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Abstract
The application of hyperspectral imaging (HSI) has gained significant importance in 
the past decade, particulary in the context of food analysis, including potatoes. How-
ever, the current literature lacks a comprehensive systematic review of the applica-
tion of this technique in potato cultivation. Therefore, the aim of this work was to 
conduct a systematized review by analysing the most relevant compounds, diseases 
and stress factors in potatoes using hyperspectral imaging. For this purpose, scien-
tific studies were retrieved through a systematic keyword search in Web of Science 
and Scopus databases. Studies were only included in the review if they provided 
at least one set of quantitative data. As a result, a total of 52 unique studies were 
included in the review. Eligible studies were assigned an in-house developed quality 
scale identifying them as high, medium or low risk. In most cases the studies were 
rated as low risk. Finally, a comprehensive overview of the HSI applications in pota-
toes was performed. It has been observed that most of the selected studies obtained 
better results using linear methods. In addition, a meta-analysis of studies based on 
regression and classification was attempted but was not possible as not enough stud-
ies were found for a specific variable.

Keywords  Food quality control · Hyperspectral imaging · Machine learning · Non-
destructive techniques · Potatoes · Solanum tuberosum L. · Systematized review

Introduction

Potato (Solanum tuberosum L.) is currently one of the world’s leading staple crops, rank-
ing fourth behind rice, wheat and maize (de Haan and Rodriguez 2016). In 2021, global 
potato production exceeded 376 million tonnes, cultivated across 18 million hectares 
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approximately. Over the past 20 years, production trends have shown fluctuations. The 
largest producers are found in Asia and Europe, accounting for over 80% of the world’s 
potato output. In terms of harvested area, there has been a downward trend with a 6.7% 
reduction in the area under cultivation from 2001 to 2021 (FAO 2023). Besides, there 
is a concerning prediction of reduced potato yields due to climate change (Adavi et al. 
2018; Egerer et al. 2023). Some researchers have pointed out how an increase in tem-
perature raises evaporation rates, leading to inefficient water use by crops (Haverkort 
and Verhagen 2008) which, in turn, causes a reduction in irrigation potential, decreas-
ing potato crop yields. Strategies such as delaying planting dates, using early maturing 
potato varieties or avoiding overlapping growth initiation with temperature peaks could 
mitigate the adverse effects of climate change on tuber growth (Adavi et al. 2018).

Despite its global importance, potato is a food with a low presence in the diet of 
developed countries. A daily adult consumption of 50–150 g is estimated (Burgos 
et  al. 2020), mainly supplied by the fast food and snack industries (de Haan and 
Rodriguez 2016). Conversely, in developing countries, it is considered a staple food, 
with a daily dietary weight of up to 800 g (Burgos et al. 2020). The fundamental role 
of this crop in the global food system and its significance in enhancing food security 
and alleviating poverty is recognized.

Potatoes are a versatile food, rich in carbohydrates and low in fat. Freshly harvested 
potatoes usually contain 80% water and 20% dry matter, of which 60–80% is starch. 
The main sugars include sucrose, fructose and glucose. Both starch and sugars could 
be considered the two most important compounds for assessing the quality of pota-
toes. Starch influences the texture of cooked products, while sugars directly impact 
the colour of fried foods (Stark et al. 2020). Among all the amino acids present on 
potatoes, asparagine is of particular importance in the processing industry. Together 
with reducing sugars (glucose and fructose), it can trigger the Maillard reaction at high 
temperatures during frying, leading to acrylamide formation (Friedman 2003). Acryla-
mide is an organic compound classified as a potent neurotoxin and a possible human 
carcinogen (Group 2A), so its control in the industry is crucially important (Interna-
tional Agency for Research on Cancer 1986, 1994).

The nutritional composition of potatoes can be affected by pre-harvest conditions 
such as climate, cultural practices, maturity at harvest or biotic and abiotic stresses. 
Besides, post-harvest conditions such as processing, storage and transport can affect 
the potato structure (Burgos et al. 2020).

Instrumental analyses and laboratory analytical techniques are used to 
determine the main potato compounds and diseases. High Performance Liquid 
Chromatography (HPLC) and Gas Chromatography (GC)—mass spectrometry 
are the most widely used techniques to determine sugar content (Chen et  al. 
2010), acrylamide (Fernandes and Soares 2007; Gökmen et  al. 2005; Šimko and 
Kolarič 2020), phenolic compounds (Barba et  al. 2008; Kvasnička et  al. 2008), 
carotenoids (Burgos et al. 2009), vitamins (Han et al. 2004; Juhász et al. 2014) and 
glycoalkaloids (Deußer et al. 2012; Lachman et al. 2013; Turakainen et al. 2004). 
However, these methods have some drawbacks. HPLC analytical columns are 
expensive and have a short operating life. Likewise, solvents are expensive and their 
disposal may pose a contamination problem (Nie and Nie 2019). GC is limited to 
volatile samples and often requires mass spectroscopy for peak identification (Feng 
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et al. 2019). In relation to potato diseases, Polymerase Chain Reaction (PCR) and 
Enzyme-Linked Immunosorbent Assay (ELISA) lifespan techniques have been used 
to identify potato virus Y (PVY) (MacKenzie et al. 2015), potato mop-top viruses 
(Arif et al. 2014), Gemini virus (Jeevalatha et al. 2013) and Phytophthora infestans 
(Niepold and Schöber-Butin 1995). These techniques are costly and time-consuming 
and require proper sample handling and qualified personnel (Patel et al. 2023).

