. A type43

of powerful and important aggregation function is44

the Ordered Weighted Averaging (OWA) operators45

[22], which can flexibly and effectively model a46

continuum bipolar preference from optimism, via47

neutral attitude, to pessimism of decision makers,48

taken or exerted over inputs information. One impor-49

tant extension of OWA operators is the Induced50

Ordered Weighted Averaging (IOWA) operators [24],51

endowed with further flexibility to well embody52

and reflect a wider type of bipolar preference of53

decision makers than the mere optimism/pessimism54

preference.55

Viewing further into some atomic structures in this56

interesting and important research area, scholars and57

decision makers are faced with great diversity of data58

information. One hot area of research of analyzing59

and modeling for those different types of data, is60

around the data information that has an uncertainty61

nature involved. There has been a large variety of62

different types of uncertain information such as the63

well known fuzzy information [2], interval informa-64

tion, probability information, possibility information65

and recently introduced Basic Uncertain Informa-66

tion (BUI) [5, 18]. Put simply, a BUI granule is67

with the form < x; c > (x, c ∈ [0, 1]), where x is the68

input value as normally dealt with under aggrega-69

tion, while c is the certainty degree of x, which will70

be reviewed in detail later. Actually, many uncer-71

tainties can be generalized into BUI, since there72

needs only one value in unit interval to efficiently73

and effectively model the certainty degree a decision74

maker has.75

It is evident that the existence of uncertainties will76

cause those involved decision makers to have differ-77

ent cognitions and more complex evaluations over78

the inputs information. Accordingly, the traditional79

preference aggregation techniques should be adapted80

or adjusted to address the new problems posed. And81

as an essential task, scholars and practitioners should82

consider how to better model the uncertainties exist-83

ing in different forms, and devise suitable aggregation84

procedures to merge those uncertain information85

(e.g., with BUI expression) and take corresponding86

and reasonable decisions. For these purposes, this87

study will analyze and discuss some reasonable pref-88

erence aggregation techniques that are specifically89

suitable for BUI inputs and thus help to provide eval-90

uation and decision taking guidance or automatic91

decision rules in corresponding uncertain decision92

making environments.93

The remainder of this article is organized as fol- 94

lows. Section 2 reviews some basic knowledge about 95

aggregation function, OWA operators and IOWA 96

operators, fixes some terminologies used in this work, 97

and then formally introduces IOWA operator with 98

poset valued input vector and inducing vector for 99

later discussions. In Section 3, based on well-defined 100

uncertain system, we majorly discuss the multi-layer 101

uncertainty transformation for BUI with correspond- 102

ing OWA aggregation, and then propose MUT IOWA 103

aggregation procedure. Section 4 provides a numeri- 104

cal example of MUT IOWA with simple application 105

in evaluation. Section 5 concludes and remarks this 106

study. 107

2. Generalized IOWA aggregation with both 108

poset input and inducing values 109

Some evaluation and aggregation operators and 110

techniques that are based on strict formulations, as 111

well as on parameterization and adjustability, are very 112

crucial and helpful in automatic decision making and 113

some corresponding areas of computational intelli- 114

gences. This section is designed to review, rephrase 115

or reformulate some preference involved aggregation 116

techniques using systematical and formal language. 117

Without loss of generality, in this study any collec- 118

tion of n pieces of inputs information to be aggregated 119

is represented by a real function x<n> : {1, ..., n} → 120

[0, 1], called input function. The space of such input 121

functions (input vectors) x<n> is conventionally 122

denoted by [0, 1]n. Throughout the rest of this work, 123

we make no difference between an input function and 124

its vector expression. 125

Definition 1. [3] (Aggregation function) An 126

aggregation function with input vector x<n>, 127

F<n> : [0, 1]n → [0, 1] satisfies the following two 128

conditions 129

(i) (boundary conditions) F<n> ((0, ..., 0)) = 0 130

and F<n> ((1, ..., 1)) = 1; 131

(ii) (monotonicity) for any two input functions 132

x<n>, y<n> ∈ [0, 1]n, if x<n> ≤ y<n> then 133

F<n>(x<n>) ≤ F<n>(y<n>). 134

Aggregation functions provide a useful and strict 135

frame to handle a wide variety of evaluation and 136

information fusion problems. In decision making, 137

sometimes decision makers have more or less sub- 138

jectivities and preferences involved. In order to 139

well model the aggregation with optimism/pessimism 140
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preferences involved, Yager introduced a special type141

