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ABSTRACT Nowadays synthetic aperture radar (SAR) and multiple-input-multiple-output (MIMO)
antenna systems with the capability to radiate waves in more than one pattern and polarization are playing a
key role in modern telecommunication and radar systems. This is possible with the use of antenna arrays as
they offer advantages of high gain and beamforming capability, which can be utilized for controlling radiation
pattern for electromagnetic (EM) interference immunity in wireless systems. However, with the growing
demand for compact array antennas, the physical footprint of the arrays needs to be smaller and the conse-
quent of this is severe degradation in the performance of the array resulting from strong mutual-coupling and
crosstalk effects between adjacent radiating elements. This review presents a detailed systematic and theo-
retical study of various mutual-coupling suppression (decoupling) techniques with a strong focus on meta-
material (MTM) and metasurface (MTS) approaches. While the performance of systems employing antenna
arrays can be enhanced by calibrating out the interferences digitally, however it is more efficient to apply
decoupling techniques at the antenna itself. Previously various simple and cost-effective approaches have
been demonstrated to effectively suppress unwanted mutual-coupling in arrays. Such techniques include the
use of defected ground structure (DGS), parasitic or slot element, dielectric resonator antenna (DRA), com-
plementary split-ring resonators (CSRR), decoupling networks, PI.N or varactor diodes, electromagnetic
bandgap (EBG) structures, etc. In this review, it is shown that the mutual-coupling reduction methods inspired
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by MTM and MTS concepts can provide a higher level of isolation between neighbouring radiating elements
using easily realizable and cost-effective decoupling configurations that have negligible consequence on the array’s
characteristics such as bandwidth, gain and radiation efficiency, and physical footprint.

INDEX TERMS Decoupling methods, metamaterial (MTM), metasurface (MTS), multiple-input-multiple-output
(MIMO), synthetic aperture radar (SAR), isolation enhancement, array antennas.

I. INTRODUCTION

SAR and MIMO [1] are arguably the state-of-the-art method-
ologies for enhancing the capacity of radio links via multiple
transmitting and receiving antennas to have multipath scat-
tering. Conventionally, MIMO and SAR systems are defined
as practical techniques for transmitting and receiving signals
stemming from multiple independent channels concurrently.
This is typically implemented over the same radio chan-
nel with the aid of multiple antenna configurations without
additional losses in radiation power in rich scattering sur-
roundings. SAR and MIMO are also categorized under next
generation wireless communication technologies due to their
marked potential to improve system credibility and channel
capacity by means of multiple antennas [2]. MIMO was as
a practical solution to the data rate restriction of single-input
single-output (SISO) systems. MIMO and SAR are generally
used on different networks, and they also improve the trans-
mission velocity of data [3] by using the maximum content
of wireless telecommunication devices.

In [4], [5], various etched portable MIMO and SAR
antenna apparatus are discussed. They are broadly applied
in applications of mobile devices because of their adaptation
with the system, better completeness, low cost, and sim-
plicity of construction. The simplicity and genericity of the
multi-antenna topology [6] utilized in the transmitting side
and receiving side in MIMO and SAR systems allow for a
more convenient implementation compared to other antenna
array topologies. Also, such configurations reduce channel
errors in communication systems to have enhanced data
rates [7]. However, this may lead to multipath scattering due
to the inherent high cohesion factor in the multi-signal distri-
bution [8]. Additionally, the decreased distance between the
antennas in array systems can potentially reduce the decou-
pling factor, which degrades the angle of arrival [9] in the
estimation of carrier frequency offset [10] and signal to inter-
ference noise ratio [11]. It is good to note that the isolation
between adjacent antennas decreases either by a huge flow of
surface current from the stimulated ports or space radiation
and surface waves. Also, the contrary influence of inter-
ferences on reflection coefficients cannot be ignored [12].
Hence, the main challenge in the implementation of antennas
for MIMO and SAR applications is limiting the interferences
between more recent compact etched antennas and other
antenna configurations [13], [14]. Comprehensive studies
based on models specifically designed to increase the isola-
tion have been presented in recent times [15]-[27]. The basic
approaches for enhancing isolation in multi-antenna syst-
ems typically involve the utilize of decoupling networks [17],
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neutralization lines [18]-[20], engraved parasitic ele-
ments [21], CSRRs [22], EBG architectures [23],
DGSs [24], [25], and metasurfaces (MTS) and metamateri-
als (MTM) [26], [27]. Besides the multi-antenna systems,
the decoupling methods to increase the isolation in broad-
band base station arrays have been presented in [28], [29].
In [30], easy comparison of disparate decoupling approaches
containing parasitic elements, utilize PIN and varactor
diodes, and decoupling networks has provided. In addi-
tion, the efficacy of varying relative permittivity of layers
on antenna parameters is presented and discussed. These
methods allow for the manipulation of mutual coupling
through weakening, resisting, or reducing the surface cur-
rent flow. Antenna configurations such as reconfigurable,
engraved, dielectric resonator, metasurface, and metamaterial
are widely adopted to destroy the harmful outcome of the
interferences [30]—[35].

In the following survey, a comparative review is given on
diverse methodologies for suppressing mutual-coupling in
antenna arrays for application in MIMO and SAR systems
based on metasurface (MTS) and metamaterial (MTM) prop-
erties. In addition, different antenna models based on con-
ventional decoupling techniques are examined. The antenna
performance is characterised in terms of operating frequency
range, degree of isolation between adjacent radiators, radi-
ation gain and efficiency. In essence, this survey highlights
the practicality and constraints of various mutual-coupling
suppression techniques for antenna arrays that are avail-
able today to antenna designers. Though in [30], [36], [37]
the theoretical aspects of SAR and MIMO antenna isola-
tion are discussed, these articles do not discuss the diverse
range of mutual-coupling isolation. Moreover, there is a
dearth of literature on the current techniques and design
principles for mitigating mutual coupling in antenna arrays
based on the MTS and MTM properties. This survey pro-
vides the latest diverse decoupling techniques available to
improve their radiation performance of high dense antenna
arrays.

Rest of the paper has organized as follows. Section II
is on mutual coupling definition. Section III is on
the various decoupling methods. Sections IV and V
present the main parts of this survey which focus on
the diverse decoupling methods inspired metamateri-
als and metasurfaces for antenna array application in
MIMO and SAR systems. Section V also provides a
comprehensive comparison table which includes several
research studies. Finally, this survey has concluded in
Section VL.
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Il. MUTUAL COUPLING DEFINITION

In antenna array systems, the mutual coupling generally
refers to the energy attracted through a nearby antenna when
an antenna is operational. It changes the reflection coeffi-
cient(s), input impedance(s), and radiation pattern(s). To pro-
vide an analytical background for mutual coupling, some
empirical models have been presented and discussed in [38],
according to Equation (1) and Equation (2).

2.d,
MC = exp(— Am” (@+jm), m#n (1)
1
Mcmm: I_NZZMC’"” (2)
m m#n

where MC,,, represents the mutual coupling and the space
between the m™ and n™ antennas is defined by dy,,. The
number of antennas and the parameter controlling the level
of coupling are presented by N and «, respectively.

Practically, the isolation level pertains not only to the
array topology but also on the stimulations of the array
antennas and other factors. It is normally estimated applying
the dB-valued S-parameter between the m"” and n™ anten-
nas (i.e., 201og 10(|Syx])), and equivalently the isolation
—201log 10(| S |) between them.

A detailed understanding of the isolation mechanism will
invariably relate to the transmitting/receiving mode. The
isolation mechanisms are discussed below, considering the
transmitting and receiving modes independently.

A. ISOLATION IN TRANSMITTING MODE

Fig.1 displays that the antennas “m” and “n” in a typical array
are considered. A generator is considered to antenna “‘n”,
the produced energy of the generator ““1” radiates within
area “2” and onto the m” antenna “3”. The portion of
the energy arrived at the m™ antenna re-scatters within
area “4” and the residual energy moves in the direction of
the source “5”. A deduction of the re-scattered energy “4”
will be take-up by the n”* antenna *“6”. This mutual interplay
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FIGURE 1. Investigation of mutual coupling architecture in (a)
transmitting and (b) receiving modes [14].
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is an ongoing procedure, and it is iterative. However, it is
usually best to select the first few repetitions because the
re-scattered energy reduces drastically after each repetition.
The general far-field is derived from the vector summation
of the re-scattered and radiated fields. Hence, the mutual
coupling varies the pattern of the antenna. The wave “5”
is added vectorially to the reflected wave and incident wave
of the m” antenna. This enhances the standing wave and
changes the m" antenna’s input impedance. Mutual coupling
varies both the self-impedance of the antenna and the mutual
impedance.

