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A B S T R A C T   

Accurate segmentation of renal tissues is an essential step for renal perfusion estimation and postoperative 
assessment of the allograft. Images are usually manually labeled, which is tedious and prone to human error. We 
present an image analysis method for the automatic estimation of renal perfusion based on perfusion magnetic 
resonance imaging. Specifically, non-contrasted pseudo-continuous arterial spin labeling (PCASL) images are 
used for kidney transplant evaluation and perfusion estimation, as a biomarker of the status of the allograft. The 
proposed method uses machine/deep learning tools for the segmentation and classification of renal cortical and 
medullary tissues and automates the estimation of perfusion values. Data from 16 transplant patients has been 
used for the experiments. The automatic analysis of differentiated tissues within the kidney, such as cortex and 
medulla, is performed by employing the time-intensity-curves of non-contrasted T1-weighted MRI series. Spe-
cifically, using the Dice similarity coefficient as a figure of merit, results above 93%, 92% and 82% are obtained 
for whole kidney, cortex, and medulla, respectively. Besides, estimated cortical and medullary perfusion values 
are considered to be within the acceptable ranges within clinical practice.   

1. Introduction 

Chronic kidney disease (CKD) is characterized by a progressive and 
irreversible loss of kidney function and currently considered one of the 
major public health challenges by the World Health Organization [1]. 
CKD remains a widespread and crucial public health problem afflicting 
>12% of the population worldwide [1]. It can lead to kidney function 
loss, cardiovascular disease, and premature death. In case of renal fail-
ure, dialysis or transplant is needed. While both treatments have ad-
vantages and disadvantages, studies show that patients who have a 
successful kidney transplant live longer than patients treated with 
dialysis, and also have better quality of life [2]. In recent years, the risk 
of renal transplant loss has been reduced in the short term [3], but it still 
remains a concern in the mid- and long- term. The renal blood flow 

(RBF) or perfusion has an enormous potential value for clinical ne-
phrologists as it enables the identification of perfusion impairment as an 
emerging biomarker of renal dysfunction in kidney transplant patients 
[4]. The major portion of blood flow is delivered to the cortex and a 
small quantity is delivered to the medulla [5]. However, the blood flow 
in the medulla is also considerably sensitive to reductions in RBF and 
oxygen delivery [5]. The vasoconstriction of renal arterial tree and 
changes in the intrarenal vascular resistance are determinant of the 
overall RBF [5]. Thus, precise perfusion measurement is desirable as it 
may assess in the research, diagnosis, prognosis and the evaluation of 
CKD condition. 

The quantitative measurement of RBF has been achieved by means of 
several imaging techniques, as positron emission tomography (PET) 
[6,7], computed tomography (CT) [8,9] and magnetic resonance 
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imaging (MRI) techniques [10,11]. MRI is able to assess renal micro- 
anatomy, perfusion, and diffusion, among others [12]. More specif-
ically, arterial spin labeling (ASL) is a non-invasive MRI technique that 
allows the characterization of RBF using magnetically labeled arterial 
blood water spins as endogenous tracer, offering an interesting alter-
native for renal perfusion estimation, especially in patients with renal 
dysfunction for whom the administration of gadolinium-based contrast 
agents could be contraindicated [10]. Pseudo-continuous ASL (PCASL) 
is a variant of ASL that uses a combination of a train of radiofrequency 
pulses with slice-selective gradients to alter the longitudinal magneti-
zation of the blood that irrigates the organ of interest. PCASL has been 
accepted as consensus solution for brain perfusion measurement [11]. 
Furthermore, it shows up as a potential alternative to dynamic contrast 
enhanced - MRI (DCE-MRI). The quality of DCE-MRI imaging modality 
has expanded its number of applications and thus the number of tech-
nological developments involved. However, DCE-MRI is limited by the 
use of contrast agent that can affect CKD patient safety in renal 
impairment cases. For that reason, the non-invasive nature of the ASL 
method provides highly beneficial added value for clinical practice and 
has already become a valid technique for renal function measurements. 
On the other hand, for transplant patients, which are the core of this 
study, it emerges as the only viable solution given the high limitations 
when using contrast agents. The RBF estimation obtained from ASL 
images provides renal functional measurements; however, it entails 
extra segmentation work. The segmentation of the kidney in the image is 
a necessary and crucial stage for perfusion estimation and its automation 
is, consequently, key for being able to incorporate the clinical knowl-
edge obtained into daily practice. However, manual segmentation is 
tedious and prone to error. Furthermore, semi-automated approaches 
with partial intervention of an operator are dependent on the specialist 
and require the evaluation of replicability and inter-observer variation. 
Thereupon, there is an increasing need to transform these techniques 
into fully-automated or at least less operator-dependent. According to 
this need, the literature shows a significant interest in the development 
of automated or semi-automated tools for the semantic segmentation of 
the kidney and its compartments. The development of machine learning 
(ML) and deep learning (DL) is increasing as a consequence of the suc-
cessful solutions obtained in computer vision and related fields. In 
particular, models drawn from the field of DL are showing excellent 
performance ranging from automotive to industrial vision and this ex-
tends to medical imaging as well [13–15]. DL is part of ML, inspired by 
the way in which the brain carries out learning processes by imitating 
biological neurological networks [16]. It employs a series of layers with 
mathematically interconnected nodes. The weights of these nodes are 
adjusted from an optimization process during the course of a training 
stage to solve a specific problem (detection, segmentation, and classi-
fication, among others). To date, the applications of ML and DL models 
in renal MRI are scarce compared to the works found for computerized 
tomography (CT) [17,18] and DCE-MRI [19–21]. Some approaches that 
fully or partially automate the process of kidney segmentation and tissue 
differentiation on non-contrasted MRI have been published in recent 
years. In [22], an evaluation of the reproducibility of ASL kidney 
perfusion measurement is performed, based on semi-automatic seg-
mentation of the whole kidney via intelligent scissor method and 
cortical and medullary differentiation by means of clusterization. In this 
work, high correlation of cortical, medullary and whole kidney perfu-
sion is achieved, but it is limited to healthy PCASL renal data. Volu-
metric assessment of the kidney is performed in [23] based on 
thresholding and shape detection algorithms on non-contrasted T1- and 
T2-w MRI. In this work, healthy MRI data is used, and applied thresholds 
for intensity-value based separation highly depend on the dataset. 
Regarding the use of DL based techniques applied to renal ASL-MRI, a 
cascaded U-Net is proposed in [24,25] for renal cortical perfusion 
quantification on ASL and volumetric quantification on T2- w MRI im-
ages, respectively. In addition, in [26], a Mask R-CNN is implemented 
for ASL and T2* image processing and enables multiclassification of 