of aggregation functions, the OWA operators, which142

can ideally return a larger (or smaller) value than143

many other types of aggregation functions according144

to the extents of those involved optimism/pessimism145

preferences of decision makers.146

Definition 2. [22] (OWA operator) Let w<n> :147

[0, 1]n → [0, 1] be a weight vector (of dimension148

n) with
∑n

i=1 w<n>(i) = 1. An OWA operator of149

dimension n with weight vector w<n> is defined to150

be a mapping OWA<n>
w<n> : [0, 1]n → [0, 1] such that151

OWA<n>
w<n>(x<n>) =

n∑
i=1

w<n>(i)x<n>(σ<n>(i)) (1)152

where σ<n> : {1, ..., n} → {1, ..., n} is any appro-153

priate permutation satisfying x<n>(σ<n>(i)) ≥154

x<n>(σ<n>(j)) whenever 1 ≤ i < j ≤ n.155

Definition 3. [22] (Orness/andness) The orness of a156

weight vector (of dimension n) w<n> is defined by157

orness(w<n>) =
n∑

i=1

n − i

n − 1
w<n>(i) (2)158

Dually, the andness of a weight vector (of dimen-159

sion n) w<n> is defined by160

andness(w<n>) =
n∑

i=1

i − 1

n − 1
w<n>(i)161

= 1 − orness(w<n>) (3)162

In many decision making practices, orness of a163

weight vector generally reflects the extent to which164

decision makers have an optimistic preference over165

the inputs. Ordinarily, the OWA operator with a166

weight vector having larger orness will return a larger167

aggregation result, and vice versa. It is possible that168

the OWA operator with a weight vector having a169

larger orness can have a smaller value than those hav-170

ing a smaller orness. However, statistically, it is more171

possible for the OWA aggregation related to larger172

orness to be greater than the one related to smaller173

orness. Considering expected values, orness is just174

the normed expected value of OWA aggregation [3].175

Scholars discussed different methods of generating176

weight vector for OWA operators. Yager proposed177

an ingenious one that can simply and effectively178

generate weight vectors by a bounded function Q :179

[0, 1] → [0, 1] called Regular Increasing Monotone180

(RIM) quantifier.

Definition 4. [23] A RIM quantifier Q is a mono- 181

tonic non-decreasing function defined on unit interval 182

Q : [0, 1] → [0, 1] with Q(0) = 0 and Q(1) = 1. A 183

weight vector w<n>
Q is called a Q-generated weight 184

vector (of dimension n) if it satisfies 185

w<n>
Q (i) = Q(i/n) − Q ((i − 1)/n) (4) 186

Remark. Since Q is monotonic non-decreasing, then 187

it is necessarily Riemann Integrable. The orness [23] 188

of such RIM quantifier Q is defined as 189

orness(Q) =
∫ 1

0
Q(t)dt (5) 190

The orness of RIM quantifier Q is generally not 191

equal to the orness of the derived weight vector 192

w<n>
Q , though when n → ∞ they are approaching 193

each other. Similar to the meaning of orness of a 194

weight vector, the orness of a RIM quantifier Q also 195

effectively reflects an extent of optimism of decision 196

makers. 197

In general, OWA operators can well model only the 198

optimism/pessimism preference when fusing infor- 199

mation. Hence, to be able to conveniently model more 200

cases of bipolar preference, Yager later introduced 201

the Induced Ordered Weighted Averaging (IOWA) 202

operators. We rephrase it using the language of RIM 203

quantifier as follows with some more accurate expres- 204

sions. 205

Definition 5. [24] (IOWA operator) Given RIM quan-
tifier Q, input vector x<n> ∈ [0, 1]n, let h<n> ∈
[0, 1]n be another input vector attached to x<n>,
called the inducing vector attached to x<n>, where
each of its value h<n>(i) is called the inducing
value of x<n>(i) (i ∈ {1, ..., n}). Define two set func-
tions L : {1, ..., n} → 2{1,...,n} and U : {1, ..., n} →
2{1,...,n} such that