In a context where crop productions generate high uncertainty due to climate 
change, the use of tools that enable rapid monitoring of foods throughout the entire 
agri-food chain is of considerable interest. Studies suggest that the future of potato 
quality control lies in the adoption of non-destructive, cost-effective and user-friendly 
techniques for real-time monitoring of quality parameters (Jarén et al. 2016). Hyper-
spectral imaging (HSI) is a reliable analytical tool for assessing the quality attrib-
utes of roots and tubers. It quickly obtains information about their external or internal 
defects, identifying different quality grades, and physical and chemical characteristics 
without the need for laborious sample preparation (Su and Sun 2019).

The aim of this work was to evaluate the existing body of literature on the appli-
cations of HSI for potato quality control, with particular attention on the analysis of 
the most important potato compounds. We conducted a search in the principal scien-
tific databases, encompassing all documents from the search strategy. A systematized 
review protocol was then carried out following the main steps of Preferred Report-
ing Items for Systematic Reviews and Meta-Analysis (PRISMA) (Moher et al. 2015). 
Besides, eligible studies were subjected to our own quality assessment scale. Finally, 
conclusions were drawn on the current status of the role of HSI in potato quality con-
trol. The secondary objective of this work was to identify gaps within this body of lit-
erature and to provide suggestions for focusing future research on less explored areas.

Study Design

Study Protocol

The systematized review protocol was developed through some adaptations of Pre-
ferred Reporting Items for Systematic Reviews and Meta-Analysis (Moher et al. 2015).

Search Strategy

As an initial step, on June 2, 2023, the studies were searched in two databases: Web 
of Science and Scopus. These databases were chosen for their relevance in including 
journals related to image analysis in the context of foods. Among three researchers: 
Carlos Miguel Peraza-Alemán (CMPA), Ainara López-Maestresalas (ALM) and Sil-
via Arazuri (SA), it was decided to conduct a comprehensive search encompassing 
all the studies up to date pertaining to HSI applications in potato quality control.

The following terms were used for the search in Web of Science: ((potato* OR 
“Solanum tuberosum”) AND (“hyperspectral imaging” OR “hyperspectral image” 
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OR “hyperspectral imagery” OR “imaging spectroscopy” OR “HSI*”)), while for 
Scopus they were: ((potato* OR {Solanum tuberosum}) AND ({hyperspectral imag-
ing} OR {hyperspectral image} OR {hyperspectral imagery} OR {imaging spec-
troscopy} OR {HSI*})).

Study Inclusion and Exclusion Criteria

Inclusion and exclusion criteria were established between the aforementioned research-
ers. Inclusion criteria encompassed the following: (1) studies on HSI applications for 
predicting potato compounds (e.g. starch, dry matter, sugars, amino acids), texture 
parameters, crop parameters (e.g. chlorophyll, biomass, abiotic stresses) and the iden-
tification of damage and biotic stresses (diseases) or classifications by origin, variety, 
crop cycle and colour through machine learning or deep learning techniques; (2) jour-
nal articles; (3) published in English or Spanish and (4) including at least one numeri-
cal dataset suitable for meta-analysis. Exclusion criteria comprised the following: (1) 
studies in which potatoes were analysed together with other tubers or foods; (2) confer-
ence proceedings, annual meetings, books, book chapters, theses, reviews, systematic 
reviews and systematized reviews and (3) articles in which the study matrix was potato, 
but the application scope was distant from the prediction of variables of interest.

Study Selection

The selection process consisted of three stages using the Rayyan tool (Ouzzani et al. 
2016). The first stage involved removing duplicate documents from both databases. 
In the second stage, titles and abstracts of all documents were analysed against the 
inclusion and exclusion criteria and those not meeting the inclusion criteria were 
discarded. Finally, documents not excluded in the second stage were read in their 
entirety to make a final decision regarding inclusion or exclusion in the systematized 
review. All these stages were conducted independently by the three researchers, and 
in case of discrepancies, a consensus meeting was held.

Quality Assessment of Studies

The quality of the included studies was independently evaluated by three research-
ers (CMPA, ALM, SA) and discrepancies were discussed and resolved in a subse-
quent meeting. Given the absence of established quality scales for the food technol-
ogy field, a proprietary quality scale encompassing key aspects in our review was 
developed. This scale, available in Supplementary Material (Scale S1), consisted of 
four criteria: (1) sample related, (2) data collection methodology, (3) data analysis 
and (4) results. The scale comprised nine questions, grouped among these four cri-
teria. A value of 1 was assigned for a positive reponse (a. Yes), 0 both for a nega-
tive reponse (b. No) or when it was unclear in the study (c. Unclear) and, no value 
(neither 0 nor 1) if the question was not applicable to the study (d. Not applica-
ble). Studies were classified as "high risk" if the percentage of positive reponses (a. 
Yes) to the total number of applicable questions was below 44%. Furthermore, if the 
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percentage of positive reponses was between 45 and 74%, the study was considered 
"moderate risk" and, if it exceeded 75%, "low risk".

