This is an accepted manuscript of an article published by Taylor & Francis in Catalysis Reviews on 16 Nov 2020, available online: https://doi.org/10.1080/01614940.2020.1831756

Progress in the synthesis and applications of hexaaluminate-based

catalysts

J.J. Torrez-Herrera, S.A. Korili, A. Gil

INAMAT^2-Departamento de Ciencias, Edificio de los Acebos, Universidad Pública de

Navarra, Campus de Arrosadía E-31006 Pamplona, Spain.

Email: andoni@unavarra.es

Abstract

The development of materials that can exhibit thermal resistance at very high temperatures, thus allowing them to be applied as catalysts and thermal insulators, amongst other possible uses, is a research subject of great interest. This is the case for hexaaluminates, a class of hexagonal aluminate compounds with a unique structure that are stable at very high temperatures up to 1600 °C and exhibit exceptional resistance to sintering and thermal shock, thus making them attractive catalysts for high-temperature applications. In this review, the structure of hexaaluminates is presented first. The most recent advances in synthetic methods (sol-gel, reverse microemulsion, hydrothermal synthesis, carbon-templating, solution combustion synthesis and freeze drying methods) are discussed subsequently, with the aim of maximizing textural properties and including in their structure metals known to be active in catalytic applications, such as combustion of N_2O . Finally, other applications, such as their function as a thermal barrier, are also addressed.

Keywords: hexaaluminate, magnetoplumbite, hibonite, catalytic high-temperature applications, synthesis methods

1. Introduction

Hexaaluminates are a family of hexagonal aluminate compounds with the general formula AB_xAl_{12-x}O₁₉, where A is typically a large cation, for example Ba, La or Na. Component B is a transition (Co, Cu, Fe, Mn, Ni, etc.) or noble metal (Ir, Pd, Rh, Ru, etc.), which can partially or completely substitute Al crystallographic sites (see **Figure 1**).^[1] The presence of these metals allows the creation or destruction of cationic defects in the structure and, therefore, the generation of possible active centers for catalytic processes with high thermal stability due to the unique crystal structure of these systems. These materials exhibit a stable phase composition up to 1600 °C and exceptional resistance to sintering and thermal shock, which makes them attractive materials for several applications as ceramics, matrices for immobilization of radioactive elements, catalysts for high-temperature applications, superionic conductors, and luminescent and laser materials, among others.^[2-9]

The textural properties of these materials are poor, with specific surface areas in the range of 10 to 20 m²/g, as confirmed from the crystal structures for example (see below). Important efforts have been made over the last few years to enhance these textural properties using non-conventional drying methods. These methods mainly involve decreasing the crystallization temperature, by improving the chemical homogeneity of the precursors, and suppressing grain growth during the crystallization, amongst others. Conservation of the environment by using green processes is another aspect that must be taken into account when developing these synthetic methods.

In addition to enhancing the textural properties of these materials, efforts have also been made to enhance the accessibility of the metal phases in the catalytic processes in which these systems are to be applied. These metal phases can easily be incorporated into the hexaaluminate structure or on the surface of the material, for example by impregnation.

Metals present in the structure will have limited access to the reagents, as well as a low possibility of acting as redox centers, whereas in the case of metals incorporated on the surface, it will be necessary to increase their dispersion, thus meaning that an enhancement of the textural properties of the support can be considered to be crucial.

This review article covers recent developments in the structure, synthetic methods, and catalytic applications of hexaaluminates. In the case of structure, particular attention is paid to β-Al₂O₃ and magnetoplumbite (MP) and the mechanism by which defects and surface properties are generated. Typical synthetic methods for hexaaluminates are introduced and discussed, with special emphasis on those that enhance the textural properties. Applications of these materials as catalysts in the combustion of CH₄, partial oxidation and reforming of CO₂ from CH₄ to synthesis gas, as well as the decomposition of N₂O, are also presented. Other applications of these materials, such as their function as a thermal barrier, are also considered. At the end of the review, the main conclusions and perspectives regarding some of the main scientific challenges remaining in the field of hexaaluminates are also analyzed.

2. Preparation methods for hexaaluminates

The crystal structure of hexaaluminates was first reported in 1958^[10] for the compound LaAl₁₂O₁₉, and the first catalytic study with hexaaluminates was published by Machida et al. in 1987.^[11] These authors found that mixing BaO with Al₂O₃ in the composition (BaO)_{0.14}(Al₂O₃)_{0.86} and calcination at a temperature of 1200 °C gave the barium hexaaluminate (BaO·6·Al₂O₃). As their structure is maintained under high-temperature conditions and they can present active metal phases, these materials were reported as the most promising catalytic materials for high-temperature applications.

Hexaaluminates have unique layered structures consisting of alternatively stacked spinel blocks of closed packed oxide ions and mirror planes (see **Figure 1**). The spinel blocks are composed only of Al³⁺ and O²⁻ ions. Large cations, such as Na⁺, K⁺, Sr²⁺ and La³⁺ for example, can be included in the spacious mirror plane. Considering the charge and radius of the large cations in the mirror plane, hexaaluminates have the structure β -Al₂O₃ or magnetoplumbite (MP).^[13-15] The difference between these two phases lies in the number of O²⁻ ions in the mirror plane (one or three, respectively). Iyi el al.^[16,17] studied the effect of cationic radius on the hexaaluminate structure and found that the upper limit of this radius for the MP type is 0.133 nm. The charge of the ion is also important, and the effect of charge and radius on the hexaaluminate structure is summarized in **Figure 2**. In particular, hexaaluminates of the MAl₁₂O₁₉ type containing ions such as Ba²⁺, Ca²⁺, Sr²⁺ or La³⁺ usually have a magnetoplumbite-type structure, whereas their counterparts containing monovalent ions such as Na⁺, K⁺ or Rb²⁺ exhibit a β -Al₂O₃ structure.

The structures of β -Al₂O₃ and MP can ideally be represented as MAl₁₁O₁₇ and MAl₁₂O₁₉, respectively, where M is a large cation. However, these stoichiometric formulae are only found for a limited number of compounds, such as CaAl₁₂O₁₉ and SrAl₁₂O₁₉, because the defect mechanism in the hexaaluminate structure is important. Indeed, non-stoichiometric compositions are observed for almost all β -Al₂O₃ and trivalent La MP compounds. To explain the hexaaluminate structures, a complex Frenkel defect has been proposed by various authors.^[15,18] Without going into too much detail to explain the crystal structure, the formula for the barium-containing β -Al₂O₃ is Ba_{0.75}Al₁₁O_{17.25}. Similarly, the formula for the lanthanum-containing MP is La_{0.83}Al_{11.88}O_{19.0}. Zhu et al.^[19] have given a clear picture of the evolution of Fe crystallographic sites in BaFe_xAl_{12-x}O₁₉, proposing that the transformation from β_1 -Al₂O₃ to MP is the key factor for the stabilization of Fe ions in the hexaaluminate

structure at high substitution levels. Thus, when x=1, the sample only crystallized in the β -Al₂O₃ phase, whereas when increasing x up to 2-4, some of the Fe³⁺ ions started to enter into the MP phase in addition to the β -Al₂O₃ phase. At x > 5, the site occupancy of Fe in the MP phase started to increase continuously, finally forming BaFe₁₂O₁₉ at x=12 (see **Figure 3**). A similar study was carried out with the hexaaluminate LaFe_xAl_{12-x}O₁₉.^[20]

As the hexaaluminate structure is formed at high calcination temperatures, the textural properties exhibited by these materials are poor. Thus, it has been reported that, after calcination at 1200 °C, the specific surface areas of these materials is only about 20 m²/g, decreasing for higher calcination temperatures. As such, numerous efforts have been made to increase the specific surface areas and pore volumes of these materials by developing more efficient synthetic routes. In this regard, sol-gel, co-precipitation and reverse microemulsion methods, among others, have been reported.^[21]

Hexaaluminates can also be synthesized via a solid state reaction involving calcination of the metal oxide and carbonate as starting materials to promote solid state diffusion. However, as solid state diffusion is slow, high reaction temperatures (usually above 1300 °C) and long reaction times are required to complete the reaction and obtain a pure hexaaluminate phase. Thus, for example, Machida et al.^[11] calcined a mixture of BaCO₃ and γ -Al₂O₃ at 1450 °C to obtain a pure β -Al₂O₃ phase with a specific surface area of 6 m²/g. These authors observed that BaAl₂O₄ is produced initially at 1000 °C from the reaction between BaCO₃ and γ -Al₂O₃, followed by a reaction between BaAl₂O₄ and γ -Al₂O₃ to form the hexaaluminate. The synthesis of high purity Ba-hexaaluminates using this procedure was also reported by Chandra.^[22] In this case, a powdered mixture of BaCO₃ and BaCl₂·2H₂O (75/25 w/w) with aluminum oxide was heated at 1350 °C. Other authors previously performed mechanical activation by grinding as an initial step prior to calcination of the precursors.^[23,24] This initial step is intended to homogenize the precursors. The study was completed by determining the effect of precursors, grinding, and calcination temperature on the composition and surface area of the synthesized materials. Similarly, Jansen et al.^[25] combined BaCO₃, CaCO₃, SrCO₃, Eu₂O₃, MgCO₃, AlN and γ -Al₂O₃ in different mixtures to synthesize alkaline-earth hexaaluminates with a β -Al₂O₃ or an MP-type structure after thermal treatment at 1700 °C for 2 h. Djambazov and Yoleva^[7] reported the synthesis of La₁. xCa_xAl_{11- γ -z}Mg_yTi_zO₁₈, which they subsequently used as materials for the production of mill bodies and immobilization of nuclear waste.

A solvent-free synthesis starting from metal oxides has been reported by Laassiri et al.^[26] This synthetic route involves a combination of two grinding processes, namely highenergy and low-energy ball milling. High-energy ball milling leads to a significant reduction in crystallite size. Although the mean crystallite size is reduced to 20 nm, the resulting material remains highly agglomerated and contains a very high number of grain boundaries. A second milling process at lower energy is therefore performed to deagglomerate the nanostructured material and to form high specific surface areas. BaAl₁₂O₁₉, BaCoAl₁₁O₁₉ and BaMnPd_{0.07}Al_{10.93}O₁₉ hexaaluminates with specific surface areas in the range between 77 and 100 m²/g were obtained after calcination at 1100 °C. This solid state reaction method is very simple and has been reported to be suitable for large-scale production since it does not involve a very complex and expensive procedure. Its main disadvantage, however, is the lack of homogeneity of the synthesized oxides and, as a consequence, low specific surface area.

Other methods, which have replaced the solid-solid reaction procedure, are based on dissolving the precursors in a liquid medium, followed by reaction, drying and calcination steps. This category includes sol-gel, co-precipitation and reverse microemulsion methods. The use of a liquid medium ensures that a more homogeneous precursor is obtained, thus

allowing the crystallization temperature to be reduced and, in turn, suppressing grain growth and the loss of textural properties.

The sol-gel method is based on the hydrolysis of precursors such as alkoxides, acetylacetonates, carboxylates, chlorides and nitrates, amongst others, to generate a homogeneous solution and transform it into a gel by densification or subsequent heat treatment. This is one of the methods proposed as being most suitable for obtaining fine particles of high purity oxides.^[27] An additional advantage of these methods is that they allow complex oxides to be processed at low temperature due to the homogeneous mixing of components at the molecular level, which means that the textural properties of the oxides synthesized can be improved. In this regard, Machida et al.^[11,28-30] synthesized Ba hexaaluminates using barium isopropoxide and aluminum dissolved in 2-propanol as starting materials, obtaining a pure hexaaluminate phase with a specific surface area of 15 m^2/g at 1450 °C. These authors found that this hexaaluminate phase is obtained directly from the amorphous precursor without the formation of BaAl₂O₄ intermediates due to the homogeneous mixing of Ba and Al atoms in the alcoholic solution. They also reported that the hydrolysis of precursors must be completed carefully before drying and calcination to obtain samples with high specific surface areas. The synthesis of $Sr_{0.8}La_{0.2}XAI_{11}O_{19}$ (X=Al and Mn) was also reported by the same research group.^[31,32] The same procedure, but with the presence of copper nitrate, was used by Artizzu et al.[33] to prepare BaCuAl₁₁O_{18.5} with a specific surface area of 11 m²/g after calcination at 1200 °C. Substitution of one copper ion for aluminum in the hexaaluminate phase does not induce a severe structural stress, since the structure is preserved. The presence of copper ions at tetrahedral sites in the spinel block was confirmed by the diffuse reflectance spectra of the hexaaluminate. Rezaie et al.^[34] also proposed a sol-gel method to obtain Ba-hexaaluminates with a fibrous structure. This

method is based on the formation of two gels (see **Figure 4**). Fe-substituted Bahexaaluminates were prepared by Naoufal et al.,^[35] with Mössbaauer spectroscopy subsequently showing that Fe³⁺ is present at four different octahedral sites; the substitution of aluminum by iron seems to have no limits. Debsikbar^[36] proposed the synthesis of Bahexaaluminates via hydrolysis of Al di(isopropoxide) acetoacetic ester chelate and anhydrous Ba acetate obtained from the reaction between BaCO₃ and glacial acetic acid. The aim of the author was to control chemical polymerization during gel formation. The final phase was obtained after calcination at 1200 °C for 2 h. The synthesis of CaAl₁₂O₁₉ from calcium and aluminum nitrates mixed with a solution of ammonium citrate, acrylamide and N,N'methylenediacrylamide has been reported by Douy.^[37] The solution was initially heated to boiling temperature and to several other temperatures in a ventilated furnace to obtain the hexaaluminate.

The effect of the precursor solution concentration on the thermal stability of $Sr_{0.8}La_{0.2}MnAl_{11}O_{19}$ has been investigated by Woo et al.^[38] These authors observed that low concentrations allow acceleration of the sintering phenomena, thus resulting in rapid particle growth and a drastic decrease in the specific surface area. Similarly, Yan et al.^[39] synthesized hexaaluminates by drying gels produced under supercritical conditions and at room temperature and pressure. These authors used barium ethoxide and aluminum secbutoxide as precursors and ethanol as solvent and found that aerogel-derived hexaaluminates have a higher specific surface area and porosity than their xerogel-derived counterparts, thus appearing to indicate that the drying method significantly affects the properties of the hexaaluminates obtained. The effect of drying method on the composition of the phase has also been investigated by Xu et al.^[40] These authors found that α -Al₂O₃ could be detected in the xerogel calcined at 1200 °C but was absent in the sample obtained.

from the aerogel. As an explanation, the authors proposed that, when drying in a conventional oven, migration of the Ba, Mn, Al species due to the flow of liquid to the surface from the internal pores, driven by the capillary tension gradient, results in a heterogeneous mixture of the components since the solubility of the different Ba, Mn and Al species in water is different. In the case of supercritical drying, migration of the Ba, Mn and Al species caused by flow of the liquid is avoided because capillary stress is eliminated, thus meaning that the homogeneity of the mixture of components is maintained. This procedure was used by Inoue et al.^[3] to synthesize films coated with ceramic substrates for use in hightemperature combustion applications (see **Figure 5**). Cho et al.^[41] proposed the synthesis of hexaaluminates in the presence of surfactants using a commercial alumina sol and metal acetate precursors, under ambient conditions. These authors observed that the Al_2O_3 /surfactant ratio and the presence of organic additives markedly affect the properties of the hexaaluminates obtained. Thus, with an Al₂O₃/cetyltrimethylammonium chloride (CTACI) ratio of 2.76, the specific surface area of the LaMnAl₁₀O₁₈ sample calcined at 1200 °C for 6 h was 42 m²/g when urea was used as an organic additive, which is higher than the value obtained for the material synthesized in the absence of urea (29 m^2/g). Boehmite and lanthanum nitrate were used by Jana et al.^[42] to synthesize high purity lanthanum hexaaluminates using advanced sol-gel processing. These authors added LaAl₁₁O₁₈ seeds to the precursor solution, thus resulting in a decrease of 100 °C in the temperature at which the hexaaluminate structure is formed. As a result, near monophasic lanthanum hexaaluminate was formed at 1450 °C.