L(i) = {r ∈ {1, ..., n}|h<n>(r) < h<n>(i)},

U(i) = {r ∈ {1, ..., n}|h<n>(i) < h<n>(r)}.
Generate a weight vector from Q and h<n>, v<n>

Q;h : 206

{1, ..., n} → [0, 1] by the following rule 207

v<n>
Q;h (i) = Q ((n − |L(i)|) /n) − Q (|U(i)| /n)

n − |L(i)| − |U(i)| . (6) 208

An Induced OWA operator IOWAQ;h : [0, 1]n → 209

[0, 1] (with Q and h<n>) is defined as 210

IOWAQ;h(x) =
∑n

i=1
v<n>
Q;h (i) · x<n>(i). (7) 211
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Remark. It is obvious that v<n>
Q;h is indeed a normal-212

ized weight vector.213

Definition 6. (a) For a poset (S, ≺− ), let H<n> :214

{1, ..., n} → S be function, then denote by Sn the215

space of all such functions H<n>.216

(b) For any two elements x, y ∈ S, x ≺ y means217

x ≺− y and x /= y.218

We next formally define the IOWA operator with219

poset valued input vector and inducing vector.220

Definition 7. (IOWA operator with poset valued input
vector and inducing vector) Given RIM quantifier Q,
convex poset (S1, ≺− ) (i.e., for any X1, X2 ∈ S1, and

any λ ∈ [0, 1], then λ · X1 + (1 − λ) · X2 ∈ S1), and
poset (S2, ≺− ), let X<n> ∈ Sn

1 be the convex poset val-

ued input vector, let H<n> ∈ Sn
2 be the poset valued

inducing vector attached to X<n>, called the poset
valued inducing vector attached to X<n>, where each
of its value H<n>(i) is called the inducing poset value
of X<n>(i). Define three set-valued functions L :
{1, ..., n} → 2{1,...,n}, U : {1, ..., n} → 2{1,...,n} and
E : {1, ..., n} → 2{1,...,n} such that

L(i) = {r ∈ {1, ..., n}|H<n>(r) ≺ H<n>(i)},

U(i) = {r ∈ {1, ..., n}|H<n>(i) ≺ H<n>(r)}, and
221

E(i) = {r ∈ {1, ..., n}|H<n>(i) /≺ H<n>(r) and222

H<n>(r) /≺ H<n>(i)}223

Generate a weight vector from Q and H<n>,224

v<n>
Q;H : {1, ..., n} → [0, 1] by the following rule225

v<n>
Q;H (i) = Q ((n − |L(i)|) /n) − Q (|U(i)| /n)

|E(i)| . (8)226

An Induced OWA (IOWA) operator with poset227

valued inducing vector, IOWAQ;H : [0, 1]n → [0, 1]228

(with Q and H<n>) is defined as229

IOWAQ;H (X) =
∑n

i=1
w(i)X<n>(i) (9)230

where w satisfies w(i) = v<n>
Q;H (i)∑n

j=1
v<n>
Q;H (j)

