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Abstract: Atmospheric correction of optical satellite imagery is an essential pre-processing for 21 

modelling biophysical variables, multi-temporal analysis, and digital classification processes. 22 

Sentinel-2 products available for users are distributed by the European Space Agency (ESA) as 23 

Top Of Atmosphere reflectance values in cartographic geometry (Level-1C product). In order to 24 

obtain Bottom Of Atmosphere reflectance images (Level-2A product) derived from this Level-25 

1C products, ESA provides the SEN2COR module, which is implemented in the Sentinel 26 

Application Platform. Alternatively, ESA recently distributes Level-2A products processed by 27 

SEN2COR with a default configuration. On the other hand, the conversion from Level-1C to 28 

Level-2A product can be generated using alternative atmospheric correction methods, such as 29 

MAJA, 6S, or iCOR. In this context, this paper aims to evaluate the quality of Level-2A products 30 

obtained through different methods in Mediterranean shrub and grasslands by comparing data 31 

obtained from Sentinel-2 imagery with field spectrometry data. For that purpose, six plots with 32 

different land covers (asphalt, grass, shrub, pasture, and bare soil) were analyzed, by using 33 



International Journal of Applied Earth Observation and Geoinformation 2018, FOR PEER REVIEW  2 of 37 

 

synchronous imagery to fieldwork (from July to September 2016). The results suggest the 34 

suitability of the applied atmospheric corrections, with coefficients of determination higher than 35 

0.90 and root mean square error lower than 0.04 achieving a relative error in bottom of 36 

atmosphere reflectance of only 2-3%. Nevertheless, minor differences were observed between 37 

the four tested methods, with slightly varying results depending on the spectral band and land 38 

cover.  39 

Keywords: Sentinel 2A-MSI; Atmospheric correction; SEN2COR; MAJA; 6S; iCOR; Field 40 

spectrometry; Mediterranean shrub and grasslands 41 

1. Introduction 42 

The pair of Sentinel-2 (S2) satellites provides improved continuity for Spot- and Landsat-43 

type observations due to their complete interoperability with these programs (Drusch et al., 2012), 44 

increasing the quantity of available images to use in several applications where medium-high 45 

resolution optical images have been shown useful. In addition, S2 presents some advantages over 46 

Landsat and SPOT space programs (Astrium, 2013; Gascon et al., 2017; Zanter, 2015): (i) a higher 47 

spectral resolution in the optical spectrum than Landsat 8 (L8) and SPOT 5; (ii) a greater spatial 48 

resolution along the entire optical spectrum, compared to L8; (iii) a more extensive swath (around 49 

280 km2 compared to the 185 km2 of Landsat and the 60 km2 of SPOT 5) and; (iv) a higher temporal 50 

resolution than L8 (Sentinel-2A and Sentinel-2B together will provide a global median average 51 

revisit interval of 5 days overtaking significantly the 16 days of Landsat). 52 

In the short period of time since Sentinel-2A, and more recently Sentinel-2B, became fully 53 

operative, many studies have been performed testing the application of these observations to land 54 

cover classification (Borràs et al., 2017; Shoko and Mutanga, 2017), crop mapping (Immitzer et al., 55 

2016; Lebourgeois et al., 2017), biophysical parameter estimation (Clevers et al., 2017; Chrysafis 56 

et al., 2017; Sibanda et al., 2016; Vuolo et al., 2016), forest fires (Navarro et al., 2017; Quintano et 57 

al., 2016; Verhegghen et al., 2016), water resources (Dörnhöfer et al., 2016; Toming et al., 2016; 58 
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Traganos and Reinartz, 2017) or urban areas characterization (Lefebvre et al., 2016; Pesaresi et al., 59 

2016; Yang and Chen, 2017). In addition, there is also an increasing amount of scientific literature 60 

combining or comparing S2 with L8 images (Colkesen and Kavzoglu, 2017; Korhonen et al., 2017; 61 

Mallinis et al., 2017; Munyati, 2017; Novelli et al., 2016; Paul et al., 2016; van der Meer et al., 2014). 62 

Since 2015, the European Space Agency (ESA) provides Level-1C products derived from 63 

Sentinel-2A and from 29 June 2017 also for Sentinel-2B. Level-1C data corresponds to Top-Of-64 

Atmosphere (TOA) reflectance values after the application of radiometric and geometric 65 

corrections (including orthorectification and spatial registration). Besides, the Copernicus Open 66 

Access Hub provides Level-2A products of S2 imagery data over Europe (EEA-39) from 28 March 67 

2017. Level-2A corresponds to Bottom-Of-Atmosphere reflectances (BOA). The production of S2 68 

Level-2A products is done using SEN2COR processor (version 2.3.1) (ESA, 2015; Gascon et al., 69 

2017; Louis et al., 2016). This processor developed by ESA performs the atmospheric correction 70 

(AC), terrain and cirrus correction and scene classification applied to the mentioned TOA Level-71 

1C input data. For this production the PlanetDEM Digital Elevation Model (DEM) is used, while 72 

cirrus and Bidirectional Reflectance Distribution Function (BRDF) corrections are deactivated. 73 

ESA also distributes SEN2COR processor freely, as a plugin integrated in the Sentinel 74 

Application Platform software (SNAP). Besides of the BOA reflectance product, additional 75 

outputs such as Aerosol Optical Thickness (AOT) map, Water Vapor (WV) map, Scene 76 

Classification map and Quality Indicators data are generated. The atmospheric model of 77 

SEN2COR is based on the ATCOR model, which inverts the parameters previously mentioned 78 

through the use of transformation tables (LUT’s, Look Up Table), obtained from Radiative Transfer 79 

Models (RTM) calculated over the type of sensor, solar geometry, topography of the terrain and 80 

atmospheric parameters. Further details on SEN2COR processor and its calibration can be 81 

obtained in (Müller-Wilm, 2016; Richter et al., 2017).  82 

The accuracy of the AC applied to an optical image is a very relevant factor because it 83 

essentially affects the accuracy of: (i) multi-temporal studies; (ii) the inter-comparison of 84 
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measurements from different optical sensors; (iii) the improvement of digital classification 85 

processes; and (iv) the development of physical and empirical models to estimate biophysical 86 

variables (e.g.: Leaf Area Index, LAI; Fraction of Absorbed Photosynthetically Active Radiation 87 

by the green elements of the canopy, FAPAR; Canopy water content, CWC; Above Ground 88 

Biomass, AGB) (Chuvieco, 2010; Gascon et al., 2017; Lillesand et al., 2014; Marcello et al., 2016; 89 

Pons et al., 2014; Vuolo et al., 2016).  90 

In particular, the performance of AC relies on an accurate estimation of the concentration 91 

and type of atmospheric particles at the acquisition time (Vermote and Kotchenova, 2008). The 92 

aerosol contribution still generates high uncertainties in the correction of atmospheric effects 93 

though (Vermote et al., 1997). In the last years, research institutes, aerospace agencies and private 94 

companies have developed AC methods for high spatial resolution (HSR) multispectral images 95 