The most widespread procedure for synthesizing hexaaluminates is based on coprecipitation (also known as the carbonate method), in which nitrate salts and $(NH_4)_2CO_3$ are used. Using this method, the precursors can be mixed homogeneously and precipitated at

the same time. Compared to the sol-gel method outlined above, the co-precipitation process is very simple. It should also be noted that the pure hexaaluminate phase can be obtained at a relatively lower temperature using this co-precipitation method than when using the solid state reaction. For example, Groppi et al.^[43-45] studied the synthesis of BaAl₁₂O₁₉ and BaMnxAl_{12-x}O₁₉ (x = 0.5, 1, 2, 3) by co-precipitation using (NH₄)₂CO₃. A starting solution of the metal nitrate precursors was prepared by dissolving salts in water at 60 °C under stirring. HNO₃ was used to acidify the solution (pH = 1) to avoid the precipitation of Al hydroxide. This solution was poured into an aqueous solution of (NH₄)₂CO₃ in excess. During precipitation and ageing, the pH remained at 7.5-8.0. The authors found that the BaAl₁₂O₁₉ hexaaluminates obtained had a specific surface area of between 10 and 15 m²/g after calcination at 1300 °C. Jang et al.^[46] studied the synthesis of various hexaaluminates prepared by aqueous co-precipitation methods, with (NH₄)₂CO₃ and NH₄OH as precipitating agents and with supercritical drying. The authors found that the textural properties of the hexaaluminates synthesized using the (NH₄)₂CO₃ co-precipitation method are, in general, better than those obtained when using NH₄OH co-precipitation. Thus, the specific surface area of Sr_{0.8}La_{0.2}MnAl₁₁O₁₉ synthesized with (NH₄)₂CO₃ is 51 m²/g compared to 9 m²/g when synthesized by co-precipitation with NH₄OH. In addition to the precipitating agent, as the precipitation temperature increased, an improvement in the textural properties of the hexaaluminates was also observed. Similarly, Wang et al.^[47] synthesized LaMn_xAl_{12-x}O₁₉ from metal nitrate solutions and NH₄OH. In this case, supercritical drying (SCD) and conventional oven drying (CD) methods were used to extract the water from the hydrogel. The SCD method is key to maintaining a high surface area (28 m²/g for this method and 15 m²/g in the case of CD) and improving the catalytic performance for methane combustion. The particle size of the xerogel sample is less than 10 nm, and it presents a complicated XRD pattern (see **Figure 6**). The presence of α -Al(OH)₃ and other unknown La, Mn and Al hydroxides or oxides was also seen. In the case of the XRD pattern for the aerogel, α -AlOOH is observed but peaks for La and Mn hydroxides are absent, thus indicating the high dispersion of species in the aerogel. After calcination, both samples transformed into hexaaluminates, with the presence of small amounts of LaAlO₃.

Reverse microemulsion is another method that has been proposed to synthesize hexaaluminate nanocrystals with high specific surface areas. In this technique, aqueous nanometer-sized micelles dispersed in an oil phase are used as nanoreactors for controlled hydrolysis and condensation of the metal alkoxide, thus resulting in a homogeneous dispersion. The main disadvantages of this procedure are environmental, given the chemical reagents used, and the fact that the reproducibility of the method and yields are usually low. Zarur et al.^[48-50] proposed the synthesis of discrete barium hexaaluminate nanoparticles by sol-gel processing in reverse microemulsions. These authors studied the composition of the reverse microemulsion, the water/alkoxide ratio, the aging time and the drying techniques as synthetic variables. The best particle size and specific surface area of the final Bahexaaluminate obtained after calcination at 1300 °C were 30 nm and 160 m²/g, respectively. With these conditions as a reference, a wide variety of hexaaluminates with high specific surface area have been successfully synthesized by modifying the synthetic parameters, such as composition of the microemulsion, aging time and drying techniques. Thus, for example, Sahu et al.^[51] used cyclohexane as the oil phase, Triton X-100/n-hexanol as the co-surfactant mixture and barium acetate and NH₄OH as the aqueous phase. The barium hexaaluminate obtained presented a specific surface area of 90 m²/g. Similarly, Teng et al.^[52] developed a new microemulsion system consisting of water, isopropanol and n-butanol to synthesize the material La_{0.95}Ba_{0.05}MnAl₁₁O₁₉, with a specific surface area of 65 m²/g. The same authors^[53]

also prepared Ce_xBa_{1-x}MnAl₁₁O₁₉ type hexaaluminates (x = 0.1-0.3) with a specific surface area of 25 to 74 m²/g using the reverse microemulsion method and inexpensive and nontoxic inorganic salts, instead of the alkoxide, as reagent. Following the same methodology, Jiang et al.^[54] used metal nitrate precursors and (NH₄)₂CO₃ as a precipitant to prepare Fesubstituted hexaaluminates with specific surface areas as high as 45 m²/g. A catalytic support based on this methodology was reported by Wang et al,^[55] who prepared a microemulsion system by mixing polyoxyethylene (6) tridecyl alcohol ether, n-hexanol, cyclohexane and an aqueous solution of Ba(NO₃)₃/Al(NO₃)₃/(NH₄)₂CO₃. The mixed microemulsion was agitated for several hours, centrifuged, washed and calcined at 1200 °C for 8h, followed by supercritical drying in ethanol at 260 °C. The hexaaluminate obtained showed a specific surface area of 47 m²/g.

Other methods that have been used to synthesize metal-substituted hexaaluminates include nitrate decomposition,^[56-62] hydrothermal synthesis,^[63-65] carbon-templating,^[66-68] freeze-drying^[69,70] and solution combustion synthesis,^[71,72] amongst others. The nitrate decomposition method is based on adding aqueous solutions of these salts to a polyethylene glycol/isopropyl alcohol mixture and, after a certain reaction time, which may be under pressure, drying and calcination steps. The textural properties obtained for these solids are usually comparable to those obtained in the materials synthesized by the sol-gel and coprecipitation methods under similar synthetic conditions. One of the disadvantages of this method is that the mixture of precursors is not homogeneous. For example, the hydrothermal method has been used by Mishra et al.^[64] with nitrate precursors of appropriate composition in the presence of aqueous urea. After calcination at 1400 °C, a Bahexaaluminate with a specific surface area of 22 m²/g was obtained. These authors proposed the following reaction sequence for synthesis of the hexaaluminate: hydrothermal

precipitation of orthorhombic BaCO₃ and a bohemite (γ -AlOOH) precursor from the aqueous Na and Al nitrates in the presence of urea, formation of an interim mixture of γ -Al₂O₃, BaCO₃ and Ba- β -Al₂O₃ in the temperature range 800-1200 °C, and formation of BaO·6·Al₂O₃ powder with a β -Al₂O₃ type structure al 1400 °C.

A templating methodology was introduced recently into the zeolite field and subsequently extended to ordered mesoporous materials, where periodic pore systems are created by occluding molecular units in the resulting solid. This strategy is known as "endotemplating", and is also used in the case of metal oxides, where it is more generally known as the "citrate method". In a more recent approach, known as "exotemplating", extended porous structures provide the space in which a divided solid can form. Carbon is the ideal exotemplate given its easy removal by combustion, versatile porous characteristics, and relatively low cost. This strategy has been applied to synthesize mesoporous zeolite crystals and nanocrystalline zeolites,^[73] as well as high surface area oxides^[74] (TiO₂, NiAl₂O₄, LaFeO₃). The typical preparation of this type of oxide by templating involves impregnation of the carbon with concentrated solutions of the metal cations followed by drying and thermal treatment. There are no previous studies in which the effectiveness of carbon templating for the synthesis of oxides is presented, especially in this case, where temperatures as high as 1200 °C are required to obtain the hexaaluminate oxide. Under these conditions the carbon is removed and hexaaluminate formation could lead to severe sintering of the intermediate oxide phase once the carbon has been removed. For example, Santiago et al.^[67] synthesized LaFeAl₁₁O₁₉ hexaaluminates following a carbon-templating pathway and compared the results with those obtained using the conventional co-precipitation method (see Figure 7). The authors found that the specific surface area of LaFeAl₁₁O₁₉ hexaaluminates increased by a factor of up to 25 times when using the carbon-templating method. The main difference

observed is that the co-precipitation method results in the formation of agglomerated spherical type particles, which form a hexaaluminate with a broad size distribution (range 40 to 110 nm). The carbon-templating method produces finely dispersed hexaaluminate particles. These particles may result from the growth of small crystallites on the carbon surface and vigorous combustion of the carbon-precursor mixture. The strategy methods of synthesis and the textural properties have been summarized in **Table 1**.

3. Metal-substituted and -supported hexaaluminates

Catalytic combustion over M-substituted hexaaluminates occurs via a redox mechanism involving reversible variation of the oxidation state of the transition metal ion in the structure. As such, the nature and role of the transition metal ion in the structure have been investigated extensively. Thus, Mn-substituted hexaaluminates have been the most widely studied structures and also present the highest activity in, for example, the combustion of CH₄. The chemical state of Mn ions in BaMn_xAl_{12-x}O_{19- α} hexaaluminates (x = 0.5, 1-3) was analyzed by Bellotto et al.^[44,75] by X-ray absorption spectroscopy and structure refinement after X-ray powder diffraction analysis. At low charge (up to x = 1), Mn was present preferentially at the tetrahedral AI (2) centers of $Ba-\beta-Al_2O_3$ as a divalent cation.^[76] The presence of Ba in the mirror planes acts as a charge compensation mechanism to balance the substitution of Al³⁺ with Mn²⁺. At higher Mn loads (x \ge 1), the occupation of the Ba centers reaches almost unity and Mn is preferably present at the octahedral AI (1) centers as Mn³⁺. The incorporation of Mn³⁺ at the octahedral AI (1) centers results in a reduction in the specific surface area and is not observed to have a positive effect on the catalytic performance. Artizze-Duart et al.^[77,78] proposed that the catalytic activity is related to the Mn content and found that the highest activity was obtained for catalysts containing three

Mn sites. However, these authors also found that the presence of excess Mn (x > 3) leads to the formation of another phase (manganese oxide or spinel), which may be responsible for the decrease in catalytic performance in the case of the hexaaluminate with four Mn sites. The incorporation of Mg ions into LaMnAl₁₁O₁₉ resulted in increased specific catalytic activity per mol Mn.^[79,80] This behavior could be associated with stabilization of the Mn ions in a high oxidation state by the Mg²⁺ ions. Li and Li^[80] also reported that the partial substitution of Mg for Mn improves the sintering resistance, and the Mg-containing sample has a higher specific surface area (29 m²/g) than the unsubstituted sample (18 m²/g). Jang et al.^[46] found that LaMnAl₁₁O₁₉ is much more active than BaMnAl₁₁O₁₉, and attributed the improved activity to the different oxidation state of Mn ions in the two types of hexaaluminates. Similarly, Li and Wang^[81] prepared Mn-substituted Ba-La-hexaaluminate nanoparticles and found that the Ba_{0.2}La_{0.8}MnAl₁₁O₁₉ catalyst exhibited much higher activity than BaMnAl₁₁O₁₉ or LaMnAl₁₁O₁₉. In conclusion, it should be noted that both the degree of substitution and the nature of the large cations in the mirror plane significantly affect the Mn^{2+}/Mn^{3+} redox cycle, and therefore the catalytic performance.

Fe has also been studied as an efficient promoter for the catalytic combustion of CH₄. In this case, Fe was found to completely replace Al and lead to the formation of a BaFe₁₂O₁₉type hexaferrite structure. Groppi et al.,^[82] for example, synthesized samples of BaFe_xAl_(12x)O₁₉ (x = 1, 3, 6, 9, 12) and found that BaFe₁₂O₁₉ calcined at 700 °C was active in the combustion of CH₄. However, it was deactivated when the calcination temperature increased and after treatment at 900 °C. The authors explained the observed deactivation via two possible mechanisms: sintering and partial reduction of Fe³⁺ to Fe²⁺. After calcination at 1300 °C, BaFe₆Al₆O₁₉ showed the best catalytic properties. However, its activity is lower than that of the Mn-substituted hexaaluminates. Naoufal et al.^[35] found that Fe³⁺ ions occupied the S1 and S2 octahedral centers in BaFeAl₁₁O₁₉. At an Fe/Ba ratio of 2-4, Fe³⁺ ions were found at two new octahedral centers (S3 and S4). The presence of Fe³⁺ in these two octahedral centers allowed the authors to explain the observed increase in activity. Similarly, Laassiri et al.^[83] synthesized BaM_xAl_{12-x}O_{19- δ} hexaaluminates (M = Co, Fe, Mn, x = 1, 2) and found that the Mn-containing materials were more active than those containing Fe and Co, with the increase in Mn content enhancing the catalytic activity. These authors used various characterization techniques to clarify why the activity was improved. In the case of Mncontaining hexaaluminates, the improvement in activity parallels the increase in specific surface area and reducible Mn content, as well as oxygen mobility. These results showed that multiple factors, including oxygen transfer, the oxidation state of the transition metal and surface concentration, determine the catalytic properties of hexaaluminates. In addition to Mn and Fe, which are more active, other metals that have been introduced into the structure of hexaaluminates include Co,^[39,83-85] Cr,^[84,86] Cu,^[33,78] Mg,^[79,87,88] Ni,^[62,84,89,90] Ru and Pt.^[91] Compared to Mn and Fe, the degree of substitution of these metals is relatively low, generally less than two metal ions, due to their size, which does not allow the substitution of Al³⁺ and may explain their limited catalytic activity. In the structures formed, Ni is divalent and coordinated octahedrally and pseudo-octahedrally, Fe and Cr are trivalent in octahedral coordination, and Co is both divalent and tetrahedrally coordinated and trivalent and octahedrally coordinated. In a detailed study, Gardner et al.^[90] investigated the structure of five Ni-substituted Ba_{0.75}Ni_yAl_{12-y}O_{19- δ} hexaaluminated at various Ni loadings (y = 0.2, 0.4, 0.6, 0.8 and 1.0) using several techniques. All samples exhibited the β -Al₂O₃ phases consistent with Ni substitution into the crystalline lattice of the hexaaluminate structure. The authors observed that, as the degree of Ni substitution into the structure lattice increased, the unit cell dimensions along the c axis decreased. This result is consistent with Ni²⁺ substitution for Al³⁺ in the hexaaluminate crystalline structure. The EXAFS results also indicated that Ni preferentially exchanges with tetrahedrally coordinated Al³⁺. In the case of noble metals, a remarkable sintering is observed outside the structure, thus meaning that the catalytic activity is usually low, even lower than that of hexaaluminates substituted with transition metals.^[92,93]

Pd catalysts supported on hexaaluminates are the most widely studied due to their good performance in CH₄ combustion. For example, Sekizawa et al.^[33,94] evaluated the catalytic activity of $Pd/Sr_{0.8}La_{0.2}XA_{11}O_{19}$ (X = Al and Mn). The results showed that the activity of Pd/Sr_{0.8}La_{0.2}A₁₂O₁₉ increases initially with temperature but then decreases at 700 °C. The authors explained this behavior as being due sintering of the Pd particles upon dissociation of PdO into metallic Pd. If the hexaaluminate used as a support is an Mn-substituted hexaaluminate (X = Mn), the loss of activity is reduced because the support is also active. The presence and absence of NO in methane combustion over 0.9wt.%Pd/La_{1-x}Sr_xMnAl₁₁O₁₉ was evaluated by Öcal et al.^[95] using the steady-state isotopic transient kinetic analysis and conventional steady-state reaction techniques. The presence of NO₂, formed from the reaction between NO and O₂, boosted the site activity required for the formation of CO₂. The manner in which the oxidation state of Pd evolves with calcination temperature has been studied by Sohn et al.,^[96] who found that the supported Pd oxide in Sr_{0.8}La_{0.2}MnAl₁₁O₁₉ is reduced to metallic Pd when heated at 1000 °C. If the temperature is increased to 1200 °C, the formation of Pd^{δ_+} species occurs due to the strong interaction between the Pd and hexaaluminate.