.231

Remark. Note that v<n>
Q;H in (8) is not necessarily232

normalized, and from [8] we know w in (9) always233

can be correctly obtained.234

Remark. Observe that if (S1, ≺− ) = (S2, ≺− ) =235

([0, 1], ≤), then Definition 7 in actual degenerates236

into the OWA operators in Definition 2. In other237

words, an OWA operator is equivalent to an IOWA238

operator with both of its input vector and inducing 239

vector being real. 240

3. Certainty preferences induced aggregation 241

for BUI with related 242

certainty-transformation 243

Recently, a concept of the Basic Uncertain Infor- 244

mation (BUI) to generalize and represent a diverse 245

variety of uncertain information was proposed in 246

[5, 18]. This section discusses two methods to per- 247

form OWA aggregation over BUI inputs. 248

3.1. The simple uncertainty transformation for 249

BUI 250

A BUI granular information is represented as a pair 251

form < x; c > (x, c ∈ [0, 1]), where x is the input 252

value under further aggregation, while c is the cer- 253

tainty degree of x, representing the extent to which the 254

involved decision makers believe that x takes exactly 255

its value; and 1 − c is then called the uncertainty 256

degree of x. The decision makers’ beliefs or confi- 257

dences of the input value being x can be measured by 258

a value c in unit interval; that is, the larger certainty 259

degree c is, the more beliefs they have, and vice versa. 260

For example, < x; c >=< 0.6, 0.3 > indicates that 261

the input value for aggregation is given with x = 0.6, 262

but decision maker does not fully believe x assumes 263

0.6, and his/her belief for this proposition is c = 0.3 264

(and his uncertainty for this is therefore c = 0.7), 265

showing some suspicious feeling of him/her for the 266

proposal x = 0.6. 267

When there is need to aggregate a collection of 268

n BUI inputs (< xi; ci >)ni=1 using OWA operator, 269

clearly we also must to consider the influences on 270

(xi)ni=1 exerted by (ci)ni=1. If we directly use IOWA 271

operator with inducing function h<n> : {1, ..., n} → 272

[0, 1] such that h<n>(i) = ci, then the preference 273

involved aggregation will no longer consider the 274

proposed magnitudes of inputs (xi)ni=1, but by the 275

attached inducing value h<n>(i) = ci (i ∈ {1, ..., n}) 276

only. It is related to the process of IOWA aggrega- 277

tion, not the desired OWA aggregation. Therefore, 278

in order to fulfill OWA aggregation over BUI inputs 279

(< xi; ci >)ni=1, we need to make clear that the aggre- 280

gation is mainly controlled by inputs (xi)ni=1, and 281

inducing information (ci)ni=1 is only the influential 282

factors. 283

With given inducing information (ci)ni=1, differ- 284

ent decision makers may have different feelings and 285
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opinions about how they will influence the whole286

OWA aggregation process. These cognitions may also287

change depending on different decisional situations288

and scenarios. In the remainder of this study, based on289

different mechanisms of uncertainty transformation,290

we will propose some reasonable methods to model291

those opinions of decision makers, which are mean-292

ingful and helpful in the understanding and studying293

of uncertain decision making.294

The next one is about one simple but effective295

uncertainty transformation for BUI.296

Definition 8. (i) The space of all BUI < x; c > is297

denoted by B; the space of all closed intervals [a, b]298

([a, b] ⊆ [0, 1]) is denoted by I. In addition, when299

there is no confusion arising, [a, a] equivalently rep-300

resents real number a in decision making.301

(ii) Define (I; ≺− ) to be a poset (actually a complete302

lattice) such that for any two [a1, b1], [a2, b2] ∈ I,303

[a1, b1] ≺− [a2, b2] if and only if a1 ≤ a2, b1 ≤ b2.304

Definition 9. For any BUI < x; c >, the simple uncer-305

tainty transformation SP : B → I is a mapping such306

that307

SP(< x; c >) = [cx, x + (1 − c)(1 − x)]. (10)308

With the obtained intervals by uncertainty trans-309

formation, the OWA aggregation for BUI inputs310

(< xi; ci >)ni=1 boils down to the IOWA operator311

with poset valued input vector and inducing vector.312

Specifically, under this situation, the involved input313

vector x<n> is simply synchronized with (xi)ni=1, i.e.,314

x<n>(i) = xi, while the attached poset valued induc-315

ing vector H<n> is defined by H<n>(i) = SP(<316

xi; ci >).317

It is noteworthy that above induced aggregation318

has relation to both (xi)ni=1 and (ci)ni=1, but it does not319

directly depend on them. The detailed procedures of320

OWA aggregation for BUI inputs under simple uncer-321

tainty transformation will be omitted in this work.322

3.2. The multi-layer uncertainty transformation323

for BUI with corresponding OWA324

aggregation325

The proposal in this subsection needs the following326

definitions about the system of closed interval chains.327

Definition 10. Given any closed interval [a, b] ∈ I,328

its length is simply defined by a function l : I →329

[0, 1] such that l([a, b]) = b − a, i.e., the Lebesgue330

measure of [a, b].