B. ISOLATION IN RECEIVING MODE

Assuming the plane wave ““1”’ exceed toward the array reach-
ing the m"" antenna. It evolves a current in the m"”" antenna.
The portion of the incident wave travels within the receiver
as “2” and the remaining segment is re-scattered within
area “3”. Some of the re-scattered wave is conducted onto
the n™ antenna “4”’, where it adds (vectorially) to the incident
plane wave “5”°. Thus, the received wave through an element
is the vector summation of the direct waves and the coupled
waves from other elements. To optimize the received energy
(i.e., lowest re-scattered energy), the m'™ antenna’s terminat-
ing impedance has to be selected. Therefore, the re-scattered
wave “3” is annulled via the reflected wave “5”. In a receiv-
ing mode, the antenna’s performance under consideration can
be evaluated through stimulating the antenna with the other
antenna interrupted with a 50-ohm load.

llIl. VARIOUS DECOUPLING TECHNIQUES

In literature, several isolation enhancement approaches are
available such as decoupling networks, parasitic element
approach, slot etching and ground plane structures, neu-
tralization lines, PIN diode, varactor diode and feeding
structures, frequency-selective surface (FSS), characteristic
modes, and EBG structures [13]-[16], [30], [35]-[37]. These
approaches have been briefly discussed in this section. Addi-
tionally, due to some disadvantages and restrictions of the
abovementioned methods, which have been discussed in
details in the next part, the metasurface and metamaterial
decoupling methods have been proposed and investigated in
deep, which enable the designers to model SAR and MIMO
antenna systems with minimized mutual coupling in a com-
pact footprint area for mass production.

A. DECOUPLING NETWORK APPROACH
Decoupling networks are applied to obtain enough isolation
in MIMO and SAR antenna systems. They work on the
methodology of the transformation of the cross-admittance
term to purely imaginary amount via step up transmission
lines or through discrete elements. Eigen mode disintegra-
tion [39], manmade structure [40], coupled resonator [41],
and inserted elements [42] are some examples of the isolating
layouts.

Modeling the decoupling scheme between the antenna
arrays is easy to implement [35]-[52]. Specified decoupling
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TABLE 1. Comparison on the performance parameters of decoupling networks based MIMO and SAR antennas.

Ref. [56] [57] [58] [59]
Dimensions / Substrate 72.4 x 20 x 0.8 mm’ 70 x 35 x 0.8 mm’ 112 x 55 x 1.6 mm’ 40 x100 x 0.8 mm’
Rogers RO4350B FR-4 FR-4 FR-4
Isolation (dB) >-27.6dB @ >-32dB @ >-15dB @ >-15dB @
2.18 ~2.65 GHz 3.45 ~3.55 GHz 2.4 ~2.48 GHz 3.5 ~3.6 GHz
>-15dB @
5.15 ~5.35 GHz

Applied Approach Diamond-shaped pattern

ground resonator

Reactive dummy loads

Coupled resonator
decoupling method

Pattern diversity
decoupling method

Efficiency / Gain 66~70.5 % / 1.39dBi 82%/- 66~75 %/ - 50% /-
No. of Ports / Dual Ports / IMS Triple Ports / WiMAX Dual Ports / ISM and Eight Ports / WIMAX
Applications WLAN
Remarks Complex layout and Easy configuration Dual-band and Large Easy configuration and
medium dimension dimension maximum ports

approaches provide mutual reduction at the cost of some
ohmic losses. The isolating method annuls the original inter-
ference by producing a supplementary coupling route; there-
fore, the mutual coupling is reduced, and far-field properties
become better.

Similarly, the SAR and MIMO decoupling performance
can be boosted through implementing an indistinct line and
lumped components [53]-[55]. It is placed between the SAR
and MIMO antenna arrays to increase gain and reduce the
mutual coupling. The shunt component based decoupling
network is applied to increment the performances to have
acceptable decoupling between the antennas.

Various types of the decoupling network approaches
to increment the decoupling between the array antennas
have been presented and explained in the literature such
as diamond-shaped patterned ground resonator (DSPGR)-
plane decoupling network [56], dummy load-based decou-
pling approaches [57], coupled resonator decoupling net-
work (CRDN) [58], and multi-element pattern diversity based
decoupling network [59]. Table 1 depicts a comparison of
the characteristics of MIMO antennas using decoupling net-
works. In [59], the highest efficiency and the lowest mutual
coupling of —32 dB are achieved utilizing the most straight-
forward configuration of dummy loads. The dual-band oper-
ations are exhibited in [58].

B. PARASITIC ELEMENT DECOUPLING APPROACH

Engraved slit or parasitic element antennas use two orthog-
onal modes to generate a broad frequency band via cou-
pling in ground plane and/or in radiating patch [60]. In this
method, the isolation between elements is optimized by pro-
ducing an additional coupling route [61], [62]. One of the
two coupling routes opposes the signal arriving from the
other coupling road, which causes an improvement in isola-
tion level. Indirectly linked decoupling components such as
folded shorting strip, meandered slot, and vertical parasitic
strip are recognized as a parasitic element [63]-[65]. Ease of
implementation, size, and comfortable generation applying
PCB technology and/or waveguides are the main benefits of
the parasitic or slot antenna. The placement of parasitic ele-
ments has to be implemented meticulously, and it is not very
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straightforward. This procedure increases the performance
parameters of the array antennas.

Various types of the parasitic element decoupling
approaches based on the square ring slit [66], metal strip
reflector [67], [68], stepped feed-line and open-ended ground
slit [69], and single-shared-radiation component and mean-
dered feeding lines [70] to obtain lowest interference between
the array elements have been proposed and illustrated in
the literature. Table 2 mentions the studied specifications
of parasitic or slot antennas. The maximum amount of gain
and bandwidth is achieved in [66]. The structure in [67] pro-
vides optimum efficiency with an easy layout. The antenna
in [68] presents the highest isolation value of —22dB.
A new shared radiation element antenna is investigated
in [70].

C. DEFECTED GROUND STRUCTURE (DGS) DECOUPLING
METHOD

DGS introduces the slits realized on the antenna’s ground
plane [71]. It is pursued as an appearing method for improv-
ing many parameters of MIMO and SAR antenna sys-
tems [72]. Also, it participates dramatically to increment the
isolation. A general way is to create the slit in the ground
plane. Howbeit, the slit can improve the isolation, it may also
enhance the back radiation [73]-[75]. Various sorts of slits
can be engraved on the ground (GND) as well as on the patch
for decoupling improvement, shifting frequency, footprint
area decrement, and multiband operation. The printed slit
controls the flowing current flowing on the ground plane by
repressing the interferences between the adjacent elements
and behaves such a band-stop filter.

Various types of the DGS isolating mechanisms have been
discussed in the literature. A few examples of the these
isolating mechanisms are S-shaped DGS [76], square ring
DGS [77], T-shaped metallic stub based DGS [78], electri-
cally small meandered DGS [24], [79], ground plane loaded
with complementary split ring resonator (CSRR) [22], con-
centric square ring patch with CSRR loaded GND [80],
CSRR loaded GND [81], and slotted CSRR in GND [82].
Properties of several DGS antennas presented here are listed
in Table 3. This table explains that antenna in [76] has
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TABLE 2. Comparison on the performance parameters of slit or parasitic element based MIMO and SAR antennas.

Ref. [66] [67] [69] [70]
Dimensions / Material | 66.25 x 66.25 x1.6 mm’ 25 % 30 x 1.6 mm’ 42 x 25 x 1.6 mm’ 22 x 24.3 x 1.52 mm’
FR-4 FR-4 FR-4 Rogers TMM4
Isolation Level (dB) >-20dB @3.0 ~12.0 >-20dB @3.1 ~10.6 >-22dB @3.2 ~12.0 >-15dB @3.0 ~10.6
GHz GHz GHz GHz
Applied Approach Square ring slot and Two coplanar stripline- | Open-ended ground slot | Meandered feed line and
stepped feed line feed staircase-shaped and stepped-slot feed stub to ground linked

radiating elements

line

through via

Efficiency / Gain 60% / 5~8 dBi 90% / 5.2dBi <80% / 4dBi 82% /1.5~5.8 dBi
No. of Ports / Dual Ports / UWB Dual Ports / UWB Quad Ports / Portable Dual Ports / UWB
Applications UWB portable devices

Remarks Lowest ECC Simple manufacture and Low mutual coupling Maximum gain and

small dimension

expensive substrate

TABLE 3. Comparison on the performance parameters of DGS MIMO and SAR antennas.

Ref. [66] [83] [78] [24]
Dimensions / substrate 100 x 72 x 3.81 mm’ 60.2 x 60.2 x 1.6 mm’ 22 %26 x 0.8 mm’ 50 x 160 x 0.8 mm’
Rogers TMM6 RF-4 RF-4 RF-4
Isolation Level (dB) >-55dB @ >-25dB@ >-20dB @ >-20dB @
2.57 GHz 2.45 GHz 3.1~11.8 GHz 0.7~1.0 GHz
Applied Approach S-formed periodic DGS Square ring DGS Trident-shaped Strip and Open ended DGS-slit

Ground plane open
ended slit

Efficiency / Gain 93~96% / - 81% /2.1dBi 85% / 3.6~6dBi 80% / 2dBi
1.79~3.75dBi
No. of Ports/ Quad Ports/ WLAN Quad Ports/ WLAN Dual Ports/ UWB, Quad Ports/ LTE
Applications WLAN, X-band notched
Remarks Large thickness and Miniature structure and Miniature structure and Complex structure and

high efficiency

simple construction

large bandwidth and
filter

controllable isolation

TABLE 4. Comparison on the performance parameters of CSRR MIMO and SAR antenna.

