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Abstract

Hydro power is a renewable resource that can satisfy an important percentage of the global energy 

demand. This project is about the design and calculation of the parts of a small hydroelectric plant 

through which the water flows.

Small hydro plants are not usually built, as this idea seem to be not economically feasible. This 

makes that there is a hole in the development of hydro plants that can be studied. The percentage of 

energy demand covered by hydro plants would be significantly increased if it was researched. 

The report starts with the search of a suitable place for the installation of the hydroelectric plant.  

Due to the characteristics of the location, the gross head and the flow rate, the appropriate turbine 

was  chosen.  Between  the  three  more  important  kinds  of  turbines,  the  best  option  was  Kaplan 

turbine. The design of the parts is focused in the mechanical study of these elements of the turbine. 

The  calculations  to  do  the  study were  made  following  the  fundamental  principles  of  physics, 

specially hydraulics and mechanics. The parts involved in this project are the weir, that has to be 

modified from its original shape, the channel section, the scroll casing, the guide vanes or Fink 

distributor, the impeller, the blades and the draft tube. The next step done is the resistive calculation 

of some elements of the turbine, as it is an important part in the design of these elements. The sizes 

of them depends on how much stress they can stand. The project finishes with the design of these 

parts using a software (pro-engineer and pro-mechanica)that shows us that the sizes of the elements 

are correct. 
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1-INTRODUCTION

Aim, description and significance of the project: 

The design of a new hydraulic turbine is searched to satisfy a flow rate and a small waterfall. The 

turbine is made to work in a small amount of power, so the important thing is that the turbine has a 

good adaptation to the hydraulic condition. As this is a small power production project, the most 

interesting thing is designing a compact turbine to avoid civil costs. Another important thing is 

taking care of the facilitates of maintenance of the installation. It is also important the fact that flora 

and fauna must be conserved, and the water quality as well.  

The main goal is the realization of the design of the main turbine and every component of the power 

station, like the dam, scroll casing, the water intake gates and the blades. The different parts of the 

power station depend on the height of the waterfall  and the flow rate of the river in the place 

chosen.  Another  aim  that  will  not  be  clearly  mentioned  in  the  report  but  can  be  understood 

throughout the reading of the report, is showing the importance of these kind of power stations. This 

project will demonstrate the possibility to design hydro turbines easily, just with some calculations. 

The town chosen to build the power station has at least another 5 weirs with similar characteristics 

as the one studied here. This means that the energy provided by 6 turbines like the one designed in 

the project can satisfy an important part of the energy demand of the town, what makes the project 

profitable in the long term. 

The project is based on the theoretical performance of the model to adapt it to the real conditions of 

all parts involved. Once known the hydrodynamic scheme of the machine, the calculations of the 

element from the mechanical point of view must be done, to know the strength of the machine. 

Throughout these developments, every element calculation with direct influence in the operation of 

the turbine calculations will be provided. This project will not correspond to the calculation of the 

electrical components.

The  realization  of  this  report  is  motivated  by  the  personal  interest  of  the  project  author  in 

turbomachinery, renewable energy and nature in general. Another important reason to do this is the 

possibility to design and study every aspect that involves small hydroelectric plants. The fact that 

small hydro plants aren't very common and that they can be developed is another reason to do this 
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kind of project.

2-AIMS OF THE PROJECT

The purpose of this  project  is  the design of  some of  the most  important  parts  involved in  the 

performance of an hydroelectric power plant. To do this, an adaptation of the design of the turbine 

and all its parts for the generation of electricity will be done. This adaptation will depend on the 

conditions of the river chosen, which are the quantity of water in the river and the head gross. 

Another important aim of this project is designing a turbine that provides energy to a reasonable 

number of people. This project will not involve the economical or feasible part of the installation. 

However, this project will increases importance and interest with the growth of number of houses 

that the plant can provide energy. 

Due to the length and difficulty of the project, the turbine will not be enormous. Other of the aims is 

making the author of this project, use, learn and review modules passed throughout his degrees. 

This will not be possible to do if the turbine is so big that just a small part of the machine can be 

designed and studied. 

These things will make that the design will be focused on reduced power output, but big enough to 

satisfy the energy demand of more than 150 houses. The construction on hydraulic turbines, has 

long focused on the exploitation of high jumps of water,  what means that  a lot  of energy was 

produced. The turbine must suit small rate flows and it is characterized by greater variability in 

hydraulic parameters. This can also be used in other rivers with similar conditions. 

Apart  from  designing  the  turbine  using  the  theoretical  fundamentals  of  physics,  another 

phenomenons will be studied. For example, cavitation is an important phenomenon that can not be 

forgotten in the design of any hydraulic machine. 

The last and one of the most important aims of this project is the test of the parts designed using a  

computer software. Computer aided tests are done nowadays to check if the design of the parts of 

the turbine are correct or not, without the necessity to spend money building models. This is why 

pro-engineer will be used to do stress and displacements analysis. 
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3-REVIEW OF LITERATURE

In this part, the research into the subject is done. The theoretical background, like the technical, 

legal and economic viability and hydropower technology is studied here.

 

3.1 Project Requirements

Technical Viability:

Building a Hydraulic machine as this one, is completely possible nowadays. Technique is developed 

enough to allow the manufacture of the machine and install it in every possible situation in which 

the turbine can operate. The lifetime of this turbines is high, due to the continuous development of 

knowledge and control fluids. The adaptations and new developments that the turbine can suffer 

during its life, allows it to have increases in demand. Examples of this are the replacement of blades 

or suction pipes. 

 Economic Viability:

The use of this hydraulic turbine involves the construction of a civil work. The utilization of this 

machines is decreasing nowadays also. However, its use is still realizable. The manufacture of the 

turbines is tending to build smaller units and more compact ones. This means that the specialization 

in low power is increasing, so costs are more reduced, although the return period of benefits tends 

to be higher. 

Legal Viability:

The design  of  this  project  must  satisfy the  regulation  of  hydraulic  turbines,  and the  minimum 

required of qualities of cavitation. The regulation of hydraulic turbines in UK must be followed 

carefully in order to design everything with every legal requirement. Regarding to safety issues of 

the machine, has been taken actions that involves the situation of the machine, and can only be 

changed by qualified technicians. 
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As conclusion, it must be done that his project will be made joining the theoretical knowledge of 

machine designing, and the support of software focused on computer design. Nowadays, methods 

based in theoretical knowledge are only used to make the pre-dimensioning of this kind of machine. 