Remark. Observe that l (SP(< x; c >)) = 331

l ([cx, x + (1 − c)(1 − x)]) = 1 − c. 332

Definition 11. For any real number x ∈ [0, 1] and 333

for any natural number p ∈ {1, 2, ...}, a closed 334

interval chain with degree (or layer) p around x is 335

defined by a finite sequence {SP(< x; hk >)}pk=1 = 336

{[hkx, x + (1 − hk)(1 − x)]}pk=1 with 0 ≤ hk ≤ 337

hk+1 ≤ 1 for any k ∈ {1, ..., p − 1}. The space of all 338

such closed interval chains with degree p around x is 339

denoted by I<p;x>. 340

Definition 12. A system of series with degree p (p ∈ 341

{1, 2, ...}), S
<p> =

{
{h(α)

k }pk=1

}
α∈[0,1]

, is called an 342

uncertain system, if it satisfies the following condi- 343

tions: 344

(i) for any 0 ≤ α ≤ 1, it satisfies 1
p

∑p
k=1 h

(α)
k = 345

α; 346

(ii) for any 0 ≤ α < β ≤ 1 and any k ∈ {1, ..., p}, 347

it holds h
(α)
k ≤ h

(β)
k . 348

Example 1. Consider p = 2. If α ≤ 0.5, define 349

h
(α)
1 = 0 and h

(α)
2 = 2α; if α > 0.5, define h

(α)
1 = 350

2α − 1 and h
(α)
2 = 1. Then, it can be verified that 351

S
<2> =

{
{h(α)

1 , h
(α)
2 }

}
α∈[0,1]

= {{0, 2α}}α∈[0,0.5] ∪ 352

{{2α − 1, 1}}α∈(0.5,1] is an uncertain system with 353

degree 2. 354

With foregoing preparations, we next introduce a 355

novel uncertainty transformation called the multi- 356

layer uncertainty transformation for BUI and the 357

corresponding OWA aggregation. 358

Definition 13. The multi-layer uncertainty transfor- 359

mation for any BUI < x; c > with uncertain system 360

S
<p> =

{
{h(α)

k }pk=1

}
α∈[0,1]

is a mapping MP : B → 361

I<p;x> such that 362

MP(< x; c >) = {SP(< x; h(c)
k >)}pk=1 363

= {[h(c)
k x, x + (1 − h

(c)
k )(1 − x)]}pk=1 (11) 364

Remark. Observe that 1
p

·
p∑

k=1
l(SP(< x; h(c)

k >)) 365

= 1 − c. 366

Example 2. Given BUI < x; c >=< 0.4; 0.6 > with

uncertain system S
<2> =

{
{h(α)

1 , h
(α)
2 }

}
α∈[0,1]

=
{{0, 2α}}α∈[0,0.5] ∪ {{2α − 1, 1}}α∈(0.5,1], then

MP(< 0.4; 0.6 >) = {SP(< 0.4; h(0.6)
k >)}2

k=1
367

= {[(0.2)(0.4), (0.4) + (1 − (0.2))(1 − (0.4))], 368
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[(1)(0.4), (0.4) + (1 − 1)(1 − (0.4))]}369

= {[0.08, 0.88], [0.4, 0.4]}.370

Remark. Note that (11) implies that the aver-371

age length of all involved intervals is equal to372

the uncertainty degree in that BUI < x; c >, i.e.,373

1
p

∑p
k=1 l([h(c)

k x, x + (1 − h
(c)
k )(1 − x)]) = 1 − c. In374

addition, when p = 1, the multi-layer uncertainty375

transformation in definition 13 degenerates into the376

simple uncertainty transformation in Definition 9.377

Next, we define and illustrate the detailed steps378

of OWA aggregation for BUI with the multi-layer379

uncertainty transformation.380

Definition 14. The OWA aggregation for BUI with381

the Multi-layer Uncertainty Transformation under382

RIM Quantifier Q and uncertain system S
<p> =383 {

{h(α)
k }pk=1

}
α∈[0,1]

(hereafter MUT IOWA) is a func-384

tion MUT IOWAQ;S<p> : Bn → I whose function385

value is determined and obtained by the following386

course of actions from information preparation to387

final aggregation result returning, which in detail is388

separated into the following two stages containing 6389

sub-steps in total.390

Stage 1 Collect the overall presented inputs informa-391

tion for preference involved aggregation procedures.392

Step 1: Fix n (n ∈ {2, 3, ...}) and obtain BUI inputs393

(< xi; ci >)ni=1.394

Step 2: Select a RIM quantifier Q as given preference395

for later generating weight vector.396

Step 3: Fix a degree p (p ∈ {1, 2, ...}) and deter-397

mine an uncertain system with degree p, S
<p> =398 {

{h(α)
k }pk=1

}
α∈[0,1]