Data Collection and Extraction

The data extracted was captured in two tables: one for regression-related studies and 
another one for classifications. Data were extracted from all the articles categorized 
as “low risk”, “moderate risk” and “high risk”. The tables included the following: 
(1) reference (authors and publication year), (2) the number of potato varieties, (3) 
the sample size (either tubers or leaves), (4) variables to predict, (5) prediction meth-
ods and, (6) evaluation metrics. For regression models, evaluation metrics included 
coefficient of determination (R2), root mean square errors (RMSE) and residual pre-
dictive deviation (RPD), for calibration (cal), cross-validation (cv) and external vali-
dation (val). For classification models the sensitivity, specificity, accuracy and preci-
sion values for cal, cv and val were included.

Analysis of the Evidence of the Studies Included in the Systematized Review

The studies included in the systematized review were qualitatively analysed to sum-
marize the main advancement in hyperspectral imaging technology for potato qual-
ity control. The most frequently reported compounds in the studies were described 
and relevant conclusions on the development of this technology were drawn.

Results and Discussion

A total of 451 studies were identified across both databases. Figure 1 illustrates the 
yearly distribution of documents retrieved in our search. It is evident that this topic 
is relatively recent. In fact, the earliest article correctly linking the terms HSI as 
hyperspectral imaging and potato dates back to 2006, while the first study included 
in the systematized review was published in 2008. Moreover, since 2012, there has 
been an exponential growth in the number of publications. However, there are only a 
small number of publications in 2023, as this research covers data up to June 2023.

Duplicate references were identified and removed (n = 139) using the Rayyan tool 
(Ouzzani et  al. 2016). After a thorough evaluation of titles and abstracts, 63 arti-
cles were selected for full-text and eligibility. Finally, 52 articles met the inclusion 
criteria and were incorporated into the present review. During full-text assessment 
for eligibility, the percentage of agreement between researchers (CMPA, ALM, SA) 
was 97.5%. After a meeting, a 100% agreement was reached. The flowchart in Fig. 2 
summarises the inclusion selection process.

Risk Assessment of Studies

An in-house developed scale, described in Supplementary Material (Scale S1), was 
used to evaluate the quality of the included studies. Overall, the quality of the studies 
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was outstanding. Forty-nine articles (94.2%) were categorised as "low risk", while 
three articles (5.8%) as "moderate risk", and no articles were considered "high risk". 
A more comprehensive analysis of each study is found in Supplementary Material 
(Table S2). The three researchers reached a consensus of 100% agreement in assign-
ing categories to each article. However, in some cases, the scores did not agree on 
all assessment criteria.

Fig. 1   Total of documents (n = 451) found in the search strategy

Fig. 2   Flowchart of the steps carried out for the inclusion of the studies
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Data Extraction: Study Characteristics

Data was extracted as described in the “Data Collection and Extraction” section. 
Tables were categorized into regression and classification models. These tables are 
available in Supplementary Material (Table S3) for regression models and Supple-
mentary Material (Table S4) for classification models. At this stage, the objective 
was to extract the most significant results from the models presented by the authors.

Overview of the Findings

A similar number of studies based on regression (n = 28) and classification (n = 26) 
methods was found. A discussion on the main advances of this technology in pota-
toes according to the studies analysed is provided below.

Major Components

Moisture and Dry Matter Content  Water content in potato serves as a critical indica-
tor of freshness, making its rapid detection essential for quality control and classifi-
cation (Xiao et al. 2020). Despite its significance in the dehydration process within 
the industry, moisture measurement is often performed manually and with limited 
efficiency (Su and Sun 2016b). However, some studies have demonstrated the poten-
tial of HSI to predict it.

Amjad et al. (2018) suggested the inversely proportional relationship between moisture 
content and relative reflectance in potatoes. Higher moisture content corresponds to 
lower reflectance, due to increased absorption of light at specific wavelengths, primarily 
attributable to the presence of more O–H bonds. In general, authors obtained good pre-
dicting results for moisture content at different temperatures (50 °C, 60 °C, 70 °C) and 
different slice thicknesses (5, 7 and 9 mm). They also reported that moisture content dis-
tribution within potato slices remained uniform throughout the matrix. In a similar study 
evaluating potato slices of 5, 7 and 9 mm thickness at a constant drying temperature 
of 50 °C, researchers obtained accurate prediction models for moisture content (R2

val of 
0.99 and RMSEval of 0.11%). This suggests that hyperspectral images can provide infor-
mation on the chemical and physico-chemical changes occurring in potato slices during 
drying (Moscetti et al. 2018).

However, a recent study encountered challenges when determining moisture 
content in unpeeled potatoes (Muruganantham et  al. 2023). Additionally, the lim-
ited sample size (n = 47) raises concerns regarding the practical applicability of the 
model. Authors stated that a RPD > 1.4 could be considered excellent, contrary to 
the majority of articles which state that excellent predictions are achieved with RPD 
values above 3 (Saeys et al. 2005).