On the other hand, methods based on computers are the most important part of turbines today. For 

example,  the most important developments in turbomachinery,  like the study of the blades in 3 

dimensions, has been done thanks to this technology.

3.2 Hydropower Technology

The design and construction of hydraulic machines designed to produce energy, would not exist 

without the development of hydropower. This energy is based on the utilization of potential and 

kinetic energy of the stream of water, waterfalls or tides. The environmental impact of this type of 

energy is  very small.  This  is  a  kind  of  renewable  energy becouse this  energy comes from the 

hydrological cycle. The geography makes the task of managing these waters through rivers back to 

the oceans. So that is why we can take advantage of this potential difference, and of the continuous 

circulation of water through hydroelectric plants. 

Hydroelectric plants

Hydro plants are designed to generate electricity. They are the current result of the evolution of the 

old mills that used the flow rate of the rivers to move a wheel. The water pass through a hydraulic  

turbine which transmits power to a generator where it is converted into electrical energy. However, 

Hydro plants are strongly influenced by topography, as the conditions of the river result in different 

constructive  solutions.  This  is  why there  are  a  lot  of  types  of  conventional  hydro  plants.  The 

characteristics of the site condition the design of the turbine.  

Different kinds of hydroelectric plants:

The firs type according to Figure 1, called run of the river plants, consists basically in deriving 

water from a river by a small weir and lead it through a channel to retain its potential energy. The 

water is directed into a pressure chamber, and from here the water is conducted into a power house.  

After moving the turbine, water is returned to the river downstream using a discharge channel. This 

kind of plant is called flowing because it does not store energy. 
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Figure 1, run of the river plant (Energysavers, 2012)

The second type of hydroelectric plant, as it is seen in figure 2, is a kind of plant with a dam and a 

reservoir of water. The water level reached is near the top of the dam. Halfway up it, to exploit the  

reservoir volume, is a water intake, and in the bottom downstream of the dam, the power house. The 

energy released by water falling through a penstock inside the dam is transformed by the generator. 

Finally the water is directed back into the river through an output channel. 

 

 Figure 2, plant with a dam (Hk-phy,2012)
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The third kind of hydroelectric plant (figure 3) is The pumped-storage. It consists in producing 

electricity in peak demands of energy by moving  water through two reservoirs that are at different 

elevations. The excess of energy generated is used to pump water from the lowest reservoir to the 

upper one. When energy is required, water is released back into the lower reservoir passing through 

a turbine. 

Figure 3, pumped storage plant (pumped-storage,2012)

Characteristics of small hydro power plants

This type of plant uses basically the same technical solutions than conventional solutions. However, 

it is intended that the initial cost of construction and maintenance is as small as possible. Every 

consideration specific to the installation must be manifest in the design, with its own hydro graphic 

characteristics of rivers where hydroelectric development is done. When a small plant is built, the 

dimensions of this plant are very different to the great rivers that supply conventional power plants. 

These  characteristics  influence the variability of  the  basin,  so the  water  jumps  are  affected by 

changes in gross height and flow. For this reason the design of hydraulic turbines for this field 

should display features that allow them to operate with these variations, avoiding the presence of 

harmful  effects  such  as  cavitation,  and keeping  the  yield  curve  to  changes  in  height.  Another 

important factor for reducing costs is the main and auxiliary systems of the plant. These must be 

simple so the technical expertise is the easiest.  

The use and application of mini hydroelectric plants, unlike conventional power plants, allows the 

use specified for certain generation activities. Small plants can satisfy the energy needs that exist in 
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the area where it is installed, although the main use of electricity generated is selling it to the grid.  

There are other possibilities. This is the case of rehabilitation of older inactive central old mills, 

expansion of existing plants (stopped or in use), in which the concessions are made for a period of 

years and can pick a site where you update the turbine-generator groups. You can also undertake the 

construction  of  new mini  plants  on  water  pipes  or  sewage facilities.  When it  comes  to  works 

installed in pipes or conduits for supplying potable water to populations require less civil works and 

have lower administrative problems. 

As it can be seen, small hydro power plants can be adapted to different situations of use, this means  

that there must be several formulas for the adjustment of hydraulic turbines. This manufacturing 

system is to have a standard set of models, which are assembled when there is an order, this reduces  

assembly time as the design is realized with rapid acquisition materials and technology needed for 

assembly are also intended to be reduced. Getting that few items that need a particular production,  

such as the blades and the hub of the impeller. Time needed to do a complete assembly of a tubine 

can change between some months.

3.3 Basic security 

This establishes health and safety during the construction of the work, the estimations regarding risk 

and prevention of occupational accidents, as well as the health and welfare facilities for workers. It 

will serve to give basic guidance to the contractor to carry out their duties in the field of prevention 

of occupational hazards.

Duties, obligations and commitments of the employer and emploee

Workers have the right to effective protection of safety and health at work. Regarding to the duty of 

protection, the employer must ensure the safety and health of workers at your service in all aspects 

of work. The employer must comply with the obligations under the regulations on the prevention of 

occupational hazards. The Basic principles of preventive action requires employers to implement 

the measures that integrate the general duty of prevention provided above. 

1- Avoid the risks

2- Evaluate the risks that can not be avoided

3- Fighting to the source of the risks
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4- Adapting the work and the person depending on their job

5- Replacing the dangerous works.

6- Prevention, planning, organizing and working conditions.

7- Adopt measures that put collective protection over individual.

Risks 

1- Landslides

2- Imprisonments of machines and vehicles

3- Running over

4- Crashes and rollovers

5- Staff fals from heights

6- Projections of particles in the eyes

7- Trapping by sliding and falling

8- Dust

9- Noise

10-Broken water pipes, gas or electricity

11- Run over 

Protection

Lot of things will be marked correctly using traffic signs, road safety, sound and light machinery, in 

and out of vehicles, the place where it is the kit and fire extinguisher and the fences of limitation 

and protection. People shall take appropriate work clothes, helmet, boots, gloves, safety glasses and 

reflective clothing. All staff should receive on joining the work of teaching methods and the risks 

that may be involved, with their security measures.
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4-DESIGN PROCESS 

4.1 Design and Fluid Mechanics 

Due to the importance of these fundamentals in the design of the machine,  the knowledge that 

underpin the calculation of this type of hydraulic turbomachines should be known. First the concept 

of fluid mechanics should be set  as part of physics and in particular the continuum mechanics, 

which includes knowledge of the movement of fluids, both gases and liquids, and the dynamics of 

these.  The  interactions  between  the  fluid  and  the  medium must  be  studied  .  The  fundamental 

assumption of fluid mechanics is based on the continuum hypothesis.