renal tissue and renal perfusion and oxygenation estimation. The present 
work aims to provide a fully-automated segmentation pipeline for the 
estimation of perfusion values on PCASL-MRI data using T1-w MRI 
image series as support for the differentiation of cortex and medullary 
tissues. The principal objective of the work is the development of 
automatic segmentation algorithms for the evaluation of estimated RBF 
on transplanted kidneys. Applicability of purposed segmentation algo-
rithm have also been tested and evaluated on healthy renal PCASL 
dataset and synthetic renal PCASL data. The main proposed system; first 
performs a preliminary whole kidney segmentation by ML/DL; secondly 
classifies the pixels within the kidney region into cortex and medulla 
classes; and finally estimates RBF on PCASL-MRI data for quantitative 

Fig. 1. Renal, cortical, and medullary tissue segmentation pipeline. (a) Renal 
MRI consists of ASL (PCASL), M0 reference image and T1-w image series. 
Manual annotation (b) has to be performed in order to generate GT masks and 
to train the implemented methods. Once data is labeled, MRI data should be 
motion corrected (c) prior to any segmentation approach. The main tasks in this 
work are the automatic kidney (d) and cortex and medulla segmentation (e). 
Finally, once tissues are segmented, RBF maps and renal perfusion values are 
estimated (f). 
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assessment. 

2. Materials and methods 

The proposed pipeline (Fig. 1) includes: (a) MRI acquisition, (b) 
manual annotation to generate ground truth (GT) regions for evaluation 
purposes, and (c-f) the image processing system. The latter, in turn, 
embraces: (c) motion compensation, (d) segmentation of kidney using 
DL/ML techniques, (e) cortical and medullary tissue differentiation 
using T1-w image series and T1-maps, and (f) renal perfusion estimation 
from MRI data. 

2.1. Transplanted renal MRI data 

This study was approved by the Ethics Research Committee at the 
University of Navarra. Written informed consent was obtained from all 
subjects before MRI evaluation. 16 (9 male, 7 female) renal transplant 
patients (mean age ± standard deviation (SD), 53.74 ± 14.65 years) 
participated in this study with the following inclusion criteria: adults 
(18+) and clinically stable, considered as patients with eGFR >50 ml/ 
min/1.73m2 that were transplanted more than a year before the study. 
Subjects were recruited by their referring nephrologist. A 3 T Skyra 
(Siemens, Erlangen, Germany) and 18-channel body-array coil was used 
to carry out renal MRI data acquisition. Perfusion images were acquired 
using a PCASL sequence with background suppression (BS) and spin- 
echo echoplanar readout (SE-EPI) [27]. Pre-saturation pulses were 
applied before the labeling pulses, and BS pulses were optimized to 
suppress the static signal to 10%. Voxel-wise mapping of T1 relaxation 
time of the kidney was acquired using the classical inversion recovery 
(IR) scheme, where each repetition time contains a single 180◦ inversion 
pulse that is followed by a single readout after the inversion time (TI) 
[28]. Once full magnetization is achieved, the process is repeated for a 
number of 14 TIs (200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 
1400, 1600, 1800, and 2000 ms) to accurately sample the IR curve [28]. 

Subjects were scanned using the following readout: acquisition 

matrix, 96 × 96; field of view, 288 × 288 mm2; voxel size, 3 × 3 × 5 
mm3; slice thickness, 5 mm; slice gap, 2.5 mm; number of slices, 3; slice 
orientation, coronal oblique or coronal-sagittal, and flip angle, 90◦. The 
dataset contains data from 16 patients, each consisted of a reference 
image, named as M0 image and 50 (25 control and 25 labels) PCASL 
images and 3 slices. Additionally, the T1-w image series is obtained, 
consisting of 14 images and 3 slices per subject (see Fig. 1(a)). Renal MRI 
sequence parameters are shown in Table 1. 

2.2. Motion correction 

During the MRI acquisition, movement of the body or kidney itself 
can occur. For that reason, PCASL, M0, and T1- w images are collectively 
registered in Elastix [29], using BSpline non-rigid groupwise registration 
based on B-Spline stack transform and PCA2 metric [30]. The method 
aligns volumes on a slice-wise basis, using reduced dimension BSpline 
interpolator, stochastic gradient descent optimizer, and 200 iterations. 

2.3. Automatic whole kidney segmentation 

We compare three different DL- and ML-based approaches for kidney 
segmentation on PCASL images, namely, Supervised Descent Method 
(SDM) [31], U-Net [32], and Mask R-CNN [33]. The dataset is sub-
divided into training and testing using the Leave-One-Out method (pa-
tient-based). Training dataset refers to the sample of data that is used to 
fit the model and testing dataset refers to the sample of data used to 
provide an unbiased evaluation of the model. For model training and 
testing purposes, manual kidney labels (binary masks) are traced on ITK- 
SNAP software [34], encompassing renal area and excluding renal hilum 
over PCASL image series. This way, we obtained image/mask pairs 
belonging to the training dataset. 

2.3.1. Supervised descent method 
SDM is one of the leading cascaded regression approaches for face 

alignment [31]. It is based on histogram of gradient (HOG) extraction to 
encode local shape information from point locations x within the image. 
SDM aims at learning a series of descent directions and re-scaling factors 
such that it produces a sequence of updates (xk+1 = xk + Δxk) starting 
from x0 (mean landmarks) that converges to x* (labeled landmarks) in 
the training data [35]. In this work, kidney contour points are selected as 
landmarks and the following parameters are experimentally set: 40 
landmarks (contour points), four weak regressors in cascade with radius 
patches with values of {12,12,10,10} and weight regularization term λ 
of 30. HOG features are extracted around specified point locations with 
{radius patch/2, radius patch/2} cell size, 2 × 2 block size, and 9 bins. 
The training set is created by corrupting GT masks with additional in-
dependent noise applied to each landmark, as data augmentation 
approach. In particular, 50 initializations (x0) are included for each one 
of the images. For every image in the testing dataset, the contour is 
initialized, i.e. x0, using the average contour obtained from the GT 
points of the images in the training dataset. The algorithm is imple-
mented in Matlab on AMD Ryzen 93,900 × 12 Core-Processor, on par-
allel pools using 10 workers. Training took ~ 28 min. 