In a different work, potato slices were classified based on their moisture content. 
The Partial Least Squares Discriminant Analysis (PLSDA) model achieved sen-
sitivity and specificity values of 1 for both calibration and cross-validation across 
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all moisture levels studied (Su and Sun 2016b). Other researchers employed two 
algorithms (Successive Projections Algorithm (SPA) and Competitive Adaptive 
Reweighted Sampling (CARS)) to extract characteristic wavelengths for estimating 
water content in potato slices, and Least Squares Support Vector Machine (LSSVM) 
was used to build regression models. The prediction using the LSSVM-SPA model 
achieved good results with R2

val = 0.791 and a RPD = 2.018 (Xiao et al. 2020).
More recently, the estimation of water content in potatoes using a Partial Least Squares 

Regression (PLSR) model combined with CARS algorithm in the short-wave infrared 
(SWIR) region was accomplished obtaining a R2

val = 0.9313 and a RPD = 2.7453. The 
capability of CARS to reduce the dimension and multicollinearity of spectral data was 
demonstrated (Cui et al. 2022). Zou et al. (2022) used hyperspectral images to predict 
water content in potato tubers applying several preprocessing methods to eliminate the 
noise from the original data. The best prediction was obtained using the Extreme Gradient 
Boost (XGBoost) model with a R2

cv of 0.8448 and a RMSEcv of 0.0544%.
Dry matter (DM) determination is an important characteristic for industrial 

potato applications due to its positive correlation both with the yield of processed 
products and with the texture of chips and French fries (Genet 1992). In addition, 
the DM content can also influence the final colour of the chips (Jadhav and Kadam 
1998). Kjær et al. (2016) obtained a coefficient of determination of 0.66 for dry mat-
ter prediction using HSI. The same authors improved their results in another study 
with a R2

val = 0.726 (Kjær et al. 2017). An experiment was performed to predict and 
classify DM in intact potatoes using different optical sensing systems (transmittance 
spectra, interactance spectra and hyperspectral imaging). The measurements at the 
equatorial position gave good performance. Concerning DM prediction, the best 
outcomes were obtained using transmittance spectra mode, applying a CARS-SVM 
method (Wang et al. 2022). Based on these studies, it appears that there is still room 
for improvement in potato dry matter predictions using HSI.

Starch Content  Starch constitutes the major carbohydrate in potatoes. Its interactions 
with sugars and non-starch polysaccharides impact on the sensory quality and shelf 
life of potato products (Liu et  al. 2009). Despite the relevance of starch in potato, 
this review uncovered a limited number of studies focusing on this subject. One such 
study evaluated several scanning methods for whole tuber assessment, with two of 
them based on HSI. The best HSI scanning method for predicting starch achieved a 
R2

cal of 0.69 and a RMSEcal of 1.6% (Kjær et al. 2016). However, this study did not 
report cross-validation or external validation, and the sample size analysed was rela-
tively small (n = 60). Another study conducted by Wang et al. (2021a) on two potato 
varieties (‘Zihuabi’ and ‘Atlantic’) demonstrated the effectiveness of HSI in the VIS/
NIR range for mapping starch content distribution (g/kg). The MSC-CARS-PLSR 
(MSC: Multivariate Scattering Correction) model outperformed the full spectrum 
PLSR model. In a similar research involving other varieties (‘Kexin No.1’ and ‘Hol-
land No.15’), the authors emphasized the influence of the sampling site on prediction 
model accuracy. Hyperspectral data were collected from three sampling sites: top, 
umbilicus and middle regions. The umbilicus region gave the best performance using 
CARS-SVR model (SVR: Support Vector Regression) (Wang et  al. 2021b). Wang 
and Wang (2022) tried to enhance starch prediction models by fusion of spectral and 



1 3

Potato Research	

textural data compared to single data. While low-level did not improve predictions, 
mid-level data fusion, using 10 important wavelengths selected by CARS, and 7 tex-
tural variables, achieved a RPD of 2.05.

Soluble Solids and Sugar Contents  Soluble solids in potatoes consist mainly of soluble 
sugars. One study obtained subpar results in predicting sucrose, glucose and fructose 
using HSI (Kjær et al. 2016). Similar outcomes were obtained by Rady et al. (2014) 
in soluble solids, glucose and sucrose predictions. They conducted experiments across 
two potato cultivars, employing three acquisition modes (interactance, transmittance 
and hyperspectral). Among these, the VIS/NIR spectral interactance obtained the best 
correlation of compounds. Nevertheless, Rady et al. (2015) managed to build a robust 
model for glucose prediction using PLSR achieving a R2

val = 0.97 and a RPD = 3.7.

Data fusion from spectroscopic (interactance and reflectance) and HSI sys-
tems improved classification and regression models in contrast to a single tech-
nique for glucose and sucrose prediction. Surprisingly, unlike other studies 
mentioned above, the authors found that HSI exhibited superior outcomes over 
interactance or reflectance systems (Rady et al. 2021).