.399

Step 4: For each i ∈ {1, ..., n}, using (11) to PER-400

FORM the multi-layer uncertainty transformation for401

any BUI < xi; ci > with S
<p> and obtain402

MP(< xi; ci >) = {SP(< xi; h
(ci)
k >)}pk=1403

= {[h(ci)
k xi, xi + (1 − h

(ci)
k )(1 − xi)]}pk=1.404

Stage 2 Perform corresponding IOWA aggregations405

and then take their average.406

Step 5: For each k ∈ {1, ..., p}, perform IOWA oper-407

ator with poset valued input vector408

Xk = (
[h(ci)

k xi, xi + (1 − h
(ci)
k )(1 − xi)]

)n

i=1
∈ In (12)409

and inducing vector

Hk = (
[h(ci)

k xi, xi + (1 − h
(ci)
k )(1 − xi)]

)n

i=1
∈ In, (13) 410

and obtain IOWAQ;Hk
(Xk) by Definition 7. 411

Step 6: Take an average and obtain a final aggregation 412

result MUT IOWAQ;S<p>

(
(< xi; ci >)ni=1

)
as fol- 413

lows, which embodies both the preferences involved 414

and the uncertainty handled. 415

MUT IOWAQ;S<p>

(
(< xi; ci >)ni=1

)
416

= 1

p

p∑
k=1

IOWAQ;Hk
(Xk) (14) 417

Somewhat contradicting to normal intuition that 418

MUT IOWA might be monotonic with respect to ≺− , 419

nevertheless, this is not the case. We neglect some 420

further possible mathematical discussions since this 421

study majorly focuses on the alternative methods to 422

handle uncertainty in decision making. 423

4. A numerical example of MUT IOWA with 424

application in financial evaluation 425

Suppose a technical corporation needs to evalu- 426

ate the success ratio of researching a new product. 427

A management will firstly set a ratio threshold (e.g., 428

0.3) for further evaluation. Then, he will invite several 429

consultants to give their opinions about the suc- 430

cess ratio respectively, allowing uncertainties to be 431

involved. Finally, if the aggregation result from con- 432

sultants attains the threshold, the research plan can 433

be approved. 434

In the next we illustrate the detailed aggregation 435

process using MUT IOWA, together with a simple 436

decision making.
437

The aggregation with uncertain information by
using MUT IOWA

Stage 1 Collect the overall presented inputs
information for preference involved aggregation
procedures.

Step 1: Invite n = 3 experts and require them
to return the success ratios of the new research
by BUI < x1; c1 >=< 0.5; 0.8 >, < x2; c2 >=<

0.7; 1 >, and < x3; c3 >=< 0.8; 0.2 >, respec-
tively.

Step 2: Select a RIM quantifier Q with Q(t) = t2,
representing a pessimistic attitude of the manage-
ment is involved.
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Step 3: Determine an uncertain system with
degree p = 2, S

<2> = {{h(α)
1 , h

(α)
2 }}α∈[0,1] =

{{0, 2α}}α∈[0,0.5] ∪ {{2α − 1, 1}}α∈(0.5,1].

Step 4: For each i ∈ {1, 2, 3}, using (11) to perform
the multi-layer uncertainty transformation for any
BUI < xi; ci > with S

<2> and obtain

MP(< x1; c1 >) = {SP(< x1; h(c1)
k >)}2

k=1

= {[h(c1)
k x1, x1 + (1 − h

(c1)
k )(1 − x1)]}2

k=1

= {[(0.6)(0.5), (0.5) + (1 − 0.6)(1 − 0.5)],

[(1)(0.5), (0.5) + (1 − 1)(1 − 0.5)]}
= {[0.3, 0.7], [0.5, 0.5]};

MP(< x2; c2 >) = {SP(< x2; h(c2)
k >)}2

k=1

= {[h(c2)
k x2, x2 + (1 − h

(c2)
k )(1 − x2)]}2

k=1

= {[(1)(0.7), (0.7) + (1 − 1)(1 − 0.7)],

[(1)(0.7), (0.7) + (1 − 1)(1 − 0.7)]

= {[0.7, 0.7], [0.7, 0.7]};

MP(< x3; c3 >) = {SP(< x3; h(c3)
k >)}pk=1

= {[h(c3)
k x3, x3 + (1 − h

(c3)
k )(1 − x3)]}2

k=1

= {[(0)(0.8), (0.8) + (1 − 0)(1 − 0.8)],

[(0.4)(0.8), (0.8) + (1 − 0.4)(1 − 0.8)]}
= {[0, 1], [0.32, 0.92]}.