(Hagolle et al., 2015a; Lantzanakis et al., 2017; Martins et al., 2017; Nazeer et al., 2014). Some of 96 

these methods have been successfully applied, and at present the selection of the best AC method 97 

to be applied to S2 Level-1C products is a hot topic under discussion, as demonstrated by the 98 

Atmospheric Correction Inter-comparison Exercise (ACIX), an international collaborative 99 

initiative to inter-compare a set of AC methods for HSR optical sensors, specially focused on L8 100 

and S2 imagery (Doxani et al., 2018).  101 

The accuracy of the S2 Level-2A products obtained through different AC processors must be 102 

validated. In the case of SEN2COR, the Level-2A product was calibrated and validated by 103 

(Gascon et al., 2017). In this work, the validation of the BOA reflectance product resulting from 104 

SEN2COR was based on 24 Aerosol Robotic Network (AERONET) test sites distributed 105 

worldwide covering different land cover types and atmospheric conditions. In this case, the 106 

validation focused on an area of 9 km2 around each AERONET sun photometer location. The 107 

results obtained for different land uses (bare soils, forests and other vegetation covers) were 108 

considered consistent and of high-quality, with a divergence on BOA reflectance values of only a 109 

5% (Gascon et al., 2017). It is accepted that field spectroscopy data is the ideal method to ensure 110 
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an accurate validation of AC methods (McCoy, 2005; Milton et al., 2009), and several studies 111 

relied on such measurements (Dörnhöfer et al., 2016; Vuolo et al., 2016). In (Vuolo et al., 2016), 112 

two field campaigns with a 350–2500nm range spectroradiometer were performed over an 113 

agricultural area in Austria with the objective of validating SEN2COR processor. Although the 114 

results obtained were deemed satisfactory, a quantitative measure of the agreement between the 115 

two reflectance data sets was not shown in the paper. However, recent studies also reported 116 

issues on the performance of these products. In Kukawska et al. (2017) a problem was reported 117 

related to the incorrect mask of clouds over artificial structures resulting from SEN2COR 118 

processor. According to the authors these errors had a direct influence on the overall accuracy of 119 

the classifications performed. 120 

Recently, new inter-comparison studies of different AC methods applied to S2 imagery have 121 

been published. In Dörnhöfer et al. (2016) the results of three different AC processors were 122 

compared with in situ reflectance measurements in an Oligotrophic Lake. The comparison 123 

between the in situ reflectance and the reflectance obtained from SEN2COR yielded a root mean 124 

square error (RMSE) slightly worse than the other two AC methods. In Lantzanakis et al. (2017) 125 

the effectiveness of four AC methods on S2 imagery was compared, three of them physically-126 

based (Second Simulation of a Satellite Signal in the Solar Spectrum (6S), FLAASH and 127 

SEN2COR) and one image-based (DOS). The authors concluded that the physically based 128 

methods performed better than the image-based one for S2 imagery, but the evaluation was only 129 

based on the comparison of BOA reflectances with spectral libraries (Baldridge et al., 2009). 130 

Generally, an image-based AC method does not require external data, although the use of the 131 

ancillary data required is not currently a drawback due to its increasing availability, easily 132 

accessible in an automatic way. In Martins et al. (2017) the assessment of three AC methods, 6SV 133 

(6S vector version), ACOLITE and SEN2COR, applied to a S2 image of Amazon Floodplain Lakes, 134 

with varying results depending on lake characteristics.  135 
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At present, one of the most popular algorithms to perform AC on S2 imagery is MAJA 136 

(Lonjou et al., 2016), the result of the joint effort of the French Centre National d'Études Spatiales 137 

(CNES) and the German Aerospace Center (DLR) to merge their algorithms Multi-Mission 138 

Atmospheric Correction and Cloud Screening (MACCS) and ATCOR (Richter and Schläpfer, 139 

2015), respectively. MACCS is based on a multi-temporal algorithm that makes an optimized use 140 

of image time series to characterize the atmosphere and detect clouds. In (Hagolle et al., 2015b) 141 

the AOT retrieval, a key factor in AC, was validated by comparing its value at 0.55 μm to 142 

AERONET in situ data. Moreover, BOA reflectances were also validated against in situ 143 

measurements (Rouquié et al., 2017) and MODIS BOA reflectance products. Finally, new 144 

alternatives to SEN2COR appeared in the last months, such as iCOR (VITO, 2017), implemented 145 

as a SNAP plugin to correct S2 and L8 satellite imagery. This processor was previously known as 146 

OPERA, and has been tested and validated extensively for MERIS, L8, S2 and PROBA-V in 147 

different research projects (ACIX, HIGHROC, INFORM and SPONGE) (Sterckx et al., 2015a). The 148 

performance of most of these mentioned processors (MAJA, iCOR, SEN2COR, etc.) have been 149 

recently compared in ACIX (Doxani et al., 2018). The comparison was based on BOA reflectances 150 

and  AOT and WV values and the results varied depending on the sensors, products, and sites. 151 

In this context, the aim of this study is to assess the quality of the Level-2A products obtained 152 

after the application of four AC processors (SEN2COR, MAJA, 6S and iCOR) using field 153 

spectrometry, concretely an Analytical Spectral Device (ASD) FieldSpec® 4. In particular, this 154 

work focuses on the accuracy assessment of these products in Mediterranean shrub and 155 

grasslands. For that purpose, six permanent plots representative of Mediterranean shrub and 156 

grasslands environments and anthropic covers were placed and ground reflectance 157 

measurements were acquired simultaneously to four Sentinel-2A overpasses taking into account 158 

the requirements to obtain high-quality data. Although, it will be interesting to have in the study 159 

area surfaces with reflectances bellow 0.1 or very bright objects in order to assessing better the 160 

performance of different atmospheric correction methods, they does not exist in the study area. 161 
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Additionally to the S2 spectral bands in the optical spectrum, the accuracy of the Normalized 162 

Difference Vegetation Index (NDVI), the Normalized Difference Infrared Index (NDII) and the 163 

Normalized Burn Ratio (NBR) derived from them was also evaluated. The performance of cloud 164 

detection was not considered in this study due to the lack of ground truth data to compare with.  165 

2. Materials and Methods  166 

The methodology was divided into two phases (Fig. 1): (i) The retrieval of input data, 167 

consisting of the acquisition of field spectra data and the obtainment of Sentinel-2A data with 168 

four different AC and the subsequent calculation of selected spectral indices; and (ii) The 169 

validation consisted of a comparative statistical analysis of data obtained from both sources. 170 

 171 

Figure 1. Methodological workflow of the study. 172 

2.1. Field spectra data  173 



International Journal of Applied Earth Observation and Geoinformation 2018, FOR PEER REVIEW  8 of 37 

 

The selected area to carry out the present study is located in the central sector of the Ebro 174 

Basin (Zaragoza, Spain). This area was considered optimal for the purpose of the study due to 175 

the presence of stable, homogeneous and extensive typical Mediterranean vegetation, as well as 176 

anthropic covers. The plots delimited meet the criteria established by the Committee on Earth 177 