Minor Components

The prediction of minor components in potato tubers using HSI has received lim-
ited attention as indicated by the results of this review. Minor components of pota-
toes include phenolics, enzymes and minerals, which are found in low concentra-
tions in the tubers (Fernández-Ahumada et al. 2006; Reeve et al. 1969). Kjær et al. 
(2016) tried to predict different amino acids on potatoes (asparagine, aspartate, glu-
tamate, tyrosine, valine, glutamine and tryptophan). Except for asparagine results 
(R2

cal = 0.7), the models for the remaining amino acids performed poorly. Likewise, 
Kjær et al. (2017) obtained unsatisfactory results when predicting the total glycoal-
kaloid concentrations (TGA) through a reflection based setup. In another study, a 
fluorescence HSI technique was employed to predict the solanine content of pota-
toes. The bud eye was identified as the best region of interest to predict solanine. 
The best model achieved a coefficient of determination of 0.9143 and a root mean 
square error of 0.0296 mg/100 g for the prediction set (Lu et al. 2019).

Diseases

Hyperspectral imaging seems to be a promising technique for potato diseases detec-
tion, whether in tubers, leaves or field trials. Its main application has been in clas-
sifying healthy and diseased tubers and/or leaves.

Root-knot nematodes (Meloidogyne spp.) are considered an aggressive group of 
plant-parasitic nematodes for potato production due to their impact on tuber quality 
and yield (Žibrat et al. 2021). Two studies successfully applied hyperspectral imag-
ing to identify root-knot nematode infestations in potato tubers. Both Support Vector 
Machine (SVM) and Linear Discriminant Analysis (LDA) models achieved 100% 
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success rates in classifying healthy and infected tubers (Lapajne et al. 2022; Žibrat 
et al. 2021).

Late blight caused by the fungus Phytophthora infestans was detected using an 
UAV (Unmanned Aerial Vehicle)-Based HSI data. An end-to-end deep learning 
model (CropdocNet) was developed to extract the spectral-spatial hierarchical struc-
ture of late blight disease. The average accuracies were 98.09% and 95.75% for the 
training and independent testing datasets, respectively (Shi et al. 2022). Song et al. 
(2020) developed a low-cost HSI camera with similar performance to a high-end 
pushbroom system. An accuracy of 88% was achieved in the classification of healthy 
and affected potato leaves. In a field study, models with healthy leaves and five pro-
gressive disease stages were trained under laboratory conditions. The model devel-
oped was then applied under real field conditions. The authors highlighted the dif-
ficulties of using laboratory data to train field disease detection models (Appeltans 
et al. 2022). In another study, using a deep learning model, asymptomatic late blight 
in biotrophic phase was successfully classified in potato leaves. Authors evidenced 
changes on potato leaves reflectance on the third day after infection. Using only 6 
wavelengths, the potato leaves were classified at a stage where no symptoms were 
yet visible (Qi et al. 2023).

In a recent study, a novel structure, Atrous-CNN (Convolutional Neural Net-
works) was developed to classify different potato leaf diseases (Anthrax, leaf blight, 
early blight). This algorithm combined information from 1D-CNN, 2D-CNN, and 
3D-CNN, resulting in increased accuracy and reduced hardware consumption (Gao 
et al. 2023).

For the detection of potato virus Y, a Fully Convolutional Network (FCN) was 
used to classify healthy and virus-infected plants under real conditions. The vali-
dation was carried out in different potato cultivars. Precision and recall exceeded 
0.78 and 0.88, respectively, demonstrating the capability of this method to be imple-
mented in field (Polder et al. 2019).

Zebra Chip disease was identified in a large sample size of potatoes (n = 3352). The 
spectral range included VIS and NIR (550–1700 nm). The PLSDA model achieved 
an accuracy of 92% without preprocessing and 89% after applying a waveband opti-
misation by variable importance in projection (VIP) (Garhwal et al. 2020). Although 
waveband selection reduced the accuracy, it is an important step in the application 
of models to industry; otherwise, the large amount of information provided by a full 
spectrum makes the practical use of this technique unfeasible at present.

Early blight disease caused by Alternaria solani was detected in a field study 
using a multispectral camera. While recall values (0.83) were sufficient for in-field 
application, precision (0.21) was considered too low for accurate disease detection 
(Van De Vijver et al. 2020).

Defects

Bruise Detection  Bruising represents the most common mechanical damage 
encountered along the postharvest chain and remains a primary cause of posthar-
vest loss. Manual inspection has traditionally been relied upon for bruise detection, 
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a time-consuming and error-prone process, particularly during the early stages (Du 
et  al. 2020). HSI can provide the necessary information through representative 
wavelengths for bruise detection (Che et al. 2018).

López-Maestresalas et al. (2016) identified early bruises in potatoes within 5 h after 
bruising through a PLSDA model in the SWIR region. Another study achieved 
100% accuracy in classifying potatoes with different levels of bruising using dimen-
sionality reduction techniques (Ye et  al. 2018). Ji et  al. (2019b)  proposed a tech-
nique combining hyperspectral imaging and discrete wavelet transform for bruise 
identification. Employing the Fisher Linear Discriminant and AdaBoost classifier 
(AdaBoost-FLD) they attained an accuracy of 99.82%. In another study, differ-
ent potato defects including green skin, germination, dry rot, wormhole and dam-
age were classified through hyperspectral imaging and Multi-Class Support Vector 
Machine (MSVM). A pixel-based defect classification achieved over 90% of accu-
racy (Ji et al. 2019a).