The activity and catalytic stability of Pd/Mn-substituted hexaaluminates was compared with a reference Pd/Al_2O_3 catalyst,^[97,98] and it was found that Pd/Al_2O_3 showed greater activity than the hexaaluminates but that both were deactivated as the reaction progressed

due to the decomposition of PdO into Pd. The Pd/Mn-substituted hexaaluminates exhibited greater stability due to the transfer of oxygen from the oxidized manganese centers to the reduced palladium centers, thus preventing the reduction of PdO to Pd (see **Figure 8**). When Pd(acac)₂ is used as palladium precursor, catalysts with more dispersed Pd are obtained, thus resulting in a higher catalytic activity in the methane oxidation reaction. Rapid deactivation is also observed as a consequence of the sintering of small Pd particles given the weak interaction between Pd and the support.^[99,100]

4. Catalytic performances of hexaaluminates

4.1 Combustion of CH₄

The catalytic combustion of methane has been considered to be a promising alternative to conventional thermal combustion for energy production due to the low emissions of polluting gases that are produced. As this organic molecule is highly resistant to combustion, the catalysts to be used must be thermally resistant (> 1200 °C) and stable, as well as selective for incineration. One of the first published studies of this reaction was presented by Machida et al.,^[28] who evaluated the catalytic behavior of BaMAl₁₁O₁₉ (M = Co, Cr, Fe, Mn, Ni) and found that all metal-substituted hexaaluminates exhibited higher activity than the unsubstituted BaAl₁₂O₁₉ catalyst. In addition, the Mn-substituted hexaaluminates were the most active, exhibiting a T₁₀ of 540 °C and T₉₀ of 740 °C. The following order of reactivity was found: Mn > Fe >> Co = Cr = Ni. The same reactivity order was found for LaMAl₁₁O₁₉ catalysts,^[101] thus indicating that the combustion performance is mainly determined by the nature of the transition metal. Since these first studies, subsequent work by a large number of researchers has improved the activity and reaction mechanism of the combustion of CH₄ on hexaaluminates. For example, Artizzu et al.^[33,78] found that the introduction of Cu²⁺ ions

into the Ba-hexaaluminate structure leads to a fairly active catalyst (T₁₀ and T₅₀ of 510 and 740 °C, respectively). Similarly, a synergistic effect was reported by Yan et al.,^[39] who evaluated the doubly Ba-substituted hexaaluminate BaMn_{0.5}Co_{0.5}Al₁₁O₁₉ as catalyst in comparison to mono-substituted hexaaluminates. These authors found that Lahexaaluminates showed higher catalytic performance for all M-substituted systems in relation to Ba-hexaaluminates. A similar promoting effect was also observed for Sr_{0.8}La_{0.2}MnAl₁₁O₁₉^[101] and LaMn_{1-x}Mg_xAl₁₁O₁₉^[80] (see **Figure 9**), evaluating NOx emissions at the same time as methane and propane combustion.^[32] The catalytic performance of Fesubstituted Ba-hexaaluminates is related to the Fe³⁺ present at octahedral sites both in the bulk hexaaluminate and at the subsurface of the oxygen layer.^[35] The catalytic behavior is governed by electronic and structural factors. The catalytic activity of Mn₃O₄/hexaaluminate composites was evaluated by Machida et al.^[102] as a function of Mn₃O₄ loading and the metal composition of the spinel surface layer. It was found that air oxidation derived composites showed excellent specific activities that were better than those for the corresponding Mn₃O₄/hexaaluminates prepared using the conventional impregnation method (see proposed mechanism in Figure 10).

The evolution of the catalytic behavior of other oxides, such as $LaMnO_3$ perovskites, has also been compared with $LaMnAl_{11}O_{19-d}$.^[103] The authors of this study found that catalytic performance is regulated by bulk oxygen mobility and, as a consequence, methane oxidation proceeds via the Mars van-Krevelen mechanism.

Among noble metals, Pd is known to exhibit the best performance for the combustion of methane and the lowest volatility. Thus, Sidwell et al.^[104] reported a comparison between two metal-substituted hexaaluminate catalysts and a supported catalyst ($3wt.%Pd/\gamma-Al_2O_3$), finding that the Pd-substituted catalyst ($Sr_{0.5}Pd_{0.5}Al_{11}O_{18-\alpha}$) is suitable for low-temperature

performance and La_xSr_yMn_{0.4}Al₁₁O_{18-α} is a good high-temperature catalyst. The catalytic properties of Pd supported on hexaaluminates (Sr_{0.8}La_{0.2}XAl₁₁O₁₉, X=Al and Mn) was also studied by Sekizawa et al.,^[31] who found that the catalytic performance initially increases with temperature, subsequently decreasing at about 700 °C. This drop in activity is related to the dissociation of PdO into metallic Pd species observed at low oxygen partial pressures and is due to the removal of adsorbed oxygen species necessary for the catalytic reaction.

A synergistic effect has been reported over Pd-modified manganesehexaaluminates,^[105] with the magnitude of this effect being found to depend on the palladium precursor: it is higher for palladium nitrate and palladium acetate than for tetrachloropalladic acid. In the same way, the higher PdO/Pd ratio found in the nitrate and acetate Pd-modified manganese-hexaaluminate catalysts, together with the high oxygen mobility due to the presence of manganese, provide a synergistic effect in methane oxidation in the light-off temperature region.

Pd, Pd-Pt, Pd-Au and Pt supported on three-dimensionally ordered macroporous LaMnAl₁₁O₁₉ (3DOM LMAO) have been used as catalysts.^[72,106] Among the PdPt/3DOM LMAO catalysts, 1.14Pd_{2.8}Pt/3DOM LMAO exhibited the best catalytic performance (T_{50} = 372 °C; see **Figure 11**).

4.2 Reforming of methane to syngas

The reforming of methane with CO₂, or dry reforming, is a reaction initially proposed for the industrial production of CO and H₂. With respect to other types of reforming, it has the great advantage of not requiring a previous separation of CO₂ to produce the CO and H₂ that would allow liquid fuels to be obtained via the Fischer-Tropsch reaction. Catalysts based on noble and transition metals have been reported to be very active for the dry reforming

reaction, with the most widely studied being those based on Rh, Pt, Ru, Ni and Co^[43,62,68,107] (see **Figure 12**). The formation of coke during the reaction, which is one of the main disadvantages, can be reduced by adding promoters, by using catalytic supports with basic properties, and even by reducing the pressure and temperature conditions under which the reaction is carried out.^[68] In this regard, hexaaluminate-like catalysts could exhibit significant advantages as they can incorporate metals that reduce coke deposits in their structure. In addition, if the reaction temperature can be reduced significantly, coke deposition may also be reduced.^[108] At least two forms of deposited carbon, namely graphite and carbide, have observed during methane reforming with CO₂.^[109] Metal particle sintering and phase transformation have also been reported to result in catalyst deactivation.^[62]

The partial oxidation of methane (POM) was evaluated by Chu et al.^[110] using BaNi_yAl_{12-y}O_{19- δ} catalysts (y = 0.3, 0.6, 0.9, 1). All the hexaaluminates prepared had an MP-type structure and no nickel oxide was observed, which may indicate a high dispersion of the Ni species. These catalysts showed high activity and selectivity, with a CH₄ conversion of 92% and CO selectivity of 95% at 850 °C. They also presented an excellent ability to suppress carbon deposition and loss of active phase, exhibiting high stabilities after reaction for 100 h. The same authors^[108] reported the catalytic performance of a NiO/Ba-hexaaluminate, which showed a CH₄ conversion of 95% and CO selectivity of 95% at 850 °C.

The activity of Ni/Al₂O₃ and BaNi_xAl_{12-x}O_{19- $\alpha}$ (x = 0.25, 0.5 and 1), which have a hexaaluminate-type structure, was compared by Utaka et al.^[111] These authors found that hexaaluminate calcined at 1400 °C exhibited a more stable and better behavior than the former calcined at 1000 °C. The BaNiAl₁₁O_{19- $\alpha}} catalyst calcined at 1400 °C and reduced to 1000 °C showed a higher activity than BaNiAl₁₁O_{19-<math>\alpha}} calcined at 1200 °C and reduced to 800}</sub>$ </sub>

°C. This behavior was explained by the authors as being due to the presence of a Ni-rich surface and highly dispersed Ni species.

A systematic study of Ni/Ba-hexaaluminate catalysts synthesized by the impregnation method for the production of syngas via a CO methanation reaction has been reported by Gao et al.^[112] Similarly, Rh supported on hexaaluminates (BaAl₁₂O₁₉, CaAl₁₂O₁₉ and SrAl₁₂O₁₉) has been investigated by Majocchi et al.^[113] These latter authors compared the results obtained with a commercial Rh/ α -Al₂O₃ and found that hexaaluminate catalysts were less stable, active and selective than the commercial catalyst. The following order of selectivity for CO/H₂ was found, depending on the supports: Rh/ α -Al₂O₃ > Rh/CaAl₁₁O₁₉ = Rh/SrAl₁₂O₁₉ = Rh/BaAl₁₂O₁₉. The chemical looping partial oxidation of methane has been proposed as a method for producing syngas with a suitable H₂/CO ratio, thereby avoiding the risk of explosion, using Ba-hexaaluminate as catalysts.^[114-117]

Some of the hexaaluminates that have been reported as catalysts in the dry methane reforming reaction (DRM) include LaNi_xAl_{12-x}O₁₉ (0 < x <1),^[60,64] Ca_{1-x}La_xNiAl₁₁O₁₉₋₆,^[89] BaNi_xAl_{12-x}O₁₉ (0 < x < 1)^[118] and ANiAl₁₁O₁₉ (A = Ba, Ca, Ce, La, Nd, Pr, Sr).^[56-58,61,119] The authors of these studies found that activity increases with degree of Ni substitution, although the amount of carbon produced also increases.^[62,118] Xu et al.^[62] reported that Nimodified hexaaluminates exhibit a more effective catalytic performance and lower carbon deposition than other Ni supported catalysts such as Ni/Al₂O₃, NiO/CaO, NiO/SrO, NiO/BaO. The nature of the large cations in the structure significantly affects the reducibility and activity of the catalysts.^[61] Thus, a lower reduction temperature was observed for the LaNiAl₁₁O₁₉₋₈-modified hexaaluminate than for ANiAl₁₁O₁₉ (A = Ba, Ca, Sr). In this latter series of hexaaluminates, it was found that the Ni reduction temperature decreases with increasing ionic radius of the alkaline earth metals.^[61]

A series of substituted Ca_{1-x}La_xNiAl₁₁O_{19-δ} hexaaluminates was prepared by Ikkour et al.^[89] After calcination at 1100 °C, the specific surface areas of all catalysts was found to be between 1 and 6 m²/g, and the presence of hexaaluminate was only confirmed by XRD after the incorporation of lanthanum. Ca_{0.5}La_{0.5}NiAl₁₁O_{19-δ} presented the highest percentage of Ni reduced at the surface and also showed a high activity for H₂/CO production and high reaction stability after 300 h.

The effect of Ce and Pr on the structure and catalytic performance of LaNiAl₁₁O₁₉ has been investigated by Zhang et al., [56,57] who found that the addition of Pr can accelerate reduction of the Ni²⁺ ions in La_{0.8}Pr_{0.2}NiAl₁₁O₁₉. However, a Ce⁴⁺/Ce³⁺ redox reaction occurs in La_{0.8}Ce_{0.2}NiAl₁₁O₁₉ during the reaction that reduce the electron transfer between Ni and La ions. As such, Pr is a more valuable additive than Ce in these Ni-based catalysts. All of these effects contribute to the improvement of the catalytic activity of modified Laxaxaaluminates. Roussiere et al.^[70] have proposed a mechanism for the growth of NiO nanoparticles in the hexaaluminate phase in order to understand the stability of these nanoparticles under reducing conditions. The amount of Ni in the hexaaluminate ANiyAl12- $_{y}O_{19}$ (A = Ba, La, Sr; 0 < y \leq 1) should be as low as y = 0.25 to control the textural growth of NiO particles (tetrahedra) and their high dispersion in the form of nanoparticles. Furthermore, the calcination temperature must be sufficient (1250 °C) to maintain an adequate concentration of surface centers otherwise excess Ni causes aggregation by forming larger NiO particles, thus resulting in carbon deposition.^[62,69] Recently, BaFe₂Al₁₀O₁₉, BaFe₃Al₉O₁₉ and bimetallic BaFe₂MAl₉O₁₉ (M = Mn, Ni, and Co) hexaaluminates were also studied in this reaction.^[120] The effect of Mn, Ni and Co doping on the structure, redox activity and stability was investigated using several techniques. The presence of doped metals meant that hexaaluminate was only present as β -Al₂O₃, remaining stable during the

CH₄ reduction step. BaFe₂CoAl₉O₁₉ exhibited good reactivity for syngas production with high CH₄ conversion, high syngas yield, a desirable H₂/CO ratio and stability.

The steam reforming of methane has also been reported by various authors over Nisubstituted Sr hexaaluminates.^[121,122]

4.3 Transformation of N₂O

N₂O mitigation is an important topic due to the adverse consequences of this harmful gas in the atmosphere. This polluting gas can be emitted by vehicle exhaust pipes or as a byproduct of the oxidation of ammonia in Pt/Rh-based catalytic systems. One of the main challenges that has been posed is to treat N₂O in the process gases at high temperature. These conditions assume that the catalyst must be active and stable under wet oxidation conditions at 800-900 °C. The structure and characteristics of hexaaluminates make them suitable catalysts for carrying out these reactions under these conditions. Pérez-Ramírez et al.^[123-126] have evaluated the catalytic behavior of $ABAI_{12}O_{19}$ hexaaluminates (A = Ba, La; B = Fe, Mn and Ni) for the decomposition of N_2O , simulating the conditions at the outlet in the ammonia burners of nitric acid plants (see Figure 13). Fe- and Mn-containing hexaaluminates showed the highest activities, whereas Ni-containing catalysts were less active than unsubstituted hexaaluminate.^[123] These researchers also studied the effect of reactor feed gas compositions on catalytic performance and found that the presence of NO has no effect on activity, whereas the presence of O_2 and H_2O inhibited activity, a behavior that they attributed to a possible competitive adsorption on the active centers in the catalysts.^[126] In various related studies, Lietti et al.^[84,127,128] evaluated the catalytic performance of a BaMnAl₁₁O₁₉ catalyst in the combustion of NH₃-containing gasified biomass-derived fuels. These authors detected significant amounts of NO, which increased with temperature up to a maximum of about 750 °C. Above this temperature, the NO concentration decreased as a result of a selective non-catalytic reduction process.

N₂O has also been seen as a promising green propellant given its numerous advantages, such as extremely low toxicity, self-pressurization, and compatibility of N₂O with common building materials. In view of the extreme operating conditions for N_2O decomposition found in propulsion systems (vol_{N20}% = 30-100%, T > 1000 °C, Ea \approx 250 kJ/mol), several studies have aimed to find a suitable catalyst that is capable of initiating N₂O decomposition at low temperature while being stable at high temperatures. For example, Zhu et al. ^[19,92,93] have developed a Balr_vFe_{1-v}Al₁₁O₁₉ catalyst (y = 0.2, 0.5 and 0.8) that exhibits both high activity and excellent stability for this reaction. These authors found that the decomposition of N₂O begins at 323 °C and complete conversion is obtained at 450 °C. The catalyst can undergo complete conversion at 500 °C and be stable for 26 h, which contrasts with the rapid deactivation observed in the case of an Ir/Al₂O₃ catalyst. The authors also indicate that the Ir species present in the hexaaluminate network are active centers, while the species outside the crystal structure of the hexaaluminate are susceptible to sintering and are less active in this reaction. The presence of Fe facilitates the incorporation of Ir into the hexaaluminate structure. A combined XRD and ⁵⁷Fe Mossbauer spectroscopy study allowed the identification of the crystallographic Fe and Ir centers in the hexaaluminate Balr_{0.2}FeAl_{10.8}O₁₉.^[12] This study was subsequently extended to the case of Ru, which is very interesting due to its activity as a catalyst, but with limitations when compared to other metals such as Ir, Pd, Pt and Rh given its high volatility (see proposed mechanism in Figure 14).^[129] One possible solution to this problem is to develop a two-bed reactor in which the Ir-hexaaluminate or other more active catalyst constitutes the front bed while the back bed requires a more thermally stable catalyst. In this regard, Mn-substituted Lahexaaluminate (LaMn_xAl_(12-x)O₁₉) and Ba-hexaaluminate (BaMn_xAl_(12-x)O₁₉) catalysts have been studied.^[130] These authors reported that the Ba-hexaaluminate exhibits higher activity than the La-hexaaluminate at a given Mn content, which may be related to the presence of active Mn^{3+} sites in the octahedral position of the Mn-substituted Ba-hexaaluminate.