Observation Satellites (CEOS) Working group on Calibration and Validation of being placed in 178 

sites with low probability of atmospheric variability and having high spatial homogeneity and 179 

weak directional effects (Patel et al., 2016), Table 1 contains the description of the six plots 180 

delimited, whereas Figure 2 shows their location. 181 

Table 1. Description of the spectral sampling plots. 182 

Plot name Description 
Asphalt Asphalt area  
Grass Football field 

Shrub 1 Main species: Rosmarinus officinalis L. 
Shrub 2 Main species: Rosmarinus officinalis L. 
Pasture Main species: Brachypodium retusum Pers. 
Bare soil Area without vegetation  
 183 

 184 

Figure 2. Location of the spectra sampling plots. 185 
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In order to ensure the agreement between the reflectance data obtained by true fieldwork 186 

and the S2-derived BOA reflectance values, plots were located according to the following criteria: 187 

(i) they were placed on a field path that would allow field spectrometry data acquisition within 188 

2 hours of local solar noon (Milton et al., 2009); (ii) data collection was almost simultaneous to 189 

satellite overpasses over the study area (R051 and R094 orbit, between 10:50-11:10 solar time) and 190 

in no case exceeded a difference of 2 hours, and (iii) each plot was set at the centroid of the central 191 

pixel of a 3 x 3 pixel kernel corresponding to the 20 m grid defined in Sentinel-2A scenes. The 20 192 

m grid of Sentinel-2A scenes was selected because when the field work campaigns were designed, 193 

the output of the plugin of Sen2Cor available to SNAP was an image of 10 m or 20 m or 60 m 194 

spatial resolution. The imagen of 20 m was chosen, as the majority of the bands MSI have this 195 

spatial resolution.  196 

The plots were geo-positioned in field using a Leica VIVA GS15 CS10 real-time kinematic 197 

Global Navigation Satellite System, achieving an average planimetric accuracy of 0.50 m. Figure 198 

3 shows the plots staked out in the field. Once the plots were geolocated, the next step was to 199 

define two opposing diagonals (NW-SE and NE-SO) with 11 meters length with the aid of a 200 

compass and a Vertex (Haglöf Sweden®). These transects marked the itinerary to perform field 201 

spectrometry. 202 
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 203 

 204 

Figure 3. Plots staked out in field. 205 

Measurements of the hemispherical conical reflectance factor (HCRF) (Schaepman-Strub et 206 

al., 2006) were captured on clear-sky days using directly an Analytical Spectral Device (ASD) 207 

FieldSpec® 4. This instrument has been previously used in vicarious calibration, such as Abdou 208 

et al. (2001), Patel et al., (2016); calibration and validation of hyperspectral indices (Le Maire et 209 

al., 2008); and for understanding the optical responses of vegetation in field (Pacheco-Labrador 210 

et al., 2016). This device is being used in the vicarious calibration campaigns of the hyperespectral 211 

sensor EnMAP (Danner, et al., 2015). ASD designed to record the signal throughout the region 212 

between the visible (VIS) and near infrared (NIR) (350-1000 nm) and two regions corresponding 213 

to the short wave infrared (SWIR) (1001-1800 and 1801-2500 nm) with a sampling interval of 1.4 214 

nm – 2 nm, and a spectral resolution Full-Width-Half-Maximum (FWHM) of 3 nm and 10 nm, 215 

respectively (ASD, 2015). Following the procedures established in the Spanish National research 216 

projects Fluxpec (http://www.lineas.cchs.csic.es/fluxpec/project_overview) and SynerTGE 217 

(http://www.lineas.cchs.csic.es/synertge/project_overview) described in Mendiguren el al., 2015; 218 

Pacheco-Labrador et al., 2016; Melendo-Vega et al., 2017,  before measuring along each transect, 219 

http://www.lineas.cchs.csic.es/synertge/project_overview
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dark current was recorded, instrument settings were optimized and reflectance was calibrated 220 

using a  using a Spectralon® 99% reflective reference panel (Labsphere Inc., North Sutton, NH, 221 

USA) l to ensure the perfect correspondence of illumination conditions. With a 1.5 m height and 222 

a 25° FOV (Field Of View) (rendering a sensor footprint diameter of about 66 cm), on-the-go 223 

measurements of each transect were obtained by averaging 25 individual reflectance spectra for 224 

each spectral measurement. Approximately 25 spectral measurements was registered for each 225 

transect, resulting 50 per plot. These measurements were used to calculate de average of of each 226 

plot every field work date. Table 2 shows the dates of the field work, the number of spectra 227 

collected each day and the corresponding Sentinel-2A orbit overpasses. The granules 228 

corresponding to the four dates were cloud-free for the study area. 229 

 230 

 231 

 232 

Table 2. Field work dates, number of spectra collected and Sentinel-2A orbit overpass. 233 

Date No. of spectra  Orbit 
2016-07-23 300 R094 
2016-08-22 315 R094 
2016-09-01 302 R094 
2016-09-28 304 R051 

2.2. Calculation of Sentinel-2A bands and spectral indices 234 

A spectral library was generated in ENVI using the field spectra obtained in each sampling 235 

day and plot. Every signature was resampled to the spectral response function (SRF) of Sentinel-236 

2A. In this process, signatures following the approach presented in Veraverbeke et al. (2014), the 237 

MSI-Sentinel-2A specific noise was added to the simulated MSI using the MSI signal-to-noise 238 

ratios (SNR) in 20 m spatial resolution bands (https://earth.esa.int/web/sentinel/user-239 

guides/sentinel-2-msi/resolutions/radiometric) as input to Eq. (1). The objective of this procedure 240 

was to ensure that the field spectra were more faithful to the spectral information registered by 241 
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MSI sensor. Final signatures were expressed in reflectance given as a fraction of unity. Recently, 242 

a new version of the Sentinel-2A SRF has been released by ESA, mainly changing the responses 243 

for bands B01 and B02. 244 

𝑟𝑟𝑛𝑛,𝑖𝑖 = 𝑟𝑟𝑖𝑖 × �1 + 𝑁𝑁(0,1)
𝑆𝑆𝑁𝑁𝑆𝑆𝑖𝑖

�                                                                                                                     (1) 245 

where ri is the reflectance for band i and N(0,1) is a random number generated from a normal 246 

distribution with a mean of zero and standard deviation of one. 247 

Finally, the indices NDVI, NDII and NBR were calculated using the Sentinel-2A simulated 248 

signatures. These indices were selected due to their popularity in a plethora of applications (i.e., 249 

monitoring of vegetation dynamics (Anyamba and Tucker, 2005), estimation of biophysical 250 

parameters such as LAI or FCOVER (Carlson and Ripley, 1997) or land degradation assessment 251 

(Yengoh et al., 2015) in the case of NDVI, vegetation water content estimation with NDII 252 

(Davidson et al., 2006; Yilmaz et al., 2008) or burn severity estimation with NBR (Fraser et al., 253 