Ref. [22] [80] [81] [82]
Dimensions / substrate 23 % 29 x 1.524 mm’ 60 x 60 x 1.6 mm’ 100 x 50 x 0.8 mm’ 70 x 100 x 1.6 mm’
Rogers TMM4 FR-4 FR-4 Rogers4003
Isolation Level (dB) >-15dB @ >-22dB@ >-18dB @ >-20dB @2.45 GHz &
3 ~12 GHz 2.2 ~2.7GHz 2.4~2.5 GHz > -33 dB @5 GHz
Applied Approach Stub and GND SCRR GND CSRR and GND and bottom plane Slotted CSRR in GND
and concentric square ring CSRR
patch and
Efficiency / Gain 82% / 5.9dBi 72.57% / 4dBi 29% /-0.8dBi 86.64% / 4.025dBi
No. of Ports/ Dual Ports/ UWB Quad Ports/ ISM Quad Ports/ ISM Dual Ports/ WLAN
Applications
Remarks Large bandwidth and Horizontal and vertical Large size and thinner Lowest mutual coupling,
small structure polarized, easy layout thickness dual-band, and easy
layout

the largest size and thickness. The antenna in [76] also
achieves the highest efficiency and isolation of —55 dB.
Even though the antenna in [24] presents the largest
bandwidth accompanying band notch property and small
size, it depicts considerably higher isolation performance
than [66].

Table 4 shows the characteristics of the CSRR loaded
ground plane antennas. For the antenna in [82], the highest
efficiency at 86.62% and the most straightforward configura-
tion with dual band properties is obtained. The antenna in [82]
has higher isolation of —33 dB. Hence, it is more appropriate
in comparison to other CSRRs.
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D. NEUTRALIZATION LINE DECOUPLING APPROACH

Neutralization lines [84] are utilized to transit electromag-
netic waves from one antenna to another via a metallic slot
or lumped component. They create a contrary coupling which
lowers the interferences at given frequencies between the ele-
ments. Neutralization lines have considered as particular iso-
lation approaches, which annul the interferences via present-
ing a second road with an inverse phase and equal amplitude.
Consequently, the utmost of neutralization lines accessible
in literature are narrowband [85], [86]. The neutralization
line is more appropriate for the SAR and MIMO systems
with a low number of antenna arrays. In MIMO and SAR
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TABLE 5. Comparison on the performance parameters of neutralization lines MIMO and SAR antennas.

Ref. [87] [88] [18] [89]
Dimensions / Material 36 x 65 x | mm® 135 x 80 x 0.8 mm’ 50 x 40 x 1.6 mm’ 4cmx4cmx 1.6 mm
FR-4 FR-4 FR-4 FR-4
Isolation Level (dB) >-15dB @ >-23dB @ 750, 850, >-20dB @ >-21dB @
2.4 ~2.5GHz 2000, 2500 MHz 2.45 and 5.8 GHz 3.1 ~11 GHz

Applied Approach Neutralization line

Crossed neutralization

Neutralization line with Stepped neutralization

line with integrated couple of inductor and line
inductors capacitor
Efficiency / Gain 81%/2.1dBi 31.86~61.73% / 78~85% /- -/3.28~4dBi
-1.79~3.75 dBi
No. of Ports / Dual Ports / WLAL Dual Ports / LTE, GSM, Dual Ports / WLAN Quad Ports / UWB
Applications USB-Dongle WLAN
Remarks Small structure and easy Complex layout and high efficiency and easy Large dimension, largest
configuration minimum isolation layout bandwidth, and simple
configuration
TABLE 6. Comparison on the performance parameters of frequency reconfigurable based MIMO and SAR antennas.
Ref. [93] [94] [96] [97]
Dimensions / Material 46 % 20 x 1.6 mm’ 120 x 60 x 1.5 mm’ 90 x 50 x 0.8 mm’ 150 x 150 x 0.8 mm’
FR-4 RO-4350 FR-4 FR-4
Isolation Level (dB) >-18 dB @2.39 ~2.48 >-12dB @1.77 ~2.51 >-47dB @2.3 ~2.4 GHz >-20dB @1.6 ~1.9
GHz and 5.15 ~6.4 GHz GHz (for D1 and D2 On-state), > GHz (Off state)
(Off state) >-25dB @0.75 ~7.65 -30.8 dB @3.4 ~3.6 GHz >-20dB @2.2 ~2.96
GHz (for D3 On-state), > -43 dB GHz (On state)

@2.5 ~2.7 GHz (for D1 and
d4 On-state)

Applied Approach RF MEMS Switches

Biasing network and
varactor diodes per
component

DC biasing network and pin
diodes and

Biasing network and pin
diodes switches

Efficiency / Gain 83% /2.9dBi 65~81%/0.5~3.2 dBi 48.43~73.1% / 55~83 % (Lower band)
1.99~2.78dBi 75~92 % (Upper band)
/ 3~5dBi
No. of Ports / Quad Ports / WLAN Five Ports / UWB and Quad Ports / WiMAX Triple Ports / LTE and
Applications cognitive radio (CR) portable wireless DTV
media players
Remarks Complex layout Expensive substrate Highest isolation Optimum efficiency and

Complex layout gain

antenna models, the difficulty of matching is quite evident.
A neutralization line is a metallic structure with a thin thick-
ness that dissolves the obstacle of matching and suppresses
the coupling between antennas. The form, dimensions, and
orientation of the neutralization line are related to the antenna
components. However, finding the neutralization path is not
very straightforward.

Various implementations of the neutralization line decou-
pling approach to reduce the array antenna’s mutual cou-
pling such as thin printed neutralization lines [87], pair
of crossed neutralization lines [88], neutralization lines
together with LC matching network [18], and neutraliza-
tion lines between ground planes [89] have been pre-
sented and investigated in the literature. Table 5 describes
the neutralization-based MIMO and SAR antenna prop-
erties. A couple of crossed neutralization lines is inves-
tigated in [88] with the thinnest substrate thickness and
proper gain amounts. However, the antenna’s layout is
not simple. The antenna operates on multiple frequency
bands and presents a minimum mutual coupling amount
of —23 dB.
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E. PIN DIODE, VARACTOR DIODE, AND FEEDING
STRUCTURE DECOUPLING APPROACH

PIN diode, varactor diode, and feeding structures are
also applied to suppress the mutual coupling effects [90].
PIN diode in antenna models generates dynamic radiation
patterns. The implementation of PIN diode in MIMO and
SAR antenna arrays results to enlarge the link capacity con-
trols the antenna’s length, and also increments decoupling.
This attribute ensures the reconfigurability of the antenna’s
radiation [91].

Several switching-based decoupling methods where
MEMS switches, p-i-n and varactor diodes are applied to
expand the working frequency band and degrade the coupling
have been proposed in the literature [92]. Some of them
are based on back-to-back MEMS switches [93], slot-based
P-I-N diodes [94], [95], planar inverted-F P-I-N diodes [96],
and microstrip loop and slit frequency reconfigurable [97].
Table 6 lists the characteristics of the mentioned approaches.
The antenna illustrated in [96] is not simple because
of the presence of a shorting plate and a vertical
corrected feed line. It has the maximum amount of
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transmission coefficients. WO and W represent without and with MTS bulkhead, respectively [112].
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FIGURE 3. (a) Reference structure (WO), (b) proposed structure with metal fences (W), and

(c) S-parameter performances [113].

gain. Also, it has the highest isolation amount of
—47 dB. However, the antenna structure in [97] shows
the optimum efficiency and gain of 92% and 5 dBi,
respectively.

F. FREQUENCY-SELECTIVE SURFACE (FSS) DECOUPLING
METHOD

FSS approaches can efficiently improve the isolation. How-
ever, they are discordant with low-profile structures, and they
affect the radiation pattern [31]. This technique can be applied
between the dielectric resonator antennas (DRA). This is
obtained by accommodating an FSS between the DRAs that
have been placed in the H-plane. The FSS contains an array of
SRR cells that are embedded onto the E-plane. The SRR for-
mation is modeled to achieve band-stop functionality inside
the antenna frequency band.

VOLUME 8, 2020

G. ELECTROMAGNETIC BANDGAP (EBG) DECOUPLING
STRUCTURE

An EBG structure blocks electromagnetic waves of a cer-
tain frequency or plays as a region to pass electromagnetic
waves [98]. Various stop-band, pass-band, and band-gap
frequencies can be recognized [99]. The EBG is a peri-
odic adjustment of dielectric or metallic materials. Struc-
ture’s periodicity and singular resonance of the elements can
produce many bandgaps [100]. EBG presents parasitic induc-
tance and capacitance. Thus, the phase constant of an
electromagnetic wave distributing under the patch will be
much greater than the transverse electromagnetic mode.
As a result, the EBG element operates in a slow-wave
medium with a wavelength shorter than the transverse
electromagnetic mode. Conventionally, the EBG struc-
ture is located between the antenna arrays. While, for
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FIGURE 4. Configuration of (a) reference array antennas (WO), (b) proposed structure
applying the MTS isolating sheet (W), (c) circuit diagram, (d) S-parameters, and

(e) surface current distributions at 19.5 GHz (when one port is stimulated, the other one
is matched to a 50-ohm load) [114].