2.3.2. U-Net 
U-Net is a type of convolutional neural network (CNN) proposed in 

2015 by Ronnerberger et al. [32] for biomedical image segmentation. In 
U-Net an structure defined as encoder is used to extract image features, 
consisting of a traditional stack of convolutional and max-pooling 
layers. Besides, a decoder is used to restore extracted features to the 
original image size and to output the final segmentation result. In this 
study, data augmentation is performed during model training, which is a 
common practice to artificially increase training dataset by generating 
new data points from existing data. A series of rotations, translations, 
and flips are applied to image/mask pairs to produce different 
anatomically feasible images. Besides, voxel intensities are normalized 

Table 1 
Renal MRI sequence parameters.  

SE-EPI READOUT PARAMETERS 

TR/TE 5000/23 
Flip angle 90 
Partial Fourier 0.75 
GRAPPA 2 
FOV (mm2) 288 × 288 
Acquisition matrix 96 × 96 
Slice thickness (mm) 5 
Voxel size (mm) 3 × 3 × 5 
Number of slices 3 
Slice gap (mm) 2.5 
Phase oversampling 

(%) 
25 

Bandwidth (Hz/ 
pixel) 

1890 

Fat supression FAT SAT 
Slice orientation Coronal 
Slice scan order Anterior-Posterior 
Breathing strategy Free-breathing 
PCASL LABELING PARAMETERS 
Labeling duration (s) 1.6 
PLD (s) 1.2 
Number of images 25 label, 25 control, 1 M0  

T1-w PARAMETERS 
TIs (ms) 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 

1600, 1800, 2000 
Number of images 14 

TR: Repetition Time. TE: Echo-Time. GRAPPA: GeneRalized Autocalibrating 
Partial Parallel Acquisition. FOV: field of view. PLD: post-labeling delay. TI: 
Inversion Time. 
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between 0 and 255 to achieve higher contrasted images. Our model is 
trained on 637 volumes using the Leave-One-Out method, validated on 
113 (15% of the training dataset) and tested on 50, which correspond to 
unique patient data. Validation dataset refers to the sample of data used 
to provide an unbiased evaluation of the model fit on the training 
dataset and the tuning of the hyperparameters of the model. Besides, in 
order to handle class imbalance between the foreground (kidney) and 
the background classes, sample weights (inversely proportional to the 
frequency of respective classes, increasing the importance of less prev-
alent class that is the kidney) are introduced in the Dice loss function of 
the network (0.9 for kidney and 0.1 for background), that is minimized 
via Adam optimizer and learning rate of 10− 4, with a batch size of 16 
and 100 epochs. The training and testing of the model is implemented on 
Python 3.8 using Tensorflow as backend on GPU NVIDIA GeForce RTX 
3090. Model is trained on the labeled training set (image/mask pairs) 
using manually generated GT masks (see Fig. 1(b)) and is then tested 
using previously unseen data (testing dataset). Segmentation results are 
post-processed to keep the biggest connected component to be identified 
as the kidney. Training took ~ 80 min. 

2.3.3. Mask R-CNN approach 
Mask R-CNN [33] is a two-stage CNN oriented to object detection 

and instance segmentation. We found applications of the Mask R-CNN 
model in other fields of medical imaging different from renal, such as 
pancreas CT imaging in combination with U-Net [36] and in chest X-Ray 
imaging for Covid-19 detection [37]. The first stage of the Mask R-CNN 

model consists of the backbone and Regional Proposal Network (RPN) 
[38]. The backbone extracts multilevel image features and the RPN takes 
those features maps and outputs candidate bounding boxes, i.e. ROIs. 
Then, to unify the size of these ROIs and to get feature maps for the last 
section of the network the RoiAlign layer [33] is applied. Finally, the 
model provides a Box Head and a Mask Head. From the Box Head the 
network obtains the class and a refined bounding box of each object and 
the Mask Head generates a binary mask applying a Fully Convolutional 
Network (FCN). Mask R-CNN has a multi-stage loss function formed by a 
classification loss, bounding box loss, and mask loss. During training, 
data augmentation is used. Rotations, flips, and translation are applied 
to image/mask pairs. The model is slice-wise trained on 600 volumes, 
validated on 150 and tested on 50. As the backbone, we selected Feature 
Pyramid Networks + Resnet50 [39] and chose the pretrained parameters 
on the COCO 2016 challenge dataset [40]. The model is trained for 150 
epochs using supervised gradient descent optimizer and learning rate of 
10− 4 to minimize the loss function. In addition, the RPN needs to 
initialize the anchor scales and ratios. In our case, anchor scales and 
ratios are set to 0.5, 1, 2 and 32, 64, 128, 256, and 512, respectively. We 
used Python 3.8 and TensorFlow on GPU NVIDIA GeForce RTX 3090 for 
model training and testing. Training took ~ 120 min. 

2.3.4. Evaluation 
The performance of the approaches is evaluated using the Dice 

similarity coefficient (DSC), that measures the similarity between 
automatic and GT segmentation masks. A value of 0 indicates no overlap 

Fig. 2. Automatic cortex and medulla segmentation framework. T1-w image series and fitted T1-maps have been used as input data (I). II involves pixel-wise time 
course processing in which group-thresholds have been used for each of the classes of interest. Output Data II.a is the preliminary segmentation result and it is the 
input mask for IIb. An intermediate step is required for multiclass segmentation of the kidney within Output Data I region, based on GMM algorithm. In IIc, 
reclassification of Output Data.IIa is performed using automatically calculated T1 values interval over segmented cortex and medulla areas. If any of the segmented 
class of IIa belongs to a T1 values interval corresponding to other class, this class is reclassified. The final segmentation result is Output Data II.c. 
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whereas a value of 1 indicates perfect similarity. It is defined as DSC =

2 • ∣G ∩ S∣/(|G| + |S| ) (%), where G represents the GT mask, and S rep-
resents corresponding automatically predicted mask. Statistical analysis 
is performed using Minitab, version 19.1.0.1 and DSC values are 
compared between methods (SDM, U-Net and Mask R-CNN) using 
repeated measures ANOVA with Tukey pairwise comparison, where p <
0.05 is considered significant. 