2017), their ease of implementation and the fact that they consider spectral bands located on VIS, 254 

NIR and SWIR regions.   255 

2.3. Obtaining S2 Level-2A product and calculation of spectral indices 256 

The Level-1C products were acquired simultaneously to field work days (Table 2). Only the 257 

T30TXM granule corresponding to the study area was used (100 km2). Subsequently, Level-2A 258 

products were generated through four different AC methods at the native resolution of each 259 

spectral band. As a result, nine BOA reflectances were obtained for each date and method: three 260 

in the visible spectrum (B2, B3 and B4), four in the red edge and NIR (B5, B6, B7 and B8A) and 261 

two in the SWIR (B11 and B12).  262 

2.3.1. SEN2COR  263 

SEN2COR (2.4.0 version used, released on August 31 of 2017) is a processor for generating 264 

S2 Level-2A products from TOA reflectance Level-1C input data. In short, the following steps are 265 



International Journal of Applied Earth Observation and Geoinformation 2018, FOR PEER REVIEW  13 of 37 

 

run through: i) Cloud Detection and Scene Classification, ii) Retrieval of AOT and WV content 266 

from the L1C image, and iii) TOA to BOA reflectance conversion. SEN2COR also includes 267 

optional cirrus correction, terrain correction and empirical BRDF-corrections. This processor 268 

requires a DEM and the LUTs as ancillary data. These LUTs are compiled using an atmospheric 269 

RTM based on libRadtran. The LUTs are generated for a wide variety of atmospheric conditions, 270 

solar geometries, and ground elevations and are calculated with a spectral resolution of 0.6 nm. 271 

This database is subsequently resampled with the S2 spectral responses, in order to obtain the 272 

sensor-specific functions needed for the AC. The aerosol optical thickness retrieval is based on 273 

the dense dark vegetation (DDV) algorithm. The water vapour retrieval over land is performed 274 

with the atmospheric pre-corrected differential absorption (APDA) algorithm. Besides of BOA 275 

reflectances, some additional output products are generated, in particular AOT, WV, Scene 276 

Classification Maps and Quality Indicators for cloud and snow probabilities. Its output product 277 

format is equivalent to the native resolutions of Level-1C imagery, that is, 60, 20 and 10 m. In this 278 

work the default parameters were used, neglecting topographic correction, cirrus correction and 279 

BRDF correction in order to provide a coherent comparison of AC methods, as the other methods 280 

do not include these corrections.  281 

2.3.2. MAJA 282 

The MAJA processor (MACCS ATCOR Joint Algorithm) (Lonjou et al., 2016) is a processor 283 

for cloud detection and AC, specifically designed to process time series of optical images at high 284 

resolution, acquired under quasi constant viewing angles, such as L8 or S2 images. Since 2016, it 285 

is progressively including methods taken from DLR’s ATCOR processor. It is now the object of 286 

collaboration between CNES, DLR and Centre d'Etudes Spatiales de la BIOsphère (CESBIO). In 287 

the first step, MAJA corrects for absorption by atmospheric gas molecules, using the absorption 288 

part of the Simplified Model for Atmospheric Correction (SMAC) method and considering ozone, 289 

oxygen and water vapor concentrations obtained from either satellite data (ozone, water vapor) 290 
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or meteorological data (pressure). A second processing step detects the clouds and their shadows, 291 

using the multi-temporal cloud detection (MTCD) method. The third step is the AOT estimate, 292 

derived from the image, using a combination of three methods: the black pixel method, the dark 293 

dense vegetation method (DDV) and the multi-temporal (MT) method. The successive orders of 294 

scattering code (SOS) provides LUTs to convert the TOA reflectances already corrected for gas 295 

absorption into BOA reflectances. These BOA reflectances are provided with and without 296 

topographic correction, at the native spatial resolution of Level-1C products. In this work the 297 

latter was selected, with the objective of avoiding confronting factors to the AC. Additionally, 298 

MAJA generates a collection of masks including a cloud mask and a geophysical mask. 299 

2.3.3. iCOR 300 

Implemented as a plugin in SNAP, iCOR (previously known as OPERA) is an AC of S2 and 301 

L8 data based on the identification of water and land pixels (VITO, 2017). All input data required 302 

by the processor are derived from the image itself or delivered through pre-calculated LUTs. The 303 

AC comprises the following steps: i) land and water pixels are identified; ii) AOT is derived from 304 

land pixels based on an adapted version of the method developed by Guanter et al. (2007); iii) an 305 

adjacency correction is performed using SIMEC (Sterckx et al., 2015b) over water and fixed 306 

background ranges over land targets, and iv) the radiative transfer equation is solved. iCOR uses 307 

MODTRAN 5 (Berk et al., 2006) LUTs to perform the AC and needs information about the solar 308 

and viewing angles and a DEM. Besides of BOA reflectances no additional product is generated. 309 

The correction with default parameters has been tested in this work. 310 

2.3.4. 6S  311 

6S (Second Simulation of the Satellite Signal in the Solar Spectrum) (Vermote et al., 1997) is 312 

an open-source AC tool, established itself as one of the standard RTMs used for both remote 313 

sensing research and the creation of operational products. In this work AC of S2 imagery was 314 

performed with Google Earth Engine (GEE) using Py6S (Murphy, 2017; Wilson, 2013), an 315 
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interface to the 6S through the Python programming language. The 6S generates interpolated 316 

LUTs under different atmospheric conditions, considering altitude of the sensor and target, 317 

wavelength and ground reflectance (with the ability to use a number of built-in BRDF models). 318 

Essentially, these LUTs are used to calculate AC coefficients which convert TOA radiance to BOA 319 

reflectance. In contrast to the previous AC methods, the atmospheric parameters (WV, ozone and 320 

AOT) were not obtained from the image itself, but from GEE collections for the place, date and 321 

time of acquisition (see Table 3):  322 

Table 3. Sources of atmospheric parameters obtained in 6S algorithm with GEE. 323 

Parameter GEE Collection Description 

Water 
vapor 

NCEP_RE/surface_
wv 

Total column water vapor, kg/m2 at 6-hour temporal 
resolution (00:00, 06:00, 12:00, and 18:00 UTC) and 2.5 

degree spatial resolution. 

Ozone TOMS/MERGED 

Total column ozone (Dobson units).The Total Ozone 
Mapping Spectrometer (TOMS) data represent a 
merged ozone product from TOMS/EarthProbe, 

TOMS/Nimbus-7, TOMS/Meteor-3, OMI/Aura and 
USGS-interpolated data for dates with no data. The 

resolution ranges from 1.0 x 1.00 deg to 1.0 x 1.25 deg 

AOT 
MODIS/MOD08_

M3_051 

MOD08_M3 is a level-3 MODIS gridded atmosphere 
monthly global product. It contains monthly 1 x 1 

degree grid average values of atmospheric parameters.  