192972 VOLUME 8, 2020



M. Alibakhshikenari et al.: Comprehensive Survey

IEEE Access

S-Parameters [Magnitude in dB]

—h— S11_WO_CST
* » o S11_WO_HFSS
—&=511 W (ST
=== S11_W_HFSS

b o @ SI12 WO _HFSS
oWl S12_W_CST
=¥ SI12_W_HFSS

17.5 20 n 24
Frequency / GHz
Fourth Band

(d

28 30

Without MTS isolating sheet

With MTS isolating sheet

FIGURE 4. (Continued.) Configuration of (a) reference array antennas (WO), (b) proposed structure
applying the MTS isolating sheet (W), (c) circuit diagram, (d) S-parameters, and (e) surface current
distributions at 19.5 GHz (when one port is stimulated, the other one is matched to a 50-ohm load) [114].

TABLE 7. Comparison on the performance parameters of electromagnetic bandgap based MIMO and SAR antennas.

Ref. [101] [103] [104]
Dimensions / Substrate 95 x 95 x 2.284 mm® 35 x 40 x 1.6 mm’ 90 x 45 x 1.6 mm’ 60 x 57 x 1.2 mm’
Rogers RO4350B FR-4 FR-4
Isolation Level (dB) >-25dB @ >-28dB @ >-30.35dB @ >-537dB @
2.395 ~2.42 GHz 2.45 ~2.55 GHz 5.59 GHz 2.43 ~2.54 GHz
Applied Approach Vias and S-EBG Dual layer mushroom 8 Z-formed EBG SRR and EBG
Efficiency / Gain 56.57% / 5.12dBi 64.42~66.94 % NG /2.42dBi 82% /NG
4.55~4.92 dBi
No. of Ports / Quad Ports / IMS Dual Ports / IMS Dual Ports / WLAN Dual Ports / ISM
Applications
Remarks Complex layout Sorely complex layout Simple layout and large High efficiency and
and compact dimension dimension simple layout

isolation improvement, the antenna array is enclosed via
the EBG.

In the literature, several types of the EBG decoupling struc-
tures have been presented and discussed recently to improve
decoupling between the array antennas in MIMO and SAR
systems such as the mushroom type EBG [101], dual-layer
multi-element EBG [102], periodic Z-formed EBG [103],
and 1-D and SRR EBG [104]. Table 7 provides an overview of
the presented EM band-gap technique-based MIMO and SAR
antennas. Simplest structure with easy manufacture providing
the highest isolation in order of —53.7 dB has been presented
in [103]. The maximum efficiency of applying SRR and EBG
has been presented in [104].

All the approaches discussed above are summarized
in Table 8. From this table, most of them present isolation
in order of 15dB, whereas the neutralization line method has
the lowest isolation of 12dB. The benefits and drawbacks
of several methods are listed in Table 9. The isolation value

VOLUME 8, 2020

corresponds to the sort of antennas and the adopted ground
plane.

IV. HIGH EFFICIENT DECOUPLING TECHNIQUES BASED
ON THE METASURFACE (MTS) AND METAMATERIAL
(MTM) PROPERTIES APPLICABLE IN SAR AND MIMO
ANTENNA SYSTEMS WITH WIDE RANGE OF

DESIGN POSSIBILITIES

The results presented in Section II and listed in Tables 1 - 9
show that the abovementioned decoupling approaches are just
presented for a limited number of the array elements. In addi-
tion, the design process of some of them is complex and far
way to practical realizations. Most of them are working at
a specific range of frequency with low gain and efficiency,
and they have affected the total physical size of the array
antennas. In addition, they are not applicable for a wide
range of design possibilities, and they have an asymmetric
configuration which enables them for mass production.
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FIGURE 5. (Continued.) (a) Reference structure (WO), (b) proposed structure with

(W) linear slot isolators, (c) surface current distributions at 22.5 GHz (when one port is
stimulated, the others are matched to a 50-ohm load), and (d) S-parameters [115].

Waveguide slot array (WSA) antennas propose favorable
properties that contain moderate cost, low-loss, and high
power-handling ability [110]. While the major disadvantage
of the WSA is the interferences between the slit antennas that
reduce the bandwidth, gain, and recurves the radiation pat-
tern. To employ WSA antennas in next generation SAR and
MIMO systems, a low degree of coupling is required [111].
Several methods have been implemented to increase isola-
tion [112]-[127]. Some commonly used methods include
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coplanar strip walls between the antennas [128], [129] and
frequency selective surfaces [34]. However, these methods
diminish the radiation pattern. This happens because a copla-
nar strip wall or an FSS wall does not have a good matching
condition. Consequently, the radiation pattern is degraded
because of reflected waves from the integrated wall between
the antennas.

Therefore, in this part of the review study the new
approaches are introduced to increment isolation between
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TABLE 8. Compsrison among various decoupling mechanism with performance parameters.

Ref. Isolation technique Isolation shape Frequency Isolation Gain Size
[77] Decoupling network Two section 746-787 MHz 23 dB 3 dBi 55%110 mm’
transmission line
[48] Decoupling network T-shaped strip 1.65-1.9 GHz 10 and 1.35 and 55x110 mm?
and 2.68-6.25 15dB 4.22 dBi
GHz
[49] Decoupling network Tunable and 2.4 GHz 20 dB - 90 x 72 mm?
coupling network
[52] Decoupling network Tunable and 2.2-2.7 and 15 dB 2.9-4.5 dBi 40 x 40 mm?
coupling network 4.9-5.9 GHz
[53] Decoupling network Structure with 770 MHz 16 dB -3.8 dBi 120x50 mm?
lumped element
[55] Parasitic elements Structure 2.4-2.485 GHz 16 dB - 100x60 mm*
between antenna 3.2-3.5GHz
5.15-5.85 GHz
[102] Parasitic elements Branch 3-8.5 GHz 15 dB 5.75 dBi 26x40.5 mm®
element/resonator
[106] Parasitic elements Branch 8002700 MHz 36 dB 3.2 dBi -
element/resonator
[107] DGS Slotting 2.4-2.484 GHz 17.8 dB 3dB 39.5%x20 mm’
[108] DGS Defected ground 2.0-7.31 GHz 17dB 3.67 dBi 54.82 x 96.9
plane/partial mm?
ground
[85] Neutralization lines Simple line 2.4 GHz 19 dB 2.1 dBi 30 x 65 mm’
[109] Neutralization lines Branch 760 MHz 12 dB 0.9 dBi 46 x 85 mm>
line/suspended
line
TABLE 9. Benefits and drawbacks of isolation techniques.
Ref. Techniques Benefit Drawback
[39]-1[59] Decoupling network - Easy decoupling structure - Sometimes additional space is needed
- Enhance far-field properties - Generate ohmic losses
[60]—[70] Parasitic elements - Control the isolation - Shift in frequency due to parasitic
- Suitable DG elements
[711-1[82] Defected ground structure - Small antenna dimension - usually not suited for mobile
(DGS) - Proper diversity applications
- Low gain
[84] —[89] Neutralization lines - Acceptable impedance matching - Lower frequency band
- Proper diversity with DG - Shorter bandwidth when compared
with upper frequency band
[90] —[97] PIN diode, Varactor diode - Appropriate isolation - Losses due to component
and feeding arrangement - High gain - Short frequency band
- Complex configuration
[98] — [104] Electromagnetic Bandgap - Easy layout - Short bandwidth
(EBG) - Acceptable isolation - Low gain

WSA antennas. These primarily involve placing an MTS
between the waveguide slit antennas. Proposed techniques
are exhibited to significantly repress the mutual coupling
and increase the gain and working frequency band. They are
effective and simple to implement.

Besides the metasurface- and metamaterial-inspired
decoupling methods applied to WSA antennas, other efficient
decoupling approaches based on the same concepts have been
presented in bellow with providing an efficient number of
examples and various type of designs for SAR and MIMO
applications. The main advantages of the following designs
are their simple prototypes with ease of manufacture process,
low cost, high isolation level between the array elements,
as well as, not being limited to small number of array ele-
ments, being applicable for a wide range of frequency band,
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having very negligible effects on the performance parameters
with keeping constant the physical dimensions, and having
symmetrical layouts which enable them for cost effective
mass production.

A. MUTUAL-COUPLING REDUCTION BETWEEN WSA
ANTENNAS INSPIRED MTS BULKHEAD FOR MIMO
SYSTEMS

In [112], a novel mechanism has been presented to sup-
press the interferences between WSA antennas based on the
MTS concept. This is obtained by locating an MTS bulkhead
between the antennas, as depicted in Fig.2. The antenna’s per-
formance is displayed to improve when compared to the same
reference structure with no MTS. The implemented antennas
have a physical dimension of 40 mm x 20 mm x 5 mm and
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FIGURE 6. (a) Reference antenna array, (b) antenna array with single MTM-EBG decoupling slabs, (c) proposed antenna array with
array of MTM-EBG decoupling slabs, (d) S-parameters performances, (e) distributed surface currents at resonance frequency
of 10 GHz [116].
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FIGURE 6. (Continued.) (a) Reference antenna array, (b) antenna array
with single MTM-EBG decoupling slabs, (c) proposed antenna array with
array of MTM-EBG decoupling slabs, (d) S-parameters performances,

(e) distributed surface currents at resonance frequency of 10 GHz [116].

operate over a bandwidth of 1.7 GHz to 3.66 GHz, which
relates to a practical bandwidth of 73.13%. The reference
WSA antennas present an average isolation of -20 dB, while,
with an MTS bulkhead, the decoupling is depicted to enhance
to -36.5 dB. Furthermore, the bandwidth expands by ~10%,
and the gain increases by 14.66%. This mechanism will be
very suitable for SAR and MIMO antenna systems where low
coupling between adjacent radiation elements is necessary to
improve the specifications of the structure and minimize array
phase errors, as a necessity to increment the performance of
the system.