Other catalytic applications reported for these materials include combustion of methanol over La, Mn-hexaaluminate materials,^[71] decomposition of ammonium dinitramide (AND)- and hydroxyl ammonium nitrate (HAN)-based liquid monopropellants using Sr_{0.8}La_{0.2}MnAl₁₁O₁₉,^[131] steam reforming of tars using BaNi_xAl_{12-x}O₁₉,^[121,132,133] H₂S decomposition using LaFe_xAl_{12-x}O₁₉ (LaFe_x, x=2, 4, 6, 8, 10 and 12) (see **Figure 15**),^[134] partial oxidation of tetradecane (n-C₁₄), dibenzothiophene (DBT) and 1-methylnaphthalene (1-MN) as model reaction compounds for a series of Ni-substituted lanthanum hexaaluminate catalysts,^[135] La_{0.9}Ni_yAl_{11.95-y}O_{19-δ} (y=1.0, 0.8, 0.4 and 0.2),^[12] NH₃ decomposition to CO_x-free hydrogen using Ru/Ba-hexaaluminate,^[55] a Ba-hexaaluminate catalyst for the decarboxylation of biomass-derived itaconic acid to bio-based methacrylic acid,^[136] and a ZrO₂-modified Ni/LaAl₁₁O₁₈ catalyst for CO methanation.^[137]

More information about the catalytic performance and reaction conditions have been summarized in **Table 2**.

Several authors have carried out development work and industrial applications of hexaaluminates that have been collected in international patents. Metal-exchanged hexaaluminate catalysts for the methane combustion, particularly for use in natural gas fired gas turbines, is reported by Wickham and Cook.^[138] The authors indicate that these catalysts are the particular interest because exhibit good catalytic performance and stability at high temperatures for extended periods, minimizing the generation of undesired levels of NOx

species (less than about 10 mg/dm³). Metal exchanged catalysts are also useful for oxidation of volatile organic compounds (VOC), particularly hydrocarbons. The hexaaluminate structure ($La_xSr_yMn_{0.4}Al_{11}O_{19}$, being x + y = 0.6) is observed after calcination at 1300 °C with a specific surface area of 13.5 m²/g. Schunk et al.^[139] reported a hexaaluminate-containing Cobalt and at least one further element from La, Ba and Sr for dry reforming of hydrocarbons at 700 °C and 5 bar. The work included in the patent presented by Ferrandon^[140] is directed to the synthesis of new hexaaluminate formulations applied as catalysts for the production of hydrogen from organic compounds that overcomes the problems of catalyst poisoning and deactivation by coking and high temperature sintering.

5. Thermal insulation and oxidation protection

Thermal-barrier (TBC) and oxidation-resistant coatings (ORC) are used to protect gas turbine components in power plants and aircraft jet engines, and as fibers in oxide-based ceramic composites. The materials for this application must exhibit low thermal conductivity, high thermal-shock resistance, hot corrosion resistance and long-term stability at high temperatures. Although yttria-partially-stabilized zirconia (Y-PSZ) is the proposed material for TBC applications, the deterioration observed in its thermo-physical properties at 1100 °C means that other materials, such as hexaaluminates, may also be a good option.^[141-145] Indeed, hexaaluminates permit operating temperatures above 1300 °C because of their thermal stability and electrically insulating properties. Several methods have been proposed to produce homogeneous coatings, including atmospheric plasma spraying (APS), electron-beam physical vapor deposition (EB-PVD), low-pressure plasma spraying (LPPS), high-velocity oxygen fuel spraying (HVOF), and chemical vapor deposition (CVD).^[146-149] The APS method has been used by Sun et al.^[147,148] to prepare porous coatings using powdered mixtures of

LaMgAl₁₁O₁₉/graphite (see Figure 16). The microstructure, mechanical properties and thermal cycling behavior of the coatings synthesized, as well as the spraying power required to prepare them, were studied. This method was also used by Sun et al.^[144] to prepare GdMgAl₁₁O₁₉, which exhibits much better Ca-Mg-Al-silicate (CMAS) resistance at 1350 °C than conventional YSZ coatings because of the presence of Gd and Mg. More recently, APS hexaaluminate ceramic coatings have been heat-treated and then exposed to molten CMAS to evaluate their hot corrosion degradation.^[150] CMAS was found to completely infiltrate into hexaaluminate coatings and form a corroded bilayer comprising a porous outer layer and a dense inner layer. CaAl₂Si₂O₈ and MgAl₂O₄ formation were the predominant reaction products in the outer layer. The isothermally heat-treated hexaaluminate coatings exhibited increased and widened vertical microcracks, thereby providing penetration channels and determining the penetration kinetics of CMAS into hexaaluminate, which therefore suffered more severe CMAS attack (see Figure 17). The synthesis of CeAl₁₁O₁₈ was reported by Naga et al.^[151] using cerium nitrate and aluminum triisopropoxide as precursors. After hot pressing at 1550 °C and a pressure of 40 MPa for 2h, the hexaaluminate was characterized by a relatively low Vickers hardness and bending strength compared to pure alumina, but exhibited a higher fracture toughness. The same authors also reported the synthesis of $SrAl_{12}O_{19}/ZTA$ composites (ZTA = zirconia toughened alumina).^[152] The presence of the hexaaluminate favors the formation of plate-like grains and improves the fracture toughness.

Future perspectives and conclusions

Hexaaluminates have a structure that gives them remarkable resistance to sintering and thermal shock, thus meaning that the composition of the oxide phase can be maintained at a

very high temperature. Aluminum cations can be partially or completely replaced by transition or noble metals, thereby giving rise to a variety of redox centers that can play an important role in the field of heterogeneous catalysis in the near future. These properties mean that hexaaluminates can be considered to be promising materials for many applications that require thermal resistance, such as combustion of CH₄, partial oxidation of CH₄ (POM), dry reforming of CH₄ (DRM) and decomposition of N₂O.

In recent years, synthetic methods have been developed with the aim of increasing the textural properties of hexaaluminates, reaching specific surfaces of up to 160 m²/g after calcination at 1300 °C. The starting values of these materials were in the range 10-20 m²/g. To increase these values, the chemical homogeneity of the precursor has been enhanced and unconventional drying methods have been implemented. Thus, sol-gel, reverse microemulsion, hydrothermal synthesis, carbon-templating, solution combustion synthesis and freeze drying methods, amongst others, have been reported. However, further studies of the preparation stages of hexaaluminates are still required to enhance the textural properties and make these processes more sustainable in terms of the procedures and raw materials involved. The development of hexaaluminates with improved textural properties will allow these materials to broaden the spectrum of catalytic applications and to compete with other catalytic systems based on perovskites and spinels. Additionally, it must be taken into account that, with respect to other oxides, hexaaluminates have a structure and composition that allows them to form part of the monolithic honeycomb for gas turibine combustor without apparent loss of their catalytic properties.

Although the application of these materials is oriented towards heterogeneous catalysis, it will be necessary to increase the number of metals that can be stably introduced into the structure of the hexaaluminates and increase their dispersion, thus making the

active centers more accessible. These two objectives will allow future lines of research to focus on optimizing metal/hexaaluminate structures. Additionally, since the hexaaluminate structure is obtained at high temperature, the loss of activity due to deactivation by coke deposition or loss of active metallic phases by regeneration and reuse will be reduced, making these oxides even more attractive in catalytic applications.

In conclusion, there are still several interesting areas to be explored as regards the application of hexaaluminates as thermal barriers and oxidation resistant coatings, especially given the fact that the particular structure of hexaaluminates means that they can be designed, controlled and adapted to desired applications. The synthesis of hexaaluminates from industrial metal wastes ^[153] may be of relevant interest because close the cycle of new concepts in circular enconomy.

Acknowledgements

The authors are grateful for financial support from the Spanish Ministry of Economy, Industry and Competitiveness (AEI/MINECO), the European Regional Development Fund (ERDF) through project MAT2016-78863-C2-R. JJTH thanks Universidad Pública de Navarra for a pre-doctoral grant. AG also thanks Santander Bank for funding via the Research Intensification Program.

References

- M. Gasperin, M.C. Saine, A. Kahn, F. Laville, A.M. Lejus, Influence of M²⁺ ions substitution on the structure of lanthanum hexaaluminates with magnetoplumbite structure, J. Solid State Chem., 54, (1984), 61-69. https://doi.org/10.1016/0022-4596(84)90131-2
- G. Groppi, C. Cristiani, P. Forzatti. Preparation and characterization of hexaaluminate materials for high-temperature catalytic combustion. 85-113. In: J.J. Spivey (ed) Catalysis, Vol. 13, The Royal Society of Chemistry.
- H. Inoue, K. Sekizawa, K. Eguchi, H. Arai, Thick-film coating of hexaaluminate catalyst on ceramic substrates for high-temperature combustion, Catal. Today, 47, (1999), 181-190. https://doi.org/10.1016/S0920-5861(98)00298-3
- P. Forzatti, G. Groppi, Catalytic combustion for the production of energy, Catal. Today, 54, (1999), 165-180. https://doi.org/10.1016/S0920-5861(99)00178-9
- A. Beretta, P. Forzatti, High-temperature and short-contact-time oxidative dehydrogenation of ethane in the presence of Pt/Al₂O₃ and BaMnAl₁₁O₁₉ catalysts, J. Catal., 200, (2001), 45-58. <u>https://doi.org/10.1006/jcat.2001.3192</u>
- G. Groppi, L. Lietti, E. Tronconi, P. Forzatti, Catalytic combustion of gasified biomasses over Mn-substituted hexaaluminates for gas turbine applications, Catal. Today, 45, (1998), 159-165. https://doi.org/10.1016/S0920-5861(98)00270-3
- S. Djambazov, A. Yoleva, Synthesis and properties of lanthanum hexaaluminate ceramic La_{1-x}Ca_xAl_{11-y-z}Mg_yTi_zO₁₈, Ceramics Inter., 27, (2001), 899-901. https://doi.org/10.1016/S0272-8842(01)00049-9
- 8. M. Ashtar, Y.X. Gao, C.L. Wang, Y. Qiu, W. Tong, Y.M. Zou, X.W. Zhang, M.A. Marwat, S.L. Yuan, Z.M. Tian, Synthesis, structure and magnetic properties of rare-earth

REMgAl₁₁O₁₉ (RE = Pr, Nd) compounds with two-dimensional triangular lattice, J. Alloys Comp. 802, (2019), 146-151. https://doi.org/10.1016/j.jallcom.2019.06.177

- D. Gourier, F. Laville, D. Vivien, C. Valladas, X-ray induced defects and thermoluminescent properties of lanthanum hexaaluminates with magnetoplumbitelike structure, J. Solid State, Chem. 61, (1986), 67-80. https://doi.org/10.1016/0022-4596(86)90007-1
- R.S. Roth, S. Hasko. Beta-alumina-type structure in the system lanthana-alumina. J.
 Am. Ceram. Soc. 41, (1958), 146-146. https://doi.org/10.1111/j.1151-2916.1958.tb13529.x
- M. Machida, K. Eguchi, H. Arai. Effect of additives on the surface area of oxide supports for catalytic combustion. J. Catal. 103, (1987), 385-393. https://doi.org/10.1016/0021-9517(87)90129-1
- Y. Zhu, X. Wang, A. Wang, G. Wu, J. Wang, T. Zhang, Identification of the chemical state of Fe in barium hexaaluminate using Rietveld refinement and ⁵⁷Fe Mössbauer spectroscopy, J. Catal., 283, (2011), 149-160. https://doi.org/10.1016/j.jcat.2011.08.001
- J.-G. Park, A.N. Cormack. Crystal/defect structures and phase stability in Ba hexaaluminates, J. Solid State Chem. 121, (1996), 278-290. https://doi.org/10.1006/jssc.1996.0039
- J.-G. Park, A.N. Cormack, Defect energetics and nonstoichiometry in lanthanum magnesium hexaaluminate, J. Solid State Chem., 130, (1997), 199-212. https://doi.org/10.1006/jssc.1996.7141

- J.-G. Park, A.N. Cormack. Defect structures and nonstoichiometry in lanthanum hexaaluminate, J. European Ceramic Soc. 19, (1999), 2249-2256. https://doi.org/10.1016/S0955-2219(99)00123-5
- N. Iyi, Z. Inoue, S. Takekawa, S. Kimura, The crystal structure of barium hexaaluminate phase I (barium β-alumina), J. Solid State Chem., 52 (1984) 66-72. https://doi.org/10.1016/0022-4596(84)90199-3
- N. Iyi, S. Takekawa, S. Kimura, Crystal chemistry of hexaaluminates: β-alumina and magnetoplumbite structures, J. Solid State Chem., 83 (1989) 8-19. https://doi.org/10.1016/0022-4596(89)90048-0
- H. Inoue, K. Sekizawa, K. Eguchi, H. Arai, Changes of crystalline phase and catalytic properties by cation substitution in mirror plane of hexaaluminate compounds, J. Solid State Chem., 121 (1996) 190-196. https://doi.org/10.1006/jssc.1996.0027
- Y. Zhu, X. Wang, G. Wu, Y. Huang, Y. Zhang, J. Wang, T. Zhang, Evolution of Fe crystallographic sites from Barium hexaaluminate to hexaferrite, J. Phys. Chem. C, 116, (2012), 671-680. https://doi.org/10.1021/jp2067414
- Y. Zhang, X. Wang, Y. Zhu, X. Liu, T. Zhang, Thermal evolution crystal structure and Fe crystallographic sites in LaFe_xAl_{12-x}O₁₉ hexaaluminates, J. Phys. Chem. C, 118, (2014), 10792-10804. https://doi.org/10.1021/jp500682d
- M. Tian, X.D. Wang, T. Zhang. Hexaaluminates: a review of the structure, synthesis and catalytic performances. Catal. Sci. & Technol. 6, (2016), 1984-2004. https://doi.org/10.1039/C5CY02077H
- S. Chandra, Qualitative and kinetic study of the effect of barium chloride additions on the formation of barium monoaluminate and hexaaluminate, Amer. Ceram. Soc. Bull. 64, (1985), 1120-1123.

- S. Nugroho, Z.-C. Chen, A. Kawasaki, M.O.D. Jarligo, Solid-state synthesis and formation mechanism of barium hexaaluminate from mechanically activated Al₂O₃-BaCO₃ powder mixtures, J. Alloys Compd., 502, (2010), 466-471. https://doi.org/10.1016/j.jallcom.2010.04.198
- O.A. Kirichenko, O.V. Andrushkova, V.A. Ushakov, V.A. Poluboyarov, in Studies in Surface Science and Catalysis, G. Poncelet, J. Martens, B. Delmon, P.A. Jacobs, P. Garnge (eds), Elsevier, 91, (1995), 851.
- S.R. Jansen, J.W. de Haan, L.J.M. van de Ven, R. Hanssen, H.T. Hintzen, R. Metselaar. Incorporation of nitrogen in alkaline-earth haxaaluminates with a β-alumina- or a magnetoplumbite-type structure, Chem. Mater., 9, (1997), 1516-1523. https://doi.org/10.1021/cm970109e
- S. Laassiri, D. Duprez, S. Royer, H. Alamdari, Solvent free synthesis of nanocrystalline hexaaluminate-type mixed oxides with high specific surface areas for CO oxidation reaction, Catal. Sci. Technol., 1, (2011), 1124-1127. https://doi.org/10.1039/c1cy00211b
- V. Doležal, L. Nádherný, K. Rubešová, V. Jakeš, A. Michalcová, O. Jankovský, M. Poupon, LaMgAl₁₁O₁₉ synthesis using non-hydrolytic sol-gel methods, Ceram. Inter., 45, (2019), 11233-11240. https://doi.org/10.1016/j.ceramint.2019.02.162
- M. Machida, K. Eguchi, H. Arai, Catalytic properties of BaMAl₁₁O_{19-α} (M = Cr, Mn, Fe, Co, and Ni) for high-temperature catalytic combustion, J. Catal., 120, (1989), 377-386. https://doi.org/10.1016/0021-9517(89)90277-7
- M. Machida, K. Eguchi, H. Arai, Preparation and characterization of large surface area BaO·6Al₂O₃, Bull. Chem. Soc. Jpn., 61, (1988), 3659-3665.