Level-1C products were downloaded from ESA Open Hub. SEN2COR and ICOR processors 324 

used this products as source to generate Level-2A products. Similarly, 6S method was applied to 325 

the S2 Level-1C image collection in Google Earth Engine (ID: COPERNICUS/S2). Finally, MAJA 326 

level-2A images were downloaded from Theia Land Data Centre. 327 

2.3.5. BRDF adjustment 328 

The four selected Sentinel 2 images correspond to adjoining paths (orbits R094 and R051). 329 

These observations were acquired with directional effects due to surface reflectance anisotropy 330 

and changes in the solar and viewing geometry. Therefore, it is required to adjust all images to a 331 

uniform nadir view. For that purpose a bidirectional reflectance distribution function (BRDF) 332 

correction was applied to TOA and BOA reflectances in order to provide a fair comparison with 333 
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nadiral ground measurements. The correction was applied following (Roy et al., 2017a; Roy et al., 334 

2017b; Roy et al., 2016) using Google Earth Engine.  335 

2.3.6. Calculation of spectral indices. 336 

The BOA reflectances of Level-2A products were used as source to calculate three spectral 337 

indices: NDVI, one of the most popular index to identify vegetated areas and their condition; 338 

NDII, frequently used to estimate soil moisture storage; and NBR, originally designed to identify 339 

burned areas and to assess the severity of a burn. In order to calculate these indices from S2 data 340 

the following formulation was used: 341 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  (𝜌𝜌𝐵𝐵8𝐴𝐴 − 𝜌𝜌𝐵𝐵4)
(𝜌𝜌𝐵𝐵8𝐴𝐴 + 𝜌𝜌𝐵𝐵4)�    (2) 342 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  (𝜌𝜌𝐵𝐵8𝐴𝐴 − 𝜌𝜌𝐵𝐵11)
(𝜌𝜌𝐵𝐵8𝐴𝐴 + 𝜌𝜌𝐵𝐵11)�    (3) 343 

𝑁𝑁𝑁𝑁𝑁𝑁 =  (𝜌𝜌𝐵𝐵8𝐴𝐴 − 𝜌𝜌𝐵𝐵12)
(𝜌𝜌𝐵𝐵8𝐴𝐴 + 𝜌𝜌𝐵𝐵12)�    (4) 344 

where, ρB4, ρB8A, ρB11 and ρB12 are BOA reflectances of band B4 (red), band B8A (NIR) and bands 345 

B11 and B12 (SWIR) respectively.  346 

In the case of NDII and NBR the spatial resolution of both source bands was 20 meters, thus 347 

the indices were calculated at this resolution. In contrast, NDVI was calculated at a spatial 348 

resolution of 10 meters. Consequently a Nearest Neighbor resampling was applied to downscale 349 

band B8A from 20 to 10 meters.  350 

2.4. Statistical analysis for the validation of Level-2A products 351 

The performance of AC methods producing BOA reflectances was evaluated by comparing 352 

these reflectances with the ground measurements obtained by the spectroradiometer. This 353 

analysis was performed per land cover and band wise in order to obtain more details on the 354 

performance of each method. The band 8 is not present in this analysis, as when the first version 355 

of the research was performed, this band was not an output at the 20 m spatial resolution obtained 356 
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from the plugin of Sen2Cor available to SNAP. The evaluation was based on statistical analyses 357 

of both datasets, i.e., ground measurement and Sentinel2-derived reflectances. The results of 358 

uncorrected Level-1C TOA reflectances were also provided as reference. In particular, the 359 

coefficient of determination (R2), and the RMSE were analyzed, besides of spectral signatures of 360 

each land cover, and scatterplots of each spectral band. Finally, the three spectral indices 361 

mentioned in section 2.3.6. were compared to the results obtained from ground measurements.   362 

3. Results and discussion 363 

The visual assessment of AC shows a clear improvement in visible bands due to the 364 

subtraction of atmospheric scattering from the spectral bands with lower wavelength, especially 365 

blue band (B2).The RGB composition in true color (blue: B2, green: B3, red: B4) of TOA and BOA 366 

reflectances (Level-2A for MAJA algorithm) for each date is shown in Figure 4, with the six plots 367 

displayed as red crosses within the study area. The three other methods tested also provided 368 

similar visual enhancements. 369 

 
(a) 

 
(b) 
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Figure 4. RGB composition of (a) TOA reflectance of 23/07 image, (b) BOA reflectance (MAJA) of 23/07 370 

image, (c) TOA reflectance of 22/08 image, (d) BOA reflectance (MAJA) of 22/08 image, (e) TOA reflectance 371 

of 01/09 image, (f) BOA reflectance (MAJA) of 01/09 image, (g) TOA reflectance of 28/09 image, (h) BOA 372 

reflectance (MAJA) of 28/09 image. 373 

3.1. Heterogeneity of land covers and radiometric uniformity of the 3 x 3 pixel kernel 374 
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As mentioned above, the results of the BRDF-adjusted BOA reflectances generated with each 375 

AC method were evaluated both per land cover and per spectral band. Prior to the comparison 376 

between ground measured and S2-derived BOA reflectances, a study on the heterogeneity of the 377 

field spectra on the different dates was performed, so as to assess the variability per land cover. 378 

To this, we used the approximately 200 spectra collected by plot. As illustrated in Table 4, all the 379 

plots showed a high homogeneity (i.e., low standard deviation) along the study period, being 380 

asphalt the most homogenous cover. This was expected because asphalt is considered to be a 381 

pseudo-invariant land cover, composed by a single artificial material and therefore no changes 382 

were observed between the four dates.  383 

Table 4. Standard deviation of the spectra collected in the field along the study season (the 384 

spectra collected in the four field dates) per plot and Sentinel 2A band. 385 

Plot name B2 B3 B4 B5 B6 B7 B8A B11 B12 
Asphalt 0.003 0.003 0.003 0.004 0.008 0.007 0.007 0.004 0.005 
Pasture 0.009 0.012 0.020 0.021 0.013 0.012 0.019 0.028 0.020 
Shrub 1 0.013 0.013 0.012 0.012 0.015 0.014 0.014 0.009 0.009 
Shrub 2 0.002 0.004 0.005 0.006 0.008 0.008 0.012 0.012 0.011 
Grass 0.009 0.012 0.018 0.019 0.020 0.021 0.023 0.020 0.013 

Bare soil 0.019 0.022 0.028 0.030 0.039 0.040 0.040 0.044 0.046 

The category with higher heterogeneity was bare soil. This can be related to the fact that 386 

during the study period some off-road driving lessons and exercises were held in the plot, 387 

changing the conditions of stoniness and roughness. The rest of the categories (pasture, shrub 388 

and grass) showed intermediate values of homogeneity in all the bands. This fact may be due to 389 

their rich diversity of species, heterogeneous spatial pattern (presence of different shrubs and 390 

grass species and bare soil parches with different degrees of stoniness) and to the drying process 391 

of these plant formations throughout the summer. In most cases heterogeneity was higher in NIR 392 

and SWIR bands than in visible bands. 393 

In order to ensure the radiometric uniformity of the 3 x 3 pixel kernel corresponding to the 394 