B. REDUCTION IN INTERACTION BETWEEN
LONGITUDINAL-SLOTTED ARRAY BASED ON SIW
ANTENNA LOADED WITH METAL-FENCES OPERATING
ACROSS VHF/UHF FREQUENCY-BANDS

In [113], itis investigated that substrate integrated waveguide
longitudinal slotted array antenna (SIWLSAA) that is loaded
with metal fences shows low mutual coupling throughout
VHF/UHF bands. A reference SIWLSAA implemented for
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comparison aim includes 3 x 6 slotted arrays designed on
the top-side, and the bottom-side of the FR-4 layer has the
lowest mutual coupling of —63 dB between its slits. Sup-
pression in mutual coupling is discussed by applying an easy,
innovative way based on locating a metal fence between each
row of the slit arrays. The mutual coupling is exhibited to
better than -83 dB entire 0.2-1.0 GHz with a gain more than
1.5dBi, and a side-lobe level less than -40 dB. The presented
SIWLSAA shown in Fig.3 is compact and has a physical
dimension of 40 mm x 10 mm x 5 mm (0.0261¢ x 0.006)g x
0.002x¢, where Aq is defined at 200 MHz). The proposed
SIWLSAA will be very suitable for MIMO and radar system
applications.

C. ANTENNA ISOLATION ENHANCEMENT APPLYING
INTEGRATED MTS ISOLATOR FOR SAR AND MIMO
APPLICATIONS

In [114], a decoupling structure based on MTS that is con-
structed of a square-wave slot pattern with overstated corners
realized on a rectangular microstrip presents low mutual
coupling between neighbor antennas for array systems. The
1 x 2 symmetric antenna array embedded with the proposed
decoupling structure, which is exhibited in Fig.4, is modeled
to work at ISM bands of X, Ku, K, and Ka. As demonstrated
in Fig.4, the surface current distributions indicate that the
isolation structure compounded of the square-wave slit soaks
up the surface waves that would otherwise couple with the
adjoining radiating parts. With this mutual coupling suppres-
sion technique, the following are observed: (i) the average
isolations in the respective ISM bands mentioned above are
7, 10, 5, and 10 dB; and (ii) the center-to-center distance
between the neighbor parts is decreased to 10mm (0.281).
The average gain increment with the MTS decoupling
is 2 dBi.

D. WIDEBAND HIGH ISOLATED WSA ANTENNA
WORKING OVER KU- AND K- BANDS FOR RADAR AND
MIMO SYSTEMS

An innovative approach to increase the isolation between the
radiating parts of a waveguide slot array antenna has been
proposed and elaborated in [115]. It has obtained by realiz-
ing slits between the waveguide oval-formed slits, as shown
in Fig.5. The reference array has been implemented with an
organization of 3 x 5 oval-formed slots. With embedding
linear slits between the radiating oval-formed slots in both
vertical and horizontal directions, major increment in isola-
tion has obtained to have values of 24, 20, and 32 dB over the
bands of 12.95 to 13.75 GHz (Ku-band), 15.45 to 16.85 GHz
(Ku-band), and 18.85 to 23.0 GHz (K-band), respectively.
The study on the surface current distributions displays that the
slits act as an isolating architecture that soaks up the surface
waves, which would be coupled with the adjacent elements.
The center-to-center gap between the slits is 0.2) that is at
least two times less than the traditional array structures. Using
the slit decouplings, the lowest and highest gains increase
by 53.5% and 25.5%. Furthermore, the radiation patterns
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FIGURE 7. Geometries of (a) the reference structure (WO) and (b) the proposed structure with MFIs (W), and
(c) S-parameter responses [117].

192979



IEEE Access

M. Alibakhshikenari et al.: Comprehensive Survey

— 511 with ¥TM-05
-1 == 511 without MTH-D5
— 512 with MTM-D5

512 witheut MTM-DS [-i--op

B 85 ) 95

10

0.5

Fraquency | GHz

()

FIGURE 8. Layout of the antenna (a) without and (b) with MTM decoupling super substrate, and

(c) S-parameters [118].

are unchanged. This technique is easy for employment and
inexpensive for mass production.

E. EM DECOUPLING INSPIRED MTM CONTENT IN
ANTENNA ARRAY SYSTEM TO SUPPORT FULL-DUPLEX
APPLICATION

An electromagnetic technique to suppress the coupling
between array antennas applying MTM EBG is presented and
discussed in [116]. Fig.6 shows that the proposed configura-
tion can be considered for a full-duplex array antenna system
with short distances between the array elements (0.331¢)
without any decay in the radiation pattern. By implement-
ing this way, the decoupling is exhibited to increment by
>30 dB in the array structure containing three patches mod-
eled to work over 9.7 - 12.3 GHz. To more in-depth discern-
ment, the E-field magnitude profiles without and with the
MTM-EBG isolating structure are displayed in Fig.6. Obvi-
ously, the distributing E-field is not permitted to be coupled
to the neighbor elements that affirms the efficiency of the
presented method in decreasing surface waves. A parametric
evaluation was utilized to maximize the isolation perfor-
mances. The array structure has the physical and electrical
sizes of 65 mm x 22.5 mm x 1.6 mm and 2.1619x 0.75A¢
x 0.053X, respectively, where A¢ is defined at the mid-band
of 10 GHz.

F. ISOLATION ENHANCEMENT IN MTM SIW SLOTTED
ANTENNA ARRAYS EMPLOYING METAL-FENCE
DECOUPLING SLABS FOR SAR AND

MIMO APPLICATIONS

A novel sort of decoupling approach is realized to an MTM
substrate integrated waveguide (SIW) slotted antenna array
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in [117]. Fig.7 shows that the circular formed reference STW
antenna array is built from an Alumina layer with a physical
size of 40 mm x 5 mm x 1.5 mm. Integrated into the refer-
ence structure are 38 slits with the same size, i.e., 2 mm X
I mm x 1.5 mm. This structure workes across X-band to Ku-
band, providing an average mutual coupling of about —10dB.
The mutual coupling was suppressed through embedding
metal fence decouplings between the radiation slits, which
degraded the interferences by an average of 13dB. Further-
more, the impedance matching bandwidth is improved with-
out decay in the radiation patterns. By utilizing the metal
fence decouplings, the optimum obtained gain enhances by
~10%. The proposed approach is easy to realize, and it has
been presented for SAR and MIMO systems.

G. SUPPRESSION IN MUTUAL COUPLING APPLYING MTM
SUPERSUBSTRATE FOR HIGH PERFORMANCE & DENSELY
PACKED PLANAR PHASED ARRAYS

In [118], an efficient decoupling method is illustrated for
a phased array. It is obtained via placing a MTM super-
strate patch between the radiation parts of the phased array,
as shown in Fig.8. The patch is implemented through integrat-
ing slits within the patch, where the slits are organized in a
2 x 3 array. This technique is applied to an FR-4 layer.
An average isolation improvement of 5dB is obtained
throughout its working bandwidth. This approach is: (i) easy
to realize; (ii) suitable for planar antenna designs; (iii) sim-
ply applicable in practice; (iv) resilient and dominates the
deficiencies of poor front-to-back ratio already presented in
literature; and (v) appropriate for densely packed microstrip.
Additionally, the presented method is exceptionally ver-
satile for many applications having precise performance
necessities.
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H. HIGH ISOLATED ARRAY ANTENNAS FOR SAR
APPLICATIONS OVER X- AND KU- BANDS

Modern MIMO and SAR need a frequency band which is
larger than 1 GHz. Waveguide slot antennas are popularly
utilized in MIMO and SAR systems because of their intrinsic
benefits, namely power handling ability and high efficiency.
However, these antennas have a confined frequency band.
While the frequency band of slot antennas can be expanded
through applying ridge waveguides, this way presents fab-
ricating intricacy and is not cost-effective. An innovative
solution has been proposed in [119] to implement a wide
frequency band via applying a 2 x 3 array structure with the
isolation between the antenna incremented by embedding a
decoupling wall between the radiating antennas, as shown
in Fig.9. The decoupling wall contains three intercoupled
U-shaped microstrip transmission lines. By this method,

192982

the frequency band is wider than 2 GHz within the X-band
and Ku-band.

I. DECOUPLING APPROACH INSPIRED MTM
SUPERSUBSTRATE UTILIZED IN DENSELY PACKED
ANTENNA ARRAYS

An easy and feasible mechanism for increasing the isolation
between neighbor antennas is proposed and applied in [120].
Fig.10 shows that this is achieved by placing a smaller patch
with MTM isolating structure between the antennas. The
antenna structures are circular patches and the MTM decou-
pling structure is designed from a hexagonal slot resonator.
The direct effect of realizing the MTM decoupling structure
is 60% improvement in isolation between the closely spaced
elements, 200% enhancement in impedance match, and 369%
enhancement in the practical bandwidth. Because GND is
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FIGURE 11. (a) Reference array (WO), (b) proposed array with EBG fractal decoupling sheet (W), (c) equivalent circuit diagram,
(d) surface current distribution at 29.9 GHz, and (e) measured S-parameters [121].

unchanged, the front-to-back ratio is unaltered as well.
The method is simply feasible and is efficiently applicable
in beam scanning systems.