This hypothesis considers that the fluid is continue throughout the space that contains, ignoring both 

molecular  structure  and  discontinuities  associated  with  this.  Thanks  to  this  hypothesis  fluid 

properties such as density, temperature,  can be considered as continuous functions.

4.2 Fundamental design theories

This group of theories are used in this document for the design of the machine. Starting with flow 

regimes that will be discussed in several sections due to its presence in different ways. Also the 

description of the fluid and its kinematics because is one of the main characteristics of the design. 

Fluid dynamics study gives us enough about the loads in which the machine is exposed to the 

subsequent sizing of the resistance elements.

4.3 Basics of Turbomachinery

Fluid  machines  are  those  machines  in  wich  the  fluid,  or  provides  the  energy absorbed by the 

machine,  or the receiver is the fluid.  Because of the fundamental exchange of fluid power and 

mechanical  energy,  technology has  taken  innumerable  forms  for  these  machines.  The  study of 

turbomachinery  has  progressed  considerably  in  recent  decades,  becoming  a  field  of  large 

multidisciplinary technological innovations due to the growing interest in the investigation of the 

flow within the different teams.
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Definition of Turbomachine

Turbomachines are equipment designed to achieve energy exchange between a fluid flowing inside 

a continuous and an axis of rotation of one or more crowns or fixed blades moving through the 

change in momentum. The names given to fixed and mobile crowns are,  respectively,  impeller,  

impeller or propeller, according to machine type and shell,  as appropriate. They differ from the 

positive  displacement  machines  that  there  is  continuity  between  the  fluid  entering  and  energy 

exchange. In the case of positive displacement machines energy change is discrete in cycles.

Types of Turbomachines Today

The use of these machines today is focused on Three basic types,  Pelton turbines,  Francis and 

Kaplan, and a more limited Turgo turbines, Fixed pitch and crosflow.

Figure 4, Types of turbine runners (csanyigroup, 2011)

Of the three basic types the one that is more known is the Francis turbine, because the variety of 

jumps in which it can operate is very big, with reduction in installed cost per kW generated by the 

improvements introduced in this turbine-driven diffusion own this technological development. The 

Francis  turbine is  formed by a drum-shaped rotor  where the blades  are  distributed in numbers 

ranging around 10 to 40 blades.

Another widespread type of turbine is the Pelton turbine. The turbomachine is focused on big jumps 

with very small flows, the peak known in these turbines are located at 2000 m net height. One of the 

great  advantages  of  these  turbomachines  is  its  low  cost  per  kW  installed,  as  well  as  low 
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maintenance and ease of it. It is based on a wheel of buckets in which one or more jets impinge 

tangentially, turn the impeller is at atmospheric pressure so that the entire energy is kinetic (Turbine 

action). The hydraulic design of this type of turbine is easy, but the fatigue which is subjected to the 

shaft as well as the spoons is complex to study. It should be noted that the type Turgo is a variation 

of the Pelton turbine, which uses half the impeller jet bucket and axial bearing - tangential.

Kaplan turbine is the one chosen in this project, so it will be explained more deeply later. The rotor 

of  this  machine  is  designed  as  a  propeller,  in  which  the  blades  can  be  oriented  searching  in 

combination with the dealer to obtain a yield curve virtually flat at different flow rates. There are 

also turbines with the blades fixed. In this case this is a propeller turbine. Although they are similar 

to Kaplan turbines are designed to operate with constant flow and jump. The cost per kW installed 

is high because of the regulatory system and the large size of these turbomachines. These turbines 

operate at high flow rates and low head gross.

4.4 Information of the location of the hydro plant

At first, due to the proximity to the place where the project author lives, the river chosen to design a 

hydraulic Plant was the River Dee. After checking in a study that no real chance to build turbines 

that provide high energy level in this river, we proceeded to the change of river. 

River Dee

Figure 5, Mapping hydropower opportunities for Denbighshire (Denbighshire Hydro Energy  

Potential Assessment,2011)
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As it can be seen in the study of the web page, there is no good opportunity to build a hydro plant in 

river Dee near Wrexham. There are some opportunities near the place the river borns, but just for 

small plants, as we can see in some examples of the study. These plants would provide powers 

between 3 and 50 kw, which is too small for this project. Another option was searched, and inspired 

by heron mill turbine, in river Bela, a similar river was found, and a good place to install a turbine.  

It was Burrs weir, near Bury, river Irwell.

River Irwell

River  Irwell  flows  through  Rawtenstall,  Ramsbottom  and  Bury  before  joining  the  Mersey  in 

Manchester. It is one of the rivers that drove the Industrial Revolution and, though getting better, the 

water quality leaves a lot to be desired. Discharge level in Adelphi weir, in Manchester, is about 

17.72 m3/s. The discharge choosen to design the turbine and every component is 15  m3/s, as Bury is 

nearer to the place the river is born. This discharge is quite high to build a turbine there. The only 

thing needed to do it is a jump of water. This jumps of water are provided by the weirs that are in  

that river. One of the most important one is Burrs Weir. This weir is about 18 feet (5m) high. It was 

made to supply water to Manchester, because of an old mill and because to build a channel. The 

objective is to modify this weir to build a power house there and take advantage of the big head 

gross of this place. We can see the big head gross and the flow rate in this pictures. 
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Figure 6, Burrs weir photo (panoramio, 2012)

The kind of turbine chosen for this project depends on the discharge of the river in that point and 

the head gross of the weir. A hydropower turbine chart must be used for this:
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Figure 7, Turbine application Chart (jcmiras, 2012)

As we can see in  this  chart,  the only possibility whit  this  data  is  using a  kaplan turbine.  The 

characteristics of Burrs Weir is that it has a Head gross of 5m, and the flow rate in that point is more 

or less 15 m3/s. 

4.5 Study case: Kaplan Turbine 

The importance of this turbine is its ability to operate small head gross and high flow rate and 

regulatory  capacity  in  terms  of  maximum  performance.  The  trend  to  build  faster  turbines 

(depending on specific parameter) for speeds above 450 ns means the use of the Kaplan turbines 

The Kaplan turbine is a turbomachine usually irreversible.

