

MASTER’S THESIS

Thesis submitted in partial fulfilment of the requirements

for the degree of Master of Science in Engineering

at the University of Applied Sciences Technikum Wien

Master Biomedical Engineering

Development and Implementation of

Standardized Interfaces for an Android based

Telemonitoring Server
by

Javier Urricelqui, BSc

Supervisor 1: Dipl. Ing. Ferenc Gerbovics

Supervisor 2: Dr. Ing. Luis Serrano

Vienna, 06.05.2011

Declaration

„I confirm that this thesis is entirely my own work. All sources and quotations have been

fully acknowledged in the appropriate places with adequate footnotes and citations.

Quotations have been properly acknowledged and marked with appropriate punctuation.

The works consulted are listed in the bibliography. This paper has not been submitted to

another examination panel in the same or a similar form, and has not been published. “

Place, Date Signature

Resumen

El tema de este Proyecto Fin de Carrera es el “Desarrollo e Implementación de Interfaces

Estandarizadas para un Servidor de Telemonitorización basado en Android” complementario

al dispositivo HDH.

El Sistema de Telemonitorización conocido como Health Data Hub (HDH) ha sido

desarrollado por un grupo de estudiantes de Máster en la University of Applied Sciences

Technikum Wien obteniendo como resultado, un dispositivo tipo muñequera capaz de medir

datos médicos mediante sensores, recibir datos de parámetros vitales por parte de

dispositivos para el cuidado de la salud, además del reenvío de datos como mensajes de

alarma y diversas actualizaciones a distintos servidores mediante interfaces estandarizadas.

Por lo que, el principal objetivo que trata esta proyecto es el desarrollo e implementación de

interfaces estandarizadas para un servidor de telemonitorización basado en Android, capaz

de gestionar los datos enviados por los dispositivos enmarcados en este proyecto según el

estándar HL7 v2.6.

El dispositivo HDH es capaz de medir parámetros vitales, generar actualizaciones

automáticas y mensajes de alarma para enviarlos posteriormente al Android Server mientras

el paciente realiza su vida cotidiana. De esta manera, el usuario del Android Server puede

disponer de información relativa al usuario del HDH.

El conjunto de dispositivos que se encuentran en el marco del proyecto HDH son el Servidor

HDH, el cliente HDH, el Servidor Android y el dispositivo HDH. El servidor Android

desarrollado durante este proyecto, consiste en una solución esencial de este entorno.

El Android Server está realizado sobre la plataforma Android, lo cual permite ofrecer nuevas

funcionalidades y servicios que dotan de gran potencial al proyecto permitiendo llevar a cabo

los objetivos propuestos.

Además, Android se define como código abierto, lo cual permite al desarrollador una fácil

integración a otros entornos y provee herramientas que permiten que el desarrollo de la

aplicación sea más atractivo para el programador.

Este proyecto ha sido desarrollado en colaboración con A. Tellechea [29], estudiante de la

Universidad Pública de Navarra y estudiante de intercambio Erasmus en la University of

Applied Sciences Technikum Wien.

Las tareas asignadas para el desarrollo de la aplicación Android Server fueron

proporcionadas a ambos estudiantes, por lo que se trabajó conjuntamente en el desarrollo

de la aplicación desde sus inicios hasta las últimas soluciones adoptadas para su desarrollo.

En lo concerniente al desarrollo de este proyecto ha sido implementado el cliente con

tecnología Bluetooth del Android Server, además del desarrollo del servidor con tecnología

Wi-Fi. En cuestión al procesado de datos, se ha colaborado conjuntamente debido a que es

independiente de la tecnología que se use en la comunicación. Por otro lado, en este

proyecto también se ha desarrollado la conexión entre el Android Server y el servidor

principal.

Las otras partes del proyecto, como el desarrollo de la gestión del paciente, el graficado de

sus datos clínicos, el diseño e implementación de la interfaz gráfica, simuladores usados etc

fueron creados por ambos estudiantes, haciendo posible que los objetivos del proyecto

fuesen concluidos.

Además, debido a que el funcionamiento del Android Server tenía que ser testeado en un

entorno real, fue necesario trabajar con los responsables del desarrollo del HDH M.

Bitterman [14] y el servidor principal P. Khumrin [47], ambos estudiantes de la University of

Applied Sciences Technikum Wien

Abstract

The topic of this Master Thesis is the “Development and Implementation of Standardized

Interfaces for an Android based Telemonitoring Server”.

A Telemonitoring-System called Health Data Hub (HDH) was developed in the University of

Applied Sciences Technikum Wien by teamwork of Master Students. The outcome of this

project was a wrist wearable health device which is capable of measuring health data via

built-in sensors, to receive data from personal health devices over standardized interfaces

and to forward data with alarm messages and status updates to multiple servers.

Thus, the main goal of this thesis is the development and implementation of standardized

interfaces for a telemonitoring server on the Android platform, in order to deal with the health

data sent by the HDH. This health data is based on HL7 v2.6 standard.

In this way, HDH is able to measure the general well-being and health status of the person

wearing it and to generate automatic status updates and alarm messages with high

sensitivity and high specificity to be received by the Android server and reviewed by a

monitoring person.

Basically, the HDH infrastructure consists of 4 main components, the HDH wrist device, the

HDH Server, HDH Client and HDH Android Server. Thus, the Android Telemonitoring-Server

solution created is intended to act as an essential part of this telemonitoring ecosystem.

The Android Server is done on Android programming language, which offers great potential

for implementing new functionality and services. Being open source allows fast integration

with other platforms and offers tools that facilitate the development of applications. All these

features make Android powerful tool for the development of this project.

This Master Thesis has been developed in collaboration with A. Tellechea [29], also student

from Public University of Navarra and incoming exchange student in University of Applied

Sciences Technikum Wien by the Erasmus program.

Due to the fact that the development of this Android Server application was proposed to both

Master Thesis students, they worked hand in hand in the achievement of all the targets: from

the first steps learning the Android programming language until the performance analysis,

design of the application and the adopted solutions.

Regarding the connections, I dealt with the implementation of the Android Server (acting as

the Client) via Bluetooth and also with the development of the part in where the system

works with WiFi technology as a Server. The processing of the data and the way to work with

them, since it is independent of the used technology, was developed by both students. On

the other hand, I developed the Connection between the Android Server and HDH Main

Server running nowadays in this application.

The other parts of the Thesis, for instance the performance of the patient information

management, everything regarding the medical graphics, as well as the design and

implementation of the GUI and the simulators etc. were created by both students. Thanks to

that, the targets given in the beginning of the Master Thesis were successfully achieved.

Furthermore, since the correct implementation of all functionalities created in the Android

Server application had to be tested in real scenario, it was needed to work with the

responsible of the HDH device M. Bitterman [14] and the responsible of the Main Server P.

Khumrin [47]

Acknowledgements

To the Public University of Navarra, for giving me the necessary knowledge for face the

professional challenges. To Dr. Ing. Luis Serrano, the responsible of this exchange program,

for making possible the relationship between both universities.

To the University of Applied Sciences Technikum Wien, to the Healthy Interoperability group

and especially want to cordially thank my project leader Dipl. Ing. Ferenc Gerbovics for his

support and proofreading of this master’s thesis.

To all the people related with the students exchange program, who work to do possible this

experience.

To all the friends that I have met during this year.

At last but not least, from the bottom of my heart, thanks to my family for always being there

when I need you.

A la Universidad Pública de Navarra, por el conocimiento que me ha proporcionado para

afrontar este reto profesional. A Dr. Ing. Luis Serrano, como responsable del programa de

intercambio que hace posible que la relación entre ambas universidades sea llevada a cabo.

A la University of Applied Sciences Technikum Wien, al grupo de Healthy Interoperability y

especialmente a mi tutor Dipl. Ing. Ferenc Gerbovics por su apoyo y corrección de este

proyecto fin de carrera.

A todas las personas que hacen posible que este intercambio de estudios se haya podido

realizar.

A todos los amigos que he conocido durante este año.

Y aunque en última instancia pero no por ello menos importante, a mi familia, por estar

siempre cuando más os he necesitado.

Table of Contents

1 Introduction .. 1

1.1 Telemonitoring Advances Home Care Practices ... 1

1.2 eHealth, transforming the healthcare landscape ... 2

1.3 Why a standard for communication is needed: Standard ISO/IEEE 11073 4

1.4 HL7, Health Level Seven ... 5

1.5 Android ... 5

1.6 Eclipse ... 6

1.7 Background of the Project: HDH project at the UAS Technikum Wien 6

1.8 Project motivation .. 8

1.9 Objectives of the Thesis ... 10

1.10 Structure of the Thesis ... 10

2 State of Art ... 12

2.1 Health care Organization and Standard ... 12

2.1.1 ISO/IEEE 11073 ... 12

2.2 HL7 .. 13

2.2.1 The organization .. 13

2.2.2 The Standard ... 14

2.2.3 Very useful HL7 tool: HAPI .. 15

2.3 Health Data Hub .. 16

2.4 Mobile Operating System ... 20

2.5 Android ... 23

2.5.1 The Android Platform ... 23

2.5.2 Android Developers ... 23

2.5.3 Android Market ... 24

2.5.4 Dalvik Virtual Machine ... 24

2.5.5 Platform Versions ... 25

2.6 IDE Integrated Development Environment .. 26

2.7 Android development environment working with Eclipse 28

2.7.1 The Android SDK ... 28

2.7.2 Developing in Eclipse with ADT Plugin .. 28

3 Development and Implementation ... 29

3.1 Connections between HDH and Android Server .. 29

3.1.1 Bluetooth Technology .. 29

3.1.2 Wi-Fi Technology ... 46

3.1.3 GSM Technology ... 50

3.1.4 Processing Alarm Messages ... 53

3.2 Connection between the Android Server and HDH Main Server 56

3.3 Parser: from HL7 message to HL7 .. 67

3.3.1 HL7 HAPI for Parsing and Encoding .. 67

3.3.2 Structure of the HL7 message ... 68

3.3.3 HL7 Parser ... 75

3.4 Patients Management .. 82

3.4.1 Lifecycle of the patient ... 82

3.5 Graphs ... 98

3.6 Graphical User Interface Design .. 102

3.6.1 Custom Theme for Android Server .. 102

3.6.2 Android Server Home .. 104

3.6.3 Bluetooth Server .. 106

3.6.4 MyCustomAdapter and PopUpWindow ... 109

3.6.5 TabActivity ... 112

3.6.6 Calendar .. 114

3.6.7 About Us .. 115

3.7 Design of simulators .. 116

3.7.1 HDH (client) simulator for the Bluetooth connection .. 117

3.7.2 HDH (client) simulator for TCP/IP connection .. 118

3.7.3 Simulator for GSM messaging ... 118

4 Evaluation and results .. 119

4.1 Evaluation .. 119

4.2 Results ... 119

4.2.1 Communication via Bluetooth between HDH and Android Server 120

4.2.2 Android Server via WiFi ... 122

4.2.3 Connection with the HDH Main Server .. 123

4.2.4 GSM Service .. 124

4.2.5 Testing the Graphical User Interface ... 125

5 Conclusions and Future researches .. 127

5.1 Conclusions ... 127

5.2 Future researches .. 128

Bibliography ... 130

List of Figures .. 135

List of Abbreviations .. 139

Annexes ... 141

I. External storage system: SDCard... 141

II. AndroidServer Project Directory .. 142

III. Android Manifest ... 144

IV. Table of the HL7 messages components ... 147

V. Patient Structure .. 154

VI. Java vs. Android ... 155

VII. Activity ... 158

VIII. Service ... 159

IX. NFC .. 160

X. ANT ... 162

XI. SVN .. 163

1

1 Introduction
In this point, I deal firstly with the benefits happened in health-care because of the

Telemonitoring practices. In this context, I explain the eHealth concept, the importance

of this emerging field not only as a technical development but also as an attitude, and a

commitment for networked to improve health by using information and communication

technology.

I also explain why a standard for communication is needed, talking about ISO/IEEE

11073 and HL7,the most widely used standard messaging in the healthcare industry.

It is also introduced the Health Data Hub wrist device developed by Health

Interoperability team in the UAS Technikum Wien.

As I worked with Android, I briefly introduce it and Eclipse too, the Android development

environment.

It is also important to describe the HDH project, inside the Healthy Interoperability

research Project developing in UAS Technikum Wien. Finally I talk about motivation,

objectives and the structure of the memory.

1.1 Telemonitoring Advances Home Care Practices
Depending on the severity of illness of patients, there are cases in which they should be

monitored in real time. That is, if a patient is suffering a chronic disease, the ideal would

be to examine him continuously 24 hours a day. However, this fact clearly implies the

need for space in hospitals for each of these patients as well as qualified professionals,

which is a huge expenditure in the health system. Unfortunately, in many cases patient

can´t have the best treatment.

The telemonitoring is presented as the solution of this problem. From a generic point of

view, a home telemonitoring system basically consists of medical devices needed to take

measures and a central computer called a gateway or that acts as a gateway integrated

engine connection to the telemonitoring server.

The Gateway, which is usually a PC, PDA, phone or any device that can perform this

function, will be the responsible of controlling the communication between the media

devices to the server. Thus, monitoring of the patient happens.

In this communication system, it is imperative that all devices are equipped with a proper

communication capability. Of course, wireless technologies provide greater comfort for

2

the user but their communication protocols must also ensure the safety of information.

One of the targets of the personal Telemonitoring system is to be a plug and play

communication between devices forming the network, so that these devices connect,

configure and transmit their data without intervention by the patient (who, besides,

wouldn´t need to have any technical knowledge).

In next point called 1.7 Background of the Project: HDH project at the UAS Technikum

Wien it is detailed the telemonitoring system with which we are working on now.

A very brief summary of it would be this: We have a device called HDH (Health Data

Hub-prototype) which communicates with the Android mobile phone (it performs the

function of a Gateway). The protocols used for the communication is Bluetooth, GSM

and WiFi. At the same time, the Android phone communicates with a central server.

Currently, it works via Wifi. The Android periodically sends the accumulated data,

therefore, the central server has all the information about the patient.

1.2 eHealth, transforming the healthcare landscape
eHealth is an emerging field in the intersection of medical informatics, public health and

business, referring to health services and information delivered or enhanced through the

Internet and related technologies. In a broader sense, the term characterizes not only a

technical development, but also a state-of-mind, a way of thinking, an attitude, and a

commitment for networked, global thinking, to improve health care locally, regionally, and

worldwide by using information and communication technology.

Because the Internet created new opportunities and challenges to the traditional health

care information technology industry, the use of a new term to address these issues

seemed appropriate. These "new" challenges for the health care information technology

industry were mainly the capability of consumers to interact with their systems online,

improved possibilities for institution-to-institution transmissions of data; new possibilities

for peer-to-peer communication of consumers.

Examples include health information networks, electronic health records, telemedicine

services, wearable and portable systems which communicate with each other, health

portals, and many other ICT-based tools assisting disease prevention, diagnosis,

treatment, health monitoring and lifestyle management.

As said, eHealth means also Information and Communication Technology tools and

services for health. Whether eHealth tools are used behind the scenes by healthcare

professionals, or directly by patients, they play a significant role in improving the health

of citizens.

3

Information and Communication Technologies (ICTs) have an ever-growing impact on

our working and private lives, and the healthcare sector is not an exception. Used

appropriately, the tools and services which contribute to eHealth provide better, more

efficient healthcare services for all.

This explanation hopefully is broad enough to apply to a dynamic environment such as

the Internet and at the same time e-health encompasses more than just "Internet and

Medicine".

As such, the "e" in e-health does not only stand for "electronic," but implies a number of

other "e's," which together perhaps best characterize what e-health is all about.

 For example:

 Efficiency: increase efficiency in health care and also decrease costs.

 Enhancing quality of care: for example by allowing comparisons between

different providers.

 Evidence based: effectiveness and efficiency should not be assumed but

proven by rigorous scientific evaluation.

 Encouragement of a new relationship between the patient and health

professional.

 Enabling information exchange and communication in a standardized way

between health care establishments.

 Extending the scope of health care beyond its conventional boundaries.

eHealth enables consumers to easily obtain health services online from

global providers.

 Ethics: it involves new forms of patient-physician interaction and poses new

challenges and threats to ethical issues such as online professional practice,

informed consent, privacy and equity issues.

 Equity: to make health care more equitable is one of the promises of e-health,

but at the same time it is a handicap to avoid. People, who do not have the

money, skills, and access to computers and networks, cannot use computers

effectively. As a result, these patient populations are those who are the least

likely to benefit from advances in information technology, unless political

measures ensure equitable access for all.

In addition e-health should be easy-to-use.

eHealth systems provide patients with better information, for instance, on treatments, on

their condition, and on improved standards of living. The use of electronic patient records

allows doctors to see much more of a person’s medical history than do paper files, which

typically only include information on treatment in a single surgery or hospital. A patient’s

4

condition can be monitored remotely, either freeing up a hospital bed which would have

been required with previous monitoring equipment, or providing a better standard of care

for the patient.

1.3 Why a standard for communication is needed:

Standard ISO/IEEE 11073
In general, information systems require standards for the storage, retrieval and

manipulation of information. In all voice, data or video signal systems, communication

can´t happen without standards for sending and receiving messages. The same

happens in the environment of home telemonitoring systems.

However, usually, medical devices from different manufacturers exist, and they work with

their own formats. That means they have different ways of recording and transmitting

data using different protocols and semantics. It shows clearly a great need for

standardization in this area.

With the standardization of communications in the home telemonitoring system area

decrease of costs can be achieved, by being able to choose from a wide range of

products from different companies. At the same time, it would facilitate the replacement

and addition of devices and provide a unique platform to develop new equipment for the

systems, progressing in this area faster. Interoperability allows plug and play systems in

which the system automatically detects devices when they connect, configure them and

communicate with them without user intervention.

For all these reasons, they created a standard for medical device communication.

The current standard for medical device communication is the ISO / IEEE 11073 (X73)

[1]. This family of standards covers the seven levels of the OSI protocol stack and

provides the versatility to convert information into an interoperable format so that it can

be exchanged between personal health devices and a server infrastructure. Data can

then be sent to a remote place for control or storage of an Electronic Health Record, and

by this, to build more complete systems.

In other words, CEN ISO/IEEE 11073 Health informatics - Medical / health device

communication standards enable communication between medical, health care and

wellness devices and with external computer systems. They provide automatic and

detailed electronic data capture of client-related and vital signs information, and of

device operational data.

5

The X73 standard, which was developed focusing on patient Point of Care (Point of

Care, X73-PoC) and on the implementation in Intensive Care Units (ICUs) has

experienced in recent years several developments not covered initially (new use cases,

new networking technologies, new profiles, etc.).

1.4 HL7, Health Level Seven
As mentioned before, the environment in which this project was created was the

healthcare field, as the data working with was medical data. The data transmitted from

the wrist device (HDH) to the Android server is the pulse and other parameters like

activity and altitude. Then the data is processed in the Android Server and sent to the

main server. It is mandatory to use this standard for sending and receiving medical data.

As cited, we are working with the HL7 standard [2]. The name references to the top layer

(Level 7) of the Open Systems Interconnection (OSI) layer protocol for the health

environment. The HL7 standard is the most widely used standard messaging in the

healthcare industry around the world. Later, in the section 2.2 HL7 it´s possible to find

more information on this subject and there is a deeper explanation of the messages that

we used (fields, construction, analysis, treatment etc.) in the section 3.3 Parser: from

HL7 message to HL7.

1.5 Android
Android [3] is a mobile operating system initially developed by Android Inc. Android was

bought by Google in 2005. Android is based upon a modified version of the Linux kernel.

Google and other members of the Open Handset Alliance collaborated on Android's

development and release. The Android Open Source Project (AOSP) is tasked with the

maintenance and further development of Android.

As said, Android is the product of primarily Google but more appropriately of the Open

Handset Alliance. The Open Handset Alliance is an alliance of approximately 30

organizations committed to bringing a “better” and “open” mobile phone to the market. A

quote taken from its website says it best: “Android was built from the ground up with the

explicit goal to be the first open, complete, and free platform created specifically for

mobile devices” [4].

The expert in analysis for the hight-tech industry, Canalys [5], reported that in 2010 the

Android O.S. was the world's best-selling smartphone platform, dethroning Nokia's

Symbian from the 10-year top position.

6

1.6 Eclipse
Eclipse [6] is an open source community, whose projects are focused on building an

open development platform comprised of extensible frameworks, tools and runtimes for

building, deploying and managing software across the lifecycle. The Eclipse Foundation

is a not-for-profit, member supported corporation that hosts the Eclipse projects and

helps cultivate both an open source community and an ecosystem of complementary

products and services.

Eclipse, from the viewpoint of software, is a multi-language software development

environment comprising an integrated development environment (IDE) and an extensible

plug-in system. It is written mostly in Java and can be used to develop applications in

Java and, by means of various plug-ins, other programming languages including Ada, C,

C++, COBOL, Perl, PHP, Python, Ruby (including Ruby on Rails framework), Scala,

Clojure, and Scheme. The IDE is often called Eclipse ADT for Ada, Eclipse CDT for

C/C++, Eclipse JDT for Java, and Eclipse PDT for PHP.

The initial codebase originated from VisualAge. In its default form it is meant for Java

developers, consisting of the Java Development Tools (JDT). Users can extend its

abilities by installing plug-ins written for the Eclipse software framework, such as

development toolkits for other programming languages, and can write and contribute

their own plug-in modules.

Released under the terms of the Eclipse Public License, Eclipse is free and open source

software [6].

1.7 Background of the Project: HDH project at the UAS

Technikum Wien
The Healthy Interoperability [7] research Project, developing at the University of Applied

Sciences Technikum Wien, has the goal to implement interoperable telemonitoring

solutions based on international standards together with business partners in pilot

projects. One of the latest developments within this project is the Heath Data Hub

(HDH), a wrist wearable medical device which measures health data with built-in sensors

[8] .

The HDH is also capable of receiving medical data from personal heath devices (PHDs)

which utilize the Continua Health Alliance guideline [9] (ISO/IEEE 11073) or the ANT [10]

protocol. Furthermore, the received and measured values are sent by the HDH to a

server. Hereafter the server redirects alarm messages and status updates about the

HDH users to a monitoring person [8].

7

Methods

The CPU (Microchip Technology inc., Arizona, USA; PIC32) of the HDH is receiving raw

data from buit-in sensors and standardized medical data from PHDs over the ANT+ and

Bluetooth-module. The pulse rate sensor is based on the principles of pulseoximetry.

Safeguarding real-time measurements and peak detection algorithms are operated on a

separate processing unit. Sensors for altitude and acceleration measurement are

utilizing the I2C bus to communicate with the CPU. A capacity sensor is used to verify

the presence of the HDH user. Measured data is transferred to the server using the

Bluetooth-module, in case the server is not available the data is buffered on the SD-Card

[8].

Results

In general the HDH is capable of measuring pulse rate values with the built-in sensor, to

receive standardized data from external PHDs and to put the available data into context

to each other using intelligent algorithms.

To work in the intended way, the HDH also needs an infrastructure to exchange data.

This is provided by two types of communication servers: Android Server and HDH

Server (see Figure 1.1). Data is sent to the servers by means of HL7 V2.6 messages

which are acknowledged by the server. User feedback is achieved via the touch-screen

[8].

Figure 1.1 HDH Infrastructure

Discussion

The HDH implements the basic functions as described. Minor development steps are still

open to achieve conformity to industry standards. Another major issue is the social

distance between the HDH user and their relatives and care givers. This technology can

complement but never replace personal care [8].

8

Acknowledgements

This project is supported by the Austrian Research Promotion Agency (FFG) within the

“FHPlus in coin” program and by the City of Vienna Municipal Department 27 “EU-

Strategy and Economic Development” following the “Fachhochschulförderrichtlinie” 2005

[8].

Figure 1.2 Environment of the HDH

1.8 Project motivation
As explained in the previous section, this project is a part of a larger project developed at

the UAS Technikum Wien: Implementation of a wrist wearable Health Data Hub-

prototype for context based telemonitoring of elderly people using standardized data

transfer methods.

In a few words, this system in development is aimed at the capture of certain vital signs

of patients, mostly elderly patients and achieves telemonitoring. Thus making viable the

continuous monitoring of them over long-distances and in case of emergency to provide

assistance immediately.

The idea to help a greater number of people is very appealing. Through this system, it is

not only possible to manage medical monitoring, but also it is possible to monitor many

patients.

Regarding to the health-care of elderly people, the role of the family is indisputable.

Caring for elders takes a long time for their relatives. The care of the elderly requires

9

much effort, and for the most of the society caring for them 24 hours per day is

impossible. The fact of having to leave alone their elders makes the family members feel

ill at ease. Instead, through the introduction of this system, this wouldn´t be a problem.

By the incorporation of the developed project in the real life family members would have

the possibility to monitor over a large distance only by using an Android mobile (with

Android server). Thanks to this system, family members may be in a different place, as

for example in their work place, or even doing their routine tasks outside, having

assurance that their elders feel well. And if ever there is any complication, through the

system of alert messages family members would be informed instantly, and can reach

their home immediately or even call health services if necessary.