V. COMBINED ISOLATION TECHNIQUES

In this section, to achieve high and stable isolation
between the radiation elements throughout the operating fre-
quency band without affecting other performance parameters

VOLUME 8, 2020

such as array’s dimensions, bandwidth, and radiation
properties, new array antennas based on combined iso-
lation techniques are proposed, designed and manufac-
tured. In other words, the proposed decoupling slabs
located between the radiation elements for these new array
antennas are realized based on the combination of the meta-
surface and metamaterial and electromagnetic bandgap con-
cepts. As a result, high and stable isolations over entire
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with fractal isolator loading at 8.85 GHz, and (f) empirical S-parameters, [122].

bandwidths are achieved. The proposed works are discussed
as follows.

A. INTERFERENCE REDUCTION BETWEEN CLOSELY
PLACED ANTENNAS APPLYING EBG MTM FRACTAL
LOADING

In [121], an efficient method is investigated to increase the
isolation between the closely spaced antennas. It has been
obtained by incorporating a fractal decoupling slab between

192984

the radiating patches, as displayed in Fig.11. The fractal iso-
lating sheet is an EBG frame based on MTM. By adopting this
way, the space between the patches has decreased to 0.65A for
isolation improvement at amounts up to 37, 21, 20, and 31dB
at the X-, Ku-, K-, and Ka-bands, respectively, without decay
in the radiation patterns. Two-element antennas are exhibited
to work across a large frequency band, i.e., 8.7 to 11.7 GHz,
11.9to 14.6 GHz, 15.6 to 17.1 GHz, 22 to 26 GHz, and 29 to
34.2 GHz. An optimum gain increment in order of 71% has
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MTM-DS, (d) S-parameter responses, (e) surface current densities before and after apply MTM isolator shield at 10.65 GHz [123].

been achieved. The current density distributions demonstrate
that the surface currents are decreased by presenting the
fractal load between the adjacent elements. This affirms the
realized decoupling structure behaves as an efficient isolation
frame. The specifications of the antenna have been validated
by experimental results. This approach can be used in several
of the previously mentioned applications, and it is also suit-
able for adjacent antennas in arrays found in Radar, MIMO,
and RFID systems.

B. STUDY ON MUTUAL COUPLING REDUCTION BETWEEN
ADJACENT ARRAY ANTENNAS WITH REALIZATION OF
FRACTAL MTM EBG ARCHITECTURE

The abovementioned technique presented in [121] was fur-
ther developed and extended to a 2 x 2 antenna array
with radiation elements in [122]. In [122], a decoupling
MTM geometry based on fractal EBG frame, as displayed
in Fig.12, considerably suppresses the coupling between
the antennas. The assemblage of the MTM-EBG layout is
cross-formed with fractal-formed slits engraved in each arm
of the cross. The fractals are compounded of four inter-
joined “Y-formed slits, which have separated with an inverted
“T-formed slit. The MTM-EMBG frame is located between

VOLUME 8, 2020

the singular elements in a 2 x 2 array antennas. The exper-
imental data illustrate the average isolation improvement
across the operating bandwidth is 17, 37, and 17 dB between
the antennas 1 and 2, 1 and 3, and 1 and 4, respectively.
For this mechanism, metallic-via-holes are not required. The
antenna array supports the bandwidth of 8 - 9.25 GHz for
X-band operations, which relates to a practical bandwidth of
14.5%. The center-to-center distance between the neighbour
antennas has decreased to 0.51¢ without decay in the radi-
ation patterns. The empirical gain changes between 4 and
7 dBi, and the radiation efficiency alters from 74.22% to
88.71%. This technique is feasible in the realization of neigh-
bour antenna arrays applied in MIMO and SAR devices.

C. INTERACTION BETWEEN CLOSELY PACKED ARRAY
ANTENNAS APPLYING MTS FOR MIMO

AND SAR SYSTEMIS

An efficient method to repress the interference between
adjacent patches that is usual in densely packed antenna
arrays has been proposed and demonstrated in [123]. These
antennas provide frequency beam-steering ability required in
MIMO and SAR systems. Fig.13 shows that the proposed
technique applies an MTM decoupling slab that is incorpo-
rated between the radiating patches to increase the decoupling
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at 9.6 GHz, (e) circuit model, and (f) measured S-parameter responses [124].

between the antennas that would otherwise reduce the per-
formance parameters. The MTM decoupling slab composed
of mirror imaged E-formed slots etched on a patch with an
inductive stub. Experimental data affirms that the average
mutual coupling (S12) is —27dB over 9 - 11 GHz without
MTM decoupling slab. However, with the adoption of
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the MTM decoupling slab, the average mutual coupling
decreases to —38dB. The distance between the antenna has
decreased to 0.661g, where Aq is defined at 10GHz. Addi-
tionally, the employment of this method provides a 15%
extension in the working frequency band. Furthermore, the
decoupling influences are remarked through imagining the
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surface current distributions curves entire the antenna array.
With the adoption of the MTM decoupling slab, powerful cur-
rents are induced on the patches that obviously investigates
the effects of the MTM decoupling slab in reducing surface
current wave interaction between the elements. At 9.95 and
10.63 GHz the gain value is 4.52 dBi and 5.40 dBi,
respectively. Additionally, this way omits poor front-
to-back ratio occurred in other isolating approaches,
and it is comparatively easy to realize. Supposing suf-
ficient distance is existing between the neighbor ele-
ments, the MTM decoupling slab can be embedded with
available antenna arrays, which makes this technique
versatile.

VOLUME 8, 2020

D. ISOLATION IMPROVEMENT UTILIZING INTEGRATED
MTM EBG DECOUPLING SLAB FOR DENSELY PACKED
ARRAY ANTENNAS

In [124], the work presented in [123] is further developed and
extended from 1 x 2 linear array antennas, which consist of
two radiation elements, to 2 x 2 matrix array antenna config-
urations, which consist of four radiation antennas. An inno-
vative method to suppress the mutual coupling in adjacent
antennas array by incorporating an MTM EBG frame in
the distance between the patches to reduce surface currents
that would otherwise participate in interferences between
the array antennas is developed and investigated. This
MTM EBG decoupling frame is a cross-formed microstrip
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transmission line on which two outward facing E-formed
slots are imprinted as shown in Fig.14. Inverse other MTM
prototypes, itis via free. The highest experimental decoupling
obtained between the four-element array antennas is 60dB at
9.18 GHz. Throughout the empirical working band of 9.12
- 9.96 GHz, the lowest experimental coupling between each
element is —34.2dB at 9.48 GHz, and without any decay in
radiation patterns. The average experimental mutual coupling
across the bandwidth is —47dB. Current density distributions
explain that the MTM EBG decoupling frame soaks up the
fringing fields that would otherwise couple with the neigh-
bor radiating patches. The results shown in Fig.14 affirm
this method is proper for applications in MIMO and
SAR systems.

E. CRLH MTM-BASED LEAKY-WAVE ARRAY ANTENNA
WITH LOW MUTUAL COUPLING REALIZED ON

SIW WITH +30° FREQUENCY BEAM-

SCATTERING ABILITY

A practical investigation to implement a novel MTM
leaky-wave antenna (LWA) applied in the making of a
1 x 2 array that is built utilizing SIW methodology for
millimeter-wave beam-scanning applications is discussed
in [125]. As shown in Fig.15, the array structure is composed
of two LWAs with MTM unit-cells printed on the top surface
of the SIW. The MTM unit-cell that is an E-formed transverse
slit, leads leakage loss and disconnects the current flow across
the SIW to increase the performance parameters of the array.
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The physical dimension of the LWA is 40 mm x 10 mm
x 0.75 mm. The isolation level between the array antennas
is boosted through integrating an MTM sheet between the
elements. The LWA works throughout the bandwidth of 55
- 65 GHz that corresponds to 16.66% feasible bandwidth.
The structure is depicted to display beam-scanning of +30°
across the bandwidth. Backward (—30°), broadside (0°), and
forward (4-30°) gain are 8.5, 10.1, and 9.5 dBi, respectively.
The isolator shield is exhibited to have a minimized influ-
ence on the impedance bandwidth and radiation properties.
After applying the MTM-sheet an average improvement of
~25 dB, ~1 dBi, and ~13% have been achieved on the
isolation, gain, and efficiency, respectively. The surface cur-
rent density distributions illustrate that the MTM-sheet is an
efficient electromagnetic band-gap frame that significantly
obstacles surface currents from electromagnetic waves inter-
acting with the closely radiation antennas in the array struc-
ture. The ruinous effects of surface currents in the array
are remarkably repressed from affecting the array antenna’s
far-field.