Stage 2 Perform corresponding IOWA aggregations
and then take their average.

Step 5: For each k ∈ {1, 2}, by (12) and (13), per-
form IOWA operator with poset valued input vec-

tor Xk =
(

[h(ci)
k xi, xi + (1 − h

(ci)
k )(1 − xi)]

)n

i=1
∈

I3 and inducing vector

Hk =
(

[h(ci)
k xi, xi + (1 − h

(ci)
k )(1 − xi)]

)3

i=1
∈ I3.

In detail, X1 = ([0.3, 0.7], [0.7, 0.7], [0, 1]) and
X2 = ([0.5, 0.5], [0.7, 0.7], [0.32, 0.92]), and
inducing vector Hk is same to Xk,
H1 = X1 = ([0.3, 0.7], [0.7, 0.7], [0, 1]) and
H2 = X1 = ([0.5, 0.5], [0.7, 0.7], [0.32, 0.92]).
Next, by Definition 7 (omitting the detailed com-
putation for weight vector w), we have

IOWAQ;H1 (X1) = (2/9)([0.3, 0.7]) + (4/9)([0.7, 0.7])

+(1/3)([0, 1]) = [0.378, 0.8],

IOWAQ;H2 (X2) = (2/9)([0.5, 0.5]) + (4/9)([0.7,

0.7]) + (1/3)([0.32, 0.92]) = [0.5289, 0.7289].

Step 6: Take an average and obtain a final aggrega-
tion result by (14),

MUT IOWAQ;S<2>

(
(< xi; ci >)3

i=1

)

= 1

2

2∑
k=1

IOWAQ;Hk
(Xk) = (0.5)([0.378, 0.8])

+(0.5)([0.5289, 0.7289]) = [0.45345, 0.76445].

Stage 3 A direct decision taking using information
obtained from previous aggregations.

Step 7: Since the predetermined threshold is 0.3 and
[0.45345, 0.76445] > [0.3, 0.3], then the decision
is made to approve the research plan.

438439

It is noteworthy that in real decision making, above 440

Stage 3 can be extended and improved by decision 441

makers according to their different decision back- 442

grounds and rules. 443

5. Conclusions 444

Real value based aggregation functions are fun- 445

damental and powerful tools in evaluation and 446

decision making theories and practices, but they can- 447

not directly deal with the inputs (e.g., BUI) that 448

involve uncertainties. When the given inputs are BUI, 449

this study discussed the methods to handle them 450

by proposing some uncertainty transformations for 451

them, returning some intervals numbers which can 452

be easier to be further tackled and aggregated. 453

To fulfill this aim, based on some previous studies 454

and results, we firstly introduced IOWA operator with 455

poset valued input vector and inducing vector. Subse- 456

quently, we defined the concept of uncertain system, 457

based on which we further proposed the multi-layer 458

uncertainty transformation for BUI. Then, with such 459

transformation, we formally introduced MUT IOWA 460

aggregation procedure, which contains two stages 461

along with six detailed steps. 462

Rather than with only one fixed uncertainty trans- 463

formation which tends to be simplistic and lack 464

flexibility in real decision making, the uncertain 465

system introduced in Definition 12 provides more 466
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diversity in modeling uncertainties of decision mak-467

ers and therefore helps to build the multi-layer468

uncertainty transformation which is the basis of469

MUT IOWA aggregation procedure.470

Some numerical examples helped to understand471

the usage of MUT IOWA, and introduced its further472

applications in decision making. The proposed mod-473

els in this study also provide some more diversity in474

aggregation theory. In further studies, we will also475

concentrate on a more complex decision making sce-476

nario where some second-order preference will be477

considered.
478
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