2.4. Automatic cortex and medulla segmentation 

The segmentation of the internal renal compartments of cortex and 
medulla is useful for functional and morphological follow-up of the 
allograft. However, it is challenging due to the limited resolution of the 
study images and the inter-patient variability [41]. The main renal re-
gions are: the renal cortex, the medulla, and the renal pelvicalyceal 
system. The cortex is a connective and granular tissue due to the pres-
ence of nephrons. The glomerulus and convoluted tubules of the 
nephron are located in the cortex of the kidney, while the collecting 
ducts are located in the pyramids of the kidney's medulla. The medulla is 
the innermost region of the kidney, organized into pyramid-like struc-
tures and contains the majority of the length of nephrons, which are the 
main functional components of the kidney that take care of filtering fluid 
from blood [42]. The pelvicalyceal system is the central part of the 
kidney and connects it to the rest of the organism. It is continuous to the 
ureter and collects the urine as it is produced [42]. 

In the proposed work, we have implemented an automatic approach 
for cortical and medullary tissue differentiation, in which T1-w image 
series are used. T1-maps are calculated on a pixel-by-pixel basis for the 
kidney region (obtained from the best segmentation result from the 
automatic kidney segmentation, Output Data I in Fig. 1)(d)) by fitting 
the classic IR mapping scheme for M0 and T1-w image [28], where the 
signal value at κth scan, Sκ is modelled as. 

Sk = M0

(

1 − 2exp
− TIk/T1 ). 

where M0 is the equilibrium magnetization (Fig. 1(a)), T1 is the pixel- 
by-pixel fitted T1 value, and TIκ is the inversion recovery time at κth IR 
scan. We proposed two methods for cortical and medullary tissue dif-
ferentiation, namely, gaussian mixture model (GMM) method and T1 
temporal analysis-based method (TA), on T1-maps and T1-w image series 
(Fig. 2I), respectively. Output Data I in Fig. 1(d) serves as an input for 
pixel-wise tissue differentiation. Two custom scripts have been written 
in Matlab version R2021a and in Python version 3.8, respectively. 
Overall representation of the multiclass segmentation framework is 
shown in Fig. 2. 

2.4.1. Segmentation of renal compartments with GMM on T1 maps 
A Gaussian Mixture is a function that assumes an underlying finite 

mixture of Gaussians, each of them identified by κ ε {1, …, Κ}, being Κ 
the number of clusters of the dataset [43]. Each Gaussian density 
function is parameterized by the mean vector μ, and covariance matrix, 
Σ, and its parameters are estimated using the iterative expectation- 
maximization algorithm [44]. The GMM is a finite mixture probability 
distribution model [44]. 

In this work, GMM has been implemented to segment cortical and 
medullary tissues based on Gaussian distribution of the T1-map within 
the renal region (Fig. 2IIb). Image features (in this case, the T1 values) 
are represented as vectors in an n-dimensional space, which can be 
modelled by a mixture of Gaussian densities [44]. We initialize the al-
gorithm with Κ = 3 (background, cortex, and medulla) and previously 
segmented kidney (Output Data I in Fig. 1(d)) as a mask over T1-map. As 
a pre-processing step, histogram equalization has been used (Fig. 2II(b)) 
in order to adjust the gray intensity level of the pixels within the kidney 
region. After fitting the data, each pixel is labeled as background, cortex, 
or medulla and segmentation result Output Data II.b is generated 
(Fig. 2III). 

2.4.2. Segmentation of renal compartments based on temporal analysis of 
T1-w image series 

This segmentation approach consists of the segmentation of cortical 
and medullary tissue using a multi-stage algorithm based on: pixel-wise 
time-intensity curves from IR images (Fig. 2II(a)) and reclassification of 
pixels based on previously calculated T1 tissue value intervals (Fig. 2II 
(c)). The assignation of signal time-courses to voxels within renal mask 
has been reported to be used in [19–21] over DCE-MRI images aiming at 
renal perfusion assessment. Prior to the segmentation pipeline, the 
temporal evolution of manually annotated cortex and medulla classes is 
studied, over previously motion-corrected T1-w image series. It is 
important to emphasize that T1 longitudinal relaxation time is tissue 
specific and is reported to be higher in medullary tissue than in cortical 
tissue [45–48]. In Fig. 3 there is an example of the pixel-based time 
series analysis, in which 234 pixels belong to the cortex class and 137 to 
the medulla class. Horizontal axis represents the TIκ (κ = {1,14}) and 
vertical axis represents the T1 value of each pixel in each TIκ or image 
from the T1-w image series. Note that, generally, cortical tissue attains 
its null point before the medulla does. For the unsupervised segmenta-
tion of both tissues, previously calculated kidney region (Output Data I 
in Fig. 1(d)) has been used as reference mask in order to construct pixel- 
wise time-intensity vectors. Based on this, a two-step classification 
approach is performed. As depicted in Fig. 2IIa, in the first stage, each 
pixel in the masked image is classified as cortex if its null point is found 
at 5 ≤ κ ≤ 8 TIs and as medulla if its null point is found at 10 ≤ κ ≤ 13 
TIs. The pixels, that are not classified in any of these compartments, are 
assigned an uncertain class (Output Data II.a in Fig. 2). In a second stage, 
through the intermediate GMM step (see Section 2.4.1), patient-based T1 
mean values are automatically calculated for medulla (T1Medulla) and 
cortex (T1Cortex) tissues and a pixel-wise reclassification is performed. 