- M. Machida, A. Sato, M. Murakami, T. Kijima, H. Arai, Structure and catalytic property of coherent spinel surface layers on hexaaluminate microcrystals, J. Catal., 157, (1995), 713-720. https://doi.org/10.1006/jcat.1995.1337
- K. Sekizawa, M. Machida, K. Eguchi, H. Arai. Catalytic properties of Pd-supported hexaaluminate catalysts for high-temperature catalytic combustion, J. Catal. 142, (1993), 655-663. https://doi.org/10.1006/jcat.1993.1238
- R. Kikuchi, Y. Tanaka, K. Sasaki, K. Eguchi, High temperature catalytic combustion of methane and propane over hexaaluminate catalysts: NOx emission characteristics, Catal Today 83, (2003), 223-231. https://doi.org/10.1016/S0920-5861(03)00242-6
- P. Artizzu, N. Guilhaume, E. Garbowski, Y. Brullé, M. Primet, Catalytic combustion of methane on copper-substituted barium hexaaluminates. Catal. Lett., 1998, 51, 69-75. https://doi.org/10.1023/A:1019032917062
- H.R. Rezaie, R. Naghizadeh, F. Arianpour, R. Ghasemzadeh, S. Eslami. An evaluation on sol-gel chemical processing of refractory barium hexa aluminate fibrous structures. J. Ceramic Process. Res., 10, (2009), 148-151.
- D. Naoufal, J.M. Millet, E. Garbowski, Y. Brulle, M. Primet, Synthesis, structure and catalytic properties of Fe-substituted barium hexaaluminates, Catal. Lett., 54, (1998), 141-148. https://doi.org/10.1023/A:1019004711495
- J.C. Debsikbar, Synthesis and characterization of gel-derived barium hexa-aluminate, J.
 Mat. Sci. 24, (1989), 3565-3572. https://doi.org/10.1007/BF02385741
- A. Douy, Polyacrylamide gel: an efficient tool for easy synthesis of multicomponent oxide precursors of ceramics and glasses, Int, J. Inorg. Mater., 3, (2001), 699-707. https://doi.org/10.1016/S1466-6049(01)00188-X

- S.I. Woo, S.K. Kang, J. M. Sohn, Effect of water content in the precursor solution on the catalytic property and stability of Sr_{0.8}La_{0.2}MnAl₁₁O₁₉ high-temperature combustion catalyst, Appl. Catal. B: Environmental, 18, (1998), 317-324. https://doi.org/10.1016/S0926-3373(98)00052-6
- L.C. Yan, L.T. Thompson, Synthesis and characterization of aerogel-derived cationsubstituted barium hexaaluminates, Appl. Catal. A: General, 171, (1998), 219-228. https://doi.org/10.1016/S0926-860X(98)00059-3
- J.G. Xu, Z.J. Tian, J.W. Wang, Y.P. Xu, Z.S. Wu, L.W. Lin, Effect of drying methods on the structure and catalytic combustion activity of Mn-substituted hexaaluminate catalysts, React. Kinet. Catal. Lett., 82, (2004), 19-25. https://doi.org/10.1023/B:REAC.0000028800.54308.88
- S.J. Cho, Y.S. Seo, K.S. Song, N.J. Jeong, S.K. Kang, Surfactant-mediated synthesis of meal substituted hexaaluminate from alumina sol, Appl. Catal. B: Enviromental, 30, (2001), 351-357. https://doi.org/10.1016/S0926-3373(00)00247-2
- P. Jana, P.S. Jayan, S. Mandal, K. Biswas, Effect of seeding on the formation of lanthanum hexaaluminates synthesized through advanced sol gel process, J. Cryst. Growth, 408, (2014), 7-13. http://dx.doi.org/10.1016/j.jcrysgro.2014.09.015
- G. Groppi, M. Bellotto, C. Cristiani, P. Forzatti, P.L. Villa. Preparation and characterization of hexaaluminate-based materials for catalytic combustion. Applied Catalysis A: General. 104, (1993), 101-108. https://doi.org/10.1016/0926-860X(93)85092-4
- 44. G. Groppi, M. Belloto, C. Cristiani, P. Forzatti, P.L. Villa. Thermal evolution crystal structure and cation valence of Mn in substituted Ba-β-Al₂O₃ prepared via

coprecipitation in aqueous medium. J. Mater. Sci. 34, (1999), 2609-2620. https://doi.org/10.1023/A:1004604800540

- G. Groppi, F. Assandri, M. Bellotto, C. Cristiani, P. Forzatti. The crystal structure of Baβ-alumina materials for hifh-temperature catalytic combustion. J. Solid State Chem., 114, (1995), 326-336. https://doi.org/10.1006/jssc.1995.1051
- B.W.L. Jang, R.M. Nelson, J.J. Spivey, M. Ocal, R. Oukaci, G. Marcelin, Catalytic oxidation of methane over hexaaluminates and hexaaluminate-supported Pd catalysts.
 Catal. Today, 1999, 47, 103-113. https://doi.org/10.1016/S0920-5861(98)00288-0
- J. Wang, Z. Tian, J. Xu, Y. Xu, Z. Xu, L. Lin. Preparation of Mn substituted Lahexaaluminate catalysts by using supercritical drying, Catal. Today 83, (2003), 213-222. https://doi.org/10.1016/S0920-5861(03)00238-4
- 48. A.J. Zarur, N.Z. Mehenti, A.T. Heibel, J.Y. Ying, Phase behavior, structure, and aplications of reverse microemulsions stabilized by nonionic surfactants, Langmuir, 16, (2000), 9168-9176. https://doi.org/10.1021/la9914880
- A.J. Zarur, H.H. Hwu, J.Y. Ying, Reverse microemulsion-mediated synthesis and structural evolution of barium hexaaluminate nanoparticles, Langmuir, 16, (2000), 3042-3049. https://doi.org/10.1021/la9908034
- A.J. Zarur, J.Y. Ying. Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion, Nature 403, (2000), 65-67. https://doi.org/10.1038/47450
- P.K. Sahu, B.D. Kulkarni, R.B. Khomane, S.A. Pardhy, U.D. Phalgune, P. Rajmohanan, R. Pasricha, Barium hexaaluminate nanowhiskers synthesized by novel sol–gel process in reverse micellar media, Chem. Commun., (2003), 1876-1877. http://www.rsc.org/suppdata/cc/b3/b303815g

- F. Teng, J. Xu, Z. Tian, J. Wang, Y. Xu, Z. Xu, G. Xiong, L. Lin, Formation of a novel type of reverse microemulsion system and its application in synthesis of the nanostructured La_{0.95}Ba_{0.05}MnAl₁₁O₁₉ catalyst, Chem. Commun., (2004), 1858-1859. http://www.rsc.org/suppdata/cc/b4/b404133j
- 53. F. Teng, Z. Xu, G. Xiong, Y. Xu, Z. Xu, L. Lin. Synthesis of the high-surface-area Ce_xBa_{1-x}MnAl₁₁O_y catalyst in reverse microemulsions using inexpensive inorganic salts as precursors. Green Chemistry 7, (2005), 493-499. https://doi.org/10.1039/b417229a
- Z. Jiang, Z. Hao, J. Su, T. Xiao, P.P. Edwards, Water/oil microemulsion for the preparation of robust La-hexaaluminates for methane catalytic combustion, Chem. Commun. (2009), 3225-3227. https://doi.org/10.1039/b900012g
- 55. Z. Wang, Z. Cai, Z. Wei, Highly active ruthenium catalyst supported on barium hexaaluminate for ammonia decomposition to CO_x–free hydrogen, ACS Sustainable Chem. Eng., 7, (2019), 8226-8235. https://doi.org/10.1021/acssuschemeng.8b06308
- K. Zhang, G. Zhou, J. Li, K. Zhen, T. Cheng, Effective additives of A(Ce, Pr) in modified hexaaluminate La_xA_{1-x}NiAl₁₁O₁₉ for carbon dioxide reforming of methane, Catal. Lett., 130, (2009), 246-253. https://doi.org/10.1007/s10562-009-9876-3
- 57. K. Zhang, G. Zhou, J. Li, T. Cheng, The electronic effects of Pr on La_{1-x}Pr_xNiAl₁₁O₁₉ for CO₂ reforming of methane, Catal. Commun., 10, (2009), 1816-1820. https://doi.org/10.1016/j.catcom.2009.06.007
- 58. Y. Liu, T.X. Cheng, D.M. Li, P.B. Jiang, J.X. Wang, W.X. Li, Y.L. Bi, K.J. Zhen, Studies on the stability of a La_{0.8}Pr_{0.2}NiAl₁₁O₁₉ catalyst for syngas production by CO₂ reforming of methane, Catal. Lett., 85, (2003), 101-107. https://doi.org/10.1023/A:1022181110569
- 59. Y. Liu, Z. L. Xu, T. X. Cheng, G.D. Zhou, J.X. Wang, W.X. Li, Y.L. Bi, K.J. Zhen, Studies on carbon deposition on hexaaluminate LaNiAl₁₁O₁₉ catalysts during CO₂ reforming of

methane, Kinet. Catal., 43, (2002), 522-527. https://doi.org/10.1023/A:1019879018935

- W.L. Chu, W.S. Yang, L.W. Lin, The partial oxidation of methane to syngas over the nickel-modified hexaaluminate catalysts BaNi_yAl_{12-y}O_{19-δ}, Appl. Catal. A: General, 235, (2002), 39-45. https://doi.org/10.1016/S0926-860X(02)00240-5
- 61. Z.L. Xu, M. Zhen, Y.L. Bi, K.J. Zhen, Carbon dioxide reforming of methane to synthesis gas over hexaaluminate ANiAl₁₁O_{19-δ} (A = Ca, Sr, Ba and La) catalysts. Catal. Lett., 64, (2000), 64, 157-161. https://doi.org/10.1023/A:1019039004361
- Z.L. Xu, M. Zhen, Y.L. Bi, K. J. Zhen, Catalytic properties of Ni modified hexaaluminates LaNi_yAl_{12-y}O_{19-δ} for CO₂ reforming of methane to synthesis gas. Appl. Catal. A: General, 198, (2000), 267-273. https://doi.org/10.1016/S0926-860X(99)00518-9
- 63. J.G. Xu, Z.J. Tian, J.W. Wang, Y.P. Xu, Z.S. Xu, L.W. Lin, Hydrothermal synthesis of La-Mn-hexaaluminates for the catalytic combustion of methane, Korean J. Chem. Eng., 20, (2003), 217-221.
- D. Mishra, S. Anand, R.K. Panda, R.P. Das. Preparation of barium hexa-aluminate through a hydrothermal precipitation-calcination route and characterization of intermediate and final products. Mater. Letters, 56, (2002), 873-879. https://doi.org/10.1016/S0167-577X(02)00630-4
- B. Djuricic, S. Pickering, D. Mcgarry, Preparation and properties of alumina-baria nanocomposites, J. Mater. Sci., 34, (1999), 2685-2694. https://doi.org/10.1023/A:1004625405083
- 66. J. Gao, C. Jia, M. Zhang, F. Gu, G. Xu, Z. Zhong, F. Su, Template preparation of highsurface-area barium hexaaluminate as nickel catalyst support for improved CO

methanation, RSC Advances, 3, (2013), 18156-18163. https://doi.org/10.1039/c3ra41660g

- 67. M. Santiago, J. C. Groen, J. Perez-Ramirez, Carbon-templated hexaaluminates with enhanced surface area and catalytic performance. J. Catal. 257, (2008), 152-162. https://doi.org/10.1016/j.jcat.2008.04.017
- L.A. Schulz, L.C.S. Kahle, K. Herrera Delgado, S.A. Schunk, A. Jentys, O. Deutschmann,
 J.A. Lercher, On the coke deposition in dry reforming of methane at elevated pressures, Appl. Catal. A: General, 504, (2015), 599-607. https://doi.org/10.1016/j.apcata.2015.03.002
- 69. T. Roussiere, L. Schulz, K.M. Schelkle, G. Wasserschaff, A. Milanov, E. Schwab, O. Deutschmann, A. Jentys, J. Lercher, S.A. Schunk, Structure-activity relationships of nickel-hexaaluminates in reforming reactions part II: activity and stability of nanostructured nickel-hexaaluminate-based catalysts in the dry reforming of methane, Chemcatchem, 6, (2014), 1447-1452. https://doi.org/10.1002/cctc.201300958
- T. Roussiere, K.M. Schelkle, S. Titlbach, G. Wasserschaff, A. Milanov, G. Cox, E. Schwab,
 O. Deutschmann, L. Schulz, A. Jentys, J. Lercher, S.A. Schunk, Structure–activity relationships of nickel-hexaaluminates in reforming reactions Part I: controlling nickel nanoparticle growth and phase formation, Chemcatchem, 6, (2014), 1438-1446. https://doi.org/10.1002/cctc.201300960
- S. Cimino, R. Nigro, U. Weidmann, R. Holzner, Catalytic combustion of methanol over La, Mn-hexaaluminate catalysts, Fuel Process. Technol. 133, (2015), 1-7. http://dx.doi.org/10.1016/j.fuproc.2014.12.047.
- 72. P. Xu, X. Zhang, X. Zhao, J. Yang, Z. Hou, L. Bai, H. Chang, Y. Liu, J. Deng, G. Guo, H. Dai, Ch.-T. Au, Preparation, characterization, and catalytic performance of PdPt/3DOM

LaMnAl₁₁O₁₉ for the combustion of methane, Appl. Catal. A: General, 562, (2018), 284-293. https://doi.org/10.1016/j.apcata.2018.05.022

- M. Kustova, K. Egeblad, K. Zhu, C.H. Christensen. Versatile route to zeolite single crystals with controlled mesoporosity: in situ sugar decomposition for templating of hierarchical zeolites. Chem. Mater. 19, (2007), 2915-2917. https://doi.org/10.1021/cm071168n
- M. Schwickardi, T. Johann, W. Schmidt, F. Schüth. High-surface-area oxides obtained by an activated carbon route. Chem. Mater. 14, (2002), 3913-3919. https://doi.org/10.1021/cm0211857
- 75. M. Bellotto, G. Artioli, C. Cristiani, P. Forzatti, G. Groppi, On the Crystal Structure and Cation Valence of Mn in Mn-Substituted Ba-β-Al₂O₃, J. Catal., 179, (1998), 597-605. https://doi.org/10.1006/jcat.1998.2220
- B.M.J. Smets, J.G. Verlijsdonk. The luminescence properties of Eu²⁺- and Mn²⁺-doped barium hexaaluminates, Mater. Res. Bull., 21, (1986), 1305-1310. https://doi.org/10.1016/0025-5408(86)90065-6
- P. Artizzu-Duart, J.M. Millet, N. Guilhaume, E. Garbowski, M. Primet, Catalytic combustion of methane on substituted barium hexaaluminates, Catal. Today, 59, (2000), 163-177. https://doi.org/10.1016/S0920-5861(00)00281-9
- P. Artizzu-Duart, Y. Brulle, F. Gaillard, N. Guilhaume, M. Primet, Catalytic combustion of methane over copper- and manganese-substituted barium hexaaluminates, Catal. Today, 54, (1999), 181-190. https://doi.org/10.1016/S0920-5861(99)00179-0
- 79. G. Groppi, C. Cristiani, P. Forzatti, Preparation, characterisation and catalytic activity of pure and substituted La-hexaaluminate systems for high temperature catalytic

combustion. Appl. Catal. B: Environmental, 35, (2001), 137-148. https://doi.org/10.1016/S0926-3373(01)00248-X

- T. Li, Y. Li, Effect of magnesium substitution into LaMnAl₁₁O₁₉ haxaaluminate on the activity of methane catalytic combustion, Ind. Eng. Chem. Res., 47, (2008), 1404-1408. https://doi.org/10.1021/ie070606x
- S. Li and X. Wang, Catalytic combustion of methane over Mn-substituted Ba-Lahexaaluminate nanoparticles, J. Alloys Compd., 432, (2007), 333-337. https://doi.org/10.1016/j.jallcom.2006.06.022
- G. Groppi, C. Cristiani, P. Forzatti, BaFe_xAl_(12-x)O₁₉ system for high-temperature catalytic combustion: physico-chemical characterization and catalytic activity, J. Catal., 168, (1997), 95-103. https://doi.org/10.1006/jcat.1997.1632
- 83. S. Laassiri, N. Bion, D. Duprez, H. Alamdari, S. Royer, Role of Mn⁺ cations in the redox and oxygen transfer properties of BaM_xAl_{12-x}O_{19-δ} (M = Mn, Fe, Co) nanomaterials for high temperature methane oxidation, Catal. Sci. Technol., 3, (2013), 2259-2269. https://doi.org/10.1039/C3CY00192J
- L. Lietti, C. Cristiani, G. Groppi, P. Forzatti, Preparation, characterization and reactivity of Me-hexaaluminate (Me=Mn, Co, Fe, Ni, Cr) catalysts in the catalytic combustion of NH₃-containing gasified biomasses, Catal. Today, 59, (2000), 191-204. https://doi.org/10.1016/S0920-5861(00)00283-2
- A. Ersson, K. Persson, I.K. Adu, S.G. Jaras, A comparison between hexaaluminates and perovskites for catalytic combustion applications, Catal. Today, 112, (2006), 157-160. https://doi.org/10.1016/j.cattod.2005.11.024
- 86. S.G. Lee, H. Lee, C.H. Lee, J.Y. Kwon, H.C. Park, S.S. Hong, S.S. Park, Synthesis and catalytic properties of barium hexaaluminates incorporated with chromium and

lanthanum, React. Kinet. Catal. Lett., 86, (2005), 299-306. https://doi.org/10.1007/s11144-005-0325-z