4.5.1 Characteristics of kaplan turbine

Some  characteristics  of  Kaplan  turbines  are  the  small  number  of  blades  which  improves  the 

circulation of water in the presence of large flows. The mass flow through the turbine produces 
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great tensions in the base of the blades so these must be designed with high strength so its mass is  

also high, and this motivate in part that the number of blades is normally between 3 and 8. This 

turbine is the larger than Francis or Pelton turbines per kW installed. The blades on these turbines 

are quite high, and its length from the centre of rotation tends to be smaller the higher the specific 

number of revolutions are. This makes the inclination of the blades at the start and half of them is 

practically parallel to the axis of rotation. The impeller hub support in addition to handle the blades,  

also handles the regulatory mechanism of the blades so it has a large diameter ratio. This element is 

a truncated sphere with caps, and exceptionally may be cylindrical.

Inside the cube is the mechanism of regulation of mobile blades of the impeller.  Each blade is 

extended by a shaft, which penetrates into the bucket, perpendicular to the axis of rotation of the 

impeller.  Each blade shaft  pivots on two bearings, including a lever drag on  L which is  what 

regulates  the  orientation  of  the  blade,  which  in  turn  is  secured  to  the  axle  of  the  wheel.  The 

composition of the Kaplan water turbine depends on its own support structure.

 

4.5.2 Procedures to design a kaplan turbine

Once known the parameters of the head gross, the turbine operates in a way, or some variation. To 

achieve a defined layout of the Kaplan turbine, the expected theorical power must be determined, as 

well as the specific number of revolutions per minute to do the design of the machine. After this 

procedure, there are a lot of ways to calculate it. 

For the  design of the strength of every element, there is a multitude of possibilities to do these  

estimations, however it will always be present techniques that improve the safety and suitability of 

the machine with the most demanding circumstances. Taking an overview of the turbomachine, 

energy balance must be done to determine the efficiency of the turbine. 

4.5.3 Hydrodynamic calculation of the kaplan turbine 

Once known the general characteristics of hydraulic machines, and particularly the Kaplan turbines, 

the hydraulic dimensioning of every element of the turbine can be made. The first thing that must be 

calculated is the power of the turbine, and then the design the impeller, distribution elements, and 

elements of fluid intake and output can be done.
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4.6 Hydraulic Calculations 

4.6.1 Calculation of channel sections

It must be an assumption done. It is that the water enters the inlet of the channel at a speed of 

1.5m/s. The section required in the input channel is: 

S=Q/V=15/1.5=10m2

The derivation channel must have 3.2 metres wide and 3.2 metres high (3.2*3.2 ≈ 10).

In the output channel, the water velocity will be less. 

4.6.2 Weir Study

This part of the river has already a weir. However, it must be changed to satisfy the needs of the 

turbine that is going to be built there. The original weir was orthogonal. The new weir will be 

diagonal. This makes that water can be derived easier to the turbine. The old weir isn't going to be 

removed completely as it is historical. It was built in the 19 th century. One ore two meters wide of 

the weir is going to be conserved. This can be useful for fish migrations and will also continue 

providing enjoyment for people who likes canoeing in that zone of the river. 

Mechanical calculation of the weir

 

For the mechanical calculation of the weir, we must know that the maximum height of the weir is 

7m given a foundation of 2 meters. External forces that act per unit length are:

P: weight of the dam (2.2 tn/m3 ).

H: horizontal thrust due to water pressure.

S: underpressure due to the thrust at the base of the weir. Is supposed to be half the hydrostatic load 
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and admits a triangular distribution.

 Stability is given by the condition that the resultant of the two forces P and F passing through the 

core central base.

the stability coefficient overturning V is the ratio between the stabilizing moment given by the 

weight P and the sum of the overturning moment produced by the pressure of water H and the the 

underpressure S.

New weir

In this section what is it being calculated is the mechanical part of the new weir. The maximum 

height of the little dam is 5m. There is a side of the weir that is under the ground. It is the footing of  

the weir, what has to be also considered. The slope sheet or nappe is 0.2 m. 

P=weight of the concrete

ρ concrete=2200 kg /m3

ρ water=1000kg / m3

H =horizontal load because of the water pressure

S=subpressure due the buoyancy  

The weir will be stable if the resultant load of P and H pass through the central core of the base of 

the weir. The stability coeffcient V to overturning is the equation between the stabilizer torque due 

to the weir weight and the torque due to the push of the water and the buoyancy S. To do the  

calculations, the length of the weir will not be considered. Just the weir section will be considered. 

In this case the loads are measured in Kg, as the density of concrete and water will be needed.  
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Figure 8, loads in the new weir (Made by project's author)

P1=1∗7∗2200 Kg /m3=15400 kg / m

P2=1
2
∗5∗7∗2200=38500 kg /m

P3 is included in the calculation of P2. Geometrically it fits perfect.

P1P2=53900 kg / m

The meter can be removed in this calculations so we have: 

Σ Pi=53900 kg

Horizontal loads: 

H1=0.2∗7∗1000 kg /m3=1400 kg

H2=1
2
∗7∗7∗1000=24500 kg
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H3=1
2
∗2∗1000=2000 kg

Σ Hi=H1H2−H3=23900 kg

Subpressure

S1= 1.015* 7*1000 = 7105 kg

S2= 1 over 2 3 7* 1000 = 10500kg

Σ Si=17605 kg

The vertical resultant of the load will pass with a distance X of the right border of the weir.

X =
15400∗6.538500∗3.52200∗0.5−7105∗3.5−10500∗4.6

56100−17605

X =4.21 m

The horizontal resultant will pass with a distance Y to the inferior border of the weir. 

Y =
1400∗3.524500∗2.3−200∗0.6

23900

Y =2.59m
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Figure 9, resultant of loads (Made by project's author)

As it can be seen, the point is in the core of the weir so the sizes of this small dam are appropriate 

for this amount of water. 

4.6.3 Hydrodynamic calculation of the kaplan turbine 

Once known the general characteristics of hydraulic machines, and particularly the Kaplan turbines, 

the hydraulic dimensioning of every element of the turbine can be made. The first thing that must be 

calculated is the power of the turbine, and then the design the impeller, distribution elements, and 

elements of fluid intake and output can be done.

Calculation of the effective power of the head conditions

First, we start using the data provided by the river conditions in Burrs weir:

Q=15m3/s

H=5m

ƞ=0.88

Theoretical power of the turbine is: 
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P=Q∗H∗g∗d

g is the gravity acceleration (9.8 m2/s)

d is the density of the water  (1000 kg/m3)

P=15∗5∗9.8∗1000=735000w=735 kw

For an efficiency estimated for a full work regimen of 0.88, the following power on the turbine 

shaft is obtained:  

Pe=P∗ƞ=735000∗0.88=646800 w=647 kw

This power is enough to give electricity for more or less 200 houses. 