20 m grid defined in Sentinel-2A scenes for each plot, the coefficient of variation (CV) was 395 
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calculated using the four L1C scenes together per plot and sensor band.  As can be seen in Table 396 

5, the CV values obtained are very low, being always lower than 0.05 in all bands, with the only 397 

exception of asphalt. As a result, the premise about radiometric uniformity of the 3 x 3 pixel kernel 398 

along all the study period is validated, and possible geometric correction errors in Sentinel-2A 399 

are avoided. The reason of higher CV values of the asphalt 3x3 kernel is that it includes two pixels 400 

that are contaminated by parking roofs spectral response (see Figure 4). This must be in mind in 401 

order to read the results obtained to this land cover in the present study. 402 

Table 4. Coefficient of variation (CV) of the 3 x 3 pixel kernel corresponding to the 20 m grid 403 

defined in Sentinel-2A scenes for each plot using the four L1C scenes together per plot and 404 

sensor band. 405 

Plot name B2 B3 B4 B5 B6 B7 B8A B11 B12 
Asphalt 0.05 0.07 0.08 0.08 0.07 0.07 0.07 0.09 0.10 
Pasture 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.00 0.01 
Shrub 1 0.01 0.01 0.01 0.03 0.03 0.03 0.03 0.02 0.02 
Shrub 2 0.02 0.03 0.03 0,01 0,01 0,00 0.01 0.01 0.01 
Grass 0,01 0,02 0,03 0,03 0,04 0.02 0.01 0,02 0,02 

Bare soil 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.02 

 406 

3.2.  Spectral signatures 407 

The comparison between the field BOA reflectances and S2 images per spectral band and 408 

land cover is evaluated in Figure 5, showing the average spectral signature of the four observation 409 

dates. In general terms, the highest difference between TOA and BOA reflectances was observed 410 

in visible bands, due to the exponential decay of atmospheric scattering effects at longer 411 

wavelengths (Martins et al., 2017). The ssphalt plot showed a clear underestimation of TOA 412 

reflectance in SWIR bands, which was corrected to a certain degree with AC methods, especially 413 

with SEN2COR. On the contrary, minor differences were observed between methods in visible 414 

and red edge bands. SEN2COR was the method performing better in the visible bands. In the 415 

case of bare soil, higher reflectances were observed in all the spectral bands, as it was expected 416 
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from this land cover. In the visible bands 6S and MAJA obtained BOA reflectances closer to the 417 

ground measurements, whereas iCOR performed better in the red edge and NIR regions. In 418 

contrast, 6S showed the best performance in B12 (SWIR). In most of the bands the 419 

underestimation of Level-1C TOA reflectance was corrected for this land cover, yet many of the 420 

methods tended to over-correct atmospheric effects yielding BOA reflectance values higher than 421 

observed field spectral, especially in the NIR.  422 

The grass plot showed a typical spectral signature of a vegetated cover, with a clear increase 423 

of reflectance from red (B4) to NIR (B8A). Besides, the reduction of reflectance in visible bands 424 

after AC was especially clear in this cover with all AC methods that only showed minor 425 

differences. On the opposite, red edge and NIR band reflectances were overestimated with the 426 

four methods, while SWIR showed better results in all the cases. Finally, in the case of pastures 427 

and shrubs (Figures 5d and 5e) the TOA reflectance was clearly overestimated in all the spectral 428 

bands and AC methods were not completely successful in correcting these differences. The shrub 429 

plot showed better results in the visible bands, were agreement with field spectra improved after 430 

AC, especially with MAJA, although in NIR bands the results varied depending on the method. 431 

On the contrary, SWIR bands showed a poor performance of Level-2A products, with 432 

overestimated reflectances in B11 and B12. In fact, the agreement with the field spectra was worse 433 

for the obtained Level-2A products than for the original Level-1C product. Notwithstanding that, 434 

the performance of each method could vary if different plots were selected in the comparison. 435 

 
(a) 

 
(b) 
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(e) 

Figure 5. Spectral signatures of five land cover plots for each Level-2A product besides Level-1C 436 

uncorrected product. Average of the four dates considered. (a) Asphalt plot, (b) Bare soil plot, (c) Grass plot, 437 

(d) Pasture and (e) Shrub, average of the two shrub plots. 438 

3.3. Statistical agreement of the different methods 439 

The quantitative agreement between field spectra and BOA reflectance values obtained with 440 

each AC method was evaluated using R2 and RMSE as figures of merit (Table 5): 441 

 Table 5. R2 and RMSE obtained per AC method for all the spectral bands and dates. Best 442 

method is highlighted in bold. 443 

 1C SEN2COR 6S MAJA iCOR 
R2 0.919 0.954 0.920 0.947 0.939 

RMSE 0.036 0.038 0.037 0.028 0.031 

The results of Table 5 depict a clear increase in correlation between ground measurements 444 

and S2-derived reflectances after AC, with minor differences between methods. Similarly, iCOR 445 
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and MAJA reduced the RMSE achieved by Level-1C product. However, SEN2COR and 6S only 446 

showed slight or no improvement at all. 447 

3.3.1. Analysis per land cover 448 

Table 6 shows the R2 obtained for each land cover, taking into account the four dates and the 449 

nine spectral bands. As it is observed, there is a clear correlation between field spectra and BOA 450 

reflectance in all methods, with R2 values equal or higher than 0.90 in all cases, values comparable 451 

to those found in another recent study (Lange et al., 2017). Correlations improved clearly after 452 

AC correction with higher R2 values achieved by Level-2A products compared to the Level-1C 453 

product. Among the land covers, the highest correlation was obtained for grass and shrub, two 454 

of the most heterogeneous covers, with the latter showing a great performance with the four AC 455 

methods, with minor differences between them. Yet, the degree of improvement after AC (i.e., 456 

comparison between R2 values obtained after and before AC correction), was highest for asphalt. 457 

In his case, although differences between methods were stronger (ranging from 0.89 with 6S to 458 

0.96 with MAJA), all the methods improved the correlation with the original Level-1C TOA 459 

reflectance. Altogether, the comparison between methods does not enable a clear identification 460 

of the best method for all cases, although in general ICOR, MAJA and SEN2COR achieved each 461 

the highest R2 in two out of five covers.     462 

 463 

Table 6. R2 obtained per land cover and AC method. Best method for each cover highlighted in bold 464 

Land cover L1C SEN2COR 6S MAJA iCOR 
ASPHALT 0.810 0.948 0.896 0.961 0.913 
BARE SOIL 0.923 0.932 0.909 0.911 0.950 

GRASS 0.936 0.974 0.962 0.970 0.974 
PASTURE 0.897 0.962 0.953 0.944 0.949 

SHRUB 0.933 0.976 0.969 0.987 0.981 

Similarly, Table 7 shows the RMSE obtained per land cover using the four AC methods evaluated. 465 

In all the cases the RMSE values were lower than 0.05, with values below 0.02 in the best cases. 466 
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Generally, the error achieved by Level-1C products decreased after AC, with reductions close to 467 