As this would be an almost automatic process, because the users don´t have to worry

about the operation of the HDH (i.e. communication processes as sending or receiving of

messages...) This results in an easy and comfortable system, to be used by a large

number of patients.

The fact of thinking that this project could be set in practice is very important. It is a good

feeling that working in a project that in future can be used in real life. It is fantastic to help

patients at home, making them and their relative’s life more comfortable, and improving

the quality of health care.

The implementation of this system allows reducing the number of times that the patient

must go to the hospital for routine measures taken, and medical services would not have

the need to move to the patient’s house that often (saving in this way both time and

money). It also ensures that their families can realize their tasks with the full confidence

that their elders are getting the best care.

The truth is that nowadays, the implementation of new devices for telecommunications in

the medical field is a very exciting option. This project, in the context of a bigger project,

was very gratifying.

Besides, speaking in technical terms, using a platform of open source as Android, gives

important knowledge, useful for the introduction in the professional world.

Android is a multitasking operating system, it offers an advanced development

environment and by this it guarantees high level benefits. And it is free software; it allows

easy integration with other implementations and platforms, something that does not

happen with proprietary systems.

In addition, the majority of mobile phone manufacturers are moving to it. It seems like the

election of Android for the implementation of the project is correct.

10

If we add to all these amenities the use of a wireless technology, such as Bluetooth, the

facilities that the system offers are very good. Today, user demands governing the

market are the wireless technologies. This is very natural because it is a very handy

option. In the developed system the use of cables is not necessary to measure the

elder´s parameters, which is more comfortable. It is inconceivable to establish a system

which uses a lot of cables because it would considerably limit the movements of the

patients, decreasing their mobility, thus decreasing their quality of life. All this is

superseded by Bluetooth technology.

The knowledge that this project offers, like knowledge about medical messages (HL7)

and how the medical protocols work is also very interesting.

1.9 Objectives of the Thesis
The main target of this project is the Development and Implementation of Standardized

Interfaces for an Android based Telemonitoring Server, complementary to the HDH.

The HDH Android Server designed shall be capable of:

 Receive, acknowledge and permanently store HL7 V2.6 (optionally ISO/IEEE

11073-20601) messages (alarm messages or status updates) from the HDH

via Bluetooth, WiFi and GSM.

 Manage data internally by different sender (for monitoring multiple persons

with a single android device).

 Communicate alarm messages to the user of the Android device via acoustic

and haptic feedback.

 Provide servicing mode for exporting data to HDH Server.

 Display graphs of trends of received values.

In the later section, 3. Development and Implementation, is specified how the analysis

and development has been performed of each of the objectives listed above. What the

characteristics of each of the targets are, regarding the design, programming and

implementation. What difficulties were encountered while implementing them and how

they were solved. In conclusion, overcoming all objectives given at the beginning of this

project.

1.10 Structure of the Thesis

Chapter 1

11

The first chapter introduces the context in which this Master Thesis has been developed

and it addresses the general and specific objectives, detailing the contents of the various

sections and subsections of the thesis.

Chapter 2

The second chapter develops the state of the art of this master thesis, dealing with some

of the most important concepts of it. For instance, the health care organization and

standards are mentioned, more specifically the ISO/IEEE 11073 and HL7. This chapter

also refers to the HDH (Health Device Hub) wrist device. On the other hand, it is shown

the current landscape of existing operating systems and due the fact that Android is the

main character of this master thesis, deeper information about it is given. Finally,

Eclipse, a development environment for Android, is introduced.

Chapter 3

This chapter presents the developed Android Server application. It deals mainly with the

development and implementation of this application. This chapter begins talking about

the different connections between the Android phone and both the HDH wrist device and

the Main Server. The related technologies used for the connections are explained:

Bluetooth, Wifi and GSM. All the message types used in the communication are

explained and the alarm messages are described also. The messages created in order

to achieve the correct performance of the system are deeply analyzed and the used HL7

parsed too. Besides, the patient information management in the system is explained.

Furthermore, the graphics developed with the purpose of illustrate the received health

data information are analyzed. At the end of the chapter, the design of both the graphical

user interface and the simulators used while trying the connections are described.

Chapter 4

The chapter 4 deals with the evaluation and results obtained after finishing this master

thesis. In the results, the different connections in the system are analyzed. Firstly, there

are mentioned the connections between the HDH wrist device and the Android Server

application via Bluetooth, Wifi and GSM. Moreover, it is analyzed the connection

between the Android Server application and the Main Server (via Wifi). In the end, the

graphical user interface is tested also.

Chapter 5

To conclude, the conclusions obtained after the development of this thesis are given.

After acquiring the appropriate knowledge, there are revealed some guidelines to

consider in the future.

12

2 State of Art
In this section, it will be explained deeply the organizations and standards for health,

ISO/IEEE 11073 and also the standard for medical messages, HL7 (the organization, the

standard and HAPI, a very useful tool).

It is introduced the Health Data Hub wrist device developed at the UAS Technikum Wien

by the Healthy Interoperability team.

Later, several mobile OS are mentioned, as Symbian, Blackberry, Windows, iPhone, and

for sure, Android, showing the evolution of sales both in Europe and around the world.

Since the tool worked with is Android, more about this issue will be explained; the

Platform, Developers, the Market and its Virtual Machine Dalvik and about other

respects too.

Later, different integrated development environments for Android are introduced with

focus on Eclipse, talking about the Android SDK and ADT plugin.

2.1 Health care Organization and Standard
The main organizations involved in medical informatics and ICT for health and among

other important activities, collaborating on the development of standards are:

CEN, the European Committee for Standardization or Comité Européen de

Normalization [11] is a non-profit organization whose mission is to foster the European

economy in global trading, the welfare of European citizens and the environment by

providing an efficient infrastructure to interested parties for the development,

maintenance and distribution of coherent sets of standards and specifications.

ISO, International Standards Organization and IEEE, Institute of Electrical and

Electronics Engineering [12], organizations with more responsibilities, even the

international committees depend on them.

Following there is an explanation about the most important standard for medical

interoperability information system, ISO/IEEE 11073(X73) [1].

2.1.1 ISO/IEEE 11073

The primary goals of ISO/IEEE 11073 [1] standards are to provide real-time plug-and-

play interoperability for personal-related medical, healthcare and wellness devices and

13

facilitate efficient exchange of device data, acquired at the point-of-care, in all care

environments.

The standards are targeted at personal health and fitness devices and at continuing and

acute care devices. There are four main partitions to the standards:

 Device data. It includes a nomenclature, optimized for vital signs information

representation based on an object-oriented data model and device

specializations.

 General application services.

 Internetworking and gateway standards (e.g., an observation reporting

interface from CEN ISO/IEEE 11073-based messaging and data

representation to HL7 [2] or DICOM).

 Transports (e.g., cable connected or wireless). In a non-standardized device

connectivity environment it would be some unavoidable problems.

For example, in the absence of standards for these devices, data is captured either

manually or it is not captured at all, which is most often the case. Manually captured data

is intensive labor, recorded infrequently and prone to human error.

With no standardized in this area, even when similar devices do provide

communications, there is no consistency in the information and services that are

provided, thus inhibiting the development of advanced care delivery systems or even

consistent health records.

ISO/IEEE 11703-20601:2010 defines a common framework for making an abstract

model of personal health data available in transport-independent transfer syntax required

to establish logical connections between systems and to provide presentation

capabilities and services needed to perform communication tasks. The protocol is

optimized to personal health usage requirements and leverages commonly used

methods and tools wherever possible [1].

ISO/IEEE 11703-20601:2010 addresses a need for an openly defined, independent

standard for converting the information profile into an interoperable transmission format

so the information can be exchanged to and from personal telehealth devices and

computer engines [1].

2.2 HL7

2.2.1 The organization

Health Level Seven International (HL7) is the global authority on standards for

interoperability of health information technology with members in over 55 countries.

14

Health Level Seven International (HL7) is a not-for-profit, ANSI-accredited standards

developing organization dedicated to providing a comprehensive framework and related

standards. The main targets are the exchange, integration, sharing, and retrieval of

electronic health information that supports clinical practice. It also deals with the

management, delivery and evaluation of health services. HL7's 2,300+ members include

approximately 500 corporate members who represent more than 90% of the information

systems vendors serving healthcare.

HL7 deals mainly with the creation of the best standards in healthcare [2].

2.2.2 The Standard

Health Level 7 (HL7) [2] is also used to refer to some of the specific standards created

by this organization (for example HL7 v2.x, v3.0, HL7 RIM). It is an ANSI standard for

healthcare specific data exchange between computer applications.

The name itself refers to the top layer (Level 7) of the Open Systems Interconnection

(OSI) layer protocol for the health environment. The HL7 standard is the most widely

used messaging standard in the healthcare industry around the world.

Many different computer systems are used in the hospitals and other healthcare provider

organizations. All of these systems should communicate with each other when they

receive new information but not all do so. Thanks to the HL7, which specifies a number

of flexible standards, guidelines and methodologies, various healthcare systems can

communicate with each other. Such guidelines or data standards are a set of rules that

allow information to be shared and processed in a uniform and consistent manner.

These data standards are meant to allow healthcare organizations to easily share clinical

information. Theoretically, this ability to exchange information should help also to

minimize the tendency for medical care to be geographically isolated.

There are four types of standards developed by HL7:

 Conceptual standards (e.g., HL7 RIM).

 Document standards (e.g., HL7 CDA).

 Application standards (e.g., HL7 CCOW).

 Messaging standards (e.g., HL7 v2.x and v3.0). These standards are

especially important because thanks to them it is explained how information

is packaged and communicated from one party to another.

HL7 encompasses the complete life cycle of a standards specification including the

development, adoption, market recognition, utilization, and adherence.

15

HL7 Members can access standards for free and non members can buy the standards

from HL7 or ANSI.

The development of HL7 is linked, among others, the following standards:

 ANSI HISPP (Healthcare Information Standards Planning Panel) for the

coordination of the various standards in the health field.

 ANSI HISB (Healthcare Information Standards Board).

 ASC X12N Group, for the development of EDI standards.

 ASTM E31.11 Group, dedicated to the exchange of clinical data.

 ACR / NEMA DICOM Group, dedicated to medical imaging standards and

other aspects of Radiology Information Systems.

 IEEE P1157 G.

[2]

2.2.3 Very useful HL7 tool: HAPI

HAPI (HL7 application programming interface) is an open-source, object-oriented HL7

2.x parser for Java [13].

HAPI is a powerful tool to parse HL7 messages into an HL7 object. It is a tool where by

simply introducing a HL7 message you can obtain the result of all the separate fields of

the message, the name of each field or to do error correction. It is a great tool which

makes the programmers job much easier. The parsing of the message is an important

part of the project as it does the interpretation of the received medical message.

Unfortunately, the use of HAPI for this project was not applicable. As mentioned at the

beginning, HAPI is a Java tool and in this project Android was used.

Note that Android and Java are two different platforms which share the same

programming language, as well as basic programming libraries. But in this case, it isn't

possible to use the HAPI tool in Android.

In order to understand why the Google API is not 100% compatible with the JavaSE you

can read Annex VI. Java vs. Android, where this issue is explained in detail. Briefly,

Android uses a virtual machine called Dalvik which is not the same as the Java virtual

machine, causing that not all Java applications are executable in Android.

16

2.3 Health Data Hub
The Health Device Hub is a medical device developed by the Healthy Interoperability

(HIO) [7] team from the Biomedical Engineering & Information Engineering Department

of the University of Applied Sciences Technikum Wien. The HDH was created to be

wearable on the wrist of the lower arm to measure the pulse. Following information was

provided by M. Bitterman, a Master Thesis student also from the University of Applied

Sciences Technikum Wien responsible for the “Development of the Data Model for the

wrist wearable Health Device Hub” [14].

The HDH should be capable of acquiring the pulse of the patient as well as monitoring it.

The observation of the pulse is done in relation to physical activity. Moreover, it ensures

the reliable transfer of generated standard and alert messages to different receiver

devices like smart phones or server applications on stationary PCs. In order to achieve

the mentioned tasks, following modules are integrated:

 Sensor modules

 Pulse meter for acquisition of the heart rate

 Accelerometer for activity measurement

 Altimeter for additional information of the

activity

 Temperature sensor

 Communication modules for wireless data

transmission

 ANT+

 Bluetooth

 OLED display with touch-screen function

 Micro USB for data communication and power

supply for recharging the battery.

 Micro SD card reader for local storage management

 Real time clock unit

 Power supply (battery)

Due the fact that the HDH has to be a wristband device, it

has to be very comfortable, small and very lightweight.

The figure 2.1 2.1 represents the first prototype of the HDH.

Obviously, it is based on the mentioned design

requirements. The alignment of the electrical parts and the

signal routing are developed to create further prototypes on

Figure 2.1 HDH-first prototype

17

a flex printed circuit board. This will make it possible to wear it like a watch with the

display on the upper side and the pulse sensors on the lower side of the forearm [14].

Hardware

Figure 2.2 illustrates the position of the main components of the first prototype design

[14].

Accelerometer

The ADXL345 module from Analog

Devices Inc. USA. It is a thin, low power,

3-axis accelerometer with a fixed 10-bit

resolution and a full resolution up to 13 bit

at up to ± 16g. This enables measurement

of inclination changes less than 1.0°.

ANT+

An AP2 RF transceiver module from

Dynastream Innovations Inc. provides

ANT+ data communication in the 2.4GHz

worldwide ISM band with 78 selectable

RF channels (2403 to 2480MHz) and a

RF data rate of 1 Mbps. Further it

supports parallel connection up to 8 ANT

channels and is optimized for ultra-low

power operation

Altimeter

The digital pressure sensor BMP085 from

Bosch Sensortec GmbH Germany, is able

to measure the pressure from 300hPa to

1100hPa (-500m to +9000, above sea

level) with a resolution of 16bit to 19bit

and an accuracy of 0.01hPa. Further it

provides the temperature measurement

from 0°C to 65°C in a 16 bit range and a

resolution of 0.1°C. The pressure and

temperature data is to be compensated by the calibration data in the E²PROM of the

sensor, used to compensate offset, temperature dependence and further parameters of

the sensor.

Figure 2.2 HDH hardware design

18

Battery Protector

A high precision lithium battery monitor DS2764 from Maxim Semiconductor Dallas is

used for battery protection provides current charging level, voltage and charge/discharge

current of the battery and protects against overvoltage and over current.

Bluetooth

The LMX9838 Bluetooth serial port class 2 operating module from National

Semiconductor is a fully integrated Bluetooth 2.0 baseband controller including all

hardware and firmware to provide a complete solution from antenna through the

complete lower and upper layers of the Bluetooth stack. The stack includes: Baseband

and link manager, Protocols: L2CAP, RFCOMM, SDP, Profiles: GAP, SDAP and SPP.

The module supports data rates up to the theoretical maximum over RFCOMM of

704kbps and a UART command/data port speed up to 921.6kbits. The firmware features

point-to-point and point-to-multipoint link management for up to 7 active Bluetooth data

links and one active SCO link.

Display

An S6E63D6 260k RGB colour AMOLED panel from Samsung Electronics Inc. is a

single chip solution with a maximum resolution of 240x320 pixels. Therefore it supports

pictures with 18-/16-/6-bit RGB colours.

Touch Controller

For user operation of the HDH, an mTouch AR1020 Resistive Touch Screen controller

from Microchip Technology, Inc. is implemented. It supports different touch modes like,

stream, down, up, off and more with a touch resolution of 10bit resolution maximum and

a touch coordinate report rate of 140 reports per second. Further it provides touch

algorithms for good calibration – corrected coordinates with no additional development or

code.

Microcontroller

The core of the HDH is the high performance PIC32MX795F512L microcontroller from

Microchip Technology Inc. This is 32 bit module with a maximum frequency of 80 MHz,

512k flash memory plus an additional 12kB of boot flash and 128kB SRAM memory.

Micro USB 2.0

The micro USB 2.0 plug in provides data exchange from the SD-card of the HDH with

external devices. Additionally the battery can be recharged by means of the power

supply from the USB connector.

19

SD-Card slot

It is used as a local mass storage for micro SD-cards. It also grants access to the micro

SD-card when plugged to a PC via USB [14].

Software

The source code for the microcontroller is written in C- programming language with the

MPLAB IDE v8.56 and the MPLAB X IDE beta version 5 programming environments

from Microchip Technology Inc. The Integrated Circuit Debugger 3 (ICD3) device is used

to run the source code in the debug mode and to flash the compiled and linked code

onto the microcontroller. Therefore the C32 (v1.11) compiler, provided by Microchip

Technology Inc. for the 32bit microcontroller, is used.

A FatFS file system library from ELM– FatFS Generic FAT File System Module is

implemented for the file system of the SD-card. It supports complete access of SD cards

and handles FAT12, FAT16 and FAT32 file systems. Therefore it provides several

functions necessary, to manage a complete file system [14].

20

2.4 Mobile Operating System
The following graphs [15] show the evolution of sales of the major mobile OS, both in

Europe and worldwide. The data is from March 2010 to March 2011.

EUROPE

It seems that in Europe the undisputed sales leader is iOS, with almost 50% of sales. It

is notable also the increase in sales that Android has achieved, reaching even to the

BlackBerry´s sales. In the last nine months, Android has grown in sales from 1% up to

20%. It seems that Android is becoming more and more powerful. In Europe, Symbian is

suffering a notable decline.

Figure 2.3 Top 8 Mobile OSs in Europe (03/10-03/11) [15]

WORLDWIDE

Moreover, worldwide, Symbian is the owner of the top market share around 32% last

year. iOS has suffered a 10% drop in sales and Android, which is on the road to

success, has reached 16% in just nine months.

Figure 2.4 Top 8 Mobile OSs worldwide (03/10-03/11) [15]

21

In the following lines a brief explanation is given of each of the more important mobile

Operating Systems that exist nowadays:

Symbian and Meego:

The most common and well-known operating systems are

those responsible for the operation of the nokia phones. The

main reason is because they have a really high market share

[16].

Developed by Symbian, nowadays mostly used are the S40

and S60.

S40 is implemented in 'feature phones' and 'entry level',

differing from the S60 (smartphones) in the access to Internet,

limited or nonexistent, as they are not multi-tasking and that,

in general, have no broadband connection (S40 are mobile

generation 2 and 2.5, GPRS) .

In S60 it should be noted a version developed for touch

screen mobile, called S60 R5.

Now, halfway between mobile phones and small laptops (notebooks, netbooks,

smartbooks, MIDs, etc.) there is a new operating system led by Nokia and Intel: Meego

[17]. This new operating system will combine Intel developed Moblin and Nokia

developed Maemo. Its main characteristic is that it is an open system.

Blackberry:

The owner of this operating system is Research In Motion

(RIM). This OS is adapted to their different devices.

Its secret, as is known, is the optimization of the network

and having an open line continuously, making its e-mail

management, instant messaging or network, exceptional

[18].

Figure 2.5 Symbian

Figure 2.6 Blackberry

22

Windows:

Before 2010, Microsoft offered Windows Mobile, focused

especially on customers with professional profile. From that

year, a revolution happened because Microsoft was diversified

and began marketing two new platforms for Smartphone’s.

Far from the professional environment, they are intended to

be used by general public, basically uploaders (young people

who like to be continuously connected with friends and upload

content). So Windows Mobile is now called Windows Phone

and currently it is available for the users Windows Phone 7

[19].

iPhone:

iOS (known as iPhone OS prior to June 2010) is Apple's

mobile operating system. Originally developed for the

iPhone, it has been extended to support other Apple devices

such as the iPod touch, iPad and Apple TV.

The user interface of iOS is based on the concept of direct

manipulation, using multi-touch gestures. Interface control

elements consist of sliders, switches, and buttons. The

response to user input is immediate and provides a fluid

interface. Interaction with the OS includes gestures such as

swipe, tap, pinch, and reverse pinch. All of them have

specific definitions within the context of the iOS operating

system and its multitouch interface. Internal accelerometers

are used by some applications to respond to shaking the

device or rotating it in three dimensions.

Four versions that have been implemented: iPhone, iPhone3, 3G and 4. After launching

last summer its revolutionary iPhone model 4, which, despite being a bestseller, has led

a number of technical issues that have led to protests among users. Despite the

coverage problems resulting from its antenna, Apple considers the iPhone 4 has been a

milestone in the interaction of mobile telephony and network access.

Apple is working on the new version of the iPhone, iPhone5. At the present moment, the

launched of iPhone5 seems as the best kept secret ever by Apple [20].

Figure 2.7 Windows

Figure 2.8 iPhone

23

Android:

Some companies related in the sector (operators,

manufacturers, semiconductor companies etc.) joined to formed

the Open Handset Alliance (OHA). Google was the promoter. In

this context Android was born, an open operating system based

on Linux, designed to be free for the users to decide how and

why they would like to use their phones, making feasible to

design the applications that they want to have.

Android is multiscreen, it 'feeds' of its own software market and

is designed for tactile displays… At this time, the OS is

considered to be more flexible and easy to use than all other

existing OSs.

Currently, there are eight versions. Last six are known for their

'sweet' names: Cupcake 1.5, Donut 1.6, Eclair 2.0/2.1, Froyo

2.2, Gingerbread 2.3 and Honeycomb 3.0.

It should be noted that there are three types of Android phones: Google Phones

(available from Google), the Google Experience (it has integrated the basic operating

system, with the most typical services of the famous searcher) and custom Android,

which are those to which manufacturers incorporate a user interface developed by

themselves and identifying differences with the product and seeking loyalty to the brand.

It is the case of HTC Sense, MotoBlur Motorola, Acer UI 30, etc. [3].

2.5 Android

2.5.1 The Android Platform

Android is a software environment built for mobile devices. It has to be mentioned that it

is not a hardware platform. Android includes a Linux kernel-based OS, a rich UI, end-

user applications, code libraries, application frameworks, multimedia support, and much

more. While components of the underlying OS are written in C or C++, user applications

are built for Android in Java [3].

2.5.2 Android Developers

The application programs (“apps”) are written by a large community of developers which

are responsible of extending the functionality of the devices. Currently there are

approximately over 200,000 apps available for Android [3].

Figure 2.9 Android

24

2.5.3 Android Market

The online app store run by Google is Android Market is.

Anyway, apps can also be downloaded from third-party sites.

In 2007 the Open Handset Alliance (OHA) foundation

announced the distribution of Android. OHA is a consortium of

79 hardware, software and telecom companies devoted to

advancing open standards for mobile devices. Google released

most of the Android code under the Apache License, a free

software and open source license.

The Android operating system software stack consists of Java applications running on a

Java-based, object-oriented application framework on top of Java core libraries running

on a Dalvik virtual machine featuring JIT compilation. Besides, libraries (written in C)

include the surface manager, OpenCore media framework, SQLite relational database

management system, OpenGL ES 2.0 3D graphics API, WebKit layout engine, SGL

graphics engine, SSL, and Bionic libc [3].

2.5.4 Dalvik Virtual Machine

The virtual machine of Android is Dalvik. It is an integral part of this OS, typically used on

mobile devices such as mobile phones, tablet computers and netbooks. As the rest of

Android, it is also open-source software [21].

Before execution, Android applications are converted into the compact Dalvik Executable

(.dex) format, which is designed to be suitable for systems that are constrained in terms

of memory and processor speed.

There are some important facts about the Dalvik VM that are important to understand

some procedures in the development of this Master Thesis. They will be explained

below.

As mentioned, Dalvik VM executes files in the Dalvik Executable format (.dex) which is

optimized for minimal memory footprint. The VM is register-based, and it is able to run

classes compiled by a Java language compiler that have been transformed into the .dex

format by the included "dx" tool.

In order to conserve space, duplicate strings and other constants used in multiple class

files are included only once in the .dex output. Java bytecode is also converted into an

alternate instruction set used by the Dalvik VM. An uncompressed .dex file is typically a

Figure 2.10 Android

Market

25

few percent smaller in size than a compressed .jar (Java Archive) derived from the same

.class files.

Even as said before the tool called “dx” is used to convert Java .class files into the .dex

format, it can´t do the conversion of all of them. That has been a handicap in this project

because it was difficult to use some Java libraries in the Android project. As far as these

Java libraries can´t be converted to .dex format, using these libraries was impossible. It

was necessary to solve a critical need of the libraries for Parsing and Encoding the HL7

messages. A new Parsing and Encoding system for this Android Project was needed to

be realized. More information about this issue is illustrated in Annex VI. Java vs.

Android.

Nowadays, there aren´t open source libraries available for doing the Parsing and

Encoding of HL7 messages in Android. This was the first step to be taken to be able to

work with HL7 messages.

2.5.5 Platform Versions

This section shows data about the relative number of active devices running a version of

the Android platform. It illustrates the landscape of device distribution and so, it is

possible to deduce how to prioritize the development of the application features for the

devices currently in the hands of users [3].

Current Distribution

The following pie chart and table is based on the number of Android devices that have

accessed Android Market [3].