Fig. 3. An example of supervised analysis of time-intensity curve distribution 
for cortical and medullary tissues. (a) Pixel- wise time-intensity curves for 
cortex and medulla regions. Each curve corresponds to the temporal signal 
intensity (T1 value) along TIks (TI at κth IR scan). (b) Temporal distribution of 
the null points of time-intensity curves for cortical and medullary tissues. 
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We use Κ = 3 (background, cortex, and medulla). This way, pixels in the 
cortical region of Output Data II.a in Fig. 2 are reclassified as medulla if 
any of their values belong to the interval values of the medulla, defined 
within the range (mean ± SD) T1Medulla. In the same way, pixels in the 
medulla region are reclassified as cortex if they belong to the interval 
values of the cortex, defined within the range (mean ± SD) T1Cortex. For 
the case of the region classified as uncertain, pixels are reclassified as 
cortex or medulla if any of them belong to aforementioned cortex and 
medulla values. This stage is considered a refinement process. Final 
results are shown in Output Data II.c (Fig. 2III). 

2.4.3. Evaluation 
For the purpose of instance segmentation evaluation, a set of stan-

dard metrics has been used: the DSC, precision (PC), recall (RC), and F- 
measure (FM). G represents the GT mask and S represents corresponding 
automatically predicted mask. They both contain 3 classes: background, 
cortex, and medulla. Segmentation evaluation does not include the un-
certain class. Recall is the ratio between the true segmentation, S ∩ G 
and all positive elements G, defined as RC = ∣S ∩ G∣/∣G∣ (%). The pre-
cision is the ratio between the true segmentation |S ∩ G| and the auto-
matic segmentation S, defined as PC = ∣S ∩ G∣/∣S∣ (%). F-measure (FM) 
consists of the harmonic mean of precision and recall, where β is the 
scaling of these two metrics [49]. In this work, a β value of 2 was 
defined, in order to raise the importance of recall. It is calculated as 
〖FM〗 β = ((1 + β̂ 2 ) • (PC • RC) )/((β̂ 2 • PC + RC)) (%). Statistical 
analysis is performed using Minitab, version 19.1.0.1 and differences 
between segmentation methods (GMM and TA) are compared with 
paired t-test, where p < 0.05 is considered significant. 

2.5. Renal perfusion estimation 

The final objective of the proposed work is the estimation of perfu-
sion values as biomarkers of renal function. To this end, the perfusion- 
weighted image (PWI) is to be calculated by simply subtracting the 
label from the control image, where the signal intensity is proportional 
to perfusion [50]. Mean cortical signal (gray-scale intensity values) was 

measured in the cortical region of each subtracted label-control pairs, 
using the mask obtained from the cortical segmentation done in Section 
2.4. Label-control pairs are considered outliers and consequently dis-
carded if their mean cortical signal is >2 SD away from the global 
cortical mean [27]. Finally, mean PWI is calculated. RBF maps are 
computed using the single compartment model [28,27] as 

RBF

⎛

⎜
⎝

ml
min

100g

⎞

⎟
⎠ =

6000 • λ • IPW • exp
PLD/T1Blood

2 • α • T1Blood • IM0 •
(
1 − exp

− τ/T1Blood
)

where IPW is the pixel-wise signal value of the mean PWI, IM0 is the pixel- 
wise signal value of the M0 image; λ is the tissue-blood-water partition 
coefficient, assumed 0.9 ml/g; α is the labeling efficiency, set to 0.65 
considering a PCASL efficiency of 0.74 and the effect of BS pulses [51]; τ 
is the labeling duration set to 1.6 s; T1Blood is the arterial blood T1 value, 
assumed as 1.65 s, and PLD is the post-labeling delay, set to 1.2 s. 

2.5.1. Evaluation 
In order to evaluate the effect of automatic cortical and medullary 

segmentation in the estimation of renal perfusion, median and SD RBF 
values in ml/100 g/min per patient and slice are estimated using GT and 
predicted cortical and medullary segmentations. The perfusion estima-
tion discrepancy between GT labeling and automatic labeling is 
measured in terms of relative error (%), using GT and automatically 
segmented cortex and medulla masks over calculated RBF maps. 

3. Results 

The proposed model is evaluated in two steps. First, whole kidney 
segmentation results and segmentation of renal compartments is eval-
uated in terms of similarity metrics, comparing with GT masks. Second, 
the estimation of renal perfusion values is evaluated. 

Fig. 4. An example of binarized mask of probabilistic map. (a) Result of the summation of the overall result series of an individual set and slice-wise. (b) Binarized 
map obtained from (a), with a threshold value of 25 counts out of 50. 
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3.1. Segmentation of the whole kidney 

For the evaluation of whole kidney segmentation, a probabilistic 
map extracted from predicted results is generated. The map is con-
structed through the sum (Fig. 4(a)) of binary predicted result series, 

slice-wise and patient-wise. From this map, a binary mask is produced as 
a unique segmentation result applying a threshold value of 25 counts out 
of 50 (Fig. 4(b)). 

Numerical DSC results for whole kidney segmentation are shown in 
Table 2. In general, we can observe that DL based approaches tend to be 
better for whole kidney segmentation task compared to ML based image 
processing technique. Furthermore, Mask R-CNN presents a higher 
similarity score with >90% of success. Fig. 5 depicts an example of 
automated kidney segmentations for two patients, over an original 
PCASL control image. Statistical analysis showed significant differences 
on DSC means between methods (p < 0.05), with Tukey pairwise testing 
showing statistical differences between all combinations of methods 
except between DSC values of U-Net and SDM. In Fig. 6 a cumulative 

Table 2 
Segmentation results of the whole kidney.  