- 87. F. Teng, Y. Man, S. Liang, G. Buergen, Y. Zhu, W. Han, P. Xu, G. Xiong, Z. Tian, Crystal structure stability and catalytic activity of magnetoplumbite (MP) catalyst doped with Mn and Mg, J. Non-Cryst. Solids, 353, (2007), 4806-4812. https://doi.org/10.1016/j.jnoncrysol.2007.06.069
- M. Astier, E. Garbowski, M. Primet, BaMgAl₁₀O₁₇ as hot matrix for Mn in the catalytic combustion of methane, Catal. Lett., 95, (2004), 31-37. https://doi.org/10.1023/B:CATL.0000023718.79151.3a
- K. Ikkour, D. Sellam, A. Kiennemann, S. Tezkratt, O. Cherifi, Activity of Ni substituted Ca-La-hexaaluminate catalyst in dry reforming of methane, Catal. Letters 132, (2009), 213-217. https://doi.org/10.1007/s10562-009-0094-9
- T.H. Gardner, J.J. Spivey, E.L. Kugler, A. Campos, J.C. Hissam, A.D. Roy, Structural characterization of Ni-substituted hexaaluminate catalysts using EXAFS, XANES, XPS, XRD, and TPR, J. Phys. Chem. C, 114, (2010), 7888-7894. https://doi.org/10.1021/jp9117634
- 91. R. Kikuchi, Y. Iwasa, T. Takeguchi, K. Eguchi, Partial oxidation of CH₄ and C₃H₈ over hexaaluminate-type oxides, Appl. Catal. A: General, 281, (2005), 61-67. https://doi.org/10.1016/j.apcata.2004.11.013
- 92. S. Zhu, X. Wang, A. Wang, Y. Cong, T. Zhang, A novel Ir-hexaaluminate catalyst for N₂O as a propellant, Chem. Commun., (2007), 1695-1697. https://doi.org/10.1039/B702502E

- 93. S. Zhu, X. Wang, A. Wang, T. Zhang, Superior performance of Ir-substituted hexaaluminate catalysts for N₂O decomposition, Catal. Today, 131, (2008), 339-346. https://doi.org/10.1016/j.cattod.2007.10.093
- 94. K. Sekizawa, K. Eguchi, H. Widjaja, M. Machida, H. Arai, Property of Pd-supported catalysts for catalytic combustion, Catal. Today, 28, (1996), 245-250. https://doi.org/10.1016/0920-5861(95)00241-3
- 95. M. Öcal, R. Oukaci, G. Marcelin, B.W.-L. Jang, J.J. Spivey. Steady-state isotopic transient kinetic analysis on Pd-supported hexaaluminates used for methane combustion in the presence and absence of NO. Catal. Today, 59, (2000), 205-217. https://doi.org/10.1016/S0920-5861(00)00284-4
- J.M. Sohn, S.K. Kang, S.I. Woo, Catalytic properties and characterization of Pd supported on hexaaluminate in high temperature combustion, J. Mol. Catal. A: Chem., 186, (2002), 135-144. https://doi.org/10.1016/S1381-1169(02)00067-5
- 97. A. Baylet, S. Royer, R. Marecot, J. M. Tatibouet, D. Duprez, High catalytic activity and stability of Pd doped hexaaluminate catalysts for the CH₄ catalytic combustion, Appl. Catal.
 B: Environmental, 77, (2008), 237-247. https://doi.org/10.1016/j.apcatb.2007.07.031
- 98. A. Baylet, S. Royer, C. Labrugere, H. Valencia, P. Marecot, J.M. Tatibouet, D. Duprez, Effect of palladium on the reducibility of Mn based materials: correlation with methane oxidation activity, Phys. Chem. Chem. Phys., 10, (2008), 5983-5992. https://doi.org/10.1039/b808289h
- S. A. Yashnik, Z. R. Ismagilov, The nature of synergetic effect of manganese oxide and platinum in Pt–MnO_x–alumina oxidation catalysts, Top. Catal., 55, (2012), 818-836. https://doi.org/10.1007/s11244-016-0722-8

- A. Baylet, S. Royer, P. Marecot, J. M. Tatibouet, D. Duprez, Effect of Pd precursor salt on the activity and stability of Pd-doped hexaaluminate catalysts for the CH₄ catalytic combustion, Appl. Catal. B: Environmental, 81, (2008), 88-96. https://doi.org/10.1016/j.apcatb.2007.12.004
- 101. M. Machida, K. Eguchi, H. Arai, Effect of structural modification on the catalytic property of Mn-substituted hexaaluminates, J. Catal., 123, (1990), 477-485. https://doi.org/10.1016/0021-9517(90)90144-9
- M. Machida, A. Sato, T. Kijima, H. Inoue, K. Eguchi, H. Arai, Catalytic properties and surface modification of hexaaluminate microcrystals for combustion catalyst, Catal. Today, 26, (1995), 239-245. https://doi.org/10.1016/0920-5861(95)00145-3
- 103. S. Laassiri, N. Bion, D. Duprez, S. Royer, H. Alamdari, Clear microstructure– performance relationships in Mn-containing perovskite and hexaaluminate compounds prepared by activated reactive synthesis, Phys. Chem. Chem. Phys., 16, (2014), 4050-4060. https://doi.org/10.1039/c3cp54363c
- 104. R.W. Sidwell, H. Zhu, B.A. Kibler, R.J. Kee, D.T. Wickham, Experimental investigation of the activity and thermal stability of hexaaluminate catalysts for lean methane-air combustion, Appl. Catal. A: General, 255, (2003), 279-288. https://doi.org/10.1016/S0926-860X(03)00566-0
- 105. S.A. Yashnik, Z.R. Ismagilov, Dependence of synergetic effect of palladium–manganesehexaaluminate combustion catalyst on nature of palladium precursor, Topics Catal. 55, (2012), 818-836. https://doi.org/10.1007/s11244-012-9874-3
- 106. X. Li, Y. Liu, J. Deng, Y. Zhang, S. Xie, X. Zhao, Z. Wang, G. Guo, H. Dai, 3DOM LaMnAl₁₁O₁₉-supported AuPd alloy nanoparticles: Highly active catalysts for methane

combustion in a continuous-flow microreactor. Catal. Today, 308, (2018), 71-80. http://dx.doi.org/10.1016/j.cattod.2017.07.024

- 107. N.E. McGuire, N.P. Sullivan, O. Deutschmann, H. Zhu, R.J. Kee, Dry reforming of methane in a stagnation-flow reactor using Rh supported on strontium-substituted hexaaluminate, Appl. Catal. A: General, 394, (2011), 257–265. https://doi.org/10.1016/j.apcata.2011.01.009
- 108. W.L. Chu, W.S. Yang, L.W. Lin, Selective oxidation of methane to syngas over NiO/barium hexaaluminate, Catal. Lett., 74, (2001), 139-144. https://doi.org/10.1023/A:1016622301743
- 109. Y. Liu, Z. Xu, T. Cheng, G. Zhou, J. Wang, W. Li, Y. Bi, K. Zhen, Studies on carbon deposition on hexaaluminate LaNiAl₁₁O₁₉ catalysts during CO₂ reforming of methane, Kin. Catal., 43, (2002), 522-527. https://doi.org/10.1023/A:1019879018935
- 110. W. L. Chu, W. S. Yang and L. W. Lin, The partial oxidation of methane to syngas over the nickel-modified hexaaluminate catalysts BaNi_yAl_{12-y}O_{19-δ}, Appl. Catal. A: General, 2002, 235, 39-45. https://doi.org/10.1016/S0926-860X(02)00240-5
- 111. T. Utaka, S. A. Al-Drees, J. Ueda, Y. Iwasa, T. Takeguchi, R. Kikuchi, K. Eguchi, Partial oxidation of methane over Ni catalysts based on hexaaliminate- or perovskite-type oxides, Appl. Catal. A: General, 247, (2003), 125-131. https://doi.org/10.1016/S0926-860X(03)00129-7
- 112. J. Gao, Ch. Jia, J. Li, F. Gu, G. Xu, Z. Zhong, F. Su, Nickel catalysts supported on barium hexaaluminate for enhanced CO methanation, Ind. Eng. Chem. Res., 51, (2012), 10345-10353. https://doi.org/10.1021/ie300566n

- L. Majocchi, H. Croppi, C. Cristiani, P. Forzatti, L. Basini, A. Guarinoni, Partial oxidation of methane to synthesis gas over Rh-hexaaluminate-based catalysts, Catal. Letters, 65, (2000), 49-56. https://doi.org/10.1023/A:1019092516173
- 114. M. Tian, X. Wang, X. Liu, A. Wang, T. Zhang, Fe-substituted Ba-hexaaluminates oxygen carrier for carbon dioxide capture by chemical looping combustion of methane, AIChE J, 62, (2016), 792-801. https://doi.org/10.1002/aic.15135
- 115. F. Huang, M. Tian, Y. Zhu, X. Wang, A. Wang, L. Li, J. Lin, J. Wang, Fe-substituted Bahexaaluminate with enhanced oxygen mobility for CO₂ capture by chemical looping combustion of methane, J. Energy Chem., 29, (2019), 50-57. https://doi.org/10.1016/j.jechem.2018.02.003
- 116. Q. Shen, F. Huang, M. Tian, Y. Zhu, L. Li, J. Wang, X. Wang, Effect of regeneration period on the selectivity of synthesis gas of Ba-hexaaluminates in chemical looping partial oxidation of methane, ACS Catal., 9, (2019), 722-731. https://doi.org/10.1021/acscatal.8b03855
- Y. Zhu, R. Liu, X. Sun, X. Ma, X. Wang, H. Tian, Metal modified hexaaluminates for syngas generation and CO₂ utilization via chemical looping, Int. J. Hydrogen Energy, 44, (2019), 10218-10231. https://doi.org/10.1016/j.ijhydene.2019.02.187
- T.H. Gardner, J.J. Spivey, E.L. Kugler, D. Pakhare, CH₄–CO₂ reforming over Nisubstituted barium hexaaluminate catalysts, Appl. Catal. A: General, 455, (2013), 129-136. https://doi.org/10.1016/j.apcata.2013.01.029
- 119. C. Garapon, L. Lou, R. Moncorge, Site-selective spectroscopy of Nd³⁺ in lanthanum magnesium hexaaluminate LaMgAl₁₁O₁₉ single crystals, J. Lumin., 79, (1998), 161-175. https://doi.org/10.1016/S0022-2313(98)00032-5

- Y. Zhu, N. Jin, R. Liu, X. Sun, L. Bai, H. Tian, X. Ma, X. Wang, Bimetallic BaFe₂MAl₉O₁₉ (M = Mn, Ni, and Co) hexaaluminates as oxygen carriers for chemical looping dry reforming of methane, Appl. Energy, 258, (2020), 114070. https://doi.org/10.1016/j.apenergy.2019.114070
- 121. C.P.B. Quitete, R.C.P. Bittencourt, M.M.V.M. Souza, Steam reforming of tar using toluene as a model compound with nickel catalysts supported on hexaaluminates, Appl. Catal. A: General, 478, (2014), 234-240. http://dx.doi.org/10.1016/j.apcata.2014.04.019
- 122. M.V. Bukhtiyarova, A.S. Ivanova, E.M. Slavinskaya, P.A. Kuznetsov, L.M. Plyasova, O.A. Stonkus, V.A. Rogov, V.V. Kaichev, A.S. Noskov, Steam reforming of methane over Ni-substituted Sr hexaaluminates, Catalysis for Sustainable Energy, (2013), 11-21. https://doi.org/10.2478/cse-2012-0002
- 123. M. Santiago, J. Perez-Ramirez, Decomposition of N₂O over hexaaluminate catalysts, Environ. Sci. Technol., 41, (2007), 1704-1709. https://doi.org/10.1021/es061894b
- 124. M. Santiago, M.A.G. Hevia, J. Perez-Ramirez, Evaluation of catalysts for N₂O abatement in fluidized-bed combustion, Appl. Catal. B: Environmental, 90, (2009), 83-88. https://doi.org/10.1016/j.apcatb.2009.02.017
- 125. E.V. Kondratenko, V.A. Kondratenko, M. Santiago, J. Perez-Ramirez, Mechanism and micro-kinetics of direct N₂O decomposition over BaFeAl₁₁O₁₉ hexaaluminate and comparison with Fe-MFI zeolites, Appl. Catal. B: Environmental, 99, (2010), 66-73. https://doi.org/10.1016/j.apcatb.2010.05.033
- J. Perez-Ramirez, M. Santiago, Metal-substituted hexaaluminates for high-temperature N₂O abatement, Chem. Commun., (2007), 619-621. https://doi.org/10.1039/B613602H

- 127. L. Lietti, C. Ramella, G. Groppi, P. Forzatti, Oxidation of NH₃ and NO_x formation during the catalytic combustion of gasified biomasses fuels over Mn-hexaaluminate and alumina-supported Pd catalysts, Appl. Catal. B: Environmental, 21, (1999), 89-101. https://doi.org/10.1016/S0926-3373(99)00005-3
- 128. L. Lietti, G. Groppi, C. Ramella, NH₃ oxidation during the catalytic combustion of biomasses-related fuels over Mn-substituted hexaaluminates, Catal. Letters, 53, (1998), 91-95. https://doi.org/10.1023/A:1019001821547
- 129. Y. Zhang, X. Wang, Y. Zhu, T. Zhang, Stabilization mechanism and crystallographic sites of Ru in Fe-promoted barium hexaaluminate under high-temperature condition for N₂O decomposition, Appl. Catal. B: Environmental, 129, (2013), 382-393. https://doi.org/10.1016/j.apcatb.2012.10.001
- M. Tian, A. Wang, X. Wang, Y. Zhu, T. Zhang, Effect of large cations (La³⁺ and Ba²⁺) on the catalytic performance of Mn-substituted hexaaluminates for N₂O decomposition, Appl. Catal. B: Environmental, 92, (2009), 437-444. https://doi.org/10.1016/j.apcatb.2009.09.002
- 131. S. Hong, S. Heo, W. Kim, Y.M. Jo Y.-K. Park, J.-K. Jeon, Catalytic decomposition of an energetic ionic liquid solution over hexaaluminate catalysts, Catalysts, 9, (2019), 80. https://doi.org/10.3390/catal9010080
- 132. Ch. Parsland, A.-Ch. Larsson, P. Benito, G. Fornasari, J. Brandin, Nickel-substituted bariumhexaaluminates as novel catalysts in steam reforming of tars. Fuel Proces. Technol. 140, (2015), 1-11. https://doi.org/10.1016/j.fuproc.2015.07.024
- 133. C. Quitete, R. Bittencourt, M. Souza. Steam reforming of tar model compound over nickel catalysts supported on barium hexaaluminate. Catal. Lett. 145, (2015), 541-548. https://doi.org/10.1007/s10562-014-1405-3

- 134. G. Jiang, X. Zhang, F. Zhang, Z. Liu, Z. Wang, Z. Hao, C. Lin, Efficient recovery of hydrogen and sulfur resources over non-sulfide based LaFe_xAl_{12-x}O₁₉ hexaaluminate catalysts by H₂S catalytic decomposition, Appl. Catal. B: Environmental, 263, (2020), 118354. https://doi.org/10.1016/j.apcatb.2019.118354
- 135. T.H. Gardner, Syngas production over La_{0.9}Ni_yAl_{11.95-y}O_{19-δ} catalysts during C₁₄-alkane partial oxidation: Effects of sulfur and polycyclic aromatic hydrocarbons, Appl. Catal. A: General, 555, (2018), 118-129. https://doi.org/10.1016/j.apcata.2018.02.006
- 136. A. Bohre, U. Novak, M. Grilc, B. Likozar, Synthesis of bio-based methacrylic acid from biomass-derived itaconic acid over barium hexa-aluminate catalyst by selective decarboxylation reaction, Molec. Catal., 476, (2019), 110520. https://doi.org/10.1016/j.mcat.2019.110520.
- 137. H. Ai, H. Yang, Q. Liu, G. Zhao, J. Yang, F. Gu, ZrO₂-modified Ni/LaAl₁₁O₁₈ catalyst for CO methanation: Effects of catalyst structure on catalytic performance, Chinese J. Catal., 39, (2018), 297–308. https://doi.org/10.1016/S1872-2067(17)62995-4
- 138. D. Wichham, R. Cook, Oxidation catalysts comprising metal exchanged hexaaluminate wherein the metal is Sr, Pd, La, and/or Mn, US Patent 7,442,669 B2 (2008).
- 139. S. Schunk, A. Milanov, A. Strasser, G. Wasserschuff and T. Roussiere, Hexaaluminatecomprising catalyst for the reforming of hydrocarbons and a reforming process, US Patent 2014/0191449 A1 (2014).
- 140. M.S. Ferrandon, Novel formulation of hexa-aluminates for reforming fuels, US Patent 2013/0085062 A1 (2013).
- 141. R. Gadow, M. Lischka, Lanthanum hexaaluminate-novel thermal barrier coatings for gas turbine applications-materials and process development, Surf. Coatings Technol., 151-152, (2002), 392-399. https://doi.org/10.1016/S0257-8972(01)01642-5