Figure 2.11 Current distribution of Android Platform versions [3]

26

Historical Distribution

In the next Figure 2.12, it is shown a history of the relative number of active Android

devices running different versions of the Android platform. It also provides perspective of

how many devices an application is compatible with, based on the platform version.

It indicates the total percent of active devices that are compatible with a given version of

Android. For example, if an application is developed for a version that is at the very top

of the chart, then this application is compatible with 100% of active devices (and all

future versions), because all Android APIs are forward compatible. In the other hand, if

an application is developed for a version lower on the chart, then it is currently

compatible with the percentage of devices indicated on the y-axis [3].

Figure 2.12 Historical distribution of Android Platform versions [3]

2.6 IDE Integrated Development Environment
The three most popular integrated development environments currently in Java are:

Intellij Idea [22], Netbeans [23] and Eclipse [6].

Intellij Idea

It was created by JetBrains and supports these languages: Java, JavaScript,

HTML/XHTML/CSS, XML/XSL, ActionScript/MXML, Python, Ruby/HRuby, Groovy, SQL,

and PHP. But it is not open source [22].

Netbeans and Eclipse are both open source. Comparing these IDEs, we can explain

some advantages or disadvantages.

Netbeans

 Advantages:

 Netbeans has a GUI builder which is extremely helpful for rapidly creating

java applications.

27

 Netbeans has support for languages like PHP, C++, RoR and Grails.

 Disadvantages:

 It lacks the easy integration of SDKs like the Blackberry SDK and Android

SDK.

Eclipse

On the other hand, Eclipse IDE:

 Advantages:

 There is easy integration for things like flex builder, the blackberry SDK,

and the Android SDK in the form of plugins.

 Eclipse also has a support for languages other than Java, like C++, and

PHP.

 Eclipse has tons of plugins which are easy to install.

 Disadvantages:

 Eclipse tended to have a slower startup in comparison to Netbeans.

Both of them have their own advantages comparing with the other. The use of Netbeans

seems to be better for Java applications, because of the GUI builder.

It is said that the use of Netbeans for Android is possible but not recommended in all

respects. It is possible to use nbandroid, a project in Netbeans (“plugin-netbeans”),

enabling to work with Android.

Nevertheless, of course there are remarkable advantages if you work with Eclipse. In it,

all the needed things are integrated. For example, the DDMS [24] (for debugging errors

and much more) is part of the Eclipse´s views [25]. In Netbeans DDMS needs to be

executed on its own (this application is in the folder /tools of Android SDK).

In Eclipse a lot of useful tools can be found and facilities for development, such as the

using of XML for the graphical interfaces. It has a view where it can be seen how the

screen is going to look like, without the need to use the phone or the emulator. Another

important thing is that Eclipse is capable of detecting the errors in XML because it knows

which attributes the interface has and the values of each of them. So, it can notify if there

is an error.

When you connect the mobile with the cables both IDEs are capable to detect it properly.

Besides all this, it is good to know that in the official Android Developers webpage they

recommend to install the ADT Plugin for Eclipse [26]. In the next paragraph it will be

explained what has to be done to start working with Eclipse as a development

environment for Android.

28

2.7 Android development environment working with

Eclipse
To get the Android development environment working with Eclipse, two components are

needed to install on the development system:

 The Eclipse Android Developer Tools (ADT).

 The Android SDK.

The Eclipse Android Developer Tools are Android development tools specifically created

for the Eclipse IDE. The Android SDK is the standard Android SDK that comes from

Google. Both are needed to develop Android applications with Eclipse [27].

2.7.1 The Android SDK

The Android SDK (Software Development Kit) includes sample projects with source

code, development tools, an emulator, and required libraries to build Android

applications.

All the information about installing the Android SDK is in the Android Developers

webpage [27] and [28]. There, it is possible to learn how to prepare the development

computer and how to download the SDK Starter Package.

2.7.2 Developing in Eclipse with ADT Plugin

The Android Development Tools (ADT) plugin for Eclipse adds powerful extensions to

the Eclipse integrated development environment. It enables creating and debugging

Android applications easier and faster [26].

If Eclipse is used, the ADT plugin gives an incredible boost in developing Android

applications. For example:

 The developer can execute other Android development tools from inside the

Eclipse IDE. For instance, ADT allows accessing several capabilities of the

DDMS tool: take screenshots, set breakpoints, view thread and process

information directly from Eclipse etc.

 Thanks to the Project Wizard, the creation and setting up of all of the basic

files needed for a new Android application are created.

 The process of building the Android application is simplified.

 The Android code editor helps writing valid XML for the Android manifest and

resource files.

 It will even export the created project into a signed APK, which can be

distributed to users.

[26]

29

3 Development and Implementation

Figure 3.1 Connections of the Android Server

3.1 Connections between HDH and Android Server
In the application a connection between the HDH wrist device and the mobile phone was

developed by three types of wireless technologies: Bluetooth, Wi-Fi and GSM.

3.1.1 Bluetooth Technology

Figure 3.2 Bluetooth connection HDH-Android Server

The first is using Bluetooth technology. On one hand, the Android phone can act as a

server, for example waiting for incoming connections from various HDH; and on the

other hand can act as a client, because the program connects to the selected HDH

(which will start transferring HL7 messages).

The package responsible for the Bluetooth connection is

com.upna.AndroidServer.Bluetooth. In this package are stored eight Classes

described below.

30

When you have started the application, and you have chosen the HDH Server button in

the AndroidServer_Home activity, you go inside a new activity called ServerW3GorBT

where two buttons are located related with the two servers: Bluetooth Server and Wi-Fi

Server (see Figures 3.3 and 3.4).

In addition to the two server functions of the activity shown above, in the Bluetooth

Manager activity (Figure 3.5) we can also see the mobile function as a client. For this,

we only have to push up the hidden menu clicking the menu button in the mobile phone

(See Figure 3.11).

Currently, the developed Android Server application connects to the HDH as a client (not

as a server). The reason for this is explained in greater detail in chapter Android mobile

working as a client with regard to the HDH device.

In the lines below, it is described how the Bluetooth connection (where the Android

mobile is the Server) works.

Android Mobile as a Server

The Server [29] is executing as a Service [30] in the application. It provides many

advantages in comparison with executing as an Activity [31] or executing as a Thread

[32].

Opposite of the Activity, the Service allows to the user to write a SMS, receiving phone

calls etc. while receiving HL7 messages. If the application had been developed as an

Activity, the reception of the HL7 messages should have been in the life cycle of the

Figure 3.3 Bluetooth

Manager

Figure 3.4 ServerW3GorBT Figure 3.5 Bluetooth

Manager

31

Activity (please see Annex VII. Activity) preventing the user to use the phone for other

purposes during the execution of the program.

Otherwise, if the application had been developed as a Thread, the mobile could not run

Notifications thereby preventing to show notifications when Alert messages were

received. Notifications [33] can only be launched from Activities or Services.

For all these reasons, the application has been developed as a Service.

Following concept map illustrates the Android Server Service developed in this Master

Thesis by Bluetooth technology. It is a clarifying schema about the performance of the

Service.

32

Figur

e 3.6 Android Server Service performance schema. Bluetooth technology.

When you first press the button to start the Service, the server starts waiting for incoming

connections. Meanwhile in the Activity related with this Service (BluetoothManager) a

progress bar (more about the performance of the progress in the chapter Progress Bar)

switches on and also a notification to advise the user that the service is running (see

Figure 3.7).

33

Every time the user goes again to the BlueoothManager Activity to see the status of the

Service in that moment, the following method is called: stateService. It checks if the

service that the user is looking for is the same as one of the services which already are

working. If the service is already working the progress bar will continue on. In addition,

every time you try to turn on or off the server, the application displays a message

warning the user. This is the code that lists the services available on Android:

When you press the button "Service ON ", it makes a reference to HDHManagerService

class where the service is located, and the life cycle of the service starts.

During the life cycle, firstly is checked if the device where the software is installed

supports the Bluetooth technology [34]. If so, a notification showing that the server is

listening is created as well as an object of the BluetoothHDHService class (where a

Thread starts where the connections between the HDH and mobile are in "accept"

Figure 3.7 Service On button

pressed first time. Service starts

running

Figure 3.8 Service On button

pressed for second time.

Service is already running

Figure 3.9 Service Off button

pressed. Service finished

34

mode). Added to this object there are: the Context [35] of the Service and a Handler

[36] type object. (This handler will enable the communication between the ListenThread

and the Bluetooth Service. All about this handler is explained later).

After we have created the BluetoothHDHService object, the ListenThread starts

running waiting for the incoming connections.

As shown, there is a while loop which allows the connections with a lot of HDH clients

until the Server is switched off. The accept of the BluetoothServerSocket [37] class is

a “blocker” instruction (it means that the accept will wait in this code line until a

connection from outside is done) and then it will return a Bluetooth Socket which

identifies the connection. This instruction, accept, avoids the CPU of the Android Server

to break, because being a blocker instruction prevents that the CPU achieves 100% of

constant load, which can lead to damage the CPU and shorten the battery life.

When the Bluetooth Socket [38] is obtained, it is checked if it has been created correctly

and an HDHClient object is created. This object will be responsible for the

communication with the wrist device by a Thread, and it is added to a List where all other

currently connected clients are listed. When this is done, the code will come back to the

accept, which will wait for other connections.

The List of all the patients is controlled by the HDHManagedClients class. This class is

responsible of adding new clients, or delete and free some of the resources used in the

communication.

In this way, the developed application becomes in a multi-user application, achieving

successfully one of the targets given for this project.

35

After this explanation of the Listen Thread and the clients acceptance, the issues related

with the accepted client and the mobile phone will be introduced. As mentioned before

(shown in the code above), this communication is done within the HDHClient class.

Below is shown ReceiverThread included in the HDHClient:

Figure 3.10 Schema of HL7 message reception management

36

The code related with the ReceiverThread is:

This Thread is in charge for the reception on the HL7 messages. In the image before, in

purple, is shown the part which is working with the reading of the buffer.

The reader process performs the following actions. The read instruction of the

InputStream [39] class of Android, blocks the thread until there is something new in the

buffer. When new data arrives, it reads from the buffer and returns the bytes.

Then, the thread is forced to sleep. That is done because the arriving message can be

separated in different parts in the reception moment. By this way, it tests if there is

something more in the buffer and if so, it reads and adds to the part of message received

before. (The code is able to delete all the blank spaces that could have been introduced

in the buffer between the several parts of the message, this action is done by

ParcheSubstring).

37

In this way, the application is capable of receiving and rebuilding perfectly the entire HL7

message.

Note: the read can detect if the connection is closed and if so, an IOException is given.

It enables breaking the reception loop and closing the Thread.

When the reception of the message is completed, the message is parsed. This action is

performed in one Thread apart from the reception. This Thread, whose name is

HL7Manager, is included in the class HDHClient.

Thus, each Thread works with its own task making the code more efficient (since a new

Thread is opened every time there is a message to parse, and it will be closed when

finished working with this message).

The reception of the messages happens one by one, i.e. every time a new message is

received the mobile sends an ACK message for this message. If something goes wrong

and the message is not received, the HDH wrist device will resend again the message

seconds later.

This requires that the communication sending HL7/receiving ACK should happen in

shorter time than the timer required for the retransmission. The process of the reception,

parse and sending of the ACK depend on two variables: the length of the message and

the size of the buffer in the reception. More or less, the average of the message length is

1024 characters, that is why the buffer selected has 1024 bytes capacity. However, if the

received message is bigger than the buffer, it will read new 1024 character to complete

the message.

38

When the reception of the entire message is completed, the next step is to parse it (more

information about the parser in 3.3.3 Parser: from HL7 message to HL7). In case of a

correct parsing of the message, the ACK type HL7 message is created and the code of

the acknowledgement is analyzed: if it is “AA”, the received message is stored in the

SDCard (messages ST, AL and PI) and the created ACK is written in the output buffer.

Then, the patient data is stored by UpdateXml (if the message is “PI” type) or an alarm

is shown (if the message type is “AL”) and the Thread is closed.

If the message type is “AL”, another Thread is launched called Alert where it is needed

to launch an alert notification. As mentioned before in the report, it is very important to

know that the notifications only can be launched only by Services or by Activities (not by

Threads) [33]. That is why it is necessary to use an object called Handler in the Service

HDHManagerService. This Handler will be a parameter of all the Threads involved in

the communication. Through the Handler, it is possible to send the HL7 object created

from the received AL message. Below this lines show what is done in the Alert Thread.

As mentioned before, the message is received in the Handler object of the

HDHManagerService as shown:

The method launchNotification in the HDHManagerService class is liable launching

the alert notifications. In this process, it must be kept in mind that:

 Each notification must have one identification number so that is clearly

distinguished from other notifications launched by the system.

39

 The notifications have to be launched from a Service or Activity which are

working, that is why is necessary to use a Handler in order to send the HL7

object from the reception Thread to the running Service.

 Each notification must have a PendingIntent object, which is created by a related

Intent. In this Intent some useful data is added for the alarm activity, like the

patient identifier number (Extras). By default, a distinct PendingIntent is only

created when the underlying Intent is materially different from the Intent used by

another outstanding PendingIntent. The used Intent only differs by the extras. If

we need to have several outstanding PendingIntents, we will need to have them

be on different Intents, where those Intents differ by component, action, data

(Uri), or categories and not only the Extras. That is why each Intent is identified

with a single category. This category is given by the moment of the creation of

the Intent.

Moreover, if the received message is “PI”, what the application must do is update all the

data stored in the XML file of the SDCard. This file is created to store all the patient data

inside. That is why is very important to register every patient that will be with the

monitoring system (this will be explained in chapter Register a patient). For the update

there is a method refreshDataInXml in the UPdateXML class, which uses the simple-

xml-2.3.6 library [40].

After these paragraphs, the explanation is finished about the application procedure

regarding the successful parsing of the message. In case of incorrect parsing or a

thrown exception the following things occur.

The exception is caught and it will exit the Thread, waiting for the next message that will

be sent when the timer expires in the sending device.

In summary, it is all about switching on the Service and sending and receiving of the

messages. In the next lines, it will be illustrated in detail how it is possible to switch Off

the Service.

In the lifecycle of a Service/Activity there is a method which always is executed before

leaving the Context. This method is onDestroy of the Service [30] / Activity [31] class of

Android. It is called every time we want to switch Off the Service by using the instruction

stopService (of the Service class of Android), which is executed when the button in the

Figure 3.9 is pressed.

In order to turn off the Service of the Bluetooth Server, we should firstly make sure that

there is an object of BluetoothHDHService, because as said before, one of the

attributes of this object is the Thread “ListenThread”. If BluetoothHDHService object is

40

available, its stop method is called to finalize the while loop in the ListenThread and

close the ServerSocket.

After stopping of the thread, it is necessary to free all the resources used in the

transmission of the all clients that we have in the queue of “clients”.

For this purpose, the method freeAllResources will be called in the class

HDHManagedClients.

The method freeAllResources will free one by one every “ReceiverThread” opened

previously. For this, the method freeResouces of the HDHClient class is called, and it

checks if the Thread is still running. If so, the Thread is stopped and the Socket of the

communication is closed (if it is not already closed). As well, the while loop of the

ReceiverThread is closed.

In conclusion, all these issues constitute the start, transmission and the finishing of the

application of the mobile Bluetooth server [29].

Android mobile working as a client with regard to the HDH device

First of all, it has to be clarified that the final version of the Android Server application

that was developed should work as described in the previous section: Android mobile

phone working as a Server regarding to the HDH device.

Some extra functions needed to be implemented in the code in order to have an effective

application running with the current HDH device prototype.

41

The first step will explain why a client is needed which will connect with the HDH wrist

device. The behavior of the Client will be illustrated.

At the beginning, both devices, the HDH wrist device and the Android mobile, should be

paired so they know each other and can exchange data. All the communications that will

use Bluetooth are going to use the Serial Port Profile.

After pairing, the user can choose one of these possible actions from the menu in the

BluetoothManager activity: by choosing Connect a device the mobile can connect to

the HDH and start the messages transfer, by choosing Make discoverable the user can

make the mobile phone discoverable and at last, by pressing Disconnect the user can

finish a connection with the HDH.

The option Make discoverable allows turning On the Bluetooth (if it was switched Off)

and it makes the mobile discoverable for 300 sec. Below some of this code is shown:

The option Connect a device shows a sub activity (dialog type) which displays all paired

objects so the user can scan the devices inside the Bluetooth range. In this screen

(Figure 3.13) the user can select the device with he wants to be connected for transmit

the HL7 messages.

Figure 3.11 Menu button

pressed

Figure 3.12 Make

discoverable option clicked

42

Figure 3.13 Select a device

to connect

In these screenshots, it is possible to see also how the Android Server can manage the

discovery of new devices.

The scan of the devices is done in the DeviceListActivity class, included in the

com.upna.AndroidServer.Bluetooth package. An essential scheme about it is the

following:

Figure 3.14 Scanning for

devices
Figure 3.15 Select a device

to connect

43

Figure 3.16 Android Server schema acting as a Client. Bluetooth technology.

44

When a device is selected from the DeviceListActivity, its MAC Address will be sent to

the BluetoothManager class using the method onActivityResult (of the Acitivity class).

After getting the MAC Address, the HDHClientService Service starts. It will deal with the

communication with the selected device.

Among other tasks, this Service checks if there is a Bluetooth profile in the mobile and

creates an object of BluetoothHDHService type (as when it acts as a server). The

difference with respect to the Android Server Bluetooth is that now the mobile mustn´t

wait for incoming connections but it makes the connection. For that, it is created an

object of ConnectThread that creates a Socket for the communication and starts a

thread "ConnectThread ".

As shown above, an object of BluetoothSocket is created, which is distinguished by the

device and the Service type (announced from the HDH, MY_UUID_Serial_Port).

The UUID [41] is an immutable representation of a 128-bit universally unique identifier

(UUID).

There are multiple, variant layouts of UUIDs, but this class is based upon variant 2 of

RFC 4122, the Leach-Salz variant.

45

Considering that the communication is done by the Serial Port profile, the UUID selected

should represent it. In our case, UUID is 00001101-0000-1000-8000-00805F9B34FB

[42].

Once the Socket is created with the necessary information to do the connection, the

thread “ConnectThread” is launched. The related code is this:

As shown here, after the connect of the BluetoothSocket class is executed, if the

exception isn´t caught (there wasn´t any errors while trying to connect), an object of

HDHClient is created and added to the clients queue. It is exactly the same behavior like

in the Bluetooth Android Server. Otherwise, if we catch the IOException there are

several tries to reconnect, more specifically, it tries to reconnect every 10 seconds.

After this action, everything about the reception, parse, performance with all the types of

messages and sending of the ACK messages, is the same as the Bluetooth Android

Server (see the section Android Mobile as a Server).

However, in case that in the Thread that manages the HL7 messages the channel is

closed, there are some differences in the behavior of this system. In the

HDHClientforServer, it is caught an Exception because the device got out of the

Bluetooth range. Then, we close the communication and try to reconnect again.

46

Disconnect a client: As explained in BluetoothManager screen with pop-up menu

(Figure 3.11) we have the option to disconnect the client. This option lets you stop the

Service and free all the resources used in the communication, as well as stop the

Service in the Bluetooth Android Server.

3.1.2 Wi-Fi Technology

Figure 3.17 Wi-Fi connection HDH-Android Server

As mentioned in the section of the connections (3.1 Connections between HDH and

Android Server) the Android Server application developed, can use three different

technologies for the reception and transmission of the HL7 messages: Bluetooth, Wi-Fi

and GSM.

In this section a thorough explanation about the IP technology is given. Wi-Fi is used to

implement a Server and by this a Service is created for the users.

The package which implements this Server is com.upna.AndroidServer.Wifi which

contains 5 classes that will be discussed later.

As described in the Bluetooth chapter, these Services are shown in the

ServerW3GorBT activity (screen where the user can access the Wi-Fi Server after

pressing the HDH Server button in the AndroidServer_Home activity).

Once the button of the Wi-Fi Server is pressed in the ServerW3GorBT activity, Figure

3.4, the code acts depending on the network interface available. If there is one, a new

activity appears: IPServerActivity. If not, the Figure 3.18 is shown.

47

Figure 3.18 Network Interface not found

The discovering of the network is done in the first method of the lifecycle of this activity

(onCreate of the Activity class of Android [31]) with the following code:

This method returns null or an available interface. If it is null, the activity is finished and

the user will be notified that there is no interface available. (Figure 3.18). If there is one,

the application will give an IP address (Figure 3.19) and when the user presses the

Service On button the progress bar and the notification area will show that there is

currently one Wi-Fi Server running (Figure 3.20).

48

Turning On the Server Service

As shown in the previous figure, there are two buttons on the screen: one switches on

the Server and the other switches it off.

Now the switch on is analyzed. As explained in the Bluetooth chapter, it was decided to

run a Service in the Server because by doing so there are many advantages in the

developed application.

Once the “Service On” button is pressed, the Service starts and these actions are

performed next:

 Launch a notification to inform the user that the Service starts running.

 Creation of a Handler object which allows launching a notification from the

Service.

 Creation of an object of the HDHServer class.

One of the attributes of the HDHServer object is another object which extends the

Thread class “ListenThread”. It enables all the incoming connections. Its constructor is

shown here:

Figure 3.20 Wi-Fi

Android Server running

Figure 3.19 IP address

49

As we can see every time an object is created, an instance of the ServerSocket class is

done, so an object of the ServerSocket type is obtained [43]. After creating the object,

the code of the thread is executed (run of the Thread class, as shown below). The

mServer object must listen through the IP assigned by the network and the selected port.

When an incoming connection is received in the Server, it is analyzed if the connection

has been created correctly. Then, one HDHServerClient object is created in order to

manage the connection and it is added to the clients-queue existing currently in the

mobile.

Once the client is accepted, the code will wait for more incoming connections in the

accept method of the ServerSocket class.

As already mentioned, the object HDHServerClient will manage the connection. It

means it will be responsible for:

1. Reception of the HL7 messages sent by the HDH device.
2. Recognize and generate a corresponding ACK message.
3. Reply with the ACK.
4. Perform the necessary action in the received message, either storage the

message, update patient information and warnings/alerts by using sound
notifications.

50

All these tasks are maintained as follows: in the ReceiverThread class included in the

HDHServerClient class (the tasks corresponding to 1, 3 and 4 point), the package with

the Parser of the HL7 messages (point 2) and in the IPServerService by the Handler

object and Alert class (task number 4, notifications), and the UpdateXML (task number

4, updating the patient data).

Turning Off the Server Service

Regarding to the Switch Off of the Service, it has the same features as the Service of the

Blueetooth Server.

 Recognition of the state of the Service (Mode On and Mode Off), using visual

effects such as the progress bar and Toast [44] type message (implemented in

the class IPServerActivity).

 Free all the resources of the connections (implemented in classes and

HDHServerClient and HDHServerManagedClients).

 The server won´t wait for more incoming connections (implemented in class

HDHServer).

3.1.3 GSM Technology

Figure 3.21 GSM connection HDH-Android Server

The third mechanism implemented in the application to allow the reception of HL7

messages is GSM [29].

This scenario would be very useful and advantageous in situations where the Wi-Fi or

Bluetooth systems are not able to address the situation, for instance if these services are

out of range.

51

The functionality of the GSM is done in two packages in the developed code:

com.upna.AndroidServer.Bluetooth and com.upna.AndroidServer.SMSManager.

In the Bluetooth package, there is the AndroidServerReceiver class. One of the tasks

of this class is to receive Broadcast messages from the mobile phone OS. The events

from the Broadcast messages that the AndroidServerReceiver can handle are:

 Detection of the “Turning On” and “On Rebooting” of the Android Mobile.This

action will cause that both services, the SMS reception and Bluetooth Server will

start working.

 Reception of the GSM mobile technology’s messages.This action enables the

program accessing to the SMS messages and after sniffing the message, it is

sent to the receiver in SMSService.

Here part of the code of the AndroidManifest will be illustrated [45] (see Annex III.

Android Manifest) where the behavior is defined which is related with the actions that will

be performed, as explained above.

The code written in the AndroidServerReceiver class is responsible of executing the

appropriate response to each of the events originated in Android (rebooting/turning on or

reception of the messages).

In case of the reception of a message SMS to the mobile, it will be captured to the

AndroidServerReceiver class, and it will be sent to the receiver type object of the

SMSService class too.

This way to manage the messages is one of the most important and essential

procedures when we wanted to receive the message by GSM, and interact with each

type of HL7 message (AL, PI or ST) because of the next reasons:

 The SMS messages are captured only by the receiver of the application

(AndroidServerReceiver), creating a communication between the Android

operative system and the developed program.

52

 The classes which extend from BroadcastReceiver class, for instance

AndroidServerReceiver, need a limited execution time [46], i.e. they can´t

execute large code.

 Furthermore, in case of the HL7 alarm messages the notifications have to be

launched to the user. This means that it has to be done from a service or activity

as discussed in previous chapters [33].