Impeller of the kaplan turbine

The calculation of the diameter of the impeller, must be made knowing the parameters of the blades 

or the angles of velocities of the water, for example.

 

Figure 10, turbine impeller (Made by project's author)
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Calculation of the specific speed ns depending  of the rotational speed:

The calculation of this speed is different depending on the source you look at. The best option was 

making a kind of mix of all of them. The steps to follow are in the web page of jaibona, about the  

calculation of the rotational speed. this web page. The steps in this web page take you to others like 

the one of pttrenergy.  In the section of fluid machines of this page and with the help you can 

calculate it easily.  The process followed is this one: This must be started with the table about the 

specific number of revolutions (Ns) depending on the gross head. 

Ns 400-500 500-600 600-750 750-900 >900
Hn 60 50 40 20 5

The gross head is 5 metres so the specific number of revolutions should be similar. 

Pu=g∗Hn∗Q∗η∗ρ=646.8kw

Hn = Gross head = 5 m

Q = flow rate =15 m3/s

η = efficiency = 0.88

ρ = density = 1000 kg/m3

Ns= N∗P
Hn1.25

Ns= Specific number of revolutions

N = Synchronous speed
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P = Power

According to the table, Ns=900

900=N∗646.8
51.25

N=264.6

The number of poles for 60 Hz systems is:

Pl=7200
N

So the number of poles is 27.2

Taking the nearest even number: 28

Synchronous speed = Frecuency∗60
Pl

∗0.5=60∗60
28

∗0.5=257 rpm

Ns= N∗P
Hn1.25 =257∗646.8

51.25 =874.7=Ns

4.6.4 Turbine parameters:

The first calculations were taken from the e-book of Blas Zamora parra, “Problemas de Máquinas 

Hidráulicas”,  what  means  “Hydraulic  machines  exercises”.  In  this  electronic  book,  there  are 

different exercises or problems about velocity triangles, the power of different turbo machines and 

the sizing of turbines. 

c1=k∗2∗g∗H =c1=0.66∗2∗9.81∗5=6.534

k = constant of reaction turbines=0.66
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c2=c1, Because it is an axial turbine, so the tangential speed in the inlet and outlet is the same. 

Runner diameter : De=84.5∗0.791.602∗Nqe∗Hn
60

∗n

Nqe= 2.294
Hn0.486=1.0493

n=257 rpm=4.283 rps

De=1.84

Di=0.250.0951
Nqe

∗De=0.627m

u=ku∗2∗g∗Hn=1.5∗2∗9.81∗5=14.86

ω= U


De
2 

= 14.86


1.84

2 
=16.15rad / s

Pu=P∗0.88=Q∗ρ∗U


De
2 

∗c1∗cos α1 − De
2

∗c1∗sinα1∗cos α2 

α2=90º  so: 

646800=P∗0.88=15∗1000∗14.86
0.92

∗6.534∗cos α1

cos α1=0.44410004

α1=63.634º ͦͦ

α2=90º because the exterior part of the blade can be considerer as lineal. 
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4.6.5 Velocity triangles: 

The velocity C1m has the same value than C2m, which is the same as C2, in the blade exit. This is a 

simplification in the design that will be useful to find the section of the blade and its diameter. 

Figure 11, velocity triangles (Made by project's author)

α1=63.634º

u1=u2=14.86 m /s

α2e=90º

β1e ?

B2e ?

tan  β1=C1m
U

−C1u=
C1∗sin α1

U −C1∗cosα1
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tan  β1= 6.534∗sin 63.634
14.86−6.534∗cos 63.634

β1=26.08

tan  β2=C2m
U

=C1m
U

=
6.534∗sin63.634

14.86
=0.39396

β2=21.5

From the data obtained we can extract some conclusions: The absolute velocity in the inlet has a big 

tangential component. This is very important to obtain a good transfer of energy from the fluid to 

the impeller hub. This can be seen in the blade outlet. The velocity has changed and doesn't have 

tangential component. This means that the fluid creates a force in the blade and drives the impeller.

4.6.6 Number and important parameters of blades:

To obtain the number of blades on the impeller, the specific number of revolutions depending on the 

power must be calculated first. To do this, we will use the following expression. 

ns* = 3.65∗ηh∗ηq

ηq=n∗Q
H 3/4

ηq=264.6∗15
53/4 =306.48 rpm

ηh=
u1e∗C1ue−u2e∗c2ue 

g
∗H

C2ue=0

C1ue=C1e2−C1me 2=6.5342−5.852=2.905m /s
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C1m=C1∗sinα1=6.534∗sin63.6=5.85m / s

ηh=0.881

ns* = 3.65∗0.881∗306.48=1050 rpm

According to Bohl, some main sizes of the blade can be obtained using models of other kaplan 

turbines, so with this expression, these sizes are: 

Figure 12, turbine impeller sizes (Made by project's author)

C=6.94∗ns−0.403∗De=6.94∗1050−0.403∗1.84=0.7738m

ai=0.385.17∗10−5∗1050 ∗1.84=0.8m

a=1
3
cai =0.524m

The next equation considers the space free between two blades. The main important point of this 

equation is giving strength to the system of blades.  
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t= a
 tan  β1e

=1.0756 m

There is no superposition of blades in this turbine. It just happen in those turbines that has small 

flow rates. Superposition of blades would affect to the effectiveness of this turbine. So the number 

of blades can be obtained using next equation: 

Z=π∗De
t

=5.37≈ 5 number of blades

With all this data we can make a first impression of how is going to be the layout on the inside of  

the turbine. As we can see in the lower one, the angle between axis of 2 consecutive blades is 72º. 

Figure 13, turbine impeller with sizes (Made by project's author)
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Figure 14, axis of impeller and blades (Made by project's author)

4.6.7 The guide Wheel or the Fink distributor

 

The function of this part of the turbine is guiding the water to the blades, distributing it in the whole  

360º that has the scroll case. To do the calculations of this part, the most important thing is knowing 

the  angle  the angle of  the  fluid when it  has  contact  with  the blade,  to  avoid  crashes  with the 

impeller. Once known the surface of access to the impeller, the height  and thickness of the vanes,  

the number of guide vanes can be calculated, to drive the flow of water. The following data is 

needed to this these calculations. 

Q=15m 3/s

c1sf =6.534 m /s

ue=14.86 m/ s

De=1.84 m

ρ=1000 Kg /m3

g=9.81m /s2

α1e=63.6º
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The calculations to know the number of vanes are these. 

Asf =
Q∗ tanα1e 

ue
=

15∗tan 63.6
14.86

=2.0335 m2

Number of vanes (Zf)

sin α1e =Zf ∗a
2

∗π∗Rext

a1= 3
4
∗b

Asp= Asf
zf

=b∗a1

Zf = Asf
B

∗aq=
sin α1e∗2∗π∗Rext 

a1

2.033
Zf

=b∗a1=b∗ 3
4
∗b=3

4
b2

0.896=
Zf ∗ 3

4
∗b

2∗π∗0.92

b=0.39 m

a1=0.294 m

Zf = Asf
b∗a1

= 2.0335
0.39∗0.294

=17.7 ≈ 18 guide vanes

Some assumptions about the angles of the guide vanes must be done to calculate the loads acting on 

                                                                                         30



them. Later, with that loads, strength calculations will be done. 

Figure 15, guide vanes (Made by project's author)

 

Figure 16, guide vane (Made by project's author)

The assumption of this angles must be done to calculate the loads acting on the vane. In the lower 

figure, we can see a vane. The water flow direction is from right to left. 

Df =Dea1=1.840.294=2.134m
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ec=π∗Df =6.7 m

length of the vane is: lu= ec
zf

=6.7
18

=0.37m

20% of superposition must be assumed when the distributor is closed:

 l=lu∗1.2=0.4625 m

With all this data we can add sizes to the inner layout drawn before.

Figure 17, impeller with every size (Made by project's author)

The loads that act on the guide vanes can be calculated now. There are two cases: When the 

distributor is closed and when is open:

-When the distributor is closed:

Ap=l∗b=0.180375 m2

The hydrostatic pressure in a  closed system is: 

Prf =ρ∗g∗h=49000 pa
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So the forces acting on the vane are: 

F=Prf ∗Ap=8838.375 N=8.838 KN

-When the distributor is open: 

In this situation, dynamic pressure is acting due to the movement of the fluid. The vane has changed 

also his angle so the reaction on it will be calculated. 

c1∗A1=c2∗A2

C2=C1sf ∗sinαfink =6.534∗sin59º=5.6 m /s

The area of the distributor exit between 2 vanes is:

Asp= Asf
Zf

=2.0335
18

=0.113m2

The area inlet is:

Aep= Aef
Zef

=
π  Del ∗b

Zf
=0.1567

C1=C2∗A2
A1

=5.6∗0.113
0.1567

=4.037m /s

With The Velocities we can calculate the loads:

C2=−C2∗cos 49º −C2=−3.674i −5.6j m / s

                                                                                         33



C1=−cos 59º ∗C1−sin 59º=−2.08i −3.46j m /s

The negative symbols means that the fluid moves in the opposite direction to the reference system. 

The loads will be also negative. 

Rx=− Q
Zf

∗ρ∗C2x−C1x=−15
18

∗1000∗−2.083.674=−1328 N=−1.328KN

Ry=− Q
Zf

∗ρ∗C1y−C2y=−15
18

∗1000∗−3.465.6=−1783N =−1.783 KN

Once known the  loads,  we can  calculate  the  diameter  of  the  axis  of  every vane  and  also  the 

thickness of everyone. This will be made latter, in another section of the project. 

4.6.8 The scroll case

Is a chamber in which the water flows before passing through the guide vanes. The section of this 

chamber decreases gradually. With this disposition, the water velocity does not change and there are 

no losses of energy. To calculate the sizes of the chamber,  the different diameters of it will be 

calculated first. The data needed is: 

 Q=15m 3/s

H=5m

υ=dynamic viscosity of water=1.307∗10−6 m2/s

R fink= Df
2

=2.134
2

=1.067 m

The velocity in this chamber is:

c1s=0.180.28∗2∗g∗Hn=2.95 m/ s
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Q=S∗c1s

S=area of the circular section=5.08m2

The diameter of the first section of the scrollcase will be

D=2∗ s
π

=2∗5.08
π

=2.54m

The diameters of the other sections must be calculated: 

x= Q
Qin

=1− φ
360º



Dc
Din

=x2/5

Dc=Din1−φ−360º2/5

0º → Dc=2.54 m

90º → Dc=2.264 m

180º → Dc=1.925 m

270º → Dc=1.46 m
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Figure 18, scroll case (Made by project's author)

4.6.9 Cavitation

Definition

Cavitation is the formation of vapour pockets inside the liquid, specially in the nearest parts in 

which the blades are. After this formation, they collapse or implode, causing damages on the blades. 

Cavitation can appear in liquids in movement but also in stopped ones. The sudden decrease in the 

pressure, what causes cavitation, is produced due to the movement of the blade and the liquid. The 

pressure energy is transformed into kinetic energy. When the small bubbles collapse, high frequency 

vibrations are produced. This affect the resistance of the surrounded materials.
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Figure 19, cavitation example (reporteciencianl, 2012)

Kinds of cavitation 

There are a lot of kinds of cavitation, depending on the way it is produced, the develop of it or the 

macroscopic  way  of  work:  Vapour  cavitation,  gas  cavitation,  emerging  cavitation,  developed 

cavitation, supercavitation, separated cavitation, bubble cavitation, inlet cavitation, sheet cavitation, 

streak cavitation, vortex cavitation, vortex shedding cavitation, gap cavitation and torch cavitation. 

They are some examples. There are a lot of kinds, as it can be seen. That is why it must be taken  

into consideration in the realization of an hydraulic project. Its appearance is very common. 

Cavitation consequences in  hydraulic machines

The way of appearance of the cavitation is making  immediate loads. They appear and disappear 

very quickly and can produce the bearing failure and the eccentric of the axis. Noises and vibrations 

appear with the cavitation, depending on the kind of cavitation. The continuous collapse of bubbles 

with high implosion velocities, generate this high frecuency vibrations. If this frecuency reach the 

mechanical resonance frecuency, it can be catastrophic for many parts of the turbine. The pitting is 

one of the worst effects of the cavitation. Pores are appearing with cavitation in the blades until they 

break the total structure of it, as we can see in the image. 
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Figure 20, cavitation failure(ingesaerospace-mechanicalengineering, 2012) 

Cavitation Characteristics

The  best  way  to  deal  with  cavitation  is  defining  an  expression  of  the  cavitation  coefficient 

depending on the hydraulic parameters we know about this turbine. The cavitation is produced in 

the low pressure points. This pressure depends on the high in which we are working, so the part of 

the turbine that can suffer more cavitation is the draft tube. 