F. ISOLATION IMPROVEMENT BETWEEN ANTENNA
ARRAYS BASED ON MTS-WALL FOR TERAHERTZ BAND

A new two-dimensional MTS wall to suppress the inter-
ference between in antennas in array working at terahertz
band of 139 to 141 GHz applicable for security screening,
medical and communications systems have been proposed
in [126]. The MTS unit-cell contains connected twin

VOLUME 8, 2020
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MTS decoupling shield, (b) surface current distributions without and with the MTS decoupling shield at 8.15 GHz,
(c) measured S-parameters, and (d) measured radiation patterns [130].
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FIGURE 19. (a) Reference 1 x 2 array antenna, (b) feeding structure, (c) layout of whole 34 x 34 array
antennas inspired SIW and MTS concepts, (d) zoomed view to depict two central antennas after apply
the SIW and MTS principles, (e) surface current density distribution before and after applying the SIW
and MTS properties at 250 GHz for two central antennas, (f) S-parameter responses, (g) gain curve,
(h) efficiency curve, (i) 3-D radiation diagrams, and (j) co- and cross-polarized radiation gain

patterns [131].
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FIGURE 19. (Continued.) (a) Reference 1 x 2 array antenna, (b) feeding structure, (c) layout of whole 34 x 34 array
antennas inspired SIW and MTS concepts, (d) zoomed view to depict two central antennas after apply the SIW and MTS
principles, (e) surface current density distribution before and after applying the SIW and MTS properties at 250 GHz for
two central antennas, (f) S-parameter responses, (g) gain curve, (h) efficiency curve, (i) 3-D radiation diagrams, and

(j) co- and cross-polarized radiation gain patterns [131].

‘Y-formed” microstrip structures that are inter-digitally
incorporated with each other to generate the MTS wall.
The MTS wall does not have via holes, and it includes a
shorten ground plane to simplifying the manufacturing pro-
cess. As shown in Fig.16, the MTS wall is located firmly
between the elements to increase the decoupling and suppress
the surface-waves. To achieve the lowest coupling, the wall
is implemented upright to the antennas. Over the terahertz
frequency bandwidth, the gain and isolation of the array
antennas are 9.0 dBi and less than —63 dB, respectively.
This method obtains isolation improvement of higher than
10dB across a large frequency band (2 GHz) than obtained to
date. The decoupling effects are remarked through imagining
the surface current curves throughout the array structure.
The surface current density distribution shows that without
MTS wall and when element #1 is stimulated, the elec-
tromagnetic signal is transferred to element #2, and con-
trariwise. However, when the MTS wall is located between
the elements, it remarkably obstructs the electromagnetic
signal from element #1 being transferred to element #2.
By applying this approach, the edge-to-edge space between
the radiation patch has decreased to 2.5mm. The size of
the antennas and GND are 5 mm x 5 mm and 9 mm X

192992

4.25 mm when realized on a 1.6 mm thick traditional
layer.

G. ISOLATION IMPROVEMENT ACROSS BROAD
FREQUENCY BAND APPLYING INTEGRATED

PERIPHERY SLOT FOR ANTENNA ARRAYS

A new mechanism to increase the isolation between closely
spaced radiating patches has been proposed and mod-
eled in [127]. This method enabled the implementation
of low-profile construction of extremely compact antenna
geometries needful in MIMO and SAR communication
devices. Contrary to other traditional approaches of reduction
interferences where an isolator sheet is placed between the
antennas, this method is easier and just needs integrating lin-
ear slits close the periphery of the radiating element, as shown
in Fig.17. The main properties of this way are (i) substantial
suppression in the minimum coupling between the neighbor
patches by —26.7dB in X-band and >—15dB in Ku and K-
bands; (ii) decrement in the center-to-center distance between
the elements up to 10 mm (0.37A); and (iii) more than
40% gain increment across specified angular directions that
changes between 4.5 and 8.2 dBi. The investigation of the
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FIGURE 20. (a) 2 x 3 reference antenna array, (b) 2 x 3 proposed antenna array structure with
periodic MTM-PBG isolator, (c) surface current distributions without and with periodic MTM-PBG
isolator at 9.25 GHz, (d) S-parameters of the MTM PBG isolator, (e) empirical S-parameters of the
arrays without (WO) and with (W) proposed isolator, (f) input impedances (2) after apply the
periodic MTM-PBG isolator, (g) circuit model including MTM-PBG isolator sheet, (h) gain curve,

(i) radiation efficiency curve, and (j) experimental radiation patterns before and after the periodic
MTM-PBG isolator [132].
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FIGURE 20. (Continued.) (a) 2 x 3 reference antenna array, (b) 2 x 3 proposed
antenna array structure with periodic MTM-PBG isolator, (c) surface current
distributions without and with periodic MTM-PBG isolator at 9.25 GHz,

(d) S-parameters of the MTM PBG isolator, (e) empirical S-parameters of the
arrays without (WO) and with (W) proposed isolator, (f) input impedances (2)
after apply the periodic MTM-PBG isolator, (g) circuit model including MTM-PBG
isolator sheet, (h) gain curve, (i) radiation efficiency curve, and (j) experimental
radiation patterns before and after the periodic MTM-PBG isolator [132].
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FIGURE 20. (Continued.) (a) 2 x 3 reference antenna array, (b) 2 x 3 proposed antenna array structure
with periodic MTM-PBG isolator, (c) surface current distributions without and with periodic MTM-PBG
isolator at 9.25 GHz, (d) S-parameters of the MTM PBG isolator, (e) empirical S-parameters of the arrays
without (WO) and with (W) proposed isolator, (f) input impedances () after apply the periodic
MTM-PBG isolator, (g) circuit model including MTM-PBG isolator sheet, (h) gain curve, (i) radiation
efficiency curve, and (j) experimental radiation patterns before and after the periodic MTM-PBG
isolator [132].
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TABLE 10. Isolation Improvement With Metasurface.

Frequency [S12] O [S13] (dB) [S14] (dB)
Min., Max., Ave. Min., Max., Ave. Min., Max., Ave.
I: 8to8.4GHz 7.5,8.5,8dB 2,85,6dB -,3,-dB
II:  9.6to0 10.8 GHz 2.5,35,3dB 5,28,17dB 7,18,12.5dB
III: 11.7 to 12.6 GHz 35,13,9.5dB 8,27,18dB 5,5,5dB
IV: 13.4to 14.2 GHz 55,75,6.5dB -,4,2dB -,6.5,35dB
V: 16.5t0 16.8 GHz -,35,2dB 2,55,4dB 7,13,10.5dB
VI: 18.5t020.3 GHz | 4.5,22.5,13.5dB 25,75,55dB 5.5,20,13dB

surface current distribution shows that the slits act like an
isolating frame that soak up the surface-waves that would
otherwise couple with the adjacent patches. The proposed
technique is easy and inexpensive.

H. SURFACE-WAVE SUPPRESSION IN ARRAY ANTENNAS
APPLYING MTS CONTENT FOR SAR AND MIMO
APPLICATIONS

An efficient approach for isolation improvement between
closely spaced antennas which is based on MTS decoupling
for MIMO and SAR applications, is presented in [130].
It has accomplished by constraining the surface current
waves induced across the antenna through the insertion of a
cross-formed MTS structure between the antennas, as shown
in Fig.18. This MTS minimizes the influences of electromag-
netic coupling coming from space-wave and the near-field.
Each arm of the cross-formed structure establishing the MTS
has a meander-line slit (MLS) etching. The MTS’s effective-
ness is investigated for a 2 x 2 antenna array that works
throughout six frequency sub-bands in X, Ku, and K-bands.
In the X-band, the antenna’s applications are wideband global
satellite communication systems (WGS) and military com-
munication. In the Ku-band, the antenna’s applications are
radar and terrestrial microwave, particularly, in police traffic
speed-detectors. In the K-band, the antenna’s applications
are found in airport surface detection equipment (ASDE).
Fig.18 illustrates that with this method, the optimum incre-
ment obtained in improving isolation between adjacent radia-
tion patches is: 8.5dB (8 to 8.4 GHz), 28dB (9.6 to 10.8 GHz),
27dB (11.7 to 12.6 GHz), 7.5dB (13.4 to 14.2 GHz), 13dB
(16.5 to 16.8 GHz) and 22.5dB (18.5 to 20.3 GHz). The
results are provided in Table 10. Also by employing the
presented way, minimal edge-to-edge space between the
elements is achieved up to 0.26)(, where A¢ is specified
at 8.0 GHz, the utilize of defected ground plane becomes
inessential, apply of via-holes are refrained, the challenge
of poor front-to-back ratio is addressed and integration to
existing arrays becomes possible.

I. STUDY ON INTERFERENCES REDUCTION AND
RADIATION BEHAVIOURS OF A 34 x 34 SIW AND
MTS-BASED ARRAY ANTENNAS FOR APPLICATIONS
ACROSS 0.125-0.3 THz

In [131], the possibility of a perceptual model of a 34 x 34
array antenna for working throughout 0.125 to 0.3 THz,
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TABLE 11. Radiation performances.