50% of the original error in the best case. The comparison between methods again did not show 468 

a clear superior performance of a single method for all the land covers. Asphalt plot shows the 469 

lowest RMSE with SEN2COR, while iCOR performed the best with bare soil and grass plots. 470 

Finally, MAJA achieved a higher performance with pasture and shrubs. In conclusion, different 471 

AC methods showed different results for specific land cover types, in line with Nazeer et al. 472 

(2014). Notwithstanding that, further research with a higher number of samples is required to 473 

obtain a more complete understanding of the performance of each processor. 474 

Table 7. RMSE obtained by land cover use. Best method for each cover highlighted in bold 475 

Land cover L1C SEN2COR 6S MAJA iCOR 
ASPHALT 0.039 0.019 0.030 0.030 0.025 
BARE SOIL 0.043 0.045 0.032 0.032 0.024 

GRASS 0.033 0.043 0.040 0.034 0.033 
PASTURE 0.043 0.047 0.050 0.034 0.044 

SHRUB 0.026 0.033 0.034 0.017 0.026 

3.3.2. Band wise analysis 476 

Table 8 and 9 show the band wise results obtained with the different AC methods. These 477 

results were obtained for the four studied dates and for the five land covers. First, R2 values are 478 

analyzed (Table 8), suggesting a slight improvement in correlation for all methods if compared 479 

to the Level-1C product, with exceptions. Highest correlations were obtained for visible bands 480 

(B2, B3 and B4), with R2 values above 0.95 in most cases. Then, R2 values showed a decreasing 481 

trend as wavelengths increased, with lower values achieved for Red Edge (B5, B6 and B7), NIR 482 

(B8A) and SWIR bands (B11 and B12). The comparison between methods showed minor 483 

differences except in the case of the blue band (B2), where R2 ranged from 0.90  in the worst 484 

scenario (6S) to 0.97 in the best one (MAJA and iCOR). In contrast, other spectral bands showed 485 

very slight differences between methods, and in some bands the highest correlating option was 486 
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the uncorrected Level-1C product (B6, B7, B8A and B11). The highest correlating method in three 487 

out of nine bands was SEN2COR, but differences were minor. 488 

Table 8. R2 obtained per spectral band. Best method for each band highlighted in bold.  489 

Spectral band 1C SEN2COR 6S MAJA iCOR 
B2 0.946 0.949 0.900 0.971 0.975 
B3 0.973 0.972 0.928 0.973 0.977 
B4 0.974 0.977 0.937 0.969 0.972 
B5 0.967 0.967 0.926 0.959 0.964 
B6 0.939 0.926 0.873 0.919 0.927 
B7 0.928 0.916 0.874 0.913 0.918 

B8A 0.905 0.895 0.843 0.886 0.893 
B11 0.840 0.836 0.772 0.835 0.833 
B12 0.920 0.926 0.881 0.924 0.921 

The comparison of the band wise performance in terms of RMSE showed better results for 490 

visible bands, maybe due to the higher spatial resolution, intermediate results for red edge and 491 

NIR bands, while SWIR bands showed a poorer performance, with RMSE as high as 0.10 in B12 492 

(see Table 9). The RMSE values achieved by the different AC methods showed also minor 493 

differences between methods. In some bands, RMSE values after AC were even larger than before 494 

AC (bands B6, B7 and B8A). Although differences were not marked, MAJA achieved the lowest 495 

overall RMSE with minimum values in bands B2-B5 and also in B11-B12.     496 

Table 9. RMSE obtained per spectral band. Best method for each band highlighted in bold. 497 

 1C SEN2COR 6S MAJA iCOR 
B2 0.047 0.018 0.019 0.010 0.016 
B3 0.029 0.023 0.022 0.012 0.017 
B4 0.026 0.027 0.028 0.020 0.021 
B5 0.026 0.042 0.034 0.020 0.025 
B6 0.025 0.045 0.044 0.033 0.033 
B7 0.029 0.043 0.042 0.034 0.037 

B8A 0.033 0.046 0.046 0.038 0.041 
B11 0.039 0.047 0.047 0.038 0.040 
B12 0.099 0.104 0.101 0.076 0.083 

3.4. Scatterplots 498 
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Scatterplots of ground reflectance measurements versus BOA reflectances obtained from S2 499 

Level-2A products (besides of TOA reflectances from Level-1C products as reference) provide 500 

help interpreting the values given in tables 5-9. Figure 6 shows the scatterplots of the nine spectral 501 

bands considered. In general, Level-1C products overestimated low reflectance values in all 502 

spectral bands except B11 and B12. This behavior was especially noticeable in the case of visible 503 

bands (B2, B3 and B4), and the performance clearly improved after AC (see Figures 6a, 6b and 504 

6c). On the contrary, a strong underestimation of higher BOA reflectances was observed in all the 505 

spectral bands except B8A for the Level-1C product. This effect was higher in SWIR bands (see 506 

Figures 6h and 6i), although Level-2A products attenuated this underestimation, especially with 507 

SEN2COR and 6S. Again, the comparison between methods did not a show a clear superior 508 

method for all the spectral bands and all of them balanced this difference between high and low 509 

reflectances. Band B2 (blue) showed a better performance with MAJA with a regression line close 510 

to the 1:1 line, while ICOR showed a poor performance due to a clear underestimation of high 511 

reflectance values. Bands B3 and B4 followed a similar trend of overestimation of low values and 512 

underestimation of high values with Level-1C, which improved after AC, with a superior 513 

performance of MAJA. The comparison of methods for red edge spectral bands (see Figures 6d, 514 

6e and 6f) showed a slightly better performance of MAJA, 6S and iCOR methods, in line with the 515 

results of Table 9.   516 

 
(a) 

 
(b) 
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Figure 6. Scatterplot of each spectral band. BOA reflectance measured by ASD in X axis versus BOA 517 

reflectance measured by S2 in Y axis. 518 

Finally, the poor performance of Level-1C product at SWIR bands improved clearly after 519 

AC. At these bands MAJA showed the best performance at low reflectance values, whereas 520 

SEN2COR and 6S achieved the best results at high reflectance values. The underestimation of 521 

SWIR BOA reflectances could be due to the results obtained for the asphalt and bare soil plots 522 

(see Figure 5a and 5b), where the strong underestimation obtained by Level-1C product, overall 523 

in the asphalt plot, was only partially solved by Level-2A products. Possible geometric correction 524 

errors in Sentinel 2A scenes could explain this fact, as the spectral response can be partially or 525 

totally identified with the roofs includes in two of the 3x3 kernel of this cover.  526 