Sprouting Detection  Knowledge of the sprouting stage is essential for effective 
management of storage conditions to ensure postharvest quality. A study developed 
a method to identify by-sprouting and pre-sprouting eyes using HSI. While LSSVM 
classifier was inadequate for predicting sprouting stages, the Succesive Projection 
Algorithm—Sine Fit Algorithm—Fisher Discriminant Analysis (SPA-SFA-FDA 
classifier) obtained an overall classification accuracy of 97.6% for prediction sets 
(Gao et al. 2018). In a related study, similar results were obtained for both whole 
tubers and potato slices in classifying high or low sprouting activity. Merging data 
from different optical systems did not result in improved models for whole tubers, 
while a slight enhancement in classification accuracy was observed for sliced sam-
ples (Rady et al. 2020).

Primordial leaf count is a parameter that provide insight into a tuber capacity to 
produce sprouts. Rady et al. (2014) demonstrated higher predictions of primordial 
leaf count on potato slices (RPD = 2.92) compared to whole tubers (RPD = 1.14). 
Moreover, the potential of data fusion between VIS/NIR spectroscopy and hyper-
spectral imaging was investigated to improve the prediction of sprouting activity 
based on primordial leaf count. The results showed an increase in RPD values of 
35.6% for ‘FL1879’ and 136.7% for ‘R. Norkotah’ cultivars in data fusion models 
compared to a single technique (Rady et al. 2019).

Colour

Artificial vision is emerging as a promising technique for pixel-level colour analysis 
(Wu and Sun 2013). In potatoes, it offers the possibility to monitor browning devel-
opment (Moscetti et al. 2018) as well as to control the drying processes.

Amjad et  al. (2018) demonstrated the feasibility of determining chromatic-
ity in potato slices employing hyperspectral imaging. Optimal models were devel-
oped through a wavelength selection method (Monte Carlo Uninformative Variable 
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Elimination). The models for CIELAB a* exhibited consistent performance, while 
those for CIELAB b* showed greater variability. In another study, favourable results 
were achieved in predicting the colour coordinates hue (h) and L*/b* during hot-air 
drying. The thickness of the potato slices influenced the drying kinetics, and conse-
quently, the construction of the prediction model (Moscetti et al. 2018).

Xiao et al. (2020) predicted the colour parameters (L*, a*, b*, Browning index 
(BI), L*/b*) in fresh-cut potatoes. For all the parameters, the R2

val and RPD values 
surpassed 0.84 and 2.1, respectively. The full spectra range was used to visualise the 
spatial distribution of colour parameters.

Chlorophyll

Chlorophyll content in leaves gives an indication of the plant’s nutritional status (Ali 
et al. 2012). Kjær et al. (2017) predicted the chlorophyll content on peeled potatoes. 
Different contents were obtained by subjecting the tubers of four cultivars to differ-
ent light treatments (red, blue, red/blue, UV-a, UV-b or UV-c). The spectral response 
for chlorophyll prediction differed among potato cultivars. Despite the global model 
across all potato varieties achieved a R2

val = 0.92, superior models were developed 
when built for each cultivar individually. This study highlights the challenge in 
obtaining robust models across different potato varieties. Therefore, further research 
is required to investigate the prediction of variables between different cultivars.

Two in-field studies were conducted to predict chlorophyll content in potato 
leaves using UAV technology. Models were developed for four growth stages (bud-
ding, tuber formation, tuber growth and starch accumulation). In general, good mod-
els were obtained for all stages (Li et  al. 2020, 2021a). However, in their conclu-
sions, Li et al. (2021a) only reported modelling accuracies while verification ones 
were considerably lower.

Other Characteristics

After analysing the main attributes of potatoes, this section delves into additional 
noteworthy usages.

The first application of hyperspectral imaging, as identified in this review, was 
conducted by Al-Mallahi et  al. (2008). Their study aimed to distinguish between 
potato tubers and soil clods in wet or dry conditions. Correct classification rates of 
90% under wet conditions and 94.7% under dry conditions were achieved. A similar 
study focused on detecting foreign materials in fresh-cut vegetables, including pota-
toes, was undertaken by Tunny et  al. (2023). They reported that some hyperspec-
tral imaging techniques (visible near infrared (VNIR), short-wave infrared imaging 
(SWIR) and fluorescence), exhibited differences in model’s performance. SWIR was 
found to be the most effective method with 99% accuracy.

Hyperspectral imaging has also been employed to determinate the volatility of 
tuber compositions (VTC) and tuber cooking degree (TCD) during low-temperature 
baking. The first derivate and mean centering algorithm—Three-layer back propa-
gation artificial neural network (FMCIA-TBPANN) showed the strongest correla-
tion within the models. The authors also generated maps to visualize the spatial 
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distribution and gradation of VTC and TCD (Su and Sun 2016a). A similar appli-
cation successfully discriminated between raw and cooked pixels in hyperspectral 
images of potatoes subjected to different cooking times. Authors remarked the 
importance of the sample size to develop models for industrial applications (Nguyen 
Do Trong et al. 2011).