Therefore, working in this context, arises the imperative need of sending the SMS

message captured by the AndroidServerReceiver, by other message (Broadcast) to

the receiver (mReceiverSMS) located in the SMSService class (see the code below). At

the same time, this SMSService has to extend from Service class and in this way it is

capable to launch alarm notifications.

Figure 3.22 Emergency message notification

Obviously, the service of the reception of the SMS has to be running all the time,

because the user isn´t allowed starting or finishing this service. That is why it is

necessary to interpret the event in the mobile operative system that shows that the

53

mobile has been initiated, in order to initiate the GSM service automatically when the

mobile is switched on.

In addition, it has to be kept in mind that every time this service starts it must register the

receiver of the class SMSService. This is done in the OnCreate method [29].

A brief schema about the performance of the procedure for the reception and

understanding of SMSs is:

Figure 3.23 Schema of the SMS reception and interpretation

3.1.4 Processing Alarm Messages

As seen in the part of the connections, the Alarm message must respond to critical

events that happen to the patient.

The procedure related with launching notifications is explained in the page 38 and as

noticed, it is used also in the other connections. In this section it will be explained what

the user can do after the notification is launched.

As explained before, the notification could be launched in each service of the

communications (Bluetooth, TCP/IP or GSM).

54

Besides, a PendingIntent will be set. It will be executed when the user displays the area

of notifications and presses on the notification (see Figure 3.24).

This action will execute an activity called Showalarm of the package

com.upna.AndroidServer.Alarm. It will show these data to the user (see Figure 3.25).

This screen shows the problem from where the alarm originated and the user can react

in the following ways: call the emergency services, see more information of the patient,

refuse the alert or simply delete the notification.

In the first case, the dialed number is 112 (if the button “YES” is pressed). The

application will maintain the notification in the area so if the user of the mobile needs

more information about the patient this could be accessed again comfortably.

The second case (when the button “MORE INFO” is pressed) shows the screen of the

patient information (explained in section 3.6.5. TabActivity). Below are some pictures of

the updated patient information.

Figure 3.24 Notification area Figure 3.25 Showalarm Figure 3.26 Emergency call

55

Figure 3.27 Patient Information

Tab, after alert message

Figure 3.28 Medical Information

Tab, after alert message

Figure 3.29 Relatives Information

Tab, after alert message

In the ShowAlarm activity the needed elements of the HL7 message are shown of the

alarm. The number of the notification is stored in the background for identification

purposes. In this way, when the user refuses the alarm message by pressing the buttons

“NO” and “CLEAR” in the activity, it is possible to make it disappear from the notification

area. Furthermore, in case of having more than one alarm notifications, the application

will delete the appropriate notification instead of all of them (as the button “CLEAR” of

the notifications area would do).

Figure 3.30 After pressed NO button in Showalarm screen

56

3.2 Connection between the Android Server and HDH

Main Server

Figure 3.31 Uploading HL7 messages from the Android Server to the Main Server

One important property of the developed application, besides the capacity to receive the

messages from the HDH wrist device, is that the system is capable of sending the stored

messages to a Main Server.

Therefore special software based on the Healthy Interoperability (HIO) project of the

University of Applied Sciences Technikum Wien offers an HL7 based data exchange

with the Android Server. It provides tools to display received biomedical data and stores

relevant data into a MySQL patient database; the main server was developed by P.

Khumrin responsible for the “Design and Implementation of Electronic Health Records

for the Health Device Hub” [47].

When the mobile user wants to delete all the messages in the phone to have free space

available, these messages will be uploaded to the Main Server. In this way, a copy of all

the messages will be in the Main Server. This Service is very useful, because the data

storage system in the mobile has a limited space and it is possible to save all the

messages in the Main Server without losing data.

The communication is done using Wi-Fi technology. To achieve the correct and

complete message exchange, the Main Server should have a public IP and be in

“listening” state to accept the connection. The Android will close the connection when the

transfer is finished.

A schema about the transfer of the HL7 messages stored in the Android phone to the

Main Server is given in the next page:

57

Start the HDHMainServer
activity

the Service to communicate with
the HDH Main Server starts

One patient or All patients
are selected

a List of all the patient
IDs appears

Are they correct?

IP and Port of the Main
Server are written

Is a Storage
system available?

The user has to write
them correctly

NO

The Activity will be closed and
a Toast will appear

YES

NO

YES

a Notification is launched to
the user

Send again the same file (max 2
times per each)

AR/AE ACK is received

a Thread responsible for the
connection is launched

Has this file been
uploaded correctly?

Start reading a file from the SD
Card and send it to the Main Server

the Socket is created and
Input/Output strings also

time > 10 sec

the files which could not been transferred can be
stored in the Main Server using the SD Card,

manually

Successful transfer

time <= 10 sec

AA ACK is received

Waiting for the ACK

YESNO

Figure 3.32 Schema of transference from Android phone to the Main Server

58

After explaining the context where this communication happens, and what it is about,

some executed code is shown here. This code is in package

com.upna.AndroidServer.HDHMainServer and there are four classes in there.

The first activity is HDHMainServer, which shows the number of patients whose

information are available on the mobile. There is also a form asking for the IP and Port of

the Main Server.

To go to this screen the user has to press the button “MAIN SERVER” in the home

screen of the application, AndroidServer_Home.

Figure 3.33

AndroidServerHome MAIN

SERVER clicked

In the lifecycle of this activity, one of the first actions that should be done is to check if

there is an available storage system in the mobile. Resulting from the message sending

procedure, the messages are stored in the SDCard of the mobile (everything related is in

the package com.upna.AndroidServer.SDCard). If there is no a SDcard available, the

activity will be closed and the user will be notified by a Toast message that there isn´t

available a storage system in the mobile. See next figures.

Figure 3.34

HDHMainServer

59

Figure 3.35 SDCard not

available

Figure 3.36 IP or Port not

correct

Figure 3.37 Connection

failed

The HDHMainServer Activity has to be able to check if the data written in the form are

correct (i.e. if the user has introduced the IP or Port properly, through REGEX, regular

expression [48]) to avoid trying to connect to an incorrect IP, even if the connection is not

successful. See the code that displays the operation of REGEX:

60

First line underlined by blue, shows us that the IP will be correct if it satisfies the IP

format (numbers lower than 255.255.255.255). The same happens with the Port (second

line in blue). Briefly, the regex for the Port says that it must have 4 or 5 digits (because

the used server port should be upper than the Well Known ports: from 0 to 1023 and

lower than 65536).

Besides checking the IP and Port, there is an icon alongside each identification number

of the patient which after be pressed, will reveal the name and surname of the patient (it

is done by the PopUpWindow and CustomAdapter classes, whose functionality is

explained in the chapters Progress Bar and Popup Menu). Thanks to that, the mobile

user can see the patients identity.

In this screen, in addition to be able to upload the information of one patient, the user

could upload the information of all the patients. In this way, the SDCard will be totally

empty without any patient related information, ready for more future information.

Once an option of the list displayed in this screen is selected, a new service will be

opened which will be responsible for managing the connection. The name of this service

is HDHMainServerService, where the selected data, IP and Port (of the Main Server

with which the mobile wants to connect) must be sent as extras. In this case, the sending

of this information is done by Intent class and Bundle, both from Android.

61

In the onListItemClick method of the ListActivity class (HDHMainServer), the method

realizes actions explained before (check the IP/Port, Toast for advising, send the

information as extras to the service, and start by startService of the Service class).

As a remarkable aspect, the way to send extras between an activity and a service is the

same way than between two activities, except that the extras are received in different

methods of each lifecycle. In the case of the activity it is received in the method

onCreate but in the service it is done in the method onStart.

Once the HDHMainServerService is initiated, the extras are collected by the method

mentioned before and an object of the HDHMainServerManager is created, which will

initiate the connection with the server. The IP and Port to connect, and the patients to

upload will be sent to the object of this HDHMainServerManager created and to the

method connect in this class too.

In this HDHMainServerManager class, there is another implemented class,

ConnectThreadtoMainServer, which extends Thread, and is responsible for the

connection, transferring all the messages by TCP/IP to the Main Server and closing the

connection after finishing.

62

The code related with this class is below. It starts explaining the constructor:

As shown, we obtain the IP and Port as well as the patient or patients that must be

uploaded. If all the patients have to be uploaded, the method listDirPatient (in the class

SDCard) is called, which will list the patients available in the SDCard. If there is only one

patient selected, it takes only the id of this patient.

In the next lines there is some code which will be executed in the thread of the class.

In this part of the thread the Socket of the Client is created and the connection with the

Server too. If the connection is successful, the objects InputStream and OutputStream

will be created in order to write and read from the buffer of the Socket. If the connection

isn´t successful, the code will leave the thread and a message will be sent to the Service

to stop it.

Following, the development of the communication is shown:

63

As shown in the code above, there are two “while” loops and two ”for” loops. The first

one is the responsible of taking a new patient when all the information of the previous

patient is already sent. After the while, in the next line are listed all the files of the current

patient (idsPatientUpload[i]) in a list with elements of type File[]. In the second “for”,

every File[] is taken and in the third “for” each component of the File[].

Once we have the file, the second while starts working. It will check how many times it

has already tried to send the same file (two times max) and if it was correctly done.

Then, the file is read from the SDCard by using the method readFile of the SDCard

class. It is written in the output buffer and sent to the Main Server.

Meanwhile, the code is waiting for the ACK from the Main Server which will confirm that

everything was ok in the sent message.

By using the method available in the InputStream, the code will be waiting until there is

something available to read in the input buffer. If there is not, the thread will sleep, max

10 times (one second each sleep time), so the system will wait 10 seconds to receive an

64

ACK. If in 10 seconds the ACK isn´t received, the execution of the thread will continue

(remembering how many times the same message was sent).

Programming this part of the code in this way has made the code very efficient regarding

the pending ACK from the Main Server. In fact, it is analyzed almost exactly at the time

of arrival of the ACK and the maximum delay is less than one second.

If something is received, the algorithm proceeds to read the message and to parse it, to

figure out if the message number is the expected and if it was accepted by the server.

The possible options are:

 ACK with “AA” and number of the message is the same as expected. This

message will be deleted from the SDCard. Everything was correct and the Main

Server has received the message properly.

 ACK with “AR” or “AE” and was sent twice. This message will be stored in the list

of the messages that couldn´t parse correctly in the Server. The messages of this

type can be copied to the Server manually from the SDCard.

 ACK with “AA” but the message number isn´t suitable and have been sent twice.

The system will act as explained above in the second point

Once the mentioned process is finished, the system will continue with the next file, either

the file of the same patient or the first file of the next patient to transmit. If there aren´t

more files, the connection and service will be closed by sending a message to the

Handler of the current service and processing it. See next lines.

65

As illustrated in the Handler object, if the message is the case 0, a notification will be

launched. Its PendingIntent will contain all the messages that couldn´t be uploaded

correctly. If it is empty it means that all the uploading were successful. This is done in the

ShowTransferInfo class.

The following figures are shown when the data transfer to the HDH Main Server

concludes.

If the Figure 3.38 is shown, that means that all the files of the patient have been

uploaded correctly. On the other hand, if a problem happens while uploading the files,

the application informs about which file was uploaded unsuccessfully (Figure 3.39). For

example, in the Figure 3.39 is shown that the file 20110411141931-101.txt of the patient

1104289440 wasn´t uploaded correctly.

Figure 3.38 Successfully uploaded

Figure 3.39 List of failed messages

When all the files are uploaded a sound notification is launched. See Figure 3.40.

66

Figure 3.40 Notification area, files uploaded.

67

3.3 Parser: from HL7 message to HL7

3.3.1 HL7 HAPI for Parsing and Encoding

While working with HL7 messages [2], some tool to process and understand was

needed. In this way the work would be faster and of course, it would be robust in case of

some errors in the communication between the HDH and Android mobile device.

After searching the Internet, a really useful and strong tool called HAPI was found [13].

HAPI is a HL7 application programming interface. It is an open-source, object-oriented

HL7 2.x parser for Java. This project is not affiliated with the HL7 organization; they only

wrote some software that conforms to HL7 specification. The project was initiated by the

University Health Network.

Basically HAPI translates between HL7-encoded Strings and Message objects. The

String format is required for sending messages over the network or storing them in a file.

The object format is convenient for reading and setting individual data fields. Parsing is

called to convert message string to Message object and Encoding is called to converting

Message object to message string.

Both of these actions are performed with a ca.uhn.hl7v2.parser.Parser object.

Although this tool was very attractive we can´t forget that HAPI is written in Java, so you

must have a Java Virtual Machine (JVM) installed on your system. If you are doing

development, you should get the Java 2 Standard Edition Software Development Kit

(SDK), which includes a JVM.

While working with Android and Dalvik (virtual machine VM in Google's Android

Operating System), there are problems to use HAPI´s libraries in Android projects. See

Annex VI. Java vs. Android

From the webpage of HAPI [49] it is possible to download the libraries for this tool to

work with Java (xercesImpl-2.4.0.jar, xmlParserAPIs-2.6.2.jar, xalan-2.7.0.jar, jaxen-1.0-

FCS-2.7.0.jar, saxpath-1.0-FCS.jar, JDOM-1.1.jar). However, neither the library xerces

nor saxpath works with Android.

For this reason, a Parser was built for the De/Encoding messages.

68

3.3.2 Structure of the HL7 message

Before explaining in detail the composition of this parser, the structure of the HL7

messages is explained more specifically.

HL7 version 2.x

The HL7 version 2 standard [2] has the aim to support hospital workflows. HL7 version 2

defines a series of electronic messages to support administrative, logistical, financial as

well as clinical processes. Since 1987 the standard has been updated regularly, resulting

in versions 2.1, 2.2, 2.3, 2.3.1, 2.4, 2.5, 2.5.1, 2.6 and 3. The v2.x standards are

backward compatible (i.e. a message based on version 2.3 will be understood by an

application that supports version 2.6). The v3 standard, as opposed to version 2, is

based on a formal methodology (the HL7 Version 3 Development Framework, HDF) and

object-oriented principles.

HL7 v2.x mostly uses a textual, non-XML encoding syntax based on delimiters.

HL7 v2.x has allowed for the interoperability between electronic Patient Administration

Systems (PAS), Electronic Practice Management (EPM) systems, Laboratory

Information Systems (LIS), Dietary, Pharmacy and Billing systems as well as Electronic

Medical Record (EMR) or Electronic Health Record (EHR) systems. Currently, HL7’s

v2.x messaging standard is supported by every major medical information systems

vendor in the United States [2].

HL7 v 2.6 Message construction

This is a brief description of the encoding rules of messages. The messages are formed

by data fields of variable length separated by separator character fields. The rules

describe how you can encode the different types of data in a field and when you can

repeat them. The data fields are logical groupings called segments, which are separated

from each other by separator characters. They can be | ^ ˜ \ & <CR>. Each of them deals

with one type of date [2].

For example:

 Ending of the segment <CR> (ASCII 13)

 Separator of the Field | (ASCII 124)

 Separator of the Component ^ (ASCII 94)

 Separator of the Subcomponent & (ASCII 38)

 Character of Repetition ~ (ASCII 126)

 Character of Escape \ (ASCII 92)

69

Each segment begins with a value of three characters length that identifies the segment

in the message. The segments can be repeated and the data fields are located in a

message by its relative position associated with the segments.

In the next lines, the used segments of the HL7 messages are shown, used for the

communication with the HDH and Main Server.

To work in monitoring the patient, there are three types of messages, called PI, ST or

AL, explained below. The HDH wrist device deals with these types of messages:

Message Type PI: Patient Information

This message type contains the main information about the patient, his relatives,

diseases and allergies suffered by the patient and some medical description among

other things.

The main target is to have the main important data of the patient always ready in the

Android mobile device, because when the HDH is connecting to the mobile or

reconnecting to an already known one, all the information will be saved in the mobile

data base. In this way, the user can access to all the patient information any time, and

most importantly, in emergency or alert situation.

This is an example of the PI message:

Figure 3.41 PI message

Except the MSH and PID segments, which are in all the HL7 message types, the other

segments; EVN, NK1, PV1, AL1, DG1 and NTE, are segments of the PI message itself.

MSH and PID are the segments which deal with the received message´s parameters

and the actually patient parameters. Without going into specific fields, the MSH owns the

70

information about the addresses of the HDH wrist device and mobile phone, and some

important information of the messages as the receiving date-time, its type and some

important ID´s, among other things. On the other hand, the PID talks about the patient

basic information, his name, identification and his address.

EVN deals basically with the recorded date-time.

The information of the relatives of the patients is shown in the NK1 segments. In these

HL7 messages, we only have information of the two relatives, whose name, relationship,

address, phone numbers etc. are given.

PV1 classify the patient type, for example, in this case the patient is described as a

telepatient.

The information of the allergies or diseases suffered by the patient is written in the AL1

and DG1 segments, which are defined by their number and description. Currently only

three allergies and diseases are available within this HL7 structure.

The last segment, NTE contains all the important facts of medical diagnosis, therapies

etc.

For more detailed and specific information about the meaning and contained information

in each field, it is recommended to read the Annex IV. Table of the HL7 messages

components or more in HL7 standard [2].

Message Type ST: Standard Message

This type of messages is STandard Message. This message contains all the data related

with the monitoring of the patient.

Occasionally, the HDH sends the data of the measured pulse and activity of the user.

The Android phone must be able to receive, store and process these messages.

ST messages have the MSH segment and PID segment, as every type of HL7

messages does. The meaning of their information is already explained above.

OBR segment is responsible to preserve the information of the starting and ending date-

time of the measurements done to the patient. It also contains a description of a danger

code if it is necessary.

As you can see, in our ST or AL messages, there are five OBX segments. Each of them

has its own information.

71

For example, the first OBX has information of the channel related with the wave of the

measurement. There is the information of the name of channel, amplitude and

frequency. In the second OBX2 you can see information of the time of the measurement.

The information of the pulse dates are saved in the third OBX.

Due to the fact that the wrist device is not able to continuously measure the pulse on the

wrist, a 4th OBX-segment is implemented. This segment contains for every pulse value a

timestamp. The first two digits represent the minute and the second two digits represent

the second (mmss). The hour and the date have to be parsed from the message

timestamps in the MSH or second OBX-segment.

Moreover, there is implemented in the HDH wrist device an algorithm in order to know

the activity of the patient in the same second that the pulse data is measured.

The activity (and the related altitude) is shown in the 5th OBX-segment. For this reason,

for every second there is a pulse data and an altitude/activity data. In this way, the pulse

data but also the altitude/activity range of the patient is known. This is necessary

because it has to be differentiated, for instance, to have a high pulse data when the

patient is calm or if he or she is moving (for example going upstairs). In addition to the

pulse value it is necessary to know in which context the patient is at that moment, so the

pulse can be analyzed within a specific situation (context).

For more detailed and specific information about the meaning and contained information

in each field, it is recommended to read the Annex IV. Table of the HL7 messages

components or more in HL7 standard [2].

Figure 3.42 ST message

72

Message Type AL: Alert Message

The third message type is an Alert Message (AL). This message is sent immediately

after it´s created because it contains critical information. This message contains the

personal information of the patient, a description of the alarm situation (for example

pulse above a certain threshold), attributes of the recording channel (sample frequency,

physical resolution, digital resolution, channel number) followed by the recorded values.

Receiving this message on the phone will cause a loud alarm and a vibrator call. Thus, a

mobile user feedback is necessary to turn it off. In this way, the reaction of the mobile

user for the alarm is immediately. More detail is available in the section 3.1.4 Processing

Alarm Messages.

Not conceptually but grammatically, the AL message is the same as ST. More

information about the meaning and contained information in each field, is available in

Annex IV. Table of the HL7 messages components or more in HL7 standard [2].

Message Type ACK: Acknowledgement Message

However, there is a fourth type of message which is essential for the communication

both with the HDH device and with the Main Server. Once HL7 messages are

transmitted, (the message that the wrist device sends to the Android Server or the

messages that the mobile sends to the Main Server), for each HL7 message

sent/received it is necessary to send an ACK, to reply and confirm to the sender that the

message receipt was correct or incorrect.

Basically, the ACK message informs to the HL7 message transmitter that everything was

well in the reception, or if there was some problem with the message.

Figure 3.43 AL message

Figure 3.44 ACK message

73

If an ACK with "AA" is received, that means that the HL7 message was correct.

Otherwise, an "AR" indicates that the message was incorrect, and thus the transmitter

knows that it has to retransmit the message.

The ACK message has two segments, MSH and MSA. In both, there are fields that must

be filled with specific fields from the received message.

For example, the ACK MSH-3 has to be filled by MSH-5 from the received message, the

ACK MSH-5 with the MSH-3. In the same way, the ACK MSH-4 with MSH-6, and ACK

MSH-6 with the MSH-4 of the received message.

Field MSH-9 ACK is also very important for the created Parser, because it is the one

which reports the type of message.

Additionally, in the MSA segment, the field 2 (Message Control ID) corresponds to the

MSH-10 (Message Control ID) of the received message. Thus, each ACK identifies only

one HL7 message. In the example above, ACK belongs to the PI message whose

control ID is 0001.

The tables written in annex IV. Table of the HL7 messages components show the

segments used in the HL7 messages that are used currently in the system. In bold

specifies each of the fields used in each of the segments.

For more detailed and specific information about the HL7 standard, please see the

standard definition [2].

74

75

3.3.3 HL7 Parser

Figure 3.45 Concept map of the current HL7 message [29]

76

All classes created related to the parser, are located in the package

com.upna.AndroidServerHL7 [29].

Observe from Annex II. AndroidServer Project Directory

In the next lines the operation of the parser is explained:

Firstly, after receiving the HL7 message, the parser analyzes the type of this message.

This is done in class Separatefields.

The types of messages sent by the HDH wrist devices are ST, AL and PI (as explained

in the chapter HL7 v 2.6 Message construction). It has to be kept in mind that the

application developed for Android, won´t only work as a HDH Server, but it also has to

communicate with a Main Server when the SDCard of the mobile is full, in order to

transfer all the stored data. Thus, the Android mobile also receives an ACK message for

each HL7 message Android uploaded to the Main Server.

The method responsible for analyzing the type of message received is messageType (if

the messages are from the HDH), or the method ACKmessageType (if the message is

from the Main Server). In the received message, the character position in the segment,

which indicates the kind of message, is not the same in both cases. As seen, for ST, AL

and PI type message, it is described in the first two characters of MSH-10 (Message

Control ID, the first two characters), while for the ACK the type is in MSH-9 (Message

Type, the first three characters).

Then, the message is separate in segments, using the separator of segments (in our

case “\r\n”, “\r“ or “\n”).

Each type of HL7 message has a certain number of segments, which are known by three

characters in their first field. They can be for example, MSH, PID, OBR, OBX ... or any

other of the segments explained deeply in the section of HL7 messages HL7 v2.6

Message construction.

77

(…)

After separation of the received message into segments, they are assigned as attributes

of the created SeparateFields object.

(…)

The next important class is HL7object.

In this class, each segment of the received message is parsed (they are the result of

SeparateFields, explained above). Once the parsing of each segment is correct, then an

object for that segment is created. After analyzing and parsing each of the segments and

obtaining an object for each of them, they are assigned as attributes of a big object

called HL7object, which covers all objects of the segments.

Following it is explained how this has been done in the code, step by step, based on the

case of MSH. The same explanation can be extended to the other segments.

It is shown that there is a specific parser which analyzes the MSH. Subsequently, the

MSHparsed object of class MSH is created.

78

This is done in the same way for each of the segments, depending on the type of

message, ST, PI, AL or ACK. For each of the types, it is needed to examine their own

segments and parse each one of them.

MSH´s object attributes are named after their corresponding HL7 fields, which are

separated by MSH_Parse method. The separator within a segment is “|”.

For each segment, there is a class and a specific parser, whereby it is possible to obtain

the objects for each of the segments (which are the attributes of the HL7 object).

The classes for each of the segments are: ACK, AL1, DG1, EVN, MSA, MSH, NK1,

NTE, OBR, OBX, PID, and PV1.

And the parsers:

The other parsers are corresponding to the upper definitions.

Furthermore, with some segment fields internal objects were created, such as the case

of MSH-7 (Date/Time of Message) for which an internal object Datetime was created or

in the case of PID-11(Patient Address) with the internal object Address and the object

Allergy for the field AL1-3(Allergen Code/Mnemonic/Description) etc.

In order to understand how the received messages are parsed into an HL7 object please

see the Figure 3.44. It is important to mention that this scheme is an approximation to

79

what has been done, so, for more specific details it is recommended to observe the code

in the package com.upna.AndroidServer.HL7.

In case the parsing of the HL7 message segment is not correct following situation

occurs.

Continuing the example above, the MSH segment is analyzed.

If any of the fields cannot be parsed correctly, for example, if the number of fields

received does not match what was expected, the parser will throw an exception, showing

that the parsing of that segment is not possible.

An exception is thrown in MSH as the next lines show:

This exception is received in HL7object:

In this moment, the system discards the received HL7 message because it is invalid, and

simply waits for a new message.

This behavior of exceptions in this code is a feature that makes the parser operation very

efficient, because even if there is something wrong with the HL7 message, the Thread

that manages the exchange of messages is not blocked. This issue is very important. It

is better explained in chapter 3.1 Connections between HDH and Android Server in the

section of Bluetooth.

 Once managed to build the HL7 object from the received message, the

behavior of the mobile application depends on the source of that

message.

On the one hand, the message can be an ACK message, which implies that the

message is from the Main Server. In this case, it is only necessary to figure out if the

ACK message is “AA” or “AR”.

80

If it is the “AA”, it is known that the message (whose Control ID is given in the MSA-2

field) which was uploaded before to the Main Server was well received, and thus,

everything was successful. If the received ACK message is “AR”, means that there were

some problems with the message in the Main Server or while the transfer. In this case,

the program has to resend again the message to the Main Server.

If there is a problem, the mobile will try to upload the same message to the Server twice.

Then, if the received ACK continues showing “AR”, the mobile will show to the user that

something went wrong while uploading and this specific message will be stored in the

mobile in order to be transferred by the SDCard.

The mobile does not save the ACK messages from the Main Server, it just processes

them but doesn´t conserve.

On the other hand, if the received message is from the HDH wrist device, the message

can be ST, PI or AL type. Once managed to build the HL7 object from that message, the

last action is to reply to the HDH wrist device with an ACK.

To achieve this, what mainly was done after building the HL7 object is examining if the

MSH, PID and OBR have the indispensable fields filled. This is necessary because it is

possible to receive an HL7 message without some essential data fields such as the

MSH-3 (Sending Application), or PID-2 (patient ID).

This code is executed, for example, in HDHClient of the package

com.upna.AndroidServer.Bluetooth. These lines are in detail in the chapter Android

Mobile as a Server.

In the ACK class, there are several functions to analyze MSH, PID and OBR.

According to the analysis done in ACK class, the MSA-1(Acknowledgment Code) can be

“AA” or “AR”. The “AA” will be written when the received fields are correct, and "AR" is

sent if any of the important fields are null. The rest of the MSH and MSA segment fields

of the ACK message will be filled properly depending on the received message; because

81

the ACK always belongs only to a single received HL7 message. For example, the MSA-

2 (control ID) of the ACK that is built is the same as the MSH-10 of the received

message, the MSH-3 of ACK is a copy of MSH-5 of the received message. The same

procedure is used for dealing with the other fields.

(…)

Only in the case that everything was correct and the ACK which is going to be sent to

the HDH is “AA” type, the mobile phone will store the received message [29].

82

3.4 Patients Management
This section deals with the management of the patients. Different issues are explained,

for instance, the life cycle of a patient in the system, i.e., when to get introduced to the

program and when to get deleted from the application. It is also mentioned which kind of

structure was created to store the patient data in the external memory. Finally, it is

described how all data received by the connections are stored and how they will be

showed to the mobile user.

All these tasks are developed from different packages. They are listed below:

 com.upna.AndroidServer.HistoryPatient

 com.upna.AndroidServer.Alarm

 com.upna.AndroidServer.Chart

 com.upna.AndroidServer.SDCard

3.4.1 Lifecycle of the patient

As mentioned before, the lifecycle of the patient in Android Server is defined as all the

states that the patient must go through in the application in order that everything works

correctly. These states are:

 Register a patient

 Access to the patient data

 Delete a patient

Register a patient

As explained in the report, on the main screen of Android Server click the button

"PATIENTS".

Figure 3.46

AndroidServerHome

Figure 3.47 History

83

PATIENTS clicked

Then, the next activity is shown, History, which gives access to the already mentioned

cases in the life cycle.

The first case is Register. It offers a form to the user which has to be filled in to complete

the registration.

Note: it is necessary to comment that the register of the patient is mandatory to the

reception and storage of the HL7 messages. Otherwise the proper reception and storage

is not ensured. It was decided to implement this in this way to prevent that the HDH

could add new patients without registry. If other functionality had been implemented, it

would have generated problems; because if in one of the communications with the HDH

wrist device the sending of the patient ID had been incorrect, a new patient file would

have been created in the Android Server and there would have been two different files

created for the same patient.

On the screen of the register form it is sufficient to include the patient ID number. The

fields Name and Surname are optional and if they are not filled, default values will

appear on the screen related to the patient information.

Furthermore, a REGEX [48] structure will check if the introduced data is correct. It is also

examined if there is already a patient file created with the same patient identification. If

so, the user will be informed that the register hasn´t been completed correctly.

Figure 3.48 Form of

Register

a Patient

Figure 3.49 Form filled

Figure 3.50 Patient was

registered

84

After explanation of the register process and possible errors that are shown to the user

after this process, the internal functionality will be explained in detail.

Every time a patient is registered in the file system, a new space is given in the external

memory for this patient. There, three folders are created: STAL, PI and XML. In the last

mentioned folder, a XML file is created related with the structure of all data of the patient

(and the data introduced in the register: identification number and name/surname if they

were written).

The developed structure is the following:

/XML

/PI

/STAL

/Identification Number

/patient

/sdcard

Figure 3.53 Structure of the patient in the storage system

The patient will be stored with his own Identification Number (unique and unrepeatable)

and the HL7 messages will be saved there, depending on their own type. If the

messages are AL or ST, they are stored together because they have inside the relevant

Figure 3.51 Not stored of

the patient

Figure 3.52 ID not correct

85

medical information as the pulse or activity/altitude of the patient. In the PI folder, all the

update messages received from the HDH are stored. These messages, as shown in the

chapter of the connections by Bluetooth Technology, are responsible of updating the

information of the patient that is serialized in the XML file. This is why the XML directory

exists.

The XML directory is something like “having a patient information library” in our program,

which allows working with patient data any time. It is used for several things: for

instance, to launch alarms, show information of the patient or even makes it easier to

provide a nicer interface for the user because it allows identifying the number of the

patient with his name and surname by using the pop up system (explained later in the

chapter PopupWindow).

The procedure of serializing the patient data is done using an open source serialize type

library, called Simple XML [40].

It was decided to use this library (instead of others which are implemented by Android

which work in Java) because of these reasons:

 Simple framework with powerful capabilities. The framework used to provide XML

serialization is simple to use and revolves around several annotations and a

single persistent object used to read and write objects to and from XML.

 Can handle cycles in the object graph. The persistence engine can handle cycles

in the object graph, which enables complex objects with recursive references to

be serialized. This ensures that the deserialization process can recover all

object references.

 It requires absolutely no configuration. Unlike many of the XML frameworks for

Java there are no mappings or configuration required to serialize objects

regardless of its complexity. The XML schema is represented using field

annotations.

 Extremely rapid development with XML. Developing XML configuration and

communication systems can be done much quicker than through the use of

XML frameworks such as DOM, SAX, and even other frameworks such as

Digester and XStream.

 Converts to and from human editable XML. A primary goal for the framework is

that the XML data used to deserialize a serialize objects is human readable. All

XML elements and attributes take a simple structure that can be easily created

with a text editor.

 Contains an XML templating system. As part of the deserialization process

template markers within the XML elements and attributes can be replaced with

variables. This allows the system to be easily adapted for use as a

configuration system with dynamic value substitution [40].

86

The object, that will be serialized, is created in the Patient class. The structure of this

object is shown in the Annex .V Patient Structure.

Until now the discussion was about the register action. The next step is to explain how it

is possible to delete a patient from the system.

Delete a patient

Deleting a patient allows to free up all the space assigned to the patient when he or she

was registered. This action will destroy the stored HL7 messages of the patient if they

have not been uploaded to the Main Server previously.

The delete process is generated from the DeletePatient activity.

Figure 3.54 Patient List,

choose the patient to delete

Figure 3.55 Dialog to

delete

Figure 3.56 Delete successful

Figure 3.57 Delete failed

87

The methods involved in the delete process (removeDirofPatient and deleteDirectory)

are in the SDCard class. If the patient who the user wants to delete is the last patient in

the list, in addition to the patient file the patient directory is also deleted.

As you can see in the Figure 3.55 before deleting any patient, the application will ask the

user if he really wants to delete the patient by using an alert dialog. If so, next code will

be executed.

As indicated in the code, after deleting the patient by his identification number, the

application will check if the delete process was correct and finishes the activity.

Immediately after the deletion the patient activity is initiated again.

The user can see that the previous patient list has been updated automatically, providing

a sense of dynamism in the program. In case that the deleted patient was the last patient

in the list, the user will be informed that there are not more patients in the memory.

Access to the patient data

In this section it is described how the user can access to all data of the patients in the

application.

After the item “Information & Data” of the activity is pressed (see Figure 3.47) another

activity will initiate. This activity shows a list of all the patients available in the SDCard.

It should be mentioned that in case of there isn´t an external storage memory or there

aren´t patients stored in the mobile, the application will inform this to the user.

The illustrated list is generated by the method listDirPatient in the class SDCard.

Subsequently a MyCustomAdapter is created which is responsible of setting the

String[] returned by the listDirPatient with the listView of the ListActivity (for more

88

information about the creation of the activities and layout see chapter 3.6.4.

MyCustomAdpater and PopupWindow). This ListActivity is in the class PatientList.

Figure 3.58 Patient List

Figure 3.59 Patient List with

PopUp Window

As shown, these two activities are ListActivities [50] and the ListView consists of an

image and a TextView (thanks to the class MyCustomAdapter).

The ImageView Listener is waiting for the moment when the user clicked the image to

change the color of it and besides show the name of the patient. This action is performed

by the class PopupWindow.

Furthermore, the ListView also shows a TextView whose Listener will take the user to

the InfoOrChart activity.

Figure 3.60 Patient Information

or Medical Graphics

As shown, the data of the patient has been divided as:

89

 Patient Information: detailed patient personal data, medical record and

information about close relatives.

 Medical Graphics: detailed pulse and activity/altitude values (received from

the HDH wrist device by HL7 messages).

Patient Information

Patient Information is a TabActivity [51] (its design is described in the chapter 3.6.5.

TabActivity) which provides three tabs. Each tab shows information about already

mentioned issues.

Figure 3.61 Patient

Information Tab

Figure 3.62 Medical

Information Tab

Figure 3.63 Relatives

Information Tab

These screens display information of the patient if it is available (the data will be read

from the corresponding XML file). To do this, a PI type HL7 message must have been

received. Otherwise default values are shown in the screen.

In addition to information related to the patient, the user can also perform a search of the

address of the patient home or even search of the closest hospitals to the patient´s

home using a Google Maps application. Besides, the user can also call to the patient

relatives by pressing only one button (without need to look up and dial the phone number

of relatives).

90

Figure 3.64 Hospital icon

clicked

Figure 3.65 Searching for

hospitals near the patient

address

Figure 3.66 Hospitals

near the patient address

Figure 3.67 Google maps

icon clicked

Figure 3.68 Searching for

patient address

Figure 3.69 Patient

address

Figure 3.70 Icon Call to a

relative clicked

Figure 3.71 Calling to the

relative

For this reason there is an Intent defined by a specific action and a URI parameters. In

Android it is possible to init known programs as Google applications, making calls, start

91

the browse etc. by setting appropriate corresponding action and URI parameters. The

available standard Intents are shown in the webpage of Android [52].

For instance, the necessary Intents for searching application or for making calls are:

Here, ACTION_VIEW displays the data to the user. This is the most common action

performed on data. It is the generic action you can use to get the view of the information

that is wanted. The URI “geo:0,0?q=” opens the maps application to the given location or

query.

In case of the Intent for making calls, the action is ACTION_CALL and data for URI are

defined with this format: tel:telephonenumber [21].

Medical Graphics

On the other hand, if the focus returns to the activity that differed between Patient

Information and Medical Graphics, and the button is pressed to init the activity for

medical data graphics, a Calendar can be seen.

Calendar

This Calendar will show the current month with the days corresponding for each month.

Besides, the days with medical data available are marked with a red point. See the

figure:

92

Figure 3.72 Medical data

available on the 21st and 22nd of

March

Figure 3.73 No medical data

available in April

Furthermore, this feature allows the user to move in every month and so, all the months

and days where data is available can be seen.

In order to give the mobile user a good usability this calendar file storage system was

developed. This Calendar was entirely developed without external libraries. This

functionality allows searching the medical data in the external storage faster because it

looks for the specific file in the month directly.

Now the development of the Calendar is being explained.

The construction of the layout was done in a way that it can be used for any month of

every year. Thanks to that, there is only one layout and it is not necessary to change the

layout of the activity each time the user changes the selected month.

The drawn layout is a RelativeLayout [53] with a 7x7 TableLayout [54] inside. In this

TableLayout are shown the ImageViews which refer to each day of the month. These

ImageViews are set in a different way depending on the month that the user is

examining. For example, each first day of each month is not the same day of the week

(For instance, the 03/01/2011 is Tuesday and 04/01/2011 is Friday). Besides, neither all

months have the same number of days nor every February month has 28 days (keep in

mind that there are leap years).

The first time that the layout is loaded, it is needed to be checked which one is the

current month and with which day of the week the current month starts.

93

Depending on the number of days of the month and value of the index attribute (this

index refers to the position of the first day of the month in the Table Layout, for example,

1st May 2011 is Sunday and its index will be 1, but 1st June 2011 is Wednesday and its

index will be three, and so for every month), the most appropriate ImageViews are

loaded in order to show the month with its adequate number of days. Of course, each

day number has to fit with the specify day of the week.

Furthermore, every time the days of the month are shown, a Thread is launched. It will

search all the data available for this month. This action is performed in the

RefreshCalendar class.

It has to be mentioned that the activity displayed to the user will be updated when the

Thread returns the information about the days where there are patient medical data

available. This action will be performed by the Handler in the class Calendar.

While the Thread RefreshCalendar is running it is necessary to keep the same both the

variables shared by the Thread and the activity (underbinding that the user could try to

access to medical data from another month different from the already chosen/in course

one). That is why the buttons “next” and “previous” in the month do not reply when the

Thread is running. To avoid problems the Thread is limited to one second which updates

the current month with entries of medical data as red dots at the corresponding days and

the buttons “next” and “previous” are only available after this Thread has finished.

For this reason, in order to update the screen, the execution of the Thread is controlled

by a boolean variable acting as a semaphore. While this variable has the value true this

means that the Thread hasn´t finished yet.

94

Once the Thread is finished, the days with medical data inside are highlighted. If there

would be several messages for the same day in the SDCard, it is necessary to delete the

repeated days from the stored list (in order to avoid updating more than once the same

red dot). The next step is to change every image of the ImageView related with the day

“without data” and put in the ImageView another image corresponding to day “with data”

(the day number with a red point in the top left, for example, day1.png is changed to

day1s.png etc., drawable-hdpi folder). This task is done in the method ChangeViews.

Therefore, thanks to the combination of the Thread, Handler and this method, it is

possible to achieve a Calendar which can change dynamically.

Once the data of the Calendar is shown in the activity, you can see that if you press any

day (both day with medical data or without medical data) the Calendar replies to it.

This action requires checking the list of days with medical data (which were given back

to the program, as said before, by the Thread responsible of the search to update the

interface, RefreshCalendar). This list must be stored until the activity ends or until the

user chooses to view data from other month, then, the list has to be replaced by a new

one.

Thanks to the existence of this list (always available for the program for any day the user

selects in the current month), it is avoided to have to launch a Thread every time the

user changes the day and search again in all files of the SDCard to prove if there are

data for this specific day. This way to program the code makes the Calendar very

efficient and the program´s reply when a day is pressed is very fast. By doing so, the

program has to read the SDCard only once per month (in the month selected by the

user).

Since all ImageViews of the TableLayout [54] share the same Listener, when a day is

pressed the program has to find out which element of the screen has been clicked and

95

compares the position of the View returned by the OnClickListener method. It also must

know which one is the current month in order to obtain the day number.

When the number of the day is obtained, the program is ready to search in the list of

“days with data” if this specific day is there. The program will act in one of these ways

depending on the answer:

 It will show a Toast to the user, indicating that there is no data available for

this day. In this case for example, the user has clicked the day 15th of March,

and there isn´t medical information for that day.

Figure 3.74 Not medical data available for this day

 It will go to the next Activity. See that when you pressed the day “with data”

(day with red dot), the box of this day changes its color (turns red), then it will

go to the next Activity.

96

Figure 3.75 The user pressed 24th

of March and the day is highlighted

Figure 3.76 List of medical

messages stored for the selected

day

If the selected day has data, the program continues in the next activity, Listhours. It will

show all the available hours of the different HL7 messages received in this day (see the

Figure 3.76).

The data which shape the ListView are obtained from the SDCard using the

getListDays method. This time, aside from specifying the year and month, it is also

necessary specifying the day. When they are defined, the list is updated with all the

hours in the correct format hh:mm:ss.

When an item of the List is pressed (Figure 3.77), a new activity starts, SelectChart. As

a curiosity, this activity (Figure 3.78) is the unique which has a list with a title and

description of the title. Once the user selects the desired chart, the data of the HL7

messages will be shown. The procedure to display the graphs in the Android platform is

explained in the chapter 3.5 Graphs.

97

Figure 3.77 Specific medical

information selected

Figure 3.78 Different types of

graphs available. Select Chart.

98

3.5 Graphs
One of the targets of the developed application was that the data of the patient had to be

shown in graphs.

It is obvious that having the possibility of seeing the data in graphic form is very

attractive, because in this way the user can just have a quick look at it and see the most

meaningful data and the tendency of the vital samples of the patient. The user can note

the temporal evolution of the patient because every received message is stored

depending on the date-time of the reception as well as depending on the information

type: “Pulse”, “Activity” or “Latitude” of the monitored patient.

Since Android has a basic graphic package (graphics [55]), which provides low level

graphics tools such as canvases, color filters, points, and rectangles, in order to

implement the graphics in this application the code should have been written almost from

scratch.

Therefore, for the purpose of implemented nice graphic views, an open source library

was searched in the internet. The used library is achartengine [56], an open source

library developed by 4ViewSoft.

The truth is that the implementation of the graphs in Android is an issue which is

developing continuously. Nowadays, this library provides line, area, scatter, time, bar,

pied, bubble, doughnut, range bar and dial charts.

When this development started there wasn´t yet implemented zoom functionality in this

library but it had been added months later. That is why the graphics code was rewritten

again.

In this chapter it will be explain in detail how the code related with the last version of the

graphics in the mobile server was done. The classes related with it are in the

com.upna.AndroidServer.Chart package. As mentioned above, the used library is

achartengine-versionconZoom.jar.

In the developed application, once the user selects the date-time of the data of the

patient (Figure 3.77) that he would like to see, an activity asking for the type of

information appears as shown below. The user can choose between seen the “Activity”

or “Altitude” or the “Pulse” data (see above Figure 3.78). The class related with this

screen is SelectChart.

Here is shown the code of the SelectChart:

99

Once the type of information is selected, the data as: patient ID, name of the file related

with the desired date-time, as well as the information type, are sent by intent to the class

responsible for showing the graph, DoGraph.

The class DoGraph extends from AbstractChart class and AbstractChart implements

IChart which is an interface. This is why the methods of the IChart (getName, getDesc

and execute) are defined in DoGraph.

Once the data to create the graph are taken by an intent (execute) in DoGraph, the code

will read the specific file where the desired information is. In this file, the relevant HL7

message is stored, which will become an HL7 object (using the getHL7 method in the

FrommessageinSDCard class).

In DoGraph there are also defined details as the titles of the axis, colors of the

representation or the type of the points desired.

By the method GetAllDatas of the ExtractDatafromFiles class, the data of the

“Activity”, “Altitude” or “Pulse” related to the created HL7 object is obtained. The date

100

and starting/ending time of the measurement with the appropriate format are obtained

shown in the legend of the graph.

In order to create the x axis, the code works with the starting/ending time of the

measurement (in millisecond). Obtaining the subtraction of them and dividing with the

number of samples of the measure, after rounded the sample frequency of the graph is

obtained. In this way, it is possible to represent each point in the graph with the

corresponding millisecond.

After estimation of all of this, the data is available to show in both the x axis and y axis.

Then, the method buildRenderer is used to get a renderer as shown here:

This renderer, is a XYMultipleSeriesRenderer type object, which is obtained by the

buildRenderer of the AbstractChart class.

Using this renderer, it is possible to link both color and style of the points for the series of

the graph.

The next step is to set all the settings of the chart using the method setChartSettings

(the renderer, ID, titles, times, data, min and max values, colors of the lines in the axis…)

as well as the labels.

101

At last, it is necessary to create an intent in such it is possible to create a TimeChart type

graph and which will start the graphical view activity. This is done using the

getTimeChartIntent of the ChartFactory class included in the already mentioned

AChartEngine-versionconZoom.jar library.

An example of the medical data received for the patient with ID 1104289440 (Alexander

Niemann). Datetime of the information is illustrated also (2010/05/10 from 12:00 to

12:15).

Figure 3.79 Heart Rate

Figure 3.80 Activity

Figure 3.81 Altitude

102

3.6 Graphical User Interface Design
This chapter deals with the design of the most relevant screens in the Android Server

application. The mobile phone used for developing this application is HTC Magic [57].

In the Android platform, three essential features come into play during the design of

graphical user interfaces (GUI):

 The Theme of the activity (set by the Android Manifest [45], see also Annex III.

AndroidManifest).

 The Layout of the activity.

 The code programmed in a class which inherits from one of the activities existing

in Android.

3.6.1 Custom Theme for Android Server

As shown along the screenshots of this document, the design of the theme generated in

the Android Server application is completely different to the theme that the Android

platform users usually see in other applications.

Figure 3.82 Default theme in

Android

Figure 3.83 Custom theme in the

Android application

You can notice that the background of the screen has been changed. The chosen color

was white because it is good suitable for a biomedical application. Besides, the title of

the application has been changed to green color in order to bring a nice touch to it,

because somehow, it is related with the logo of the University where the development of

this Thesis takes part.

103

Firstly, the Android Manifest should be set so that the activity uses the custom designed

theme (more in Annex III. AndroidManifest)

The theme is created in the theme document in the folder resources/values. As shown in

the code above, the Android Manifest refers to this theme.

As noted in this code, there is a style associated to the item

windowTitleBackgroundStyle. This style is responsible of setting the green color of the

theme. The parent parameter is set in white color (the default in Android is black that is

why is written .Light).

It is also needed to create a Layout with a TextView inside. The parameters of this

TextView will set the format of the letters in the title. The design of this Layout, called

myactivitiestitle.xml, is saved in resources/layout.

Once the design of the Layout is finished, it has to be loaded like this:

Here, the features of the window are requested and the layout of the activity which is to

be shown is loaded (this part is different in each activity because the layouts of every

activity are different; in the example the activity is “About Us”). Then, the message that

will be shown in the title is set. The green color of the title is given by the Android

Manifest because the theme was defined before.

104

3.6.2 Android Server Home

This screen is the “welcome” or “home” screen in the Android Server application. The

design of this screen attempts to simulate some famous structure of “Twitter”. It was

decided to choose this way because it brings a special touch to the application because

the user is used to handle this kind of screens.

The design of the interface of the activity is loaded by a layout. In order to explain the

interface of this “home” activity, there is below a tree-map of all the views and layouts

described and used in the androiserver_home.xml.

Figure 3.84 Design of the AndroidServeHome activity

This figure shows how the screen has been divided and the different views which take

part in, as ImageView or Button. Furthermore, this layout is composed by several

Linearlayouts [58] which arrange the views of the screens in different orientations

(vertical or horizontal).

The Buttons are designed as follows:

The buttons of the AndroidServer_Home activity have their own style and their features

are set in the same way. The style HomeButton (in styles.xml) sets both the position of

the element in the button and the text referred in the code in the text label.

105

Furthermore, the label drawableTop indicates the position of the image in the button. In

this case it is put over the text. Note that the references to the folder drawable aren´t

done using a .png image but by one xml file which refers to two different images.

As shown, a selector is described which checks the state of the button. If the button´s

state is focused or the button has been pressed, the default image must change and it

has to use the highlighted image. In this way, the user has information about pressing

the button.

Figure 3.85 User has clicked the PATIENTS button

Continuing with the image of the button, the explanation of the label onClick is given

which refers to the method (android:onClick= “onHDHServerClick”). This label registers

a listener which will execute a specific method (located in the class where this layout

was loaded) once the button is pressed. In this case, the method that it will execute is

onHDHServerClick.

On the other hand, in the layout of this activity it can be seen that the custom theme

explained in the previous section isn´t used. Instead, a theme of android is used which

106

allows to have a white screen but without the default title. There is a linear layout (see

the blue rectangle in the figure) replacing it.

.

The title in this “home” screen was to be deleted in order to introduce another title with

bigger width than the default one, and which also adds a gradient configured in the

drawable folder.

To conclude this section, it has to be mentioned that these effects, “highlight effect” in

the buttons and also “gradients”, are used in other activities in the same way (in the

Calendar when the user presses the day with medical information, in the relatives

information screen when the user presses the call button or map application button…).

The explanation of how to do the coding is the same as explained in previous lines in

this chapter.

3.6.3 Bluetooth Server

The important features in the graphical interface in the activity of the Bluetooth Server

are its progress bar and popup menu.

Note that the design of this activity is the same as the Wifi Server activity.

Progress Bar

In the Android platform there are several ProgressDialogs [59] available, which show

that an activity is processing or that there is a task working in background.

Nevertheless, it was necessary to show that the Bluetooth Server was running. Due to

this fact, the best option was to develop an own ProgressBar. It was decided to use an

icon which resembles an envelope in the ProgressBar, which would spin (form 0º to

360º) while it was approaching the right side of the screen. In this way, the user simply

107

has to look at it and will notice that the service is running. This progress bar that was

designed, gives dynamism to the application and it is attractive to the user. The class

which deals with this issue is MyProgressBar located in the package

com.upna.AndroidServer.views.

The class MyProgressBar extends from LinearLayout due to the fact that this view has

to be introduced later in the layout and also implements Runnable because the

movement of the progress bar is controlled from a Thread.

In order to achieve the performance of this progress bar, an object named

MyProgresBar is created in the activity where we want to insert it. In this case the

activity is BluetoothManager, which automatically will prepare the view using an object

of the class LayoutInflater [60]. This object will use the layout myprogressbar.

The layout myprogressbar consists in a RelativeLayout with five imageviews (each

with an image, circle_grey.png).

After adding the view, the method startAnimation is called to initiate the thread. This

thread will be sleeping for 300ms and a message is sent to the Handler implemented in

the MyProgressBar class to update the progress bar (more specifically it updates some

images of it and so, it will simulate a bar moving from left to right). Once this is done, the

thread sleeps again and when it wakes up, another message will be sent to the Handler

in order to update again the progress bar (new images of the progress bar are updated

now and the optical animation for the user is that the progress bar is moving). This is

done until the thread is cancelled. The view of MyProgressBar is cancelled by the

method dismiss.

Once the performance of the class MyProgressBar is explained, the next step is to

analyze how the incorporation of the progressbar to the desired activity works.

First of all, the layout of the activity is added, in this case the layout bluetoothmanager.

108

Note that where usually the name of the view is written, now the complete path is shown.

Once the view is loaded in the layout, it is also needed to link it to the code in the

background. In this way, an object is obtained which controls the view, i.e., it can start

and stop the view.

This is the code which relates the view loaded in the layout with the code of the activity.

Both methods start and stop the view.

It is very important to realize that the progress bar must be stopped in the correct

moment. In this case, it will be stopped when the user goes out of the activity

(onDestroy) or the service stops.

On the other hand, the progress bar will be executing in these cases: obviously, when

the service is initiated by the user first time, or when the user accesses to this screen

and the service was already running before.

Popup Menu

The Android platform gives us the possibility of showing the popup menu [61] which

allows hiding some tasks if the screen is already full of them or if the action is of

secondary meaning.

This function was included in the BluetoothManager activity in order to add the

possibility to connect to the HDH (see chapter Android mobile working as a client with

regard to the HDH device) in the developed Android Server application. As explained

there, this function is a task that was included in the application to satisfy the current

requirements of the HDH wrist device. For this reason, this extra function is included in a

popup menu. See Figure 3.11.

In order to create the menu it is essential to create the menu folder in the project

directory (because the menus are stored in this folder, as there are other folders as

values, colors etc.). The created menu is called option_menu and it is loaded by the

class LayoutInflater.

109

This menu is compounded by three items (see Figure 3.11). Each of them has

associated an icon of Android platform and a title.

This method, onCreateOptionsMenu, of the class Activity, is overwritten in

BluetoothManager and allows creating menus. Besides, the method

onOptionsItemSelected also has to be overwritten to execute the action that must be

done after pressed one of the items of the menu. If you want to know more about each of

these items go to 3.1.1 Bluetooth Technology. Once it is done, the menu is added to the

activity.

3.6.4 MyCustomAdapter and PopUpWindow

These classes enable to build a kind of list similar to one below. One class is responsible

of showing the list and the other to respond when an icon of the list has been pressed.

MyCustomAdpater

MyCustomAdapter is a class generated in the activities, ListActivities are composed by

an ImageView and a TextView in each row. This class extends from

ArrayAdapter<String> because it is needed to adapt a String type list to a ListView.

An example of this issue is the activity PatientList. This activity is analyzed to illustrate

the behavior of this class. This ListView consists the patientList layout: composed by a

LinearLayout with horizontal orientation and an ImageView and a TextView inside.

110

In the constructor of this class the overwritten method getView is called in order to

create a row of the ListView (Figure 3.86). Therefore, if the method is called with a list of

10 elements, it will be called 10 times and the position parameters will indicate the

element of the list that is creating in that moment.

As established in the code, a LayoutInflater [60] is used in the patientlist layout and so,

the view called row will dispose an ImageView and a TextView. A patient identifier

number will be assigned to this TextView (a number which correspond in the

idPatient[position]). The String[] idPatient has all the identification numbers of the

patients that are currently in the external storage system and as explained before, the

position parameter is given by the method getView. The ImageView is set by the grey

information .png as shown below:

Figure 3.86 List created with MyCustomAdapter

111

Furthermore, a listener is set to each ImageView and when it is pressed it will named the

class PopupWindow (it is explained in the next section). Then the color of the

information icon will change to green, advising to the user which is the chosen patient

(owner of the current PopUp).Once this is done, the list will be illustrated in the screen.

PopupWindow

The PopupWindow class is responsible of creating a pop up which will link a patient

identification number with the appropriate name and surname. In order to explain this

issue, the acitivity PatientList is used.

 The PopupWindow class extends from BetterPopupWindow which is in the package

com.upna.AndroidServer.views. Both are responsible of showing the Popup.

The PopupWindow becomes a character in the code when the user clicks an ImageView

of the ListActivity of the Figure 3.86. Then, the method onClick of the listener of the

ImageView executes. It changes the color of the information icon to green and the

following actions start:

Figure 3.87 Schema of the PopUp Window performance

Note: the realized actions are marked by numbers in sequential order, i.e., the step 1.1

is done inside the step 1 and so on.

112

Once these actions are done, the following image is shown in the application. The

patient identification number 1104289440 is related with the name/surname Alexander

Niemann.

Figure 3.88 Popup Window

Then, when the user clicks anywhere in the screen, the event will be captured by the set

onTouchlistener and the next code will execute:

This code makes the Popup disappear and then a message is sent using a Handler to

the graphic interface; refreshes the ListView and loads it again putting the icon to its

default state (again grey color).

3.6.5 TabActivity

The Tabactivities [51] are activities that contain and run multiple embedded activities or

views.

To the developed program, it was required to create a TabActivity which shows the most

relevant information of the patient (already serialized in the xml file as explained in the

chapter Android Mobile as a Server, talking about updateXML).

113

The development of the graphic interface and code is different and more complicated

than in other simpler activities. That is why these issues are explained here.

The development of the layout needs a TabHost [62], a TabWidget [63] and a

FrameLayout [64].

The TabHost is a container for a tabbed window view. This object holds two children: a

set of tab labels that the user clicks to select a specific tab (TabWidget) and a

FrameLayout object which displays the contents of that page. This FrameLayout is

designed to reserve an area on the screen to display a single item. The individual

elements are typically controlled using this container object, rather than setting values on

the child elements themselves.

The operation of the TabWidget is this: when the user selects a tab, this object sends a

message to the parent container (TabHost) to tell it to switch the displayed page. So the

container TabHost is used to add labels, add the callback handler and manage

callbacks.

Moreover, the class used to load this type of layout should extend from TabActivity and

to add the tabs it should use a TabHost type object and TabSpec [65].

114

As shown, it has to ask for a new tab (TabSpec) to the TabHost object and it will set the

necessary parameters. In this case, there are given a name, an image and a title. The

content has to be added also (setcontent) which will set the intent that must do when

the user clicks in the tab. Once it is done, it is included in the TabHost.

Concluding, it is all about the generation of the TabActivity.

Figure 3.89 TabHost (purple), TabWidget (green),

FrameLayout (orange) and TabSpec (yellow)

3.6.6 Calendar

The explanation about the Calendar is given in the chapter Access to the patient data

section of the Calendar. As mentioned there, an activity which shows a Calendar has

been developed in order to reveal the days which contain medical information of the

patient. In that section is expounded the performance of the code, i.e., how data is

searched, the days are loaded etc.

Nonetheless, to realize all the actions it is indispensable to create a layout where all the

months are loaded. All about the layout of the Calendar is explained below.

115

We have several views of different types: ImageButton, Button, ImageView, TableRow....

These views are located in three LinearLayouts [58]. In one of them, there is the

Calendar as TableLayout [54].

A TableLayout consists of a number of TableRow objects, each defining a row. In this

TableLayout are located in the first row the elements which will be static: the name of the

days in the week. In the next rows (TableRow) there are loaded ImageViews which later,

by using the code, will have assigned an image depending on the name of the week day

related with the first day of the month.

3.6.7 About Us

The activity AboutUs is a screen which presents to the user more about the software

developers, where it has been developed, who is the tutor of the project (because it is a

Master Thesis Project) and it gives the opportunity to contact the developers by email

(see Figures 3.92 and 3.93).

The most interesting fact related with the software development in this activity is its

design and the possibility that it gives to open the e-mail by default (or even the user can

select in a list the email manager that he wants to use). The e-mail will be opened with

the gaps already filled with the developers address.

Figure 3.90 Structure responsible

of showing the Calendar

Figure 3.91 Calendar activity

116

Firstly, it has to be mentioned that the design has been done using a RelativeLayout

[53]. A RelativeLayout is a Layout where the positions of the children can be described in

relation to each other or to the parent. This RelativeLayout has two childrens; one is

ScrollView [66] (which enables the user to move in the activity) and the other is

LinearLayout [58] (where the other Views are set).

In the LinearLayout there are, between several views, two TextViews where a listener

was set. Thus, when the user clicks there, they change their style (letter size and color)

and the email application initiates. This is done like this:

Figure 3.92 About Us activity

Figure 3.93 Contact with

3.7 Design of simulators
Because this project is a part of a bigger project where other people are working, it was

needed to adapt in every moment to the real functionalities finished in that time. That is

why during the conduction of this thesis, some programs which act as simulators of other

project parts were created in order to be able to test more efficiently the work. In this way

it was possible to analyze this program, check the errors and correct them. Thanks to

117

that, when working with other people and trying connections, message sending/reception

and answering… only some details were needed to be redone.

Following there is a brief explanation about the simulators which were created during the

development of this master thesis (which became very important for testing purposes).

 HDH (client) simulator for Bluetooth connection, for the implemented

Android Server Bluetooth application.

 HDH (client) simulator for TCP/IP connection, in order to connect to the

implemented Wifi Android Server.

 Android SDK emulator to send GSM messages. It is the emulator that the

Android platform provides.

There were also two simulators for the Android Server application:

 Simulator of HDH working as the server, Android phone acting as a

Bluetooth client

 Simulator of the HDH Main Server.

Due to the fact that both connections are working with real applications (with the real

devices; HDH wrist device and Main Server) none of these simulators are included in the

next lines because they are not needed currently. Only the first three simulators are

explained.

3.7.1 HDH (client) simulator for the Bluetooth connection

This is an application written in C# capable of discover running services and of sending

messages to the selected device. See figure below:

Figure 3.94 Simulator of HDH wrist device

118

The class BluetoothClient in C# has a method called DiscoverDevices which allows

obtaining a list of all the devices located in the wide range of Bluetooth. This is done in

the background with an object of the class BackgroundWorker. When it discovers the

devices the method _discoverWorker_RunWorkerCompleted is called which will list in

the ListView all the found devices.

When the user clicks an item of the list above and writes the HL7 message in the text

view, the program starts connecting to the Android Server by the method connect.

3.7.2 HDH (client) simulator for TCP/IP connection

This schema represents how the HDH (client) should work using the TCP/IP protocol.

This functionality will be implemented in future versions of the HDH device.

Figure 3.95 Schema of HDH (client) Simulator for TCP/IP connection

The code is available in the project Quickclient.

3.7.3 Simulator for GSM messaging

The Android SDK has an emulator which enables to send SMS messages among other

capabilities. More information about this tool is available in Android Developers webpage

[67] See Figures 4.12 and 4.15.

119

4 Evaluation and results

4.1 Evaluation
In any project that contains an implementation part, it is imperatively needed to verify the

correct behavior of it. In this case, after the implementation of the application debug

processes have been done: testing both "black box" and "white box" to ensure the

correct behavior of the deployed application.

Black-box test design treats the system as a "black-box", so it doesn't explicitly use

knowledge of the internal structure. Black-box test design is usually described as

focusing on testing functional requirements [68]. Thus, this test design introduces data

and only analyzes the output of the tested object. In general, this test level requires

defining all the possible cases and so, the tester only has to verify each output or

behavior of the system for a specific input.

Nevertheless, white-box test design enables to peek inside the "box", and it focuses

specifically on using internal knowledge of the software to guide the selection of test

data. The tester has access to the internal data structures, code and algorithms. The

test methods for white-box testing could also use to validate the integrity of the test

realized with methods of the black-box. This facilitates the work of the developers,

because they can examine parts of the system that rarely would be tested and ensures

that all the important points have been analyzed.

4.2 Results
Some of the most important facts of this Master Thesis are the connections achieved

with several devices. That is why they have been tested and verified a lot of times when

evaluating the software. Some connections had some difficulties that have been

successfully solved during the Thesis progress.

Regarding the connections with Android, it is unavoidable to talk about the HL7 package.

It is required testing the HL7 package built for Android, which is responsible of parsing

the received HL7 messages. It provides various algorithms capable of understanding the

messages that are currently running, but due to the fact that the project is continuously

progressing, it would be sensitive of possible changes in some features in the future.

Besides, all the interfaces have been tested and also the internal code which controls

them. The small details that caused some kind of error have been solved and now

everything works correctly.

With respect to the part of connection between the HDH and Android Server via

Bluetooth, as mentioned and explained over the report, several functionalities in the

120

Android Server have been developed (behavior as client or as server). As shown, the

management of the connection in all these cases is similar, except the obvious

differences regarding to the device which starts the connection. Once it is established, in

the exchange of messages by Bluetooth does not matter who initiated communication.

Because of these reasons, the results of them will be explained together.

4.2.1 Communication via Bluetooth between HDH and Android

Server

Below there are some views of the Android log. The transmission of the messages can

be seen: firstly the reception of the message, then the correct parse of it (green) and the

ACK dispatched with the same identification as the received message (red).

Figure 4.1 Log of the communication HDH-Android Server via Bluetooth

The operation of the application is correct and the communication has been done

correctly.

In addition, if Android Server is working as the client in the connection, the state of the

connection has to be controlled all the time. Therefore, if the connection fails because

the devices are out of the Bluetooth range, the Android has to be reconnected to the

HDH. This scenario has been tested and the application works properly. Following the

explained behavior is shown.

121

Figure 4.2 Android reconnection to the HDH

In the first image (Figure 4.2) it is illustrated that a communication was established and

an ACK was written. Suddenly, the channel was closed because the distance between

both devices (the distance between HDH and Android) was larger than the Bluetooth

range.

In the screen below (Figure 4.3), it is possible to appreciate that the Handler created in

my system initiates again the connection automatically.

Figure 4.3 Handler responsible of the reconnection

So, the connection is restarted and the system tries to connect a second time. In that

moment, the signal of Bluetooth is weak and the connection intent fails. Then, the

system tries to restart the connection again with the HDH and because in this case the

devices are closer, the connection is successful.

Figure 4.4 Successful reconnection

122

Many of these attempts were tested and in most of the cases the reconnection was

successful.

4.2.2 Android Server via WiFi

The connections done via WiFi technology were always in the same environment, i.e.,

always inside the private net of the university.

As explained in the chapter 3.7.2 HDH (client) simulator for TCP/IP connection, a HDH

simulator was used which is able to work with WiFi in order to test the communication

between the HDH and Android Server via WiFi. (Currently on the HDH there is not a Wifi

module, therefore a simulator was used).

The transmissions were tested using the simulator built in Java, obtaining a successful

connectivity and message exchanging. Here are shown some logs which illustrate the

connection between the HDH simulator and Android Server.

Figure 4.5 Log of the communication HDH-AndroidServer via Wifi. Point of view: HDH simulator.

As noted, we have connected to the private address 10.201.92.92 and port 44444

(which is where the Android Server is hosted). Communication starts and in the trace is

shown the sending of a HL7 message. The parsing and related ACK sending is also

shown.

Figure 4.6 Log of the communication HDH-AndroidServer via Wifi. Point of view: AndroidServer.

In this case the message was AL type “alarm”. Due to this fact, the service of alert

notification was launched.

123

Figure 4.7 Alarm message

received

Figure 4.8 Alert notification

slid

4.2.3 Connection with the HDH Main Server

The Figure 4.9 shows the IP and Port used by the Main Server [47]. In the form of the

Figure 4.10 the user introduces the address to connect to it (IP 10.201.94.254 and Port

5555).

The

following figure illustrates the connection between the Android Server and the HDH Main

Server. It is shown the log related with the upload of the patient files to the Main Server.

In this example, after the successful connection, the files related with the messages

AL0000 and AL0001 are transmitted.

Figure 4.9 IP and Port of the Main Server

Figure 4.10 HDH

Server

124

Figure 4.11 Uploading files from Android Server to the Main Server

In the figure above the sending message and the related ACK are underlined (green).

4.2.4 GSM Service

The GSM service has been tested using the tool available in the Android SDK [67]. This

tool enables to simulate the connection to a GSM network and so, allows making calls

and sending SMS to the Android emulator. In this way, what was done is to simulate that

the HDH has integrated a GSM module which allows sending SMS to the Android

Server.

Following are shown the results obtained related with the SMS messages.

This first tool enables sending messages. By integrating the Android SDK in the Eclipse

environment, it is possible to handle it from there.

Figure 4.12 Emulator Control, SMS sending

125

Beneath it is illustrated how the AndroidServerReceiver detects the reception of an SMS

and transmits it to the service which will interpret it.

Figure 4.13 AndroidServerReceiver catches an incoming SMS and sends to the SMSService

Figure 4.14 SMSService receives the SMS and analyzes it.

Here it is displayed the SMS message in the Android emulator and alarm notification that

it has generated.

Figure 4.15 Android emulator showing the received SMS

4.2.5 Testing the Graphical User Interface

Regarding to the graphical interface and the programming related with it, some tests

were done and no errors were found in the debug. That is why it was considered enough

stable in its execution.

126

Since the mobile phone market is always in constant motion, there are a lot of mobiles

which implement Android, all of them with different features, screens... the great thing

would be to be able to make that the graphical interface adapts in every kind of mobile

[69]. In this way, it would be perfectly visible in all the devices. For the moment, a design

was developed which works with the current phone, HTC Magic. If it is expected that all

interfaces need to display correctly further tests need to be conducted.

As explained in the reference of developers of Android [69], this issue should be noted

for applications that have been developed for platforms older than 1.5, because for later

versions the platforms provide services for adapting to the screen. In the case of wanting

to show this application in versions with extra large screens, several tests should

perform.

127

5 Conclusions and Future researches

5.1 Conclusions
The completion of the Master Thesis in an e-Health environment has been a very

enriching experience. Nowadays, the e-health and medical interoperability is an area

that is expanding thanks to several applications developed (and currently developing) by

research groups in collaboration with hospitals, service providers and manufacturers of

medical devices. Increasingly, companies start investing on the interoperability of their

systems because it represents a market that will undoubtedly be claimed by the public.

During this exchange experience with the FHTW, this Android Server has been

developed to improve the homecare of patients with illness. Therefore, the patients can

be supervised and monitored all the time avoiding going to the hospital every time they

have to make a measurement, thanks to it is real time monitoring. Besides, family

members, who use this Android Server application and they are not in the same place of

the patient, can surely know any time that their relatives are continuously monitored.

In order to face the development of the Android Server, it was necessary to understand

how the HL7 standard works and learn about some program languages as Java and

Android. The knowledge of this tools is an improvement for my studies because is very

useful for my professional career.

On the one hand, dealing with HL7 standard provides, without doubt, a very interesting

knowledge. Without the existence of standards, the possibility of transmitting, receiving

and interpreting medical messages would be impossible

On the other hand, dealing with Android, which is an open source platform, means that it

has a great potential since it enables to integrate completely in other systems. After all,

in open source the developers can read, redistribute and modify the source code of an

application that is why it grows and progresses by leaps and bounds. The community

improves the software, adapts and corrects it so fast that the system becomes a colossal

tool. Every day there are more tools of this type available and there is a marked

tendency for users at all levels (business, education ...) to migrate much of its

applications to it.

In this context, the developed Android Server is capable to understand and interchange

HL7 messages with the HDH wrist device and the Main Server by different technologies

and it acts in a timely manner. Moreover, the Android Server is capable to deal with

patient´s information and personal health data showing the related graphs showing

trends of received values.

128

Because of these reasons, this application represents the first step for solutions in the

homecare field related with the Health Data Hub.

5.2 Future researches
This Master Thesis has as a result the first version of the Android Server software. This

software enables to exchange medical messages by the standard HL7 and provides a

powerful tool for the telemonitoring of patients.

However, as mentioned, the developed software is a first version and some issues could

be added in the future:

 Implementation of a tool for the standard HL7 messages in the Android

platform. The package developed for the HL7 type messages, is a tool which

currently works properly in the present environment. However, it would be

appropriate to make a code similar to HAPI [13], which would enable to

recognizing any HL7 message. This functionality would provide an

independent autonomy regarding to the messages sent from the devices.

 Implementation of a SQLite data base in Android [70]for the security of the

data. It would be able to replace the current file system available in the

application. SQLite is a relational data base management. Android provides a

SQLite offers everything needed for local storage and fast and simply result.

 Implementation of Web services or SSL security in the non-secure

connections, as the connection by Internet. This work should be done in

cooperation with the developers of the Main Server. This fact enables

sending medical type messages, protected from possible intrusions in the

connection.

These are possible future research topics which could be implemented for a second

version of the Android Server.

In addition, the emerging technologies within eHealth environment have to be kept in

mind. The technical features and communication requirements of these technologies are

defined depending on the domain where they work. In the following paragraphs there are

explained some of these technologies.

BLTE is an alternative to the Bluetooth standard that was introduced in Bluetooth v4.0,

and is aimed at very low power applications running off a coin cell. It allows two types of

implementation, dual-mode and single-mode. In a dual-mode implementation, Bluetooth

low energy functionality is integrated into an existing Classic Bluetooth controller. The

129

resulting architecture shares much of Classic Bluetooth’s existing radio and functionality

resulting in a negligible cost increase compared to Classic Bluetooth. Additionally,

manufacturers can use current Classic Bluetooth (Bluetooth v2.1 + EDR or Bluetooth

v3.0 + HS) chips with the new low energy stack, enhancing the development of Classic

Bluetooth enabled devices with new capabilities.

Cost-reduced single-mode chips, which will enable highly integrated and compact

devices, will feature a lightweight Link Layer providing ultra-low power idle mode

operation, simple device discovery, and reliable point-to-multipoint data transfer with

advanced power-save and secure encrypted connections at the lowest possible cost.

The Link Layer in these controllers will enable Internet connected sensors to schedule

Bluetooth low energy traffic between Bluetooth transmissions [71].

ZigBee technology, operates on the IEEE 802.15.4 standard, as this only defines the

physical layer and Medium Access Control (MAC). It is targeted at radio-frequency (RF)

applications that require a low data rate, long battery life, and secure networking. The

hardware is considerably simpler than BT, achieving several years of battery life through

minimal power consumption [72].

NFC (Near Field Communication) technology [73]. It can be also very interesting in the

eHealth environment, especially in cases that it is not necessary to monitoring the

patient all the time (the short range of the NFC limits the capacity to continuous

monitoring). In addition, Android has developed the API for the new mobile devices

which integrates this chip [74] . More information is available in the Annex IX. NFC.

Moreover, related with the research environment, an integration of the ANT+ (Annex X.

ANT+) technology in Android would be useful, because this technology is being

increasingly used in the Android development. There are some devices which already

implement it [75]. ANT+ is primarily designed for collection and transfer of sensor data,

to manageable units of various types. The three main areas of operation are sport,

wellness and home health. It can be used for data-transfer for a number of devices

enabling to get the Android platform closer to the e-Health context.

Within the LAN technologies domain, Wi-Fi Direct has to be highlighted. It consists of a

series of software protocols (Wi-Fi Peer-to-Peer specification) that allow Wi-Fi devices to

communicate with each other directly without needing a wireless Access Point (AP) [76].

In terms of security, it uses the Wi-Fi Protected Setup to create connections (using

WPA2) between devices. The work at Continua Health Alliance considers emerging

technologies to have particular relevance in interoperability. In February 2011, Continua

signed a collaboration agreement with Wi-Fi Alliance for the promotion and adoption of

Wi-Fi Direct technology [77].

130

Bibliography

[1] Standard ISO/IEEE 11073. [Online] http://www.11073.org/. [04/11]

[2] Standard HL7 v2.6. Health Level Seven International. [Online] http://www.hl7.org/.

[04/11]

[3] Android. [Online] http://www.android.com/. [05/11]

[4] Open Handset Alliance. [Online] http://www.openhandsetalliance.com/. [05/11]

[5] Savov, Vlad. engadget. [Online] 01 2011.

[03/11]http://www.engadget.com/2011/01/31/canalys-android-overtakes-symbian-

as-worlds-best-selling-smart/. [03/11]

[6] Eclipse. [Online] http://www.eclipse.org/. [03/11]

[7] Healthy Interoperability. [Online] http://www.healthy-interoperability.at/. [04/11]

[8] Gerbovics, F., et al. Implementation of a wrist wearable Health Data Hub-prototype

for context based telemonitoring of elderly people using standardized data transfer

methods. Vienna: University of Applied Sciences Technikum Wien, 2010. [04/11]

[9] Continua Health Alliance. [Online] http://www.continuaalliance.org/. [04/11]

[10] ANT TM. [Online] http://www.thisisant.com/. [04/11]

[11] European Committee for Standardization. [Online] http://www.cen.eu/. [04/11]

[12] International Organization for Standardization. [Online] http://www.iso.org. [04/11]

[13] HAPI. [Online] http://hl7api.sourceforge.net/. [02/11]

[14] Bitterman, Mark. Development of a Data Model for a wrist wearable Health

Device Hub . Vienna : University of Applied Sciences Technikum Wien, 2010.

[04/11]

[15] Stat Counter. [Online] http://gs.statcounter.com. [03/11]

[16] Nokia. [Online] http://www.nokia.com/. [03/11]

[17] Meego. [Online] http://conversations.nokia.com/2010/02/15/nokia-and-intel-create-

meego-for-new-era-of-mobile-computing/. [03/11]

[18] Blackberry. [Online] http://us.blackberry.com/. [03/11]

[19] Windows Phone. [Online] http://www.microsoft.com/windowsphone/es-

es/default.aspx. [03/11]

131

[20] Apple. [Online] http://www.apple.com/ios/. [03/11]

[21] Ableson, Frank, Collins, Charlie y Sen, Robi. Unlocking Android a developer´s

guide. United States of America : Manning Publications Co., 2009. [05/11]

[22] JetBrains. IntelliJ IDEA. [Online] http://www.jetbrains.com/idea/. [03/11]

[23] NetBeans. [Online] http://netbeans.org/. [03/11]

[24] Using DDMS, Dalvik Debug Monitor Server. Android Developers. [Online]

http://developer.android.com/guide/developing/debugging/ddms.html. [03/11]

[25] Rogers, Rick, et al. Android Application Development. United States of America :

O´Reilly Media, 2009. [04/11]

[26] Installing the ADT Plugin. Android Developers. [Online]

http://developer.android.com/sdk/eclipse-adt.html#installing. [03/11]

[27] Installing the SDK. Android Developers. [Online]

http://developer.android.com/sdk/installing.html. [03/11]

[28] Download the Android SDK. Android Developers. [Online]

http://developer.android.com/sdk/index.html. [03/11]

[29] Tellechea Pereda, Amagoia. Development and Implementation of a Data Model

for an Adnroid based Telemonitoring Server. Vienna : University of Applied

Sciences Technikum Wien, 2010. [05/11]

[30] Service. Android Developers. [Online]

http://developer.android.com/reference/android/app/Service.html. [04/11]

[31] Activity. Android Developers. [Online]

http://developer.android.com/reference/android/app/Activity.html. [04/11]

[32] Thread. Android Developers. [Online]

http://developer.android.com/reference/java/lang/Thread.html. [03/11]

[33] Notifications. Android Developers. [Online]

http://developer.android.com/guide/topics/ui/notifiers/notifications.html. [03/11]

[34] Bluetooth. Android Developers. [Online]

http://developer.android.com/guide/topics/wireless/bluetooth.html. [03/11]

[35] Context. Android Developers. [Online]

http://developer.android.com/reference/android/content/Context.html. [03/11]

[36] Handler. Android Developers. [Online]

http://developer.android.com/reference/android/os/Handler.html. [04/11]

132

[37] Bluetooth Server Socket. Android Developers. [Online]

http://developer.android.com/reference/android/bluetooth/BluetoothServerSocket.h

tml. [04/11]

[38] Bluetooth Socket. Android Developers. [Online]

http://developer.android.com/reference/android/bluetooth/BluetoothSocket.html.

[04/11]

[39] InputStream. Android Developers. [Online]

http://developer.android.com/reference/java/io/InputStream.html. [03/11]

[40] Simple XML Serialization. [Online] http://simple.sourceforge.net/. [03/11]

[41] UUID, Universally Unique IDentifier. Android Developers. [Online]

http://developer.android.com/reference/java/util/UUID.html. [04/11]

[42] UUID for SPP connection (Bluetooth Device). Android Developers. [Online]

http://developer.android.com/reference/android/bluetooth/BluetoothDevice.html.

[04/11]

[43] ServerSocket. Android Developers. [Online]

http://developer.android.com/reference/java/net/ServerSocket.html. [03/11]

[44] Toast. Android Developers. [Online]

http://developer.android.com/reference/android/widget/Toast.html. [02/11]

[45] The AndroidManifest.xml File. Android Developers. [Online]

http://developer.android.com/guide/topics/manifest/manifest-intro.html. [04/11]

[46] BroadcastReceiver. Android Developers. [Online]

http://developer.android.com/reference/android/content/BroadcastReceiver.html.

[04/11]

[47] Khumrin, Piyapong. Design and Implementation of Electronic Health Records for

the Health Device Hub of the Healthy Interoperability Framework within an HDH

project. Vienna : University of Applied Sciences Technikum Wien, 2010. [04/11]

[48] Jeffrey, E.F. Friedl. Mastering regular expressions. United States of America :

O´Reilly Media, Inc., 2006. [03/11]

[49] Using HAPI. SourceForge. [Online] http://hl7api.sourceforge.net/using_hapi.html.

[02/11]

[50] ListActivity. Android Developers. [Online]

http://developer.android.com/reference/android/app/ListActivity.html. [03/11]

[51] TabActivity. Android Developers. [Online]

http://developer.android.com/reference/android/app/TabActivity.html. [03/11]

133

[52] Intent. Android Developers. [Online]

http://developer.android.com/reference/android/content/Intent.html. [03/11]

[53] RelativeLayout. Android Developers. [Online]

http://developer.android.com/reference/android/widget/RelativeLayout.html. [03/11]

[54] TableLayout. Android Developers. [Online]

http://developer.android.com/reference/android/widget/TableLayout.html. [03/11]

[55] Graphics. Android Developers. [Online]

http://developer.android.com/guide/topics/graphics/index.html. [03/11]

[56] aChartEngine. 4ViewSoft. [Online] http://achartengine.org/. [03/11]

[57] HTC Magic. [Online] http://www.htc.com/www/product/magic/overview.html.

[04/11]

[58] LinearLayout. Android Developers. [Online]

http://developer.android.com/reference/android/widget/LinearLayout.html. [03/11]

[59] Creating Dialogs. Android Developers. [Online]

http://www.htc.com/www/product/magic/overview.html. [03/11]

[60] LayoutInflater. Android Developers. [Online]

http://developer.android.com/reference/android/view/LayoutInflater.html. [03/11]

[61] Menu. Android Developers. [Online]

http://developer.android.com/reference/android/view/Menu.html. [03/11]

[62] TabHost. Android Developers. [Online]

http://developer.android.com/reference/android/widget/TabHost.html. [03/11]

[63] TabWidget. Android Developers. [Online]

http://developer.android.com/reference/android/widget/TabWidget.html. [03/11]

[64] FrameLayout. Android Developers. [Online]

http://developer.android.com/reference/android/widget/FrameLayout.html. [03/11]

[65] TabSpec. Android Developers. [Online]

http://developer.android.com/reference/android/widget/TabHost.TabSpec.html.

[03/11]

[66] ScrollView. Android Developers. [Online]

http://developer.android.com/reference/android/widget/ScrollView.html. [03/11]

[67] Emulator of Android SDK. Android Developers. [Online]

http://developer.android.com/guide/developing/tools/emulator.html. [03/11]

134

[68] Laycock, Gilbert Thomas. The theory and practice of specification based

software testing. United Kingdom : Dept of Computer Science, Sheffield University,

1993. [04/11]

[69] Supporting Multiple Screens. Android Developers. [Online]

http://developer.android.com/guide/practices/screens_support.html. [04/11]

[70] SQLiteDataBase. Android Developers. [Online]

http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.ht

ml. [05/11]

[71] BTLE Technology. World News Bluetooth Wikipedia. [Online]

http://wn.com/Bluetooth. [05/11]

[72] ZigBee technology. Computer Science and Communications Research Unit.

[Online] http://wiki.uni.lu/secan-lab/ZigBee+technology+in+sensor+network.html.

[05/11]

[73] NFC Forum. [Online] http://www.nfc-forum.org/. [04/11]

[74] Near Field Communication API. Android Developers. [Online]

http://developer.android.com/guide/topics/nfc/index.html. [04/11]

[75] ANT Android API. ANT TM. [Online] http://www.thisisant.com/pages/developer-

zone/android-api. [04/11]

[76] Wi-Fi Direct. Wikipedia. [Online] http://en.wikipedia.org/wiki/Wi-Fi_Direct. [05/11]

[77] News, EMR and EHR. Wi-Fi Alliance and Continua Health Alliance collaborate on

Personal connected health. EMR and Health IT News. [Online] February 2011.

http://www.emrandhipaa.com/news/2011/02/22/wi-fi-alliance-and-continua-health-

alliance-collaborate-on-personal-connected-health/. [05/11]

[78] Java Specification Request, JSR. Java ME & Optional Packages. [Online]

http://mobilegametutorials.blogspot.com/2010/03/java-me-optional-packages.html.

[05/11]

[79] Feature Highlights. ANT TM. [Online] http://www.thisisant.com/technology/feature-

highlights. [04/11]

[80] News. ANT TM. [Online] http://www.thisisant.com/news/stories/ant-enabled-live-

google-data-feed. [04/11]

[81] Tortoise. Subversion. [Online] http://tortoisesvn.tigris.org/. [03/11]

135

List of Figures

CHAPTER 1

Figure 1.1 HDH Infrastructure ... 7

Figure 1.2 Environment of the HDH .. 8

CHAPTER 2

Figure 2.1 HDH-first prototype .. 16

Figure 2.2 HDH hardware design ... 17

Figure 2.3 Top 8 Mobile OSs in Europe (03/10-03/11) [15] .. 20

Figure 2.4 Top 8 Mobile OSs worldwide (03/10-03/11) [15] ... 20

Figure 2.5 Symbian ... 21

Figure 2.6 Blackberry .. 21

Figure 2.7 Windows .. 22

Figure 2.8 iPhone ... 22

Figure 2.9 Android .. 23

Figure 2.10 Android Market .. 24

Figure 2.11 Current distribution of Android Platform versions [3] 25

Figure 2.12 Historical distribution of Android Platform versions [3] 26

CHAPTER 3

Figure 3.1 Connections of the Android Server .. 29

Figure 3.2 Bluetooth connection HDH-Android Server ... 29

Figure 3.3 Bluetooth Manager .. 30

Figure 3.4 ServerW3GorBT .. 30

Figure 3.5 Bluetooth Manager .. 30

Figure 3.6 Android Server Service performance schema. Bluetooth technology. 32

Figure 3.7 Service On button pressed first time. Service starts running 33

Figure 3.8 Service On button pressed for second time. Service is already running 33

Figure 3.9 Service Off button pressed. Service finished ... 33

Figure 3.10 Schema of HL7 message reception management 35

Figure 3.13 Select a device to connect ... 42

Figure 3.11 Menu button pressed ... 41

Figure 3.12 Make discoverable option clicked .. 41

Figure 3.14 Scanning for devices ... 42

Figure 3.15 Select a device to connect ... 42

Figure 3.16 Android Server schema acting as a Client. Bluetooth technology. 43

Figure 3.17 Wi-Fi connection HDH-Android Server .. 46

Figure 3.18 Network Interface not found .. 47

Figure 3.19 IP address ... 48

Figure 3.20 Wi-Fi Android Server running ... 48

136

Figure 3.21 GSM connection HDH-Android Server .. 50

Figure 3.22 Emergency message notification ... 52

Figure 3.23 Schema of the SMS reception and interpretation .. 53

Figure 3.24 Notification area ... 54

Figure 3.25 Showalarm ... 54

Figure 3.26 Emergency call .. 54

Figure 3.27 Patient Information Tab, after alert message .. 55

Figure 3.28 Medical Information Tab, after alert message ... 55

Figure 3.29 Relatives Information Tab, after alert message ... 55

Figure 3.30 After pressed NO button in Showalarm screen ... 55

Figure 3.31 Uploading HL7 messages from the Android Server to the Main Server 56

Figure 3.32 Schema of transference from Android phone to the Main Server 57

Figure 3.33 AndroidServerHome MAIN SERVER clicked .. 58

Figure 3.35 SDCard not available ... 59

Figure 3.36 IP or Port not correct ... 59

Figure 3.37 Connection failed ... 59

Figure 3.34 HDHMainServer .. 58

Figure 3.38 Successfully uploaded ... 65

Figure 3.39 List of failed messages .. 65

Figure 3.40 Notification area, files uploaded. ... 66

Figure 3.41 PI message .. 69

Figure 3.42 ST message .. 71

Figure 3.43 AL message ... 72

Figure 3.44 ACK message .. 72

Figure 3.45 Concept map of the current HL7 message .. 75

Figure 3.46 AndroidServerHome PATIENTS clicked ... 82

Figure 3.47 History ... 82

Figure 3.48 Form of Register .. 83

Figure 3.49 Form filled .. 83

Figure 3.50 Patient was registered ... 83

Figure 3.51 Not stored of the patient .. 84

Figure 3.52 ID not correct ... 84

Figure 3.53 Structure of the patient in the storage system ... 84

Figure 3.54 Patient List, choose the patient to delete ... 86

Figure 3.55 Dialog to delete .. 86

Figure 3.56 Delete successful .. 86

Figure 3.57 Delete failed ... 86

Figure 3.58 Patient List ... 88

Figure 3.59 Patient List with ... 88

Figure 3.60 Patient Information .. 88

Figure 3.61 Patient Information Tab ... 89

Figure 3.62 Medical Information Tab .. 89

137

Figure 3.63 Relatives Information Tab .. 89

Figure 3.64 Hospital icon clicked .. 90

Figure 3.65 Searching for hospitals near the patient address .. 90

Figure 3.66 Hospitals near the patient address .. 90

Figure 3.67 Google maps icon clicked .. 90

Figure 3.68 Searching for patient address .. 90

Figure 3.69 Patient address .. 90

Figure 3.70 Icon Call to a relative clicked ... 90

Figure 3.71 Calling to the relative ... 90

Figure 3.72 Medical data available on the 21st and 22nd of March 92

Figure 3.73 No medical data available in April ... 92

Figure 3.74 Not medical data available for this day .. 95

Figure 3.75 The user pressed 24th of March and the day is highlighted 96

Figure 3.76 List of medical messages stored for the selected day 96

Figure 3.77 Specific medical information selected ... 97

Figure 3.78 Different types of graphs available. Select Chart. 97

Figure 3.79 Heart Rate ... 101

Figure 3.80 Activity ... 101

Figure 3.81 Altitude ... 101

Figure 3.82 Default theme in Android ... 102

Figure 3.83 Custom theme in the Android application .. 102

Figure 3.84 Design of the AndroidServeHome activity ... 104

Figure 3.85 User has clicked the PATIENTS button ... 105

Figure 3.86 List created with MyCustomAdapter .. 110

Figure 3.87 Schema of the PopUp Window performance .. 111

Figure 3.88 Popup Window .. 112

Figure 3.89 TabHost (purple), TabWidget (green), ... 114

Figure 3.90 Structure responsible of showing the Calendar ... 115

Figure 3.91 Calendar activity .. 115

Figure 3.92 About Us activity .. 116

Figure 3.93 Contact with ... 116

Figure 3.94 Simulator of HDH wrist device ... 117

Figure 3.95 Schema of HDH (client) Simulator for TCP/IP connection 118

CHAPTER 4

Figure 4.1 Log of the communication HDH-Android Server via Bluetooth 120

Figure 4.2 Android reconnection to the HDH .. 121

Figure 4.3 Handler responsible of the reconnection ... 121

Figure 4.4 Successful reconnection .. 121

Figure 4.5 Log of the communication HDH-AndroidServer via Wifi. Point of view: HDH

simulator. .. 122

138

Figure 4.6 Log of the communication HDH-AndroidServer via Wifi. Point of view:

AndroidServer. .. 122

Figure 4.7 Alarm message received ... 123

Figure 4.8 Alert notification slid ... 123

Figure 4.9 IP and Port of the Main Server .. 123

Figure 4.10 HDH Server ... 123

Figure 4.11 Uploading files from Android Server to the Main Server 124

Figure 4.12 Emulator Control, SMS sending .. 124

Figure 4.13 AndroidServerReceiver catches an incoming SMS and sends to the

SMSService .. 125

Figure 4.14 SMSService receives the SMS and analyzes it. .. 125

Figure 4.15 Android emulator showing the received SMS .. 125

139

List of Abbreviations

ADT: Android Developer Tools

ANSI: American National Standard Institute

AOSP: Android Open Source Project

API: Application Program Interfaces

CEN: European Committee for Standardization

DDMS: Dalvik Debug Monitor Server

DVM: Dalvik Virtual Machine

FHTW: Fachhochschule Technikum Wien

GSM: Global System for Mobile Communications

HDF: Hierarchical Data Format

HDH: Health Data Hub

HIO: Healthy Interoperability

HL7: Health Level Seven

ICT: Information and Communications Technology

ICU: Intensive Care Unit

IDE: Integrated Development Environment

IEEE: Institute of Electrical and Electronics Engineering

IP: Internet Protocol

ISO: International Standards Organization

Java ME: Java Micro Edition

JDT: Java Development Tools

JVM: Java Virtual Machine

LAN: Local Area Network

L2CAP: Logical Link Control and Adaptation Protocol

NFC: Near Field Communication

SPP: Serial Port Profile

OHA: Open Handset Alliance

OSI: Open Systems Interconnection

PAN: Personal Area Network

PDA: Personal Digital Assistant

PDT: PHP Development Tools

PHD: Personal Health Devices

POC: Point Of Care

RFCOM: Radio Frequency Communication

RFID: Radio Frequency IDentification

SDK: Software Development Kit.

SDP: Session Description Protocol

SMS: Short Message Service

SRAM: Static Random Access Memory

140

SVN: Subversion

UAS: University of Applied Sciences

UUID: Universally Unique Identifier

WPAN: Wireless Personal Area Networks
XML: Extensible Markup Language

141

Annexes

I. External storage system: SDCard
The class SDCard in the com.upna.AndroidServer.SDCard package is responsible of

doing all the I/O operations in the mobile phone external storage system, for the Android

Server application.

The most used methods are shown in the list below:

Method Description

hasStorage () Returns a Boolean which indicates if the SDCard target is

mounted on the phone.

existFile(File fileCheck) Returns a Boolean which indicates if the file exists and it is

in readable mode.

existPatient() Returns a Boolean which indicates if the patient exists and

it is in readable mode.

listDirPatient() Returns a String[] which list all the existing patients.

createDirofPatient(String

idPatient)

Returns Boolean if the folders for the current patient

(idPatient) are created.

If there is no patient in the storage system it creates the

patient file.

removeDirofPatient(String

idPatient)

Returns a Boolean indicating if the patient structure has

been deleted from the system.

Deletes all the internal files.

deleteDirectory(File path) Returns a Boolean indicating if the files have been deleted

(in recursive way) in the path folder.

writeMessage(String message,

HL7object hl7)

Stores the message in the SDCard, using the Identification

Number of the HL7. See figure 3.50. Depending on the HL7

message type, it is stored in the specify folder (STAL or PI).

dirListByDescendingDate(File

folder)

Returns File[]listing the files by descending date.

dirListByAscendingDate(File

folder)

Returns File[] listing the files by ascending date.

dirListByDescendingName(File

folder)

Returns File[] listing the files by descending name.

dirListByAscendingName(File

folder)

Returns File[] listing the files by ascending name.

readFile(String filename) Returns a String representing the content of the read file

(filename).

142

II. AndroidServer Project Directory

143

144

III. Android Manifest
The manifest presents essential information about the application to the Android system,

information the system must have before it can run any of the application's code. Every

application must have an AndroidManifest.xml file in its root directory.

This one is the AndroidManifest of my Android Server application:

<?xml version="1.0" encoding="utf-8"?>

<manifest

 xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.upna.AndroidServer"

 android:versionCode="1"

 android:versionName="1.0">

<uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />

<uses-permission android:name="android.permission.BLUETOOTH" />

<uses-permission android:name="android.permission.RECEIVE_SMS" />

<uses-permission android:name="android.permission.VIBRATE" />

<uses-permission android:name="android.permission.CALL_PHONE" />

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>

<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>

<application android:icon="@drawable/icon" android:label="@string/app_name">

<!-- AndroidServer -->

<activity android:name=".AndroidServer_Home" android:label="@string/app_name"

android:theme="@android:style/Theme.Light.NoTitleBar">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

</activity>

<activity android:name="com.upna.AndroidServer.ServerW3GorBT"

android:theme="@android:style/Theme.Light.NoTitleBar" >

</activity>

<!-- About Us -->

<activity android:name="com.upna.AndroidServer.AboutUs.AboutUs"

android:theme="@style/customTheme">

</activity>

<!-- Alarm -->

<activity android:name="com.upna.AndroidServer.Alarm.Patientinfo"/>

145

<activity android:name="com.upna.AndroidServer.Alarm.Medicalinfo"/>

<activity android:name="com.upna.AndroidServer.Alarm.Relativesinfo"/>

<activity android:name="com.upna.AndroidServer.Alarm.ShowAlarm"

android:theme="@android:style/Theme.Light.NoTitleBar">

</activity>

<!-- Bluetooth -->

<receiver android:name="com.upna.AndroidServer.Bluetooth.AndroidServerReceiver"

android:enabled="true">

 <intent-filter>

 <action android:name="android.provider.Telephony.SMS_RECEIVED" />

 <action android:name="android.content.Intent.ACTION_BOOT_COMPLETED"/>

 <action android:name="android.intent.action.BOOT_COMPLETED"/>

 <category android:name="android.intent.category.HOME"/>

 </intent-filter>

</receiver>

<activity android:name="com.upna.AndroidServer.Bluetooth.BluetoothManager"

android:theme="@android:style/Theme.Light.NoTitleBar">

</activity>

<activity android:name="com.upna.AndroidServer.Bluetooth.DeviceListActivity"

android:label="@string/select_device"

android:theme="@android:style/Theme.Dialog"

android:configChanges="orientation|keyboardHidden">

</activity>

<service android:name="com.upna.AndroidServer.Bluetooth.HDHClientService" />

<service android:name="com.upna.AndroidServer.Bluetooth.HDHManagerService" />

<!-- Chart -->

<activity android:name="com.upna.AndroidServer.Chart.CalendActivity"

android:theme="@style/customTheme">

</activity>

<activity android:name="com.upna.AndroidServer.Chart.ListHours"

android:theme="@style/customTheme">

</activity>

<activity android:name="com.upna.AndroidServer.Chart.SelectChart"

android:theme="@style/customTheme">

</activity>

<activity android:name="org.achartengine.GraphicalActivity"

android:theme="@android:style/Theme.NoTitleBar">

</activity>

<!-- HDHMainServer -->

<activity android:name="com.upna.AndroidServer.HDHMainServer.HDHMainServer"

android:theme="@style/customTheme">

</activity>

<service android:name="com.upna.AndroidServer.HDHMainServer.HDHMainServerService"/>

<activity android:name="com.upna.AndroidServer.HDHMainServer.ShowTransferInfo"

android:theme="@style/customTheme">

</activity>

<!-- HistoryPatient -->

<activity android:name="com.upna.AndroidServer.HistoryPatient.DeletePatient"

android:theme="@style/customTheme">

146

</activity>

<activity android:name="com.upna.AndroidServer.HistoryPatient.History"

android:theme="@style/customTheme">

</activity>

<activity android:name="com.upna.AndroidServer.HistoryPatient.InfoOrChart"

android:theme="@style/customTheme">

</activity>

<activity android:name="com.upna.AndroidServer.HistoryPatient.PatientList"

android:theme="@style/customTheme">

</activity>

<activity android:name="com.upna.AndroidServer.HistoryPatient.RegisterIDpatient"

android:windowSoftInputMode="stateUnchanged"

android:theme="@android:style/Theme.Light.NoTitleBar">

</activity>

<activity android:name="com.upna.AndroidServer.HistoryPatient.TabPatient"

android:theme="@android:style/Theme.Light.NoTitleBar">

</activity>

<!-- Wifi -->

<activity android:name="com.upna.AndroidServer.Wifi.IPServerActivity"

android:theme="@android:style/Theme.Light.NoTitleBar">

</activity>

<service android:name="com.upna.AndroidServer.Wifi.IPServerService"/>

<!-- SMS -->

<service android:name="com.upna.AndroidServer.SMSManager.SMSService" />

</application>

</manifest>

147

IV. Table of the HL7 messages components

MSH

MSH-1: Field Separator (ST) MSH-8: Security (ST)
MSH-15: Accept

Acknowledgment Type (ID)

MSH-22: Sending Responsible

Organization (XON)

MSH-2: Encoding Characters

(ST)
MSH-9: Message Type (MSG)

MSH-16: Application

Acknowledgment Type (ID)

MSH-23: Receiving

Responsible Organization (XON)

MSH-3: Sending Application

(HD)

MSH-10: Message Control ID

(ST)
MSH-17: Country Code (ID)

MSH-24: Sending Network

Address (HD)

MSH-4: Sending Facility (HD) MSH-11: Processing ID (PT) MSH-18: Character Set (ID)
MSH-25: Receiving Network

Address (HD)

MSH-5: Receiving

Application (HD)
MSH-12: Version ID (VID)

MSH-19: Principal Language

Of Message (CWE)

MSH-6: Receiving Facility

(HD)

MSH-13: Sequence Number

(NM)

MSH-20: Alternate Character

Set Handling Scheme (ID)

MSH-7: Date/Time of

Message (DTM)

MSH-14: Continuation Pointer

(ST)

MSH-21: Message Profile

Identifier (EI)

148

PID

PID-1: Set ID - PID (SI)
PID-11: Patient Address

(XAD)

PID-21: Mother's Identifier

(CX)

PID‐31: Identity Unknown

Indicator (ID)

PID-2: Patient ID (CX) PID-12: County Code (IS) PID-22: Ethnic Group (CWE)
PID-32: Identity Reliability

Code (IS)

PID-3: Patient Identifier List

(CX)

PID-13: Phone Number -

Home (XTN)
PID-23: Birth Place (ST)

PID-33: Last Update

Date/Time (DTM)

PID-4: Alternate Patient ID -

PID (CX)

PID-14: Phone Number -

Business (XTN)

PID-24: Multiple Birth Indicator

(ID)

PID-34: Last Update Facility

(HD)

PID-5: Patient Name (XPN)
PID-15: Primary Language

(CWE)
PID-25: Birth Order (NM) PID-35: Species Code (CWE)

PID-6: Mother's Maiden

Name (XPN)
PID-16: Marital Status (CWE) PID-26: Citizenship (CWE) PID-36: Breed Code (CWE)

PID-7: Date/Time of Birth

(DTM)
PID-17: Religion (CWE)

PID-27: Veterans Military

Status (CWE)
PID-37: Strain (ST)

PID-8: Administrative Sex

(IS)

PID-18: Patient Account

Number (CX)
PID-28: Nationality (CWE)

PID-38: Production Class

Code (CWE)

PID-9: Patient Alias (XPN)
PID-19: SSN Number - Patient

(ST)

PID-29: Patient Death Date

and Time (DTM)

PID-39: Tribal Citizenship

(CWE)

PID-10: Race (CWE)
PID-20: Driver's License

Number - Patient (DLN)

PID-30: Patient Death Indicator

(ID)

149

OBR

OBR-1: Set ID - OBR (SI)
OBR-14: Specimen Received Date/Time

(DTM)
OBR-27: Quantity/Timing (TQ)

OBR-40: Transport Arrangement Responsibility

(CWE)

OBR-2: Placer Order Number

(EI)
OBR-15: Specimen Source (SPS) OBR-28: Result Copies To (XCN) OBR-41: Transport Arranged (ID)

OBR-3: Filler Order Number

(EI)
OBR-16: Ordering Provider (XCN) OBR-29: Parent (EIP) OBR-42: Escort Required (ID)

OBR-4: Universal Service

Identifier (CWE)

OBR-17: Order Callback Phone Number

(XTN)
OBR-30: Transportation Mode (ID)

OBR-43: Planned Patient Transport Comment

(CWE)

OBR-5: Priority (ID) OBR-18: Placer Field 1 (ST) OBR-31: Reason for Study (CWE) OBR-44: Procedure Code (CNE)

OBR-6: Requested Date/Time

(DTM)
OBR-19: Placer Field 2 (ST)

OBR-32: Principal Result Interpreter +

(NDL)
OBR-45: Procedure Code Modifier (CNE)

OBR-7: Observation Date/Time

(DTM)
OBR-20: Filler Field 1 + (ST)

OBR-33: Assistant Result Interpreter +

(NDL)

OBR-46: Placer Supplemental Service Information

(CWE)

OBR-8: Observation End

Date/Time # (DTM)
OBR-21: Filler Field 2 + (ST) OBR-34: Technician + (NDL)

OBR-47: Filler Supplemental Service Information

(CWE)

OBR-9: Collection Volume

(CQ)

OBR-22: Results Rpt/Status Chng -

Date/Time + (DTM)
OBR-35: Transcriptionist + (NDL)

OBR-48: Medically Necessary Duplicate

Procedure Reason (CWE)

OBR-10: Collector Identifier

(XCN)
OBR-23: Charge to Practice + (MOC) OBR-36: Scheduled Date/Time + (DTM) OBR-49: Result Handling (IS)

OBR-11: Specimen Action

Code (ID)
OBR-24: Diagnostic Serv Sect ID (ID)

OBR-37: Number of Sample Containers *

(NM)

OBR-50: Parent Universal Service Identifier

(CWE)

OBR-12: Danger Code (CWE) OBR-25: Result Status + (ID)
OBR-38: Transport Logistics of Collected

Sample * (CWE)

OBR-13: Relevant Clinical

Information (ST)
OBR-26: Parent Result + (PRL) OBR-39: Collector's Comment * (CWE)

150

OBX

OBX-1: Set ID - OBX (SI) OBX-8: Abnormal Flags (IS) OBX-15: Producer's ID (CWE) OBX-22: Mood Code (CNE)

OBX-2: Value Type (ID) OBX-9: Probability (NM) OBX-16: Responsible Observer (XCN)
OBX-23: Performing Organization Name

(XON)

OBX-3: Observation Identifier (CWE) OBX-10: Nature of Abnormal Test (ID) OBX-17: Observation Method (CWE)
OBX-24: Performing Organization

Address (XAD)

OBX-4: Observation Sub-ID (ST)
OBX-11: Observation Result Status

(ID)

OBX-18: Equipment Instance Identifier

(EI)

OBX-25: Performing Organization

Medical Director (XCN)

OBX-5: Observation Value (varies)
OBX-12: Effective Date of Reference

Range (DTM)
OBX-19: Date/Time of the Analysis (DTM)

OBX-6: Units (CWE)
OBX-13: User Defined Access Checks

(ST)
OBX-20: Observation Site (CWE)

OBX-7: References Range (ST)
OBX-14: Date/Time of the Observation

(DTM)

OBX-21: Observation Instance Identifier

(EI)

EVN
EVN-1: Event Type Code (ID)

EVN-2: Recorded Date/Time (DTM)

EVN-3: Date/Time Planned Event (DTM)

EVN-4: Event Reason Code (IS)

EVN-5: Operator ID (XCN)

EVN-6: Event Occurred (DTM)

EVN-7: Event Facility (HD)

AL1
AL1-1: Set ID - AL1 (SI)

AL1-2: Allergen Type Code (CWE)

AL1-3: Allergen Code/Mnemonic/Description

(CWE)

AL1-4: Allergy Severity Code (CWE)

AL1-5: Allergy Reaction Code (ST)

AL1-6: Identification Date (DT)

NTE
NTE-1: Set ID - NTE (SI)

NTE-2: Source of Comment (ID)

NTE-3: Comment (FT)

NTE-4: Comment Type (CWE)

NTE-5: Entered By (XCN)

NTE-6: Entered Date/Time (DTM)

NTE-7: Effective Start Date (DTM)

NTE-8: Expiration Date (DTM)

151

MSA

MSA-1: Acknowledgment Code MSA-3: Text Message
MSA-5: Delayed Acknowledgment

Type
MSA-7: Message Waiting Number

MSA-2: Message Control ID MSA-4: Expected Sequence Number MSA-6: Error Condition (CNE) MSA-8: Message Waiting Priority

NK1

NK1-1: Set ID - NK1 (SI)
NK1-11: Next of Kin / Associated Parties Job code/Class

(JCC)
NK1-21: Living Arrangement (IS)

NK1-31: Contact Person's Telephone Number

(XTN)

NK1-2: Name (XPN)
NK1-12: Next of Kin / Associated Parties Employee Number

(CX)
NK1-22: Publicity Code (CWE) NK1-32: Contact Person's Address (XAD)

NK1-3: Relationship (CWE) NK1-13: Organization Name - NK1 (XON) NK1-23: Protection Indicator (ID)
NK1-33: Next of Kin/Associated Party's Identifiers

(CX)

NK1-4: Address (XAD) NK1-14: Marital Status (CWE) NK1-24: Student Indicator (IS) NK1-34: Job Status (IS)

NK1-5: Phone Number (XTN) NK1-15: Administrative Sex (IS) NK1-25: Religion (CWE) NK1-35: Race (CWE)

NK1-6: Business Phone Number (XTN) NK1-16: Date/Time of Birth (DTM)
NK1-26: Mother's Maiden Name

(XPN)
NK1-36: Handicap (IS)

NK1-7: Contact Role (CWE) NK1-17: Living Dependency (IS) NK1-27: Nationality (CWE)
NK1-37: Contact Person Social Security Number

(ST)

NK1-8: Start Date (DT) NK1-18: Ambulatory Status (IS) NK1-28: Ethnic Group (CWE) NK1-38: Next of Kin Birth Place (ST)

NK1-9: End Date (DT) NK1-19: Citizenship (CWE) NK1-29: Contact Reason (CWE) NK1-39: VIP Indicator (IS)

NK1-10: Next of Kin / Associated Parties Job

Title (ST)
NK1-20: Primary Language (CWE)

NK1-30: Contact Person's Name

(XPN)

152

PV1
PV1‐1: Set ID ‐ PV1 (SI) PV1‐14: Admit Source (IS) PV1‐27: Contract Period (NM) PV1‐40: Bed Status (IS)

PV1‐2: Patient Class (IS) PV1‐15: Ambulatory Status (IS) PV1‐28: Interest Code (IS) PV1‐41: Account Status (IS)

PV1‐3: Assigned Patient Location (PL) PV1‐16: VIP Indicator (IS) PV1‐29: Transfer to Bad Debt Code (IS) PV1‐42: Pending Location (PL)

PV1‐4: Admission Type (IS) PV1‐17: Admitting Doctor (XCN) PV1‐30: Transfer to Bad Debt Date (DT) PV1‐43: Prior Temporary Location (PL)

PV1‐5: Preadmit Number (CX) PV1‐18: Patient Type (IS) PV1‐31: Bad Debt Agency Code (IS) PV1‐44: Admit Date/Time (DTM)

PV1‐6: Prior Patient Location (PL) PV1‐19: Visit Number (CX) PV1‐32: Bad Debt Transfer Amount (NM) PV1‐45: Discharge Date/Time (DTM)

PV1‐7: Attending Doctor (XCN) PV1‐20: Financial Class (FC) PV1‐33: Bad Debt Recovery Amount (NM) PV1‐46: Current Patient Balance (NM)

PV1‐8: Referring Doctor (XCN) PV1‐21: Charge Price Indicator (IS) PV1‐34: Delete Account Indicator (IS) PV1‐47: Total Charges (NM)

PV1‐9: Consulting Doctor (XCN) PV1‐22: Courtesy Code (IS) PV1‐35: Delete Account Date (DT) PV1‐48: Total Adjustments (NM)

PV1‐10: Hospital Service (IS) PV1‐23: Credit Rating (IS) PV1‐36: Discharge Disposition (IS) PV1‐49: Total Payments (NM)

PV1‐11: Temporary Location (PL) PV1‐24: Contract Code (IS) PV1‐37: Discharged to Location (DLD) PV1‐50: Alternate Visit ID (CX)

PV1‐12: Preadmit Test Indicator (IS) PV1‐25: Contract Effective Date (DT) PV1‐38: Diet Type (CWE) PV1‐51: Visit Indicator (IS)

PV1‐13: Re‐admission Indicator (IS) PV1‐26: Contract Amount (NM) PV1‐39: Servicing Facility (IS) PV1‐52: Other Healthcare Provider (XCN)

DG1

153

DG1-1: Set ID - DG1 (SI)
DG1-8: Diagnostic Related Group

(CNE)
DG1-15: Diagnosis Priority (ID) DG1-22: Parent Diagnosis (EI)

DG1-2: Diagnosis Coding Method (-) DG1-9: DRG Approval Indicator (ID) DG1-16: Diagnosing Clinician (XCN) DG1-23: DRG CCL Value Code (CWE)

DG1-3: Diagnosis Code - DG1 (CWE)
DG1-10: DRG Grouper Review Code

(IS)
DG1-17: Diagnosis Classification (IS) DG1-24: DRG Grouping Usage (ID)

DG1-4: Diagnosis Description (-) DG1-11: Outlier Type (CWE) DG1-18: Confidential Indicator (ID) DG1-25: DRG Diagnosis Determination Status (IS)

DG1-5: Diagnosis Date/Time (DTM) DG1-12: Outlier Days (NM)
DG1-19: Attestation Date/Time

(DTM)

DG1-26: Present On Admission (POA) Indicator

(IS)

DG1-6: Diagnosis Type (IS) DG1-13: Outlier Cost (CP) DG1-20: Diagnosis Identifier (EI)

DG1-7: Major Diagnostic Category

(CNE)
DG1-14: Grouper Version And Type DG1-21: Diagnosis Action Code (ID)

154

V. Patient Structure

155

VI. Java vs. Android
The next lines address issues from a technical insight. Firstly the Java technology is

mentioned and the parts that compound it. Later the main topic is the Android platform

and in conclusion, there commonalities and differences are explained.

What is Java?

Java platform covers a whole range of technologies based on several concepts:

 A programming language to write applications.

 A set of libraries that facilitate the working developers. The main Sun APIs are divided
into 3 large blocks:

 Java SE: targeting desktop applications applets...

 Java ME: focused on consumer resource‐limited devices.

 Java EE: for enterprise applications (web, distributed).

 Tools (JDK) to generate applications from source code.

 A virtual machine to run an application on any computer (JVM).

 Portability, is what defines a Java technology: to run an application anywhere, either in a
Windows operating system, Linux, Mac, mobile phone or a browser.

This is an incredible amount of different environments, the secret of the Java´s portability

is its virtual machine.

A program written in C or C++, is usually dependent on the platform (processor,

operating system, etc.). However, Java programs are compiled in an intermediate format

called bytecode. The bytecodes are not - normally - executable directly on any platform.

However, a special program, the virtual machine, can translate them into code machine

interpretable by the device.

Of course, a java program requires installing previously a virtual machine in the

computer.

Traditionally, mobile devices have not had as much power as desktop computers.

Therefore Sun Microsystems created a version of Java with limited library called Java

ME (Micro edition), distinguishing it from Java SE (Standard edition, the complete

version).

156

Java ME and Java SE are also different in some respects of their virtual machine and

language. While the operation is identical (syntax and interpretation of bytecodes) VM

Micro edition has only a subset of the functionalities of its big brother. The specifications

of both are are documented in their respective Java Specification Request (JSR) [78].

Android

Google wanted to compete in the sphere of smartphones to position their search

services. The Open Handset Alliance, a consortium led by Google and other major

companies such as Intel, Motorola, Samsung and HTC, released in 2008 the Android

operating system. The kernel was based on Linux and used many open project sources

as SQLite or Webkit. The entire platform is distributed as free software, although the

owner Google or some mobile companies can add sometimes non-free applications.

Regarding the development of applications, they wanted an environment comfortable for

programmers and in where it was quick and easy to put existing applications. This is why

they chose Java. It is a very popular language and there were many applications written

in it, besides to several integrated graphical development environment.

However, using Java ME involved the purchase of licenses to Sun Microsystems and

according to them, wasn't prepared for the next generation of smart phones. On the

other hand, using the virtual machine and Java SE APIs directly - which had not been

optimized for small devices - did not fit Android needs.

All these reasons made that Google developed other virtual machine: Dalvik [21]. Dalvik

is the virtual machine used to run Android applications. But it is not actually a Java virtual

machine.

The next lines show how the process of developing an Android application is:

Google Tools allows compiling Java code into byte code. The byte code is transformed

into the binary format of the Dalvik machine: .dex. Dalvik is optimized for low memory

(this is possible because it is a machine based on records and not on stacks) and is

designed to run each application isolated in a different virtual machine.

157

In addition, Android provides a relatively

complete subset of the API of Java SE. In

this way, creating or porting java

applications, whether in source or binary

format results (in some cases) is easy to

handle.

However, the Google API is not 100% compatible with the JavaSE. Libraries of the

graphical environment (Swing, Awt) are not available on Android. In addition, concepts

such as security management have been completely reinvented.

The result is a platform that is not strictly "Java technology" but simply uses the Java

based language for creating applications.

Conclusion

Android and Java are two different platforms which share the same language, as well as

basic programming libraries. In any case, today more than ever, this programming

language is present in nearly all environments in the desktop, web and mobile devices in

any of its variants.

158

VII. Activity
An Activity [31] is a single, focused thing that the user can do. Almost all activities

interact with the user, so the Activity class takes care of creating a window in which UI

components can be set with setContentView(View). While activities are often presented

to the user as full-screen windows, they can also be used in other ways: as floating

windows (via a theme with windowIsFloating set) or embedded inside of another activity

(using ActivityGroup).

There are two methods almost all subclasses of Activity will implement [31]:

 onCreate(Bundle) is where you initialize your activity. Most importantly, here you
will usually call setContentView(int) with a layout resource defining your UI, and
using findViewById(int) to retrieve the widgets in that UI that you need to interact
with programmatically.

 onPause() is where you deal with the user leaving your activity. Most importantly,
any changes made by the user should at this point be committed (usually to the
ContentProvider holding the data).

However, there are more methods in lifecycle of an Activity, which are represented in the

next figure. These methods depend on the states which are found [31]:

 If an activity in the foreground of
the screen (at the top of the stack
of activities), it is active or running.

 If an activity has lost focus but is
still visible (that is, a new non-full-
sized or transparent activity has
focus on top of your activity), it is
paused. A paused activity is
completely alive (it maintains all
state and member information and
remains attached to the window
manager), but can be killed by the
system in extreme low memory
situations.

 If an activity is completely obscured
by another activity, it is stopped. It
still retains all state and member
information, however, it is no
longer visible to the user so its
window is hidden and it will often
be killed by the system when
memory is needed elsewhere.

 If an activity is paused or stopped,
the system can drop the activity
from memory by either asking it to
finish, or simply killing its process. When it is displayed again to the user, it must
be completely restarted and restored to its previous state.

159

To be of use with Context.startActivity(), all activity classes must have a corresponding

<activity> declaration in their package's AndroidManifest.xml [31].

VIII. Service
Most confusion about the Service [30] class actually revolves around what it is not:

 A Service is not a separate process. The Service object itself does not imply it is
running in its own process; unless otherwise specified, it runs in the same
process as the application it is part of.

 A Service is not a thread. It is not a means itself to do work off of the main thread
(to avoid Application Not Responding errors).

Thus a Service itself is actually very simple, providing two main features [30]:

 A facility for the application to tell the system about something it wants to be
doing in the background (even when the user is not directly interacting with the
application). This corresponds to calls to Context.startService(), which ask the
system to schedule work for the service, to be run until the service or someone
else explicitly stop it.

 A facility for an application to expose some of its functionality to other
applications. This corresponds to calls to Context.bindService(), which allows a
long-standing connection to be made to the service in order to interact with it.

There are two reasons that a service can be run by the system. If someone calls
Context.startService() then the system will retrieve the service (creating it and calling its
onCreate() method if needed) and then call its onStartCommand(Intent, int, int) method
with the arguments supplied by the client. The service will at this point continue running
until Context.stopService() or stopSelf() is called.

Clients can also use Context.bindService() to obtain a persistent connection to a
service. This likewise creates the service if it is not already running (calling onCreate()
while doing so), but does not call onStartCommand(). The client will receive the IBinder
object that the service returns from its onBind(Intent) method, allowing the client to then
make calls back to the service. The service will remain running as long as the connection
is established (whether or not the client retains a reference on the service's IBinder.

Global access to a service can be enforced when it is declared in its manifest's
<service> tag. By doing so, other applications will need to declare a corresponding
<uses-permission> element in their own manifest to be able to start, stop or bind to the
service.

160

IX. NFC
Near Field Communication (NFC) [73] is a set of short-range wireless technologies,

typically requiring a distance of 4cm or less. NFC operates at 13.56mhz, and at rates

ranging from 106 kbit/s to 848 kbit/s. NFC communication always involves an initiator

and a target. The initiator actively generates an RF field that can power a passive target.

This enables NFC targets to take very simple form factors such as tags, stickers or cards

that do not require power. NFC peer-to-peer communication is also possible, where both

devices are powered.

Compared to other wireless technologies such as Bluetooth or WiFi, NFC provides much

lower bandwidth and range, but enables low-cost, un-powered targets and does not

require discovery or pairing.

 NFC Bluetooth
Bluetooth Low

Energy

RFID compatible ISO 18000-3 active active

Standardisation body ISO/IEC Bluetooth SIG Bluetooth SIG

Network Standard ISO 13157 etc. IEEE 802.15.1 IEEE 802.15.1

Network Type Point-to-point WPAN WPAN

Cryptography not with RFID available available

Range < 0.2 m ~10 m (class 2) ~1 m (class 3)

Frequency 13.56 MHz 2.4-2.5 GHz 2.4-2.5 GHz

Bit rate 424 kbit/s 2.1 Mbit/s ~1.0 Mbit/s

Set-up time < 0.1 s < 6 s < 1 s

Power consumption < 15mA (read) varies with class < 15 mA (xmit)

NFC harmonizes today's diverse contactless technologies, enabling current and future
solutions in areas such as:

 Access control
 Consumer electronics
 Healthcare
 Information collection and exchange
 Loyalty and coupons
 Payments
 Transport

NFC provides a range of benefits to consumers and businesses, such as:

 Intuitive: NFC interactions require no more than a simple touch
 Versatile: NFC is ideally suited to the broadest range of industries,

environments, and uses
 Open and standards-based: The underlying layers of NFC technology follow

universally implemented ISO, ECMA, and ETSI standards
 Technology-enabling: NFC facilitates fast and simple setup of wireless

technologies, such as Bluetooth, Wi-Fi, etc.)
 Inherently secure: NFC transmissions are short range (from a touch to a few

centimeters)
 Interoperable: NFC works with existing contactless card technologies

161

 Security-ready: NFC has built-in capabilities to support secure applications

162

X. ANT
ANT [10] is a 2.4GHz practical wireless networking protocol and embedded system

solution specifically designed for wireless sensor networks (WSN) that require:

 ultra low power - runs on a coin cell for years of operation;
 highly resource optimized - fits into a compact sized memory;
 network flexibility and scalability - self-adaptive and able to do practical mesh,
 easy to use with low system cost - operates independently with a single chip

Proven with millions of deployed nodes, ANT™ is

perfectly suited for any kind of low data rate sensor

network topologies from peer to peer or star, to

practical mesh in personal area networks (PAN)

which are well suited for sports, fitness, wellness

and home health applications. As well ANT is a

practical solution for local area networks (LAN) for

homes and industrial automation applications.

Thus, ANT has been designed to simplify network

development and optimize network operational

efficiency. ANT-powered network nodes can

operate for years on coin cells compared to days or

months for other technologies such as Bluetooth

and ZigBee. Rich in capabilities, ANT provides [79]:

 reliable data communications
 flexible and adaptive network operation
 cross-talk immunity

In the official webpage is written a section that has

the necessary code samples to implement ANT communication on an Android based

phone that has the properly enabled hardware.

Nowadays, there are only some phones from the company Sony Ericsson [75] with the

ANT hardware. In the webpage, they also announce phones from HTC, like HTC Legend

[80].

163

XI. SVN
This project was carried out on multiple computers therefore a versioning system was

needed. Subversion is a content-versioning system, meaning that it records all important

changes made in the files.

Tortoise SVN [81] is an easy-to-use revision control / version control / source control

software for Windows and possibly the best standalone Apache Subversion client there

is. It is implemented as a Windows shell extension, which makes it integrate seamlessly

into the Windows explorer. Since it's not integration for a specific IDE you can use it with

whatever development tools you like.

It is free software released under the GNU General Public License. In a few words,

Tortoise SVN manages files and directories over time. Files are stored in a central

repository. The repository is much like an ordinary file server, except that it remembers

every change ever made to your files and directories. This allows to recover older

versions of files and examine the history of how and when data has changed, and who

changed It [81].

	MasterThesisJavierUrricelqui2