- 142. R.R. Rao, L. Mariappan, Combustion synthesis and characterization of lanthanum hexaaluminate, Adv. Appl. Ceram., 104, (2005), 268-271. https://doi.org/10.1179/174367605X62427
- 143. L. Haoran, W. Chang-An, Z. Chenguang, T. Shuyan, Thermo-physical properties of rareearth hexaaluminates LnMgAl₁₁O₁₉ (Ln: La, Pr, Nd, Sm, Eu and Gd) magnetoplumbite for advanced thermal barrier coatings, J. Europ. Ceram. Soc., 35, (2015), 1297-1306. https://doi.org/10.1016/j.jeurceramsoc.2014.10.030
- 144. Y. Sun, H. Wu, X. Chen, C. Deng, D. Wu, X. Cao, W. Li, Degradation of the plasma sprayed GdMgAl₁₁O₁₉ thermal barrier coating resistant to calcium-magnesiumaluminum-silicate attack at 1350 °C, Corrosion Sci., 169, (2020), 108593. https://doi.org/10.1016/j.corsci.2020.108593
- 145. M.M. Khorramirad, M.R. Rahimipour, S.M.M. Hadavi, K. Shirvani, High temperature oxidation behavior of Inc-738/NiCrAlY/LaMA thermal barrier coating system, Surf. Coat. Technol. 364, (2019), 70-80. https://doi.org/10.1016/j.surfcoat.2019.02.017
- 146. N.P. Padture, M. Gell, E.H. Jordan, Thermal barrier coatings for gas-turbine engine, Appl. Sci., 296, (2002), 280-284. https://doi.org/10.1126/science.1068609
- 147. J. Sun, J. Wang, H. Zhang, J. Yuan, S. Dong, J. Jiang, L. Deng, X. Zhou, X. Cao, Preparation, structure, mechanical properties and thermal cycling behavior of porous LaMgAl₁₁O₁₉ coating, J. Alloys Comp., 750, (2018), 1007-1016. https://doi.org/10.1016/j.jallcom.2018.04.097
- 148. J. Sun, J. Wang, X. Zhou, S. Dong, L. Deng, J. Jiang, X. Cao, Microstructure and thermal cycling behavior of plasma-sprayed LaMgAl₁₁O₁₉ coatings, Ceram. Int. 44, (2018), 5572-5580. https://doi.org/10.1016/j.ceramint.2017.12.202

- 149. S. Tsukada, S. Kuroda, M. Nishijima, H. Araki, A. Yumoto, M. Watanabe, Effects of amorphous phase on hot corrosion behavior of plasma-sprayed LaMgAl₁₁O₁₉ coating, Surf. Coat. Technol. 363, (2019), 95-105. https://doi.org/10.1016/j.surfcoat.2019.01.097
- 150. J. Zeng, J. Sun, P. Liang, X. Yang, S. Dong, J. Jiang, L. Deng, X. Zhou, X. Cao, Heat-treated lanthanum magnesium hexaaluminate coatings exposed to molten calciummagnesium-alumino-silicate, Ceram. Inter., 45, (2019), 11723-11733. https://doi.org/10.1016/j.ceramint.2019.03.048
- 151. S.M. Naga, H.F. El-Maghraby, M. Awaad, F. Kern, R. Gadow, A.M. Hassan, Preparation and characterization of tough cerium hexaaluminate bodies, Mater. Lett., 254, (2019), 402-406. https://doi.org/10.1016/j.matlet.2019.07.116
- 152. S.M. Naga, M. Elshaer, M. Awaad, A.A. Amer, Strontium hexaaluminate/ZTA composites: Preparation and characterization, Mater. Chem. Phys., 232, (2019), 23-27. https://doi.org/10.1016/j.matchemphys.2019.04.055
- 153. J.J. Torrez-Herrera, E.G. Fuentes-Ordoñez, S.A. Korili, A. Gil, Evidence for the synthesis of La-hexaaluminate from aluminum-contaning saline slag wastes: correction of structural defects and phase purification at low temperature, Powder Technol., 377, (2021), 80-88. https://doi.org/10.1016/j.powtec.2020.08.087

Captions

Figure 1. The structure of Ba-hexaaluminate: (a) β -Al₂O₃ and (b) MP. Numbers in parentheses refer to the different Al sites. Al(1): octahedral site; Al(2): tetrahedral site; Al(3) in β -Al₂O₃: tetrahedral site; Al(3) in MP: octahedral site; Al(4): octahedral site; Al(5) in β -Al₂O₃: tetrahedral site; Al(5) in MP: trigonal bipyramid site. (Reproduced with permission from Ref. 12).

Figure 2. Effect of charge and radius on hexaaluminate structure (Reproduced with permission from Ref. 17).

Figure 3. Proportion of β -Al₂O₃ and MP phases and the Fe/Ba ratios in both phase compositions as a function of x in BaFe_xAl_{12-x}O₁₉ (x = 1-12) samples (Reproduced with permission from Ref. 19).

Figure 4. Procedure for synthesizing fibrous Ba-hexaaluminate (Reproduced with permission from Ref. 34).

Figure 5. Schematic image of fracture surface of quadruple-layered sample of BaMnAl₁₁O_{19- δ /Ba_{0.75}Al₁₁O_{17.25}/Al₆Si₂O₁₃/ α -SiC after heat treatment at 1400 °C for 5 h in air (Reproduced with permission from Ref. 3).}

Figure 6. XRD patterns of LaMnAl₁₁O₁₉ before and after calcination: (1,a) xerogel, (2,b) aerogel, (3,c) LaMnAl₁₁O₁₉ (CD), (4,d) LaMnAl₁₁O₁₉ (SCD) (Reproduced with permission from Ref. 47).

Figure 7. Various steps in the synthesis of $LaFeAl_{11}O_{19}$ using co-precipitation and carbon-templating methods (Reproduced with permission from Ref. 67).

Figure 8. Proposed mechanism for oxygen transfer between palladium and manganese in the supports (Reproduced with permission from Ref. 98).

Figure 9. Methane conversion versus temperature over the hexaaluminate catalysts (Reproduced with permission from Ref. 80).

Figure 10. Proposed mechanism for the methane combustion on Mn₃O₄/hexaaluminate catalyst (Reproduced with permission from Ref. 102).

Figure 11. Methane conversion as a function of temperature over $1.14Pd_{2.8}Pt/3DOM LMAO$ at SV = (a) 20,000 mL/(g h), (b) 40,000 mL/(g h), and (c) 80,000 mL/(g h). Reactant composition: 1.5 vol% CH₄ + 98.5 vol% air. (Reproduced with permission from Ref. 72).

Figure 12. Dry reforming of methane over an Ni aluminate catalyst at 1123 K and 1.0 MPa (

 CH_4 , • CO_2 , < CO, • H_2 , • H_2O) (Reproduced with permission from Ref. 68).

Figure 13. Steady-state N₂O conversion vs. temperature (Reproduced with permission from Ref. 123).

Figure 14. The stabilization mechanism and crystallographic sites of Ru in β_1 -Al₂O₃ type Fepromoted barium hexaaluminates and the effect on the performance for N₂O decomposition (Reproduced with permission from Ref. 129).

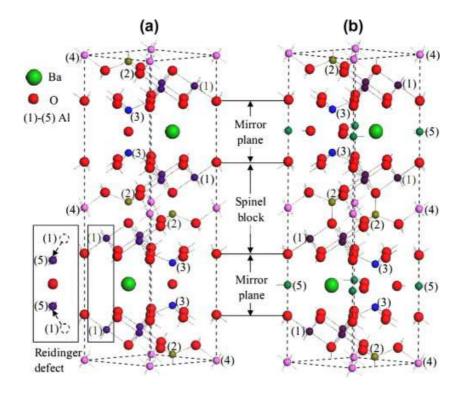

Figure 15. Proposed mechanism for the H₂S decomposition on hexaaluminate catalysts (Reproduced with permission from Ref. 134).

Figure 16. Cross-section SEM image of powdered LaMgAl₁₁O₁₉/graphite mixtures (a) and a magnification (b) (Reproduced with permission from Ref. 147).

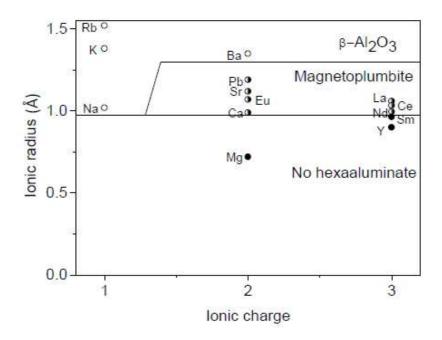
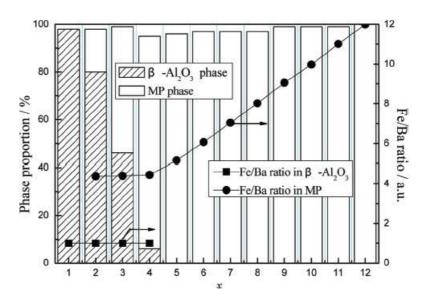
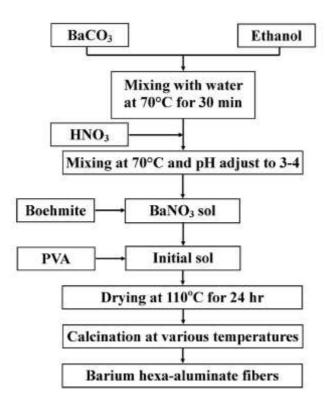

Figure 17. Schematic diagram of proposed calcium-magnesium-alumino-silicate (CMAS) corrosion mechanisms for: (a) as-sprayed hexaaluminate (LMA) coating, (b) isothermally heat-treated LMA coating, (c) as-sprayed LMA coating after CMAS attack, and (d) isothermally heat-treated LMA coating after CMAS attack. (Reproduced with permission from Ref. 150).

Table 1. Strategy synthesis methods and specific surface areas.


Table 2. Catalytic performance by hexaaluminates and reaction conditions.


Figure 1. The structure of Ba-hexaaluminate: (a) β -Al₂O₃ and (b) MP. Numbers in parentheses refer to the different Al sites. Al(1): octahedral site; Al(2): tetrahedral site; Al(3) in β -Al₂O₃: tetrahedral site; Al(3) in MP: octahedral site; Al(4): octahedral site; Al(5) in β -Al₂O₃: tetrahedral site; Al(5) in MP: trigonal bipyramid site. (Reproduced with permission from Ref. 12).

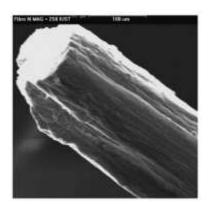


Figure 2. Effect of charge and radius on hexaaluminate structure (Reproduced with permission from Ref. 17).

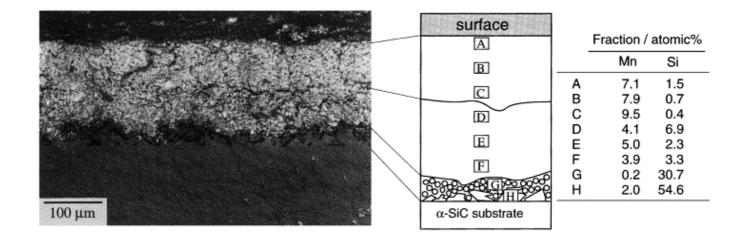
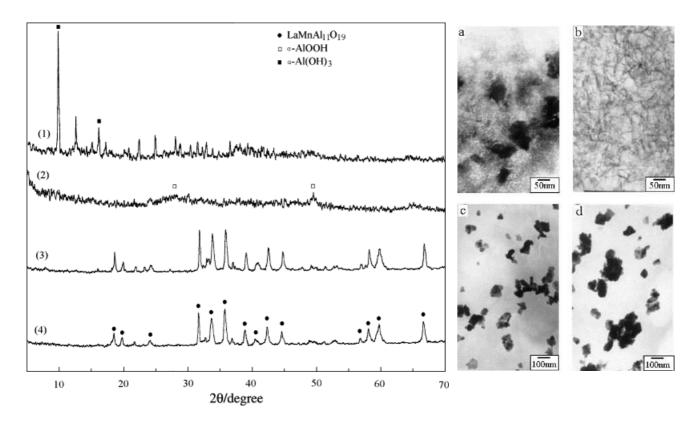
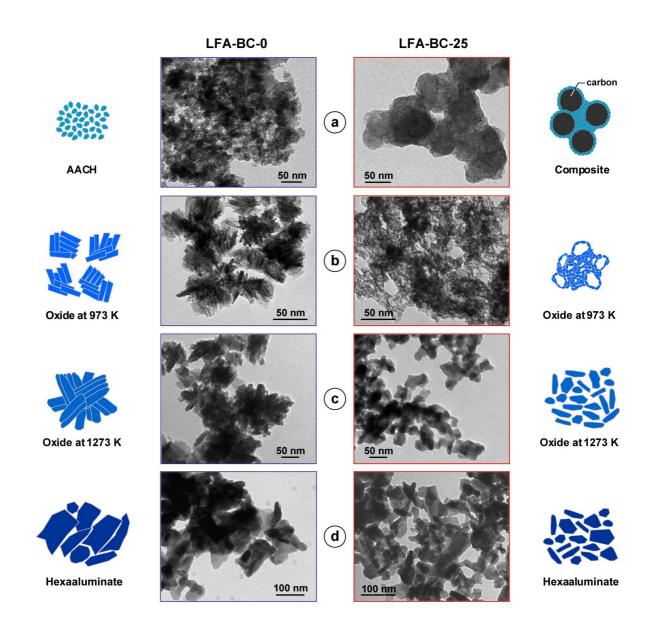
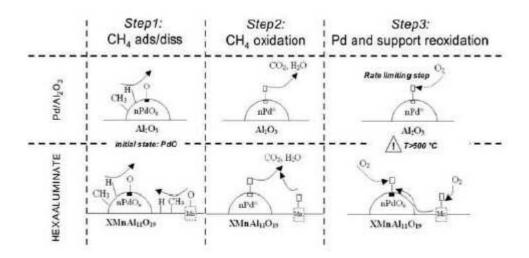


Figure 3. Proportion of β -Al₂O₃ and MP phases and the Fe/Ba ratios in both phase compositions as a function of x in BaFe_xAl_{12-x}O₁₉ (x = 1-12) samples (Reproduced with permission from Ref. 19).




Figure 4. Procedure for synthesizing fibrous Ba-hexaaluminate (Reproduced with permission from Ref. 34).


Figure 5. Schematic image of fracture surface of quadruple-layered sample of BaMnAl₁₁O_{19- δ /Ba_{0.75}Al₁₁O_{17.25}/Al₆Si₂O₁₃/ α -SiC after heat treatment at 1400 °C for 5 h in air (Reproduced with permission from Ref. 3).}

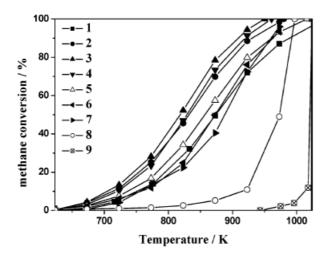

Figure 6. XRD patterns of LaMnAl₁₁O₁₉ before and after calcination: (1,a) xerogel, (2,b) aerogel, (3,c) LaMnAl₁₁O₁₉ (CD), (4,d) LaMnAl₁₁O₁₉ (SCD) (Reproduced with permission from Ref. 47).

Figure 7. Various steps in the synthesis of LaFeAl₁₁O₁₉ using co-precipitation and carbon-templating methods (Reproduced with permission from Ref. 67).