3.5. Assessment of S2-derived spectral indices 527 

3.5.1. Normalized Difference Vegetation Index (NDVI) 528 

The BOA reflectances of bands B4 and B8A were used as source to calculate NDVI scenes, 529 

and subsequently the statistics of the six plots were obtained for the different dates, so as to 530 

compare them with the ground measurements. The results of Figure 7a show typical low values 531 

of NDVI (lower than 0.3) in pasture, shrub, and specially asphalt and bare soil, consequence of 532 

the dry conditions of these dates in the region in the case of vegetated covers, and due to the 533 
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typical spectral behavior of man-made surfaces in the case of asphalt. In contrast, grass cover 534 

showed a much higher NDVI value, ~0.55 depending the AC method.  535 

Moreover, figure 7b shows the difference in NDVI between the different AC methods and 536 

ground measurements-derived NDVI. These results show a slight overestimation of NDVI in 537 

most land covers, due to the overestimation of NIR band observed in Figure 5, with the exception 538 

of the asphalt cover. These results are in agreement with previous findings, such as Bru et al. 539 

(2017), where atmospherically corrected products provided by MACCS (the precursor of MAJA) 540 

and 6SV (the vector version of 6S) simulations showed a large overestimation of BOA 541 

reflectances, although that work was focused on costal land covers. The comparison of AC 542 

methods in Figure 7 shows a better performance of MAJA in every cover except for grass. These 543 

results are consistent with Figures 6c and 6g, where this method showed that for high reflectance 544 

values band B8A was overestimated. Nevertheless, these higher NDVI values for grass had a 545 

direct impact on the quantitative evaluation of this land cover.  546 

 

(a) 

 

(b) 

Figure 7. a) NDVI measured from BOA reflectance of ASD and Sentinel-2 products, b) Difference of 547 

NDVI measured from ASD and from Sentinel-2 products (NDVI_S2 – NDVI_ASD). 548 

3.5.2. Normalized Difference Infrared Index (NDII) 549 

As mentioned above, NDII index is frequently used for estimating vegetation water content. 550 

Most vegetated covers in the study period were senescent, so, the negative values achieved by 551 
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most covers were expected (Fig. 8a) (Yilmaz et al., 2008). On the contrary, values of 0.05 to 0.15 552 

were obtained for grass, since it was wetter. Figure 8b shows an overestimation of this index in 553 

all covers except for shrubs. The use of AC methods clearly improved the results obtained by 554 

Level-1C products, and no clear superior performance of a single method for all the land covers 555 

was observed. On the contrary MAJA did not succeed in reducing the overestimation of NDII 556 

index of Level-1C product on the grass plot. 557 

 

(a) 

 

(b) 

Figure 8. a) NDII measured from BOA reflectance of ASD and Sentinel-2 products, b) Difference of 558 

NDII measured from ASD and from Sentinel-2 products (NDII_S2 – NDII_ASD). 559 

3.5.3. Normalized Burn Ratio (NBR) 560 

In line with the other two spectral indices, NBR (Figure 9a) showed higher values for the 561 

grass plot. Additionally, most AC methods showed a clear overestimation on this index too, yet 562 

AC improved the fit with ground data in most cases. SEN2COR performed slightly better, with 563 

a difference of NBR lower than 0.04 in all land covers. On the contrary, iCOR only partially 564 

reduced the overestimation of NBR. 565 
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(b) 

Figure 9. a) NBR measured from BOA reflectance of ASD and Sentinel-2 products, b) Difference of 566 

NBR measured from ASD and from Sentinel-2 products (NBR_S2 – NBR_ASD) 567 

3.5.4. RMSE of S2- derived spectral indices 568 

Table 10 shows the RMSE between S2-derived spectral indices compared to the ones 569 

obtained from ground measurements. Depicted values from Table 10 were consistent with 570 

Figures 7, 8 and 9 and agreed with the higher performance of Level-2A-derived spectral indices, 571 

compared to the Level-1C product. This improvement was greater in the case of NBR index, 572 

probably due to the better performance of BOA reflectances on B12, as seen in Figure 6i. In 573 

contrast with the results of Table 5 the lowest RMSE of the different spectral indices were 574 

achieved by SEN2COR and iCOR, while MAJA performed slightly worse. 575 

Table 10. RMSE of spectral indices from different AC methods for the six plots and four dates. 576 

Best method for each index highlighted in bold 577 

RMSE Level-1C SEN2COR 6S MAJA iCOR 
NDVI 0.0316 0.0307 0.0280 0.0307 0.0255 
NDII 0.0599 0.0304 0.0365 0.0368 0.0370 
NBR 0.1006 0.0298 0.0350 0.0494 0.0539 

Level-1C products showed an overestimation of NDII and NBR indices, which derived in 578 

greater RMSE values. These values were clearly reduced by corrected BOA reflectances, in line 579 

with the results of Figures 8 and 9. On the contrary, the performance of each AC method in the 580 

estimation of NDVI varied for each land cover. This varying performance affected the RMSE 581 
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values of Table 10, with only minor improvements of RMSE for NDVI index. These results 582 

suggest that the selection of the suitable method is application dependent. 583 

4. Conclusions 584 

A rigorous evaluation of the accuracy of Level-2A BOA reflectance products obtained with 585 

different AC methods requires their comparison with ground measurements obtained with 586 

spectroradiometers. This comparison is necessary to quantify the performance of each AC 587 

method both band wise and per land cover. The coefficient of determination or the root mean 588 

square error can be used to quantitatively measure this performance, and therefore the different 589 

AC methods are evaluated. 590 

The results obtained by the RMSE and R2 suggest a varying performance of AC methods 591 

depending on the land cover and spectral bands. Although minor differences were observed in 592 

most cases, MAJA and iCOR showed a better performance according to the RMSE in the analysis 593 

per land cover. Regarding the band wise analysis, MAJA ranked first in all spectral bands. A 594 

detailed inspection of the scatterplots, showed a common trend of overestimation of low 595 

reflectance values, together with a clear underestimation of high BOA reflectance values in the 596 

Level-1C product. This overestimation was more pronounced in band B8A, so the three spectral 597 

indices derived from it showed also clear signals of overestimation. Among the AC methods, 598 

SEN2COR performed the best in the estimation of two spectral indices (NDII and NBR), while 599 

iCOR showed a slightly superior performance in NDVI.  600 

Summing up, the results obtained on this inter-comparison of AC methods showed a clear 601 

enhancement of the accuracy of BOA reflectance estimation compared to the performance of 602 

uncorrected Level-1C product. This proves the need of an accurate AC, essential preprocessing 603 

step for a large number of Remote Sensing applications, especially multitemporal studies. 604 

Nevertheless, the comparison of four AC methods showed minor differences between them.  605 
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On the one hand, the statistical analysis of spectral signatures showed a better performance 606 

of MAJA, as seen in the figures of merit. On the other hand, the assessment of spectral indices 607 

derived from BOA reflectances showed a slightly superior performance of SEN2COR. 608 

Consequently, the selection of an AC method needs to be aligned with the study purposes. Yet, 609 

this study is based on a reduced amount of comparison points and further research is required to 610 

assess the performance of each method on a higher variety of land covers and atmospheric 611 

conditions. Besides, the quality of additional products such as geophysical and cloud masks must 612 

be assessed to decide which method is the best to correct the S2 imagery. 613 
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