Model DSC (Mean ± SD) (%) 

SDM 84.40 ± 11.89 
U-Net 87.87 ± 1.30 
Mask R-CNN 93.90 ± 2.00  

Fig. 5. Examples of automated kidney segmentations over original PCASL control image for two patients. The red label represents the kidney class. (a) Original 
PCASL control image. (b) GT mask. (c) Binarized summation of SDM results. (d) Binarized summation of U-Net results. (e) Binarized summation of Mask R-CNN 
results. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Cumulative distribution function of DSC calculated on binarized probability map. The y-axis shows the probability that calculated metrics will take the values 
equal to or less than values in x-axis. In this case, the y-axis represents the number of images of the whole dataset measured in percentage and x-axis represents the 
DSC, ranging from 0 to 1. 1 indicates perfect match between the GT and predicted masks obtained through our models and 0 indicates non-similarity between the GT 
and predicted masks. 
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distribution function (CDF) of DSC values is shown. For the Mask R-CNN 
approach, the probability of DSC to be <90% is around 8%, whereas the 
probability of DSC to be <80% decreases until 1%. For the U-Net and 
SDM approaches, the probabilities of DSC values of being <90% highly 
increase up to 40% and 75%, and the probabilities of DSC values of 
being <80% decrease to 15% and 25%, respectively. 

3.2. Segmentation of cortical and medullary tissues 

Multiclass segmentation results are compared in terms of RC, PC, FM, 
and DSC with the reference GT masks (Fig. 7), comparing the segmen-
tation results obtained through GMM and TA for cortex and medulla 
tissues. Table 3 shows segmentation results for renal compartments. 
Moreover, in order to counteract the problem of class imbalance be-
tween cortex and medulla samples, the weighted evaluation metric en-
sures that RC, PC, FM, and DSC of the predictions are not inflated due to 
classes of high-frequency (cortex) that dominates over others (medulla), 
in terms of number of pixels for each class. For weighted class, achieved 
RC is 85.03 ± 8.27% and 89.66 ± 9.99%, PC is 89.79 ± 3.39% and 
91.85 ± 4.89%, FM is 85.03 ± 8.10% and 89.47 ± 10.61% and DSC is 
86.01 ± 6.75% and 89.70 ± 10.23%, for GMM and TA method, 
respectively. In Fig. 8, there is an example of multiclass segmentation for 
two patients over 14th T1-w image. Regarding the segmentation of 
cortical tissue, our sample data supports the notion that the averaged 
paired difference between GMM and TA methods does not equal zero (p 
< 0.05). Specifically, the TA score mean is greater than the GMM score 
mean (p < 0.05), for all the implemented similarity metrics. In the case 
of medullary tissue segmentation, the mean score of GMM and TA seg-
mentation methods did statistically differ (p < 0.05) and TA showed 

greater mean score (p < 0.05) compared to the mean score of the GMM 
segmentation method. For both GMM and TA methods, the segmenta-
tion results of the cortex present higher averaged similarity scores 
(above 80%) with lower standard deviation values compared to those 
corresponding to the medulla tissue (above 75%). For tissue-weighted 
results, high segmentation metrics above 80% have been achieved in 
both GMM and TA approaches. The implementation of GMM explained 
in Section 2.4.1 also serves as a T1 value calculation method over 
detected cortical and medullary regions, with no statistical difference (p 
> 0.05) with respect to T1 (mean ± SD) values calculated through GT 
annotations in T1-map. T1 mean ± SD values of 1304 ± 72 ms and 1572 
± 62 ms are obtained from automatically segmented cortex and medulla 
masks, respectively. 

With the objective of temporal analysis-based segmentation valida-
tion, pixel-wise temporal evolution analysis has been performed on 
phantom images. Validation of segmentation framework has been done 
on T2 contrast spheres values at 3.0 T measured at 20 ◦C performed at 
NIST. An image series consisting of 14 TIs have been used as input data 
for the validation algorithm. The acquisition matrix of images was 96 ×
102. From T2 contrast spheres values at 3.0 T, T2–3 and T2–5 values have 
been selected; corresponding to 1901.28 ms and 1197.57 ms, respec-
tively. We considered those values the closest to the real T1 values of 
medulla and cortex, respectively. Ahead of image processing, phantom 
images have been masked within a manually selected region encom-
passing T2–3 and T2–5 spheres and surrounding areas. Temporal pixel- 
wise vectors have been classified as cortex if its null point is found at 
5 ≤ κ ≤ 8 TIs and as medulla if its null point is found at 9 ≤ κ ≤ 12 TIs. 
The segmentation results showed that the proposed temporal 
information-based method obtains DSC above 95% with respect to the 
ground truth masks. 

3.3. Estimation of renal perfusion 

For the evaluation of calculated RBF maps (see Eq. (2)), cortical and 
medullary perfusion values have been computed using GT and predicted 
multi-class masks. Should be pointed that outlying points on median 
cortical and medullary perfusion values were discarded. Fig. 9 contains 
scatter plots that show the relationship between perfusion values ob-
tained through segmented masks from GMM (Fig. 9a) and TA (Fig. 9b) 
methods, and GT perfusion values. All the pairwise comparisons show a 
positive association, because as the GT perfusion value increases, so does 
the predicted result and linear relationship, as the GT perfusion variable 
increases by approximately the same rate as the predicted variables 
change by one unit. For perfusion values obtained from masks from 
GMM and TA methods, in the case of cortical median and SD values, a 
strong positive linear relationship between them is shown with a cor-
relation coefficient (r) above 96% and 65%, respectively. For medullary 
median values, lower r is observed and SD values achieved values above 
76%. In addition, a similar median RBF is found for predictions (GMM 
and TA) and GT with cortical perfusion values of 154 ± 90 ml/min/100 
g, 153 ± 87 ml/min/100 g, and 162 ± 70 ml/min/100 g, respectively; 
and medullary perfusion values of 100 ± 84 ml/min/100 g, 69 ± 74 ml/ 
min/100 g, and 67 ± 62 ml/min/100 g, respectively. Moreover, the 
cortical perfusion value discrepancy is 4.90% and 6.78%, for GMM and 
TA methods and the medullary discrepancy is 45.54% and 18.31%, for 
GMM and TA methods, respectively. 

4. Applicability of proposed method for different datasets 

Mask R-CNN segmentation of whole kidneys was tested on two 
distinct datasets: renal PCASL studies on healthy subjects and synthetic 
renal PCASL of XCAT phantom. As the proposed model was initially 
trained with transplant patients (one kidney per image and different 
acquisition plane), both new renal datasets were pre-processed in order 
to fit into the characteristics of previously designed model. A gaussian 
filter was used to smooth the half of the image, in order to segment one 

Fig. 7. Comparison between GMM and TA segmentation methods. The box-
plots illustrate comparative (a) recall, (b) precision, (c) F-measure and (d) DSC. 
For each segmentation method evaluation metrics of cortex (in red), medulla 
(in green) and weighted (in magenta) class are calculated. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Table 3 
Segmentation results of renal compartments.  