Gain (dBi)
Min. with no metasurface slits 3.96
Min. with metasurface slits 7.51
Improvement 3.55
Gain (dBi)
Max. with no metasurface slits 30.71
Max. with metasurface slits 40.08
Improvement 9.37
Efficiency (%)
Min. with no metasurface slits 50.96
Min. with metasurface slits 70.51
Improvement 19.55
Efficiency (%)
Max. with no metasurface slits 75.71
Max. with metasurface slits 90.11
Improvement 14.40

which relates to a feasible bandwidth of 82.35% is described.
Fig.19 shows that, each of the radiation elements which
constitute the array comprises of a square patch having a
physical dimension of 2 x 2 mm? and stimulated via a
matched microstrip line. Each element has separated from
each other by via-holes that are realized based on the SIW
method. This approach is exhibited to efficiently improve the
isolation between closely spaced antennas that can otherwise
disturb the radiation properties. The periphery of each patch
is integrated with circular dielectric slits that are implemented
based on the MTS principle to improve the radiation per-
formances. By employing these methods, the isolation has
improved on average by 25dB across the working bandwidth,
and the array’s effective aperture area has enlarged with
keeping constant its dimensions. The array structure shows
a variation on gain and radiation efficiency of 7.51 dBi to
40.08 dBi, and 70.51% to 90.11%, respectively. The data are
listed in Table 11. It is clear that after implementing the MTS
slits, almost 60% and 30% increments in gain and efficiency
have been accomplished. The 34 x 34 antennas array is a
suitable candidate to apply in wireless telecommunication
apparatus at THz region.

J. DECOUPLING IMPROVEMENT OF ADJACENT ARRAY
ANTENNAS WITH PERIODIC MTM PBG FOR MIMO AND
SAR APPLICATIONS

In [132] an MTM photonic bandgap (PBG) periodic structure
is utilized as an isolator slab to repress the mutual coupling
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TABLE 12. Decoupling improvement applying the periodic MTM PBG technique.

TABLE 13. Performance comparison of decoupling mechanisms based MIMO

S 9.25 - 11 GHz, Max. increment of matching: ~15 dB
FBW = 17.28%
S12 (T/R) Max. reduction: Ave. reduction: 4dB
5dB @ 10.98 GHz
Si3 (T/T) Max. reduction: Ave. reduction: 3 dB
6 dB @9.25GHz
Si4 (T/R) Max. reduction: Ave. reduction: 10 dB
14 dB @ 10.97 GHz
S34 (T/R) Max. reduction: Ave. reduction: 8dB
10dB @ 10.25 GHz
S35 (T/T) Max. reduction: Ave. reduction: 5dB
10dB @ 10.5 GHz
S36 (T/R) Max. reduction: Ave. reduction: 7 dB
19 dB @ 10.07 GHz

and SAR antennas.

Max. Number Impact on the Altering and
Refs. Approaches decoupling of Symmetricity size after developing Complexity
improvement elements applying the (DGS)
(dB) technique
[133] UC-EBG 10 2 (1x2) NO Yes Yes Yes
[134] Slot in Ground plane 40 2 (1x2) NO Yes Yes Yes
[135] EBG 4 2 (1x2) NO Yes Yes Yes
[136] Compact EBG 17 2 (1x2) NO Yes Yes Yes
[137] DGS 17.43 2 (1x2) NO Yes Yes Yes
[138] U-shaped resonator 10 2 (1x2) NO Yes Yes Yes
[139] Slotted Meander 16 2 (1x2) NO Yes Yes Yes
Line Resonator
[140] I-shaped resonator 30 2 (1x2) NO Yes Yes Yes
[141] SCSRR 10 2 (1x2) NO Yes Yes Yes
[142] SCSSRR 14.6 2 (1x2) NO Yes Yes Yes
[143] Waveguide MTM 20 2 (1x2) NO Yes Yes Yes
[144] Waveguide MTM 18 2 (1x2) NO Yes Yes Yes
[145] Meander line resonator 10 2 (1x2) NO Yes Yes Yes
[146] Fractal load with DGS 16 2 (1x2) NO Yes Yes Yes
[147] Antenna Interference 15 2 (1x2) Yes No No Yes
Cancellation
Chip (AICC)
[148] 3-D Metamaterial 18 2 (1x2) Yes Yes No No
Structure (3DMMYS)
[121] Metamaterial fractal 37 2 (1x2) Yes NO NO NO
load
[122] Fractal metamaterial 17 for S, 4 (2x2) Yes NO NO NO
electromagnetic 37 for Si3
bandgap 17 for Si4
[123] Metamaterial 57 2 (1x2) Yes NO NO NO
[124] Metamaterial 40 for Sy, 4 (2x2) Yes NO NO NO
~7 for Sl3
11 for Si4
[125] Metamaterials and 42.5 2 (2x1) Yes NO NO NO
Substrate Integrated
Waveguide
[126] Metasurface wall 13.5 2 (1x2) Yes NO NO NO
isolator
[127] Slots >26 2 (1x2) Yes NO NO NO
[130] Metasurface 32 (X-band) 4 (2x2) Yes NO NO NO
27 (Ku-band)
26 (K-band)
[131] SIW & Metasurface 50 1156 Yes NO NO NO
(34x34)
[132] MTM-PBG 10 for Ss4 Yes NO NO NO
14 for Sy4 6 (3x2)
19 for 835
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in densely packed array antenna for SAR and MIMO appli-
cations as displayed in Fig.20. By this method, the MTM
PBG layout is exhibited to efficiently reduce surface-wave
distributions between the patch arrays by an average of
12dB, see Table 12. MTM PBG layer contains a periodic
organization of dielectric circles printed in the cross-formed
microstrip sheet that is incorporated between the antennas.
It obstacles the distribution of surface-waves on the patches to
increment decoupling between the elements. Surface current
distribution depicted in Fig.20 provides deeper discernment
of how the surface currents are decreased. It is clear that the
cross-formed MTM PBG isolator shield dramatically inter-
acts with the surface currents to obstacle them from affect-
ing neighbor antennas in the array configuration. Ruinous
influences of surface currents in the antenna are considerably
repressed from effecting the antenna array’s far-field. The
equivalent circuit diagram of the proposed array structure
is presented in Fig.20. Contrary to the existing techniques
in the literature, the attributes of this method are: (i) eas-
iness; (ii) inexpensive; and (iii) can be retrofitted in avail-
able array structures. This structure has fabricated to work
across a wide bandwidth of 9.25 to 11 GHz with a feasible
bandwidth of 17.28%. By this mechanism (i) the side-lobes
have decreased; (ii) there is a negligible influence on the
radiation performances; and (iii) the shortest center-to-center
distance between neighbor antennas has decreased to 0.15 at
9.25 GHz. Input impedance calculated utilizing CST software
and circuit diagram has been presented in Fig.20. Since the
circuit model parameters have extracted applying optimiza-
tion approach in CST throughout a specific bandwidth, a per-
fect match between the results achieved by the circuit model
and CST has occurred. The gain and efficiency plots have dis-
played in Fig.20. There is an excellent agreement between the
simulated and experimented curves. After apply MTM PBG,
a maximum empirical gain and efficiency of 7.85 dBi and
92.78% have obtained at 10.6 GHz. So, before applying the
proposed method, the highest magnitude of these parameters
was 7.38 dBi and 88.05% at the same frequency. This explains
that the radiation specifications are not intensely influenced
by realizing the MTM PBG decoupling frame.

Table 13 shows comparisons in the performance parame-
ters of the abovementioned techniques relative to the studied
literature in terms of the mutual coupling reduction tech-
niques, maximum isolation improvement, number of applied
elements in the array structure, design complexity and sim-
plicity, impact on the size after applying the technique, and
augmentation and development of the array after applying
the technique. Results show that the papers discussed in this
section, which are based on combined isolation techniques
such as metamaterials, metasurfaces, and EM bandgaps,
showcase higher performance parameters with simpler design
structures.

VI. CONCLUSION
Antenna arrays plays an important role in improving various
radiation characteristics of antennas. The mutual coupling
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between radiation elements in the array is an undesirable
effect which degrades the performance of array. Over the
years many compensation techniques have been proposed to
overcome such harmful effects. The effectiveness of various
methods mainly depends on the applications in which arrays
are to be implemented. The survey presented here provides
a comprehensive study on the investigations on various iso-
lation improvement approaches based on metamaterial and
metasurface inspired techniques for antenna arrays. It is well
known that strong mutual coupling tends to occur between
antenna elements that are closely spaced to each other as
in the case of antenna arrays where the average element
spacing is smaller than about half a wavelength. The conse-
quence of strong mutual coupling is distortion in the array’s
performance, and it constrains the array’s miniaturization.
Therefore, in the multiple-input multiple-output (MIMO) and
synthetic aperture radar (SAR) systems, high isolation is very
important. In SAR systems the coupling effect is also known
to influence the resolution capability, interference rejection,
and direction-of-arrival (DOA) estimation.

Mutual coupling reduction is an important area of research
which has direct impact on the development of the next
generation wireless communication systems, such as 5G, 6G
and massive MIMO. Although several isolation improvement
approaches are reported in the literature to date, most of
these studies are confined to two-port antenna arrays. This
review discusses diverse and promising decoupling methods
based on metamaterial/metasurface inspired techniques for
applications such as MIMO and SAR systems. Comprehen-
sive comparisons are given of the various techniques and
how they affect the radiation performance of the arrays. The
main aim of researchers is to mitigate or suppress the mutual
coupling as much as possible with negligible effect on the
array’s performance and, if possible, without increasing the
array’s physical footprint. To achieve this aim researchers
have employed various techniques including the use of com-
plementary split-ring resonators (CSRR) and defected ground
structures (DGS). This review should serve as a reference for
researchers to advance the art.
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