Recently, the ability of hyperspectral imaging to detect Escherichia coli on the 
surface of potato slices was showcased. The Back-Propagation Neural Network (BP-
NN) model obtained favourable results (R2

val = 0.976, RMSEval = 0.065 log CFU 
g−1) compared to the PLS model (R2

val = 0.891, RMSEval = 0.141 log CFU g−1) (Li 
et al. 2021b).

The influence of abiotic factors on potato has also been studied using HSI. Thus, 
Duarte-Carvajalino et al. (2021) focused on detecting water stress at different levels 
(none, light, moderate and severe) in potato crops. Results showed 100% accuracy at 
two phenological stages (tuber differentiation and maximum tuberization).

Logan et al. (2021) used HSI technique to discriminate between fresh and non-
fresh potatoes. Statistical treatment involved stochastic gradient descent to train a 
Convultional Neural Network (CNN) model, obtaining 98% accuracy. Similarly, Bai 
et al. (2020) used HSI to classify fresh-cut potato slices treated with different con-
centrations of sulphur dioxide. Authors obtained 95% classification accuracy using 
the full spectrum. In contrast, models with selected wavelengths resulted in a lower 
but sufficient accuracy to develop a multispectral system.

In another study, the maximum quantum yield of primary photochemistry (Fv/
Fm) in potato leaves was predicted. The model bior3.3-RF-PLS proved optimal 
results, given its ability to minimize redundant information and multicollinearity 
among variables present in hyperspectral imaging data (Zhao et al. 2021).

Other researchers have focused on the analysis of potato characteristics at the 
crop level using drones. Thus, Abdelbaki et al. (2021) estimated the leaf area index 
(LAI), fractional vegetation cover (fCover) and canopy chlorophyll content (CCC) 
during different growing seasons on potato crops. The random forest with the expo-
sure time (RFexp) gave the most robust performance, effectively mitigating illumina-
tion variability and cloud shadows.

Liu et al. (2021) looked at nutrient performance including petiole nitrate, whole 
leaf and total nitrogen across four potato varieties and two growing seasons. They 
worked in both VIS and NIR regions (400–2350  nm). Authors concluded that to 
build models applicable to any potato crop, it was necessary to gather information 
at each growth stage. Similarly, total nitrogen concentration was predicted via whole 
leaf total N concentration and petiole nitrate–N concentration. Findings indicated 
that PLSR model performance decreased with an increase in spectral bandwidth. 
HSI outperformed all multispectral cameras. In addition, no significant differences 
were observed among the three brands of multispectral cameras. The results showed 
that spectral bands in the visible range (400–700  nm) correlated strongly with N 
concentration in potatoes (Zhou et al. 2022).

UAV hyperspectral images were employed to predict the above-ground biomass 
(AGB) as indicator of potato crop growth. The Gaussian Process Regression (GPR) 
method outperformed SVM and RF methods. Several variables such as canopy 
original spectra, first-derivative spectra, vegetation indices and crop height were 
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evaluated for AGB prediction. Results indicated that combining spectral information 
and crop height produced superior models (Liu et al. 2022b). Similar studies have 
showed that AGB estimates improved during early growth stages but declined as 
crops progressed from the sprouting stage to starch accumulation. The best results 
were achieved using PLSR with R2

val = 0.74, RMSEval = 125.48 kg/hm2 (Liu et  al. 
2022c) and R2

val = 0.78, RMSEval = 131.91 kg/hm2 (Liu et al. 2022a).
In a recent study, ten potato varieties were discriminated based on their industrial 

suitability for cooking or frying as chips using hyperspectral imaging. Two classifi-
cation approaches were employed: mean spectra and pixel-wise. Mean spectra clas-
sifications reported higher results compared to pixel-wise; although by applying a 
variable selection method (iPLS), the pixel-based PLSDA models improved (López-
Maestresalas et al. 2022).

Strengths and Limitations

In this systematized review, a qualitative and quantitative assessment of all selected 
articles was conducted. A specific quality scale was developed to better evaluate the 
articles published in this field of science. The search strategy carried out in the two 
main databases (Web of Science and Scopus) in the field of food technology allowed 
us to cover a wide range of articles. For each article, data were collected and ana-
lysed thoroughly, a process independently carried out by three researchers to mini-
mize the risk of bias.

Our findings revealed that linear methods outperformed non-linear methods in 
correlating potato compounds with spectral information. In the context of regression 
models, over two-thirds of the results of the articles obtained their best outcomes with 
PLSR (Fig.  3a). In contrast, classification models displayed a broader distribution, 
with PLSDA and SVM obtaining the most robust models in 50% of the analysed stud-
ies (Fig. 3b). The scientific evidence collected in this review suggests that in many 
cases, the complexity of non-linear methods is not necessary to attain robust model-
ling results. However, in recent reviews, authors reported non-linear methods as the 
most suitable for potato variable predictions (Gupta et al. 2023; Su and Xue 2021).

Sixty variables were identified in the search strategy, highlighting the wide range of 
potato characteristics examined. Figure 4 shows the principal characteristics evaluated: 
major components (23%), minor components (9%), diseases (14%) and defects (12%). 
The remaining characteristics studied were as follows: colour (9%), chlorophyll (4%) 
and other characteristics (28%). It can be seen that major components have received 
the most attention, with moisture/water content being the most frequent variable, cited 
in seven studies (Fig.  4a). Conversely, the minority components have received less 
attention, with only one mention each (Fig. 4b). We believe that this could be attrib-
uted to the challenge of building robust prediction because of their low concentration 
in potatoes. Their minor impact on the final product quality also renders them less 
attractive for further research. Here, it is necessary to differentiate asparagine, due to 
its importance for the industry during the frying process. It would therefore be interest-
ing to further explore this compound using hyperspectral imaging. Regarding diseases, 
the predominant variable was late blight, with over a third of the studies dedicated to 
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it (Fig. 4c). Similar results obtained by Gupta et al (2023) emphasised late blight and 
early blight diseases as the most studied using machine learning techniques. As for 
defects, sprouting was the most frequent variable, with four mentions (Fig. 4d). These 

Fig. 3   Proportion of machine and deep learning methods used in the potato field: a regression and b 
classification methods

Fig. 4   Principal characteristics analysed in potatoes utilising HSI technique. a Major components; b 
minor components; c diseases; d defects
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findings indicate that hyperspectral imaging remains a highly promising approach for 
predicting compounds, defects and diseases in potatoes.

In this review, comparability between studies has been further hampered by the 
fact that there is a very small number of studies for a specific variable, which was a 
limiting factor for a meta-analysis of studies based on regression and classification. 
Furthermore, during the body of literature assessment, it was observed that some 
authors provided different statistical parameters while studying the same variable, 
which prevents the development of a robust meta-analysis.

Future Research

As mentioned in the previous section, predicting minor components remains a chal-
lenge as robust models have not yet been developed. It would be worthwhile to con-
duct further research on glycoalkaloids and asparagine, as they are directly related to 
the quality of fresh or processed tubers, respectively. In their review, Rady and Guyer 
(2015) emphasised the importance of further studying sugars. Predicting the sugar con-
tent quickly and reliably makes it possible to decide whether or not each tuber is suit-
able for the frying process. However, this remains an unresolved issue to date. Although 
there have been attempts to predict acrylamide using spectroscopic techniques (Adedipe 
et al. 2016; Aykas et al. 2022; Ayvaz and Rodriguez-Saona 2015; Pedreschi et al. 2010; 
Segtnan et al. 2006), we did not find any articles using HSI. Hyperspectral imaging has 
high potential for estimating acrylamide as it can provide new and relevant information 
of its spatial distribution, in French fries or chips. Related to diseases, drones equipped 
with multispectral cameras are the most suitable way for online monitoring of potato 
crops. However, obtaining robust models could be further improved.

Most of the studies focused on the VIS/NIR range up to 1000  nm, so further 
research in the NIR region spanning from 1000 to 2500 nm could lead to more robust 
models. In several articles, it was difficult to discern whether the model results corre-
sponded to cross-validation or external validation. These aspects should be presented 
in a clearer way for a better comprehensive understanding of the findings.

Modelling for real-time application with hyperspectral imaging is currently 
unsuitable due to the large amount of multidimensional and often irrelevant informa-
tion. The goal is to develop more practical methodologies that require fewer compu-
tational demands and execution steps, enabling real-time and rapid determinations. 
Finally, to ensure the industrial adoption of these techniques, it is crucial to improve 
the generality and robustness of the models developed either by increasing the sam-
ple sizes, incorporating various potato cultivars or conducting multiple campaigns.

Conclusions

This systematized review offers a synthesis of the latest advancements in the appli-
cation of hyperspectral imaging in potato crops recorded in the Web of Science 
and Scopus databases. Fifty-two articles were identified and subjected to a quality 
assessment using a proper scale. Data were extracted from their best models, and the 
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relevant results were discussed. The potential of hyperspectral imaging in potato crop 
analysis remains largely untapped. Further studies are required to predict chemical 
compounds, including glycoalkaloids, asparagine, sugars and starch for raw tubers 
and acrylamide for French fries and chips, due to its importance in potato industry. In 
contrast to other studies, we found that linear methods are more suitable for predict-
ing compounds, diseases and defects than non-linear methods. The use of hyperspec-
tral imaging systems for online monitoring in the potato industry poses a challenge 
due to the huge amount of information that needs to be processed. The evidence pre-
sented in this paper suggests that the real applications of HSI will be through multi-
spectral systems. Finally, the meta-analysis was constrained by the limited number of 
articles that examined both the same variables and parameters. It is therefore recom-
mended that future systematized reviews in this area could explore the feasibility of 
meta-analysis. This review provides an overview of the current state of the art and 
can serve as a valuable source of information for researchers working in this field.
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