Model Tissue Recall Precision F-measure DSC 

GMM Cortex 83.19 ±
9.74 

96.32 ±
3.93 

85.29 ±
8.34 

88.86 ±
6.02 

Medulla 91.99 ±
8.40 

67.74 ±
17.83 

84.10 ±
11.06 

76.31 ±
140.8 

Weighted 85.03 ±
8.27 

89.79 ±
3.39 

85.03 ±
8.10 

86.01 ±
6.75 

TA Cortex 91.37 ±
13.51 

94.51 ±
4.95 

91.56 ±
12.32 

92.07 ±
10.32 

Medulla 85.82 ±
11.53 

82.35 ±
17.55 

83.85 ±
10.73 

82.41 ±
12.50 

Weighted 89.66 ±
9.99 

91.85 ±
4.89 

89.47 ±
10.61 

89.70 ±
10.23  
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Fig. 8. Examples of automated cortex and medulla segmentations for two patients. The red and green labels correspond to cortex and medulla classes, respectively 
and the lighted blue label in (c) and (d) represents the uncertain class. (a) Original T1-w image. (b) GT mask for cortex and medulla classes. (c) Output results 
obtained from GMM method (Output Data II.b in Fig. 1). (d) Output results obtained from TA method (Output Data II.c in Fig. 1). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 9. Scatter plot of pairwise comparison between GT and proposed methods. Each dot on the scatterplot represents a slice of one individual from the data set (3 
slices each). (a) Pairwise comparison between renal perfusion GT and obtained GMM values. (b) Pairwise comparison between renal perfusion GT and obtained 
TA values. 
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kidney each time the image is tested. Finally, binary result masks were 
gathered in order to compare full renal coverage. The assessment of 
segmentation performance on test images was visually done, based on a 
3-level quantization of the coverage of the binary mask within the renal 
region. Total coverage indicates that the kidney is well delimited within 
renal region, Incomplete coverage indicates that the kidney has not been 
well delimited (over segmented or under-segmented) and No detection 
indicates that the kidney is not detected at all by the model.  

• Healthy renal PCASL studies. Data acquisition of renal PCASL study 
on healthy subjects was performed on the 3D Skyra and 18-channel 
body-array coil, using the same readout as in the transplanted renal 
PCASL dataset (see Section 2.1). The study was approved by the 
Ethics Research Comittee at the University of Navarra and written 
consent was obtained from all the subjects. 14 healthy patients 
covering the age range from 22 to 32 participated in the study. One 
study per patient was used in this experiment. In total, 808 renal 
images were tested (1616 kidneys). GT masks were not provided.  

• Synthetic renal PCASL using body models from the XCAT phantom 
[52]. Data acquisition simulating in vivo acquisitions were generated 
using body models from the XCAT phantom, that provides anatom-
ical structures by five models (77, 80, 92, 93 and 108). Perfusion was 
added using the general kinetic model and literature values for tissue 
properties were applied (relative proton density ρ, T1, T2 values at 3 
T) [53]. In this work, 5 PCASL datasets with healthy perfusion where 
used for testing purposes, and consisted of a M0 and 25 control and 
labels pairs and one slice. In total, 255 renal images were used (510 
kidneys). Should be noted that GT masks were not be provided due to 
license restrictions, but we would like to thank Brumer, I. from 
University of Heidelberg for providing DSC metrics obtained by the 
comparison of original GT masks and our segmentation results. 

Examples of automated renal segmentations on native and synthetic 
ASL data are shown in Fig. 10. Segmentation results on both datasets are 
shown in Table 4. Even if, in overall, high renal coverage is achieved, 
difficulties on left kidney differentiation are found in both datasets. This 
is due to the low differentiation between renal and spleen tissue, that 
causes the binary mask to extend all over the area of kidney and spleen. 
Should be noted that in case the operator aims at precise renal analysis, 
some post-processing needs to be done. More than the 60% of the total 
number of kidneys are well delimited within renal area and in <10% of 
the cases no kidney is detected. The remaining percentage corresponds 
to incomplete renal detection, under- or over-segmented. In the case of 
synthetic data, 87% of the incomplete result masks correspond to the 
over-segmentation of the left kidney and just the 13% is due to the slight 
under- or over-segmentation of the right renal area. In the case of syn-
thetic dataset, just the 2% of the total number of kidneys is not detected 
at all. Results on native ASL data showed that the 81% of the incomplete 
result masks correspond to the over-segmentation of the left kidney and 
just the 19% is due to the incompleteness of the right kidney. In the case 
of synthetic PCASL data, median DSC values of 0.70 ± 0.16 for the left 
kidney, and 0.89 ± 0.02 for the right kidney were calculated. 

5. Discussion 

In this work, a fully automatic method for perfusion estimation in 
renal MRI data is proposed. The segmentation of tissues consisted of a 
two-step pipeline, where, first, the segmentation of the whole kidney is 
done on a PCASL MRI dataset and then, cortical and medullary classi-
fication is performed using the temporal information of T1-w IR images. 
The proposed approach leads to a renal perfusion estimation. Regarding 
the automatic whole kidney segmentation, proposed method imple-
ments both, machine (SDM) and deep (U-Net and Mask R-CNN) learning 

Fig. 10. Examples of automated renal segmentations on native and synthetic ASL. (a) Example of complete segmentation of both kidneys. (b) Example of incomplete 
segmentation, only the right kidney of the patient is segmented. (c) Example of over-segmentation of right kidney of the patient. 

Table 4 
Visual assessment of segmentation results on native and synthetic PCASL.   

Total coverage (%) Incomplete coverage (%) No detection (%) 

Total Right Left Total Right Left Total Right Left 

Native 65 64 36 27 19 81 8 37 63 
Synthetic 61 73 27 37 13 87 2 36 64  
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based algorithms using the PCASL-MRI dataset. In particular, the model 
based on Mask R-CNN network presents outstanding results, obtaining 
averaged DSC values above 93%, outperforming the current state-of-the- 
art. The segmentation performance highly depends on the intensity 
range of the images. Our method uses M0, control and label images 
together as the training dataset, considering that their gray-scale in-
tensity ranges are located in different values. Even if intensity rescale is 
applied, the heterogeneity of image intensity should be considered when 
testing with new data. Nevertheless, we have demonstrated that whole 
kidney segmentation network also works with healthy synthetic PCASL 
renal data, with acceptable segmentation accuracy, denoting that the 
model is not limited to a unique dataset. Unlike transplanted kidney 
data, both healthy and synthetic renal PCASL data contained two kid-
neys (left and right) and that supposed some post-processing steps. The 
segmentation performance of the model could be increased by adding 
the native and synthetic kidney data to the training set. Concerning the 
automatic segmentation of cortex and medulla using the data in the T1-w 
image series, two different methods with varying complexity are eval-
uated. Although GMM method obtains an acceptable classification 
performance, the combination of GMM provided intervals with the 
temporal information derived from the T1-w image series presents the 
best results. As expected, the results obtained for the cortex are better 
than the ones extracted for the medulla compartment. The segmentation 
performance of medullary tissue shows higher dissimilarities between 
manually drawn labels and automatically achieved ones. This discrep-
ancy is mainly caused by the mislabelling (under-segmentation) of the 
medulla region, which tends to be less precise than the segmentation of 
the cortex due to the low-contrasted interface between the tissues and 
the partial volume effects in MRI images. Proposed method also gener-
ates an uncertain class mask in areas where the differentiation between 
cortex and medulla pixels is not clear, that could be processed in further 
steps to complete cortical and medullary masks, and indeed, the esti-
mation of perfusion values. Regarding the estimation of renal perfusion, 
our work demonstrates that multiclass segmentations do have an effect 
on cortical and medullary RBF estimation. The medullary discrepancy is 
considerably higher in the case of the GMM, due to low-contrasted 
interface and partial volume effects on the T1 maps, compared to the 
T1-w image series temporal evolution, that shows higher contrast be-
tween tissues and enables temporal differentiation. Regardless, the 
perfusion values obtained for cortex and medulla compartments are 
considered to be within the acceptable ranges according to the literature 
[22,24,26,27]. It should be pointed out that there were limitations to the 
proposed renal perfusion estimation method evaluation. The real value 
of renal blood flow was unknown, as we had no other measurement 

technique with which to compare the estimation results. In the future, 
the accuracy and reliability of this tool should be validated, which will 
require the estimation of perfusion GT values using other techniques, 
such as renal scintigraphy [54] or contrast enhanced first pass perfusion 
MRI [55]. 

Finally, we have indirectly compared the segmentation results of our 
approach with five state-of-the-art methods for kidney segmentation in 
non-contrasted MRI data (see Table. 5) in terms of DSC. Compared to the 
approach presented in [24], the cortical DSC achieved by our method is 
~18% higher. In addition, this approach exclusively focuses on cortical 
perfusion values and does not segment the medullary tissue, therefore 
we cannot compare our medullary segmentation results with those ob-
tained in [24]. In [22], Hammon et al. implemented a semiautomatic 
approach for whole kidney, cortex and medulla segmentation and pos-
terior renal perfusion evaluation. Besides the fact that it is not an 
automatic method, the segmentation results presented are not in terms 
of DSC and it is not an automatic approach. In [26], as in our work, a 
Mask R-CNN network is implemented for cortical and medullary tissue 
segmentation for renal blood flow estimation. In this case, visual eval-
uation of results is performed and none DSC are given. Furthermore, 
renal volumetric analysis is aimed at [23] using T1- and T2-w images that 
provides higher tissue differentiation compared to our study images. In 
comparison, slightly better DSC is achieved by our method for whole 
kidney segmentation and ~10% higher cortical and medullary DSCs. 
Finally, Daniel et al. [25] achieved a slightly lower DSC for whole kidney 
segmentation using T2-w images for volumetric analysis purposes. 

6. Conclusions 

The fully automatic framework described in this work represents a 
significant advance for the state-of-the-art that will allow researchers 
and specialists to reduce the effort required to manually segment the 
kidney and its compartments and, therefore, automate the process of 
kidney perfusion estimation. The segmentation software is publicly 
accessible. 
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Table 5 
Summary of ML and DL approaches for kidney segmentation and final volumetric and perfusion quantification on non-contrast-enhanced MRI. The work in [24] is the 
only one with which we can make a fair comparison since it uses the same type of images as in our study.  

Literature 
reference 

Aim Methods MRI 
modality 

Dataset 
(subjects) 

Kidney 
condition 

Tissue Results (% DSC, when 
provided) 

[24] RBF quantification Automatic (cascaded U-Nets) ASL-MRI 10 (train) 
4 (validation) 

Healthy Cortex 78.00 ± 4.00 
75.00 ± 3.00 

[22] RBF quantification Semiautomatic (intelligent scissors 
and k-means) 

ASL-MRI 14 Healthy Whole 
Cortex 
Medulla 

Not provided 

[26] RBF oxygenation and 
quantification 

Automatic (Mask R-CNN) ASL-MRI Up to 1000 
images 

Not defined Whole 
Cortex 
Medulla 

Visually assessed 

[23] TKV measurement Automatic (thresholding and shape 
detection) 

T1-w MRI 
T2-w MRI 

12 Healthy Whole 
Cortex 
Medulla 
Pelvis 

93.64 ± 1.31 
80.82 ± 3.22 
72.59 ± 4.30 
71.87 ± 6.91 

[25] TKV measurement Automatic (U-Net) T1-w MRI 30 Healthy and 
CKD  

93.00 ± 1.00 

Proposed RBF quantification Automatic (ML/DL approaches and 
temporal analysis) 

ASL-MRI 16 TK Whole 
co 

93.90 ± 2.00 
92.42 ± 10.29 
82.83 ± 12.52 

RBF: renal blood flow. TKV: total kidney volume. DSC: Dice similarity coefficient. TK: transplanted kidney. 
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