Preparation of Al/Fe-PILC clay catalysts from concentrated precursors: enhanced hydrolysis of pillaring metals and intercalation

Carlos-Andrés Vallejo,^a Luis-Alejandro Galeano,^{a,*} Raquel Trujillano,^b Miguel-Ángel Vicente,^b and Antonio Gil^c

Electronic Supplementary Material

Figure S1. XRD patterns of natural (C2-N) modified materials as a function of both the refining of the starting clay and the intercalation method: (a) oriented specimens of the Al/Fe-interlayered (I) samples (dried at 60 °C); (b) Powder XRD patterns of the Al/Fe-pillared samples (calcined at 500 °C).

Figure S2. Nitrogen adsorption-desorption isotherms of the Al/Fe-PILC materials prepared as a function of the intercalating method from the unrefined starting clay.

Figure S3. H₂-TPR diagrams of the unrefined starting clay and its modified materials as a function of the method of intercalation (the hydrogen consumption and maximal temperature corresponding to every signal are shown).

Figure S4. Catalytic behavior of the C2-N-derived materials in the CWPO degradation of phenol (solid lines) and TOC mineralization (dotted lines). Catalyst loading = 0.5 g.dm^{-3} ; [Phenol]₀ = 0.76 mol.dm^{-3} ; [H₂O₂]_{added} = $37.9 \text{ mmol.dm}^{-3}$, V H₂O₂ added = 100 cm^3 ; H₂O₂ stepwise addition = 1.67 cm^3 .min⁻¹; pH = 3.7; T = $25.0 \pm 0.1 \text{ °C}$; ambient pressure = 76 kPa.

Table S1. Chemical composition normalized to the content of SiO_2 (% w/w) in the starting aluminosilicates and derived pillared clays and SiO_2/Al_2O_3 mass ratios.

Figure S1. XRD patterns of natural (C2-N) modified materials as a function of both the refining of the starting clay and the intercalation method: (a) oriented specimens of the Al/Fe-interlayered (I) samples (dried at 60 °C); (b) Powder XRD patterns of the Al/Fe-pillared samples (calcined at 500 °C).

Figure S2. Nitrogen adsorption-desorption isotherms of the AI/Fe-PILC materials prepared as a function of the intercalating method from the unrefined starting clay.

Figure S3. H₂-TPR diagrams of the unrefined starting clay and its modified materials as a function of the method of intercalation (the hydrogen consumption and maximal temperature corresponding to every signal are shown).

Figure S4. Catalytic behavior of the C2-N-derived materials in: (a) the CWPO degradation of phenol, and (b) the TOC mineralization (dotted lines). Catalyst loading = 0.5 g.dm⁻³; [Phenol]₀ = 0.76 mol.dm⁻³; $[H_2O_2]_{added}$ = 37.9 mmol.dm⁻³, V H₂O₂ added = 100 cm³; H₂O₂ stepwise addition = 1.67 cm³.min⁻¹; pH = 3.7; T = 25.0 ± 0.1 °C; ambient pressure = 76 kPa.

Material	SiO ₂	AI_2O_3	Fe ₂ O ₃	MgO	TiO ₂	CaO	K ₂ O	Na₂O	SiO ₂ /Al ₂ O ₃
C2-N	53.15	16.52	6.86	2.22	0.83	1.84	0.83	1.30	3.22
C2-N-EtOH _{1.50}	50.34	25.90	8.42	2.08	0.99	0.35	0.74	0.44	1.94
C2-N-NS _{1.50}	49.82	26.39	8.02	1.97	0.96	0.36	0.70	0.46	1.89
C2-R	49.31	17.84	8.61	2.24	0.89	0.86	0.76	0.44	2.76
C2-R-EtOH _{1.50}	48.22	25.15	10.08	1.70	0.88	0.11	0.66	0.22	1.92
C2-R-H ₂ O _{1.50}	48.59	25.96	9.86	1.67	0.83	0.10	0.62	0.21	1.80
C2-R-NS _{1.50}	49.75	26.34	10.22	1.70	0.86	0.11	0.64	0.20	1.96
C2-R-NS _{2.58}	48.16	26.41	10.18	1.72	0.87	0.13	0.65	0.23	1.82

Table S1. Chemical composition normalized to the content of SiO_2 (% w/w) in the starting aluminosilicates and derived pillared clays and SiO_2/Al_2O_3 mass ratios.

The results were determined by XRF analyses