Ways to prevent cavitation

Cavitation can not be removed. The only way to fight against it is controlling it and keeping it into 

admissible  values.  To maintain  it  into  these  values,  some parameters  and  its  design  has  to  be 

considered. For example, the edges of the blades must be rounded, avoiding sharp ones. The surface 

of the blade must have low roughness. 

Cavitation coefficient and draft tube: 

The most important thing to calculate in this part is the maximum height of aspiration, in order to 

avoid  cavitation.  The  cavitation  coefficient  must  be  known  first,  as  with  this  coefficient  the 

transition zone of this phenomenon will be placed. The sizes of the draft tube can be calculated once 
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known these two parameters. The data needed is:

Hn=5m

De=1.84 m

ns=871.4

c1=6.534 m /s

u1=14.86 m /s

C1u=2.91m /s

α1=63.6º

Ce=2.8m / s

ρ=1000 kg /m3

g=9.81 m /s2

The saturation  vapour  pressure   for  25ºC is  3166 Pa.  The temperature  is  high  enough for  the 

conditions of the turbine. It is supposed that the water temperature will never be higher than this.  

According to F. de Siervo, the Thoma Coefficients are:

Hydraulic application coefficient σs=0.0413∗
ns

100

1.672

=1.55

Point of critic cavitation coefficient σc=0.0348∗ ns
100


1.283

=0.56

With these coefficients the maximum height can be calculated in order to avoid cavitation due to 

pressure. The reference is the sea level, as the altitude of Bury is small. That is why the pressure 
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chosen is the sea level one. 

H =−σc∗H 
P amb – Ps

ρg

H =−0.56∗5
101300 – 3166

9810
=7.214 m

If we have a hight higher than this between the blades and the draft tube exit, cavitation can appear. 

Considering  Hs = 1 becouse it must be lower than 7.214, and this value fits our turbine and the 

river after the turbine, we have: 

Pamb=Hsσc∗H  ρgPs  

Pamb=10.567∗598103166=52556.4 Pa

This ambient pressure is normal in an altitude of 5000m more or less. If this turbine was in that  

altitude, it would have cavitation problems. This is not the case because as it was said before, Bury 

has a lower altitude. The dimensions of the draft tube depend on the diameter of the impeller. These 

dimensions can't be exactly calculated, so in this case the calculations are done using approximate 

constants. 

Figure 21, Draft tube (Made by project's author)

A=1.25∗De=1.25∗1.84=2.3 m
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L=3.1∗De=3.1∗1.84=5.7 m

V =1.75∗De=3.22 m

H=2.7∗De=4. 968 m

Figure 22, draft tube sizes (Made by project's author)

The layout of the important parts of the turbine with real sizes is like this

Figure 23, Draft tube with sizes (Made by project's author)
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Once known the dimensions of the draft tube, the layout of the turbine, with the draft tube and the 

weir can be done. 

Figure 24, layout (Made by project's author)

4.7 Resistive calculation of the elements of the turbine

4.7.1 Dimensional sizing of the blades. Calculation of the loads on the blade

Once known the main sizes of some parts of the turbine, the next step is sizing others taking into 

consideration the strength of the material used and the loads acting on it. Knowing these loads that 

act on the blades is one of the most important things to do the design of some parts of the turbine.  

These elements are the blades, the impeller hub or the axis of power transmission. 

To calculate the loads and torques due to the circulation of the fluid, this data must be taken into 

consideration: 

ρ=1000 kg /m3

Hn=5m

g=9.81 m /s2
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ri= Di
2

=0.627
2

=0.3135 m

r ext= De
2

=1.84
2

=0.92 m

ω=16.15 rad / s

Z=5blades

C1e=6.534 m /s

C2u=0m /s

α1=63.6º

ηh=0.881

The easiest way to calculate the loads is consider the blade as a circular sector. It is not the real 

shape of the blade, but some simplifications must be done to be able to calculate the loads easily. 

Figure 25, blade shape simplification (Made by project's author)
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C1me=C1e∗sinα1e =5.85 m / s

C2=C1m=5.85 m /s

u1=ω∗r=14.86 m /s

C1u=
ηh∗g∗Hn
16.5∗0.92

=2.844 m/ s

Reaction grade in function of the radius of the impeller:

 
σ r =

ω∗r∗ηh∗g∗Hn
ω∗r 

g −


ηh∗g∗Hn
ω∗r 


2

C1m2
2

−C1m2

2g 

ηh∗Hn

σ r =
4.405−

 6.8644
r 2 34.2225−5.85

19.6


4.405

Fa=2∗π∗ρ∗g∗Hn
2

∗∫σ r ∗r∗dr

Fa=61675.2∗[ 579655∗x268644
863380∗x  ]0.3135

0.92

=61675.2 0.7041−0.4641=14803 N  

Ma=
2∗π∗ρ∗g∗Hn 

2
∗∫σ r ∗r2∗dr

Ma=61675.2∗[−137288∗logx −579655∗x2
1726760 ]

0.3135

0.92

=61675.20.287−0.073=13195.7 N∗m

Ma=13195.7 N∗m
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Another load and torque must be calculated. The one above it was the vertical one. This is the 

horizontal. 

ΔCu=Cu1−Cu2=ηh∗g∗Hn
ω∗r 

=0.881∗9.81∗5
16.15∗r 

Fu=2∗π∗ρ∗g∗C1m
Z

∗∫ΔCu∗r∗dr=7204.3∗∫ ΔCu∗r∗dr

Fu=7204.3∗[ 669∗X
250 ]0.3135

0.92

=7204.32.46192−0.84=11684.8 N

Mu=2∗π∗ρ∗g∗C1m
Z

∗∫ ΔCu∗r 2∗dr=7204.3∗∫ ΔCu∗r2∗dr=9081.6 N∗m

Figure 26, loads on blade (Made by project's author)

4.7.2 Calculation of the stress on the blade and Selection of the material used for the blade

Once known the loads and torques acting on the blade, an analysis of the stress suffered by the 

blade must be done. The first thing that must be done is setting the material used depending on the 
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loads. With this, the size of the axis of the blade can be known, and also the thickness of the blade  

profile. The data used is: 

r ext=0.92 m

ri=0.3135 m

φblade=52º

Fa=14803 N

Ma=13195.7 N∗m

Fu=11684.8 N

Mu=9081.6 N∗m

The properties requested are big stress resistance, great resilience and good behaviour to oxidation. 

Some materials  that can fit  these characteristics are bronze and aluminium, but these materials 

cause a loss in the efficiency, due to that water can slip in them. Molten chrome steel is a good 

material but it is oxidized easily. 

The best material and more commonly used to make turbine blades is the stainless steel ASTM 

A743 CAG NM. The main characteristics of this steel is the high content of nickel and chromium. It 

is easy to work with and good has good solderability properties. These solderability properties are 

advantages in case of impact, corrosion or cavitation. The mechanical properties are: 

minimum yield stress=555Mpa

ultimate stress=755 Mpa

Minimumelongation 50 mm=15 %

Minimumcontraction=50 %
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Density=7695 Kg
m2

Elastic modulus 20º=199 Gpa

We can define now the stresses.

Sy=555∗106 Pa

Considering a safety factor of n=1.5:

S ' y= Sy
n

=370∗106 Pa

The maximum Shear stress is Sy
2∗n

=185∗106 Pa

If we combine The two moments of the blade to calculate its diameter:

Mr=Ma2Mu2=13195.729081.62=16018.8 N∗m

σ f = Mr∗e
I

=32∗Mr
π∗d 3

S ' y ≥ σ co=σ 23∗τ3

τ=0

σ f =32∗Mr
π∗d 3

185∗106=32∗16018.8
π∗d 3
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d 3=8.8198∗10−4

d =0.0959 m

The shear stress must be calculated to see if the diameter is correct: 

Fr=Fa2Fu2=14803211684.82=18859 N

τ= Fr∗m
b∗I 

=
4∗Fr  d

2


2



3∗π∗ d
2


4



Von misses:

 S ' yr ≥ τ

185∗106=
4∗18859∗d

2


2



3∗π∗ d
2


4


= 18859

π∗d 2∗48

d 2=6.76∗10−7

d =0.0008 m

With this calculation we can see that the diameter calculated before is correct. 

Now we round the diameter of the axis to 0.1m. This makes it more real because this has to fit in  

the hub impeller. 

The  thickness  of  the  blade  is  calculated  now.  The  simplification  about  the  shape  must  be 

established. The blade is a flat circular sector and the section of the base is rectangular. Calculation 

of the length of the section: 
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b=2∗π∗r1∗φ
360º

=2∗π∗0.12∗70º
360º

=0.1466 m

σ f = Mr∗e
I =

 Mr∗e
2




1
12 ∗b∗e3

=
 16018.8

2


 0.1466∗e2

12


Von misses:

 S ' yr ≥ σ co

183∗106=
16018.8

2


 0.1466∗e2

12


e2=3.544∗10−3

e=0.059 m=5.9cm

The whole blade can be drawn in pro-engineer following the data calculated above. 
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Figure 27, blade with sizes (Made by project's author)

4.7.3 Calculation of the stress on the guide vane

The design of these elements is based in the fact that the axis bears the maximum load in the bigger  

size of the vane. The maximum load is made when the Fink distributor is closed due to the water  

pressure. The material considered is the same as the blades: Steel ASTM A743 CAG NM. There is 

no cavitation in this point. The Characteristics of the material are: 

Sy=555∗106 Pa

Considering a safety factor of n=1.5:

S ' y= Sy
n

=370∗106 Pa

The maximumShear stress is Sy
(2∗n)

=185∗106 Pa

The length (l) of the vane is 0.39m and the height (b) is 0.294. The loads over the vane are:

Rx=1.328 KN

Ry=1.783 KN
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Fh=8.838 KN  

The distribution of the load through the vane is:

qh= Fh
b

=
(8838 N )
(0.294 m)

=30061 N /m

The endpoints of the axis are backed. So the reactions are: 

R1= Fh
2

=4419 N

R2= Fh
2

=4419 N

The momentumis=R1∗x−qh
2

∗X 2

Mr=4419∗0.195 – 30061
2

∗0. 1952=290.17 N∗m

The torque is:

Fr=√(Fx2+Fy2)=√(13282+17832)=2223.2 N

Mt= Fr∗l
2

=433.5 N∗m

The stress due to the momentum is: 

σ f = Mr∗e
I

= 32∗Mr
(π∗df 3)

The tangential stress due to the torque is: 

                                                                                         51



τ t=
( Mt∗df

2
)

Io

Von Mises: To calculate the minimum diameter:

S ' y ≥ σ co=√(σ 2+3∗τ3)

σ co=√(
32∗Mr
(π∗d 3)

+3(
( Mat∗d

2
)

( π∗d 2

4
)

)

2

)

185∗106=√(
32∗290.17
(π∗d 3)

+3(
( 433.5∗d

2
)

( π∗d 2

4
)

)

2

)

Solving this  complicate equation,  we have that  the diameter is  d = 0.0172 m. So the diameter 

chosen is d = 0.02 m = 2cm.

5-RESULTS AND DISCUSSION 

In this part, the resistive calculation using computer aid is done. It could be included in the design 

process. However, the software testing is part of the results, because we will see if the theoretical 

calculations were correct. In addition, some corrections can be done with this, so its part of the 

discussion. 
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5.1 Resistive Calculation using Computer aid

The calculations done to determine the shape and strength of the turbine, are based in calculus 

theories and model tests. Theses calculations are effective but there are some variables needed that 

cannot be solved with this method. Nowadays, the majority of the improvements in turbomachinery 

are obtained with computer calculations. This saves money because there is no need to build models 

to test every machine. Testing machines with a computer can also help us in our design finding 

mistakes in the design or failure causes. 

In this project, computer aid is used to improve the initial design, test if it can stand the loads and  

make an analysis of the results obtained. The program used to test some of the parts of the turbine is 

pro-engineer. This program allows you to draw the part tested, put the restrictions in the appropriate 

place and the loads. The program itself, based in the finite elements theory, gives you an outcome 

showing you the result of some variables like the most stressed point of the calculated part, the 

value of this stress or the deformation of  the part. 

Verification of the resistance of the blade 

The behaviour of the blades exposed to the loads is one of the more interesting thing to calculate 

with the computer in order to show and check that the calculations done before are correct. The 

software also provides the possibility to see if the deformation of the part is admissible or not. The 

software used was pro-engineer. In this case, the fist thing done is defining the material used in our 

blade and setting the real values of this material. The characteristics of the steel used were written in 

the software as we can see in the next Figure.  
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Figure 28, pro-engineer material (Made by project's author)

The density, Poisson's ratio and Young modulus were changed from the normