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Abstract—Arterial spin labeling (ASL), is a Multipar-
ametric Magnetic Resonance Imaging (MRI) technique 
used to quantify and evaluate Renal Blood Flow (RBF) 
and detect perfusion failure by labelling blood water as it 
flows throughout the kidney. This study aims at providing 
an automatic quantifying and evaluation tool for Chronic 
Kidney Disease (CKD) patients’s follow-up.

I. Introduction

Chronic Kidney Disease (CKD) is a conditon characterized 
by a gradual loss of kidney function over time [1]. It is esti-
mated that the 10% of the population suffer from CKD and is 
expected to continue to grow, due to aging and increased inci-
dence of diabetes and obesity. In patients with advanced CKD, 
renal transplant improves quality of life and increases survival 
rate. In recent years, the incidence of acute rejection has been 
considerably reduced and early loss of implant has been min-
imized. However, the causes of the progressive deterioration 
of the implant are various and its mechanisms are unknown. 
For that reason, postoperative renal implant evaluation is a 
complex diagnostic problem.

In the presented research project, dataset from 18 renal 
transplanted patients was used, approved by the Ethics Re-
search Committee of the University of Navarra. ASL-MRI 
scans were performed on a 3T Skyra using an 18-channel 
body-array coil. Perfusion images were acquired using a pseu-
do continuous arterial spin labeling (PCASL) sequence [2].

II. Motion-Correction Techniques

Motion correction methods are a prerequisite in multi-
ple-image registration tasks. We implemented a non-rigid 
group-wise registration with PCA2 metric [3]. The method 
aligns volumes on a slice-wise basis. We compared the reg-
istration method without focusing on a Region of Interest 
(ROI) and within a ROI. The ROI in each slice of the volume 
was manually marked and subsequently dilated to encompass 
whole renal area. The registration was implemented in Elastix 
[4].

After image registration, Perfusion Weighted Images 
(PWI) maps were extracted by subtracting registered control 
and label images.

Temporal Signal to Noise Ratio (tSNR) was computed as 
the ratio of the mean to the temporal standard deviation, as a 
measure of signal stability. Outliers were discarded when the 
ASL signal was more than 2 standard deviations (SD) away 
from the global mean [2]. Manually defined and sub-sequently 
eroded ROI on the cortex was used to measure the tSNR along 
ASL pairs. Motion correction techniques show statistically 

significant improvement (p<0.025) on the tSNR. No statisti-
cal difference was found between two registration approaches 
in terms of temporal signal variation of the images (p>0.025). 
However, our dataset presents high inter-subject variability, 
to which groupwise registration method is highly dependent 
on. For that reason, for those tSNR samples higher than mean 
tSNR, RR method shows statistically significant difference 
(p<0.025) on tSNR mean, compared to NRR method, indica-
tive of a more successful image alignment.

III. Kidney Segmentation

Kidney parenchyma’s segmentation serves as quantitative 
analysis [5] tool for renal damage prevention, which requires 
time-consuming pixel-wise annotation. Nonetheless, Machine 
Learning (ML) based medical image segmentation has shown 
its value in segmentation of several organs. Supervised Descent 
Method (SDM) is a cascaded regression approach that learns 
generic descent directions in a supervised way [6]. Besides, the 
U-NET is a widely used non-supervised Convolutional Neural
Network for medical image segmentation. It consists of a con-
tracting path to capture context and a symmetric expanding
path that enables precise object localization [7]. We proposed
the Cascaded Weighted UNET-SDM (CUS) model, consisted
on the automation of SDM for kidney segmentation, based on
preliminary trained UNET’s result initialization.

First, the UNET was trained on augmented data and intro-
duced sample weights in the Dice loss function. It was mini-
mized via Adam optimizer and learning rate of 1x10-
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4, with a batch size of 16 and 100 epochs. Training and 
testing of the model was implemented on Python 3.8 using 
Tensorflow as backend on GPU NVIDIA GeForce RTX 3090. 
Secondly, we used Histogram of Gradient (HOG) extraction 
to encode local shape information from point locations with-
in the image. We used 40 landmarks and 100 initializations. 
Initial shapes for training were translated ground truth masks 
with additional independent noise applied to each landmark 
and testing was performed on kidneys’ mean shapes. The al-
gorithm was implemented in Matlab on Intel(R) Core(TM) 
i5-7500 CPU.

The prediction accuracy of CUS was evaluated in terms 
of Dice Score (DS) similarity index. Proposed architecture 
achieved statistically higher score mean compared to original 
UNET (p<0.005). Besides, it showed an outstanding segmen-
tation accuracy (DS = 0.850 ± 0.028) and statistically higher 
performance, comparing with the original UNET. These accu-
rate image segmentation models enable functional and struc-
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tural information extraction, including kidney detection and 
shape estimation.

Discussion
Our results demonstrated the applicability of both group-

wise registration and parenchyma’s segmentation process on 
postoperative renal implant evaluation. We achieved to coun-
teract the misregistration of control and label images to sub-
sequently extract whole kidney mask for each image. Further-
more, the kidney detection process serves as a reference for 
further RBF calculation methods.

IV. Challenges and Future Work

The implementation done in these initial steps has provide 
a good starting point for further research.

Coarse-to-Fine Segmentation
Innovative Coarse-to-Fine approach could be performed 

to improve ML based segmentation results. Mask R-CNN is 
a pixel-based Instance Segmentation model that adds an extra 
parallel branch on Faster-RCNN to segment instances within 
predicted boxes [8]. Renal ASL-MRI are low resolution imag-
es and present other highlighted organs as the bladder, which 
worsens the final segmentation result. The implementation of 
these kind of models could improve kidney’s edge detection, 
from firstly detected kidney’s bounding box. The training pro-
cess should be adapted to volumetric grayscale data.

Segmentation of Renal Compartments
The segmentation of renal cortex and medulla has its value 

on functional kidney evaluation. Despite the development of 
tools for the segmentation of entire kidney, there is a lack of 
renal compartments segmentation tool development. Besides, 
the majority of techniques are implemented on CT or DCE-
MRI (high-contrasted images).

In this project, in order to implement a multi-class seg-
mentation tool for kidney cortex and medulla detection and 
segmentation, we used T1-maps. T1-mapping images were 
generated from registered T1-images using non-registered 
groupwise method and PCA2 metric. It is also necessary

to segment the kidney as a whole. Among renal multiclass 
segmentation techniques intensity-based thresholding is the 
most simple one. It requires manually defined threshold for 
each T1-map. Fig. 1 depicts medulla segmentation example 
based on manually defined and histogram based threshold 
definition. Despite its simplicity and low computation time, 
human interaction and parameter setting is needed.
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Figure	 1:	 Example	result	 of	 intensity-based	 thresholding	of	
renal	 medulla.	 A)	 T1-Mapping	 image.	 B)	 Segmented	
medulla.	

We initially discarded CNN model implementation, as it 
requires both cortex and medulla regions annotation. How- 
ever there are different and more complex approaches that 
provide robust segmentation results: 

• Region	Growing	methods and Shape	based	approaches 
with active contours. 

• Gaussian	 Mixture	 Models	 (GMM)	 implementation, where 
kidney image segmentation is performed by fitting a 
mixture model that is a composition form of several 
Gaussian distributions to intensity histograms [9]. 
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Figure 1. Example result of intensity-based 
thresholding of renal medulla. A) T1-Mapping 
image. B) Segmented medulla.

We initially discarded CNN model implementation, as it 
requires both cortex and medulla regions annotation. However 
there are different and more complex approaches that provide 
robust segmentation results:

•	 Region Growing methods and Shape based approaches 
with active contours.

•	 Gaussian Mixture Models (GMM) implementation, 
where kidney image segmentation is performed by fit-
ting a mixture model that is a composition form of sev-
eral Gaussian distributions to intensity histograms [9].
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