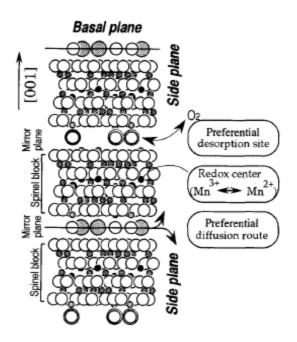
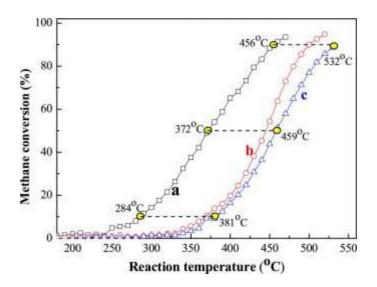


Figure 8. Proposed mechanism for oxygen transfer between palladium and manganese in the supports (Reproduced with permission from Ref. 98).



	•	T10%	T _{50%}	T90%	Ea
sample	composition	(K)	(K)	(K)	(kJ/mol)
1	LaMnAl11019	753	868	983	95.4
2	LaMn0.9Mg0.1A111O19	714	833	929	74.9
3	LaMn0.7Mg0.3A111O19	704	818	909	76.2
4	LaMn0.6Mg0.4Al11O19	721	829	916	83.1
5	LaMn0.5Mg0.5Al11O19	737	857	958	80.1
6	LaMn0.3Mg0.7A111O19	757	874	960	74.5
7	LaMn0.1Mg0.9A111O19	756	889	955	83.0
8	LaMgA111O19	920	974	984	
9	silica	1013	1019	1023	

Figure 9. Methane conversion versus temperature over the hexaaluminate catalysts (Reproduced with permission from Ref. 80).

Figure 10. Proposed mechanism for the methane combustion on Mn_3O_4 /hexaaluminate catalyst (Reproduced with permission from Ref. 102).

Figure 11. Methane conversion as a function of temperature over $1.14Pd_{2.8}Pt/3DOM$ LMAO at SV = (a) 20,000 mL/(g h), (b) 40,000 mL/(g h), and (c) 80,000 mL/(g h). Reactant composition: 1.5 vol% CH₄ + 98.5 vol% air. (Reproduced with permission from Ref. 72).

Figure 12. Dry reforming of methane over an Ni aluminate catalyst at 1123 K and 1.0 MPa (\blacklozenge CH₄, \bullet CO₂, \triangleleft CO, \blacklozenge H₂, \blacksquare H₂O) (Reproduced with permission from Ref. 68).

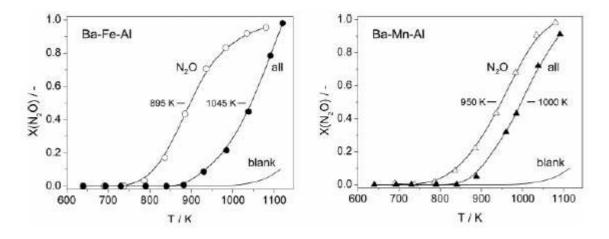
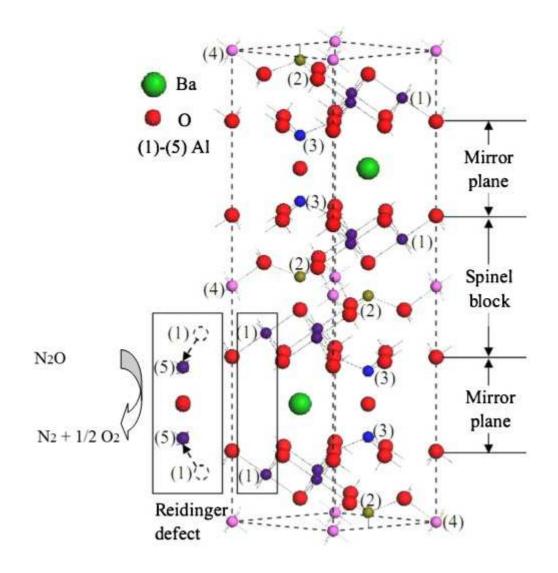



Figure 13. Steady-state N_2O conversion vs. temperature (Reproduced with permission from Ref. 123).

Figure 14. The stabilization mechanism and crystallographic sites of Ru in β_1 -Al₂O₃ type Fepromoted barium hexaaluminates and the effect on the performance for N₂O decomposition (Reproduced with permission from Ref. 129).

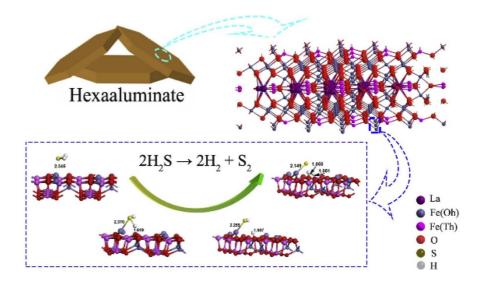
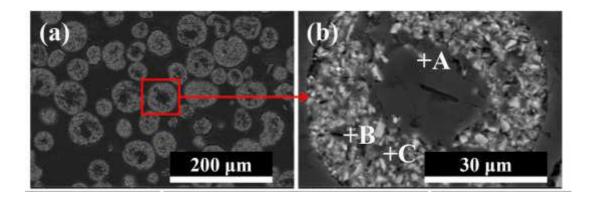
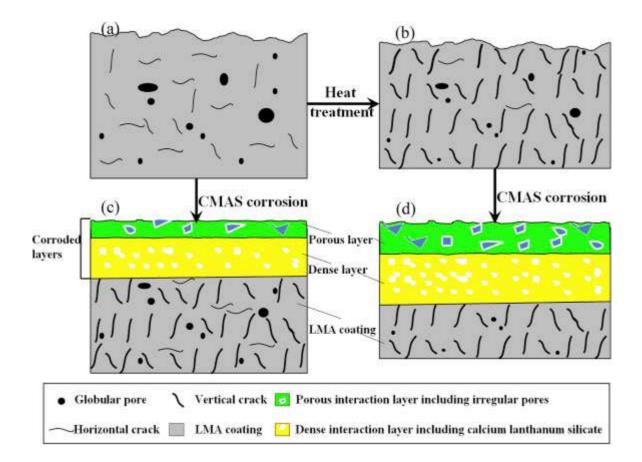




Figure 15. Proposed mechanism for the H_2S decomposition on hexaaluminate catalysts (Reproduced with permission from Ref. 134).

Figure 16. Cross-section SEM image of powdered LaMgAl₁₁O₁₉/graphite mixtures (a) and a magnification (b) (Reproduced with permission from Ref. 147).

Figure 17. Schematic diagram of proposed calcium-magnesium-alumino-silicate (CMAS) corrosion mechanisms for: (a) as-sprayed hexaaluminate (LMA) coating, (b) isothermally heat-treated LMA coating, (c) as-sprayed LMA coating after CMAS attack, and (d) isothermally heat-treated LMA coating after CMAS attack. (Reproduced with permission from Ref. 150).

			Calci	inatio	n conditions	Surface area	
HA type	Method	Raw materials	T (°C)	t (h)	Atmosphere	S _{BET} (m²/g)	Ref
Ba-HA	SSR	BaCO ₃ , γ-Al ₂ O ₃	1450	5	Air	6	[11]
Ba-HA	SSR	BaCO ₃ , α-Al ₂ O ₃	1500	2	Air	10	[23]
Ba-HA	ARS and	BaO, Al ₂ O ₃				100	_
Ba-Co-HA	LEBM	BaO, CoO,Al ₂ O ₃	1500	5	Air	79	[26]
Ba-Mn-Pd-HA		BaO, MnO, PdO, Al ₂ O ₃				77	
Ba-HA	SG	$Ba(OC_3H_7)_2,Al(OC_3H_7)_3$	1300	2	Air	15	[11, 28-30]
Ba-Cu-HA	SG	Ba⁺, Al(OC₃H⁊)₃	1200	24	Oxygen	11	[33]
Ba-HA, Ba-Co-HA, Ba-Mn-HA, Ba-Mn-	SG-SD	Mn(NO ₃) ₂ , Co(NO ₃) ₃ , Ba(OC ₂ H ₅) ₂ , Ba(OC ₄ H ₉) ₃	1200	5	Air	14-15	[39]
Co-HA		CH ₃ COCH ₂ COOC ₂ H ₅					[59]
La-Mn-HA	SM	Al ₂ O ₃ , La(CH ₃ COO) ₂ x·H ₂ O, Mn(CH ₃ COO) ₂ ·4H ₂ O,CTACl, SE-	1200	6	Air	42	[41]
		30,Triton X-100					[41]
Ba-HA	СР	Ba(NO ₃)2, Mn(NO ₃)2, Al(NO ₃)3·9H ₂ O, (NH ₄)2CO ₃	1400	10	Air	15	[43]
Sr-La-Mn-HA	СР	Sr(NO ₃) ₂ , La(NO ₃) ₃ ·6H ₂ O, Mn(NO ₃) ₂ , Al(NO ₃) ₃ ·9H ₂ O, (NH ₄) ₂ CO ₃	1200	2	Air	51	[46]
La-Mn-HA	CP-SD	La(NO3)3·6H2O, Mn(NO3)2, Al(NO3)3·9H2O, NH4OH	1200	4	Air	28	[47]
Ba-HA	RM	Ba(OC ₃ H ₇) ₂ , Al(OC ₃ H ₇) ₃	1300	2	Air	130	[48]
Ba-HA	RM	Ba(OC ₃ H ₇) ₂ , Al(OC ₃ H ₇) ₄ , NH ₄ OH, Triton X-100, N-Hexanol	1300	6	Air	90	[51]

Table 1. Strategy synthesis methods and specific surface areas.

HA: Hexaaluminate

SSR: State solid reaction

ARS: Activated reactive synthesis

LEBM: Low energy ball mill

SG: Sol gel

SD: Supercritical Drying

SM: Surfactant madiated

CP: Coprecipitation

RM: Reverse Microemulsion

Catalysts	Surface area	Reaction conditions		Reaction type	Catalytic effect	
	(m²/g)	T ₁₀ (°C)	T ₉₀ (°C)			
BaM _x Al _{12-x} O _{19-α} ; LaMAl ₁₁ O ₁₉ (M:Cr,Mn,Fe,Co,Ni)	11.1- 15.7	540-810	720-780	CH₄ Combustion	Order of reactivity: Mn > Fe >> Co = Cr = Ni. The combustion performance is mainly determined by the nature of the transition metal.	[28, 101]
BaCuAl ₁₁ O _{18.5}	11	510	610	CH ₄ Combustion	The introduction of Cu ²⁺ ions in the Ba-hexaaluminate structure leads to a fairly active catalyst.	[37, 78]
BaMn _{0.5} Co _{0.5} Al ₁₁ O ₁₉	15.2	585	740	CH₄ Combustion	A synergetic effect is reported. The doubly substituted material, $BaMn_{0.5}Co_{0.5}Al_{11}O_{19-\alpha}$, had a higher reaction rate than $BaMnAl_{11}O_{19-\alpha}$ and $BaCoAl_{11}O_{19-\alpha}$.	[39]
Mn ₃ O4/BaMnAl ₁₀ O _{17.25} , (Mn _{1-x} M _x) ₃ O4, M = Fe,Co,Ni)	20	360-418	530-580	CH₄ Combustion	It was revealed that the air oxidation derived composites showed the excellent specific activities superior to those of the corresponding Mn ₃ 0 ₄ /hexaaluminates prepared from the conventional impregnation method.	[102]
Sr _{0.8} La _{0.2} XAl ₁₁ O ₁₉ , X=Al and Mn	19.7, 16.9	380, 420	650, 700	CH₄ Combustion	The authors reported that the catalytic performance initially increase with the temperature, but decreases at about 700 °C. This activity drop is related to the dissociation of PdO into metallic Pd species, that is observed at low oxygen partial pressures. This behavior is related to the removal of adsorbed oxygen species necessary for the catalytic reaction.	[31]
BaNi _y Al _{12-γ} O _{19-δ} , (y = 0.3, 0.6, 0.9, 1)	-	300	850	POM (Reforming of methane to syngas synthesis)	The catalysts showed high activity and selectivity with a CH ₄ conversion of 92% and CO selectivity of 95% at 850 °C. The catalysts also exhibited an excellent ability to suppress carbon deposition and loss of active phase, so that they exhibited high stabilities after 100 h of reaction.	[110]

Table 2. Catalytic performance by hexaaluminates and reaction conditions.

	BaNiAl ₁₁ O _{19-α}	24	250-300	750	POM (Reforming of methane to syngas synthesis)	The authors found that hexaaluminate calcined at 1400 °C exhibited a more stable and higher behavior than the first one calcined at 1000 °C. The BaNiAl ₁₁ O _{19-$\alpha}$ catalyst calcined at 1400 °C and reduced to 1000 °C showed a higher activity than BaNiAl₁₁O_{19-$\alpha} calcined at 1200 °C and reduced to 800 °C. This behavior is explained by the authors from the presence of a Nirich surface and highly dispersed Ni species.$}}	[111]
_	2-5-10%Ni/BHA	21-24	-	250-350	CO Methanation (Reforming of methane to syngas synthesis)	CO is completely converted (>99%) over 2Ni/BHA and 5Ni/ BHA catalysts at 350 °C. With the increase of NiO loading for the 10Ni/BHA catalyst, the maximum peak of CO conversion (>99%) shifts to lower temperature (250 °C) and is maintained in the range 250–400 °C. In contrast, for Ni/Al ₂ O ₃ catalysts, the maximum CO conversion is only 93.5 and 21.7% obtained over 10Ni/Al ₂ O ₃ and 5Ni/Al ₂ O ₃ at 400–450 °C	[112]
_	Rh/BaAl ₁₂ O ₁₉ - SrAl ₁₂ O ₁₉ - CaAl ₁₂ O ₁₉ vs Rh/α-Al ₂ O ₃	4-15	720-750	1000-1050	POM (Reforming of methane to syngas synthesis)	The authors compares the results obtained with a commercial Rh/α -Al ₂ O ₃ showing that hexaaluminate catalysts were less stable, active and selective than the commercial catalyst. Rh/α -Al ₂ O ₃ >> $Rh/BaAl_{12}O_{19}$ = $SrAl_{12}O_{19}$ = $CaAl_{12}O_{19}$	[113]
_	Ca _{1-x} La _x NiAl ₁₁ O _{19-δ} (x:0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1)	1-6	450-500	750-900	DRM (Reforming of methane to syngas synthesis)	The authors indicated that activity increases with the degree of Ni substitution, but also increases the amount of carbon produced.	[64]
_	LaNiyAl _{12- y} O _{19- δ} (y=0.3, 0.6, 0.9, 1)	-	500	800	DRM (Reforming of methane to syngas synthesis)	The authors found that catalytic activity increases with temperature in the range of 500-900 °C and with the amount of nickel substituted where LaNiAl ₁₁ O _{19-δ} > LaNi _{0.9} Al _{11.1} O _{19-δ} > LaNi _{0.6} Al _{11.4} O _{19-δ} > LaNi _{0.3} Al _{11.7} O _{19-δ}	[62]

ABAl ₁₁ O ₁₉ (A = La, Ba and B = Mn, Fe, Ni)	-	830-850	950-1200	Transformation of N₂O	Fe and Mn-containing hexaaluminates showed the highest activities, whereas Ni-containing catalysts are less active, compared to unsubstituted hexaaluminate.	[123]
BaMnAl ₁₁ O ₁₉	15	100-150	400-450	NH ₃ oxidation (Transformation of N ₂ O)	The authors show significant amounts of NO that increase with temperature with a maximum at about 750 °C. From this temperature the NO concentration decrease related to the occurrence of a selective non-catalytic reduction process	[128]
Balr _x Fe _{1-x} Al ₁₁ O ₁₉ (x:0.2, 0.5, 0.8)	10-23	325-350	380-450	N ₂ O decomposition	Here it was found that $Balr_xFe_{1-x}Al_{11}O_{19}$ hexaaluminates exhibited much higher activities and stabilities than Ir/Al_2O_3 - 1200. Comparing $BalrxFe_{1-x}Al_{11}O_{19}$ with $Balr_xAl_{12-x}O_{19}$ (x = 0- 0.8), it was found that iridium was the active component in the decomposition of N ₂ O and the Iridium of the structure was more active than the large IrO_2 particles.	[93]
LaMnxAl _(12-x) O ₁₉ , BaMnxAl _(12-x) O ₁₉	21-27	500-550	650-700	N ₂ O decomposition	The authors reported that the Ba-hexaaluminate exhibited higher activity than the La-hexaaluminate at a given Mn content that can be related by the presence of active Mn ³⁺ sites in the octahedral position of the Mn-substituted Ba- hexaaluminate.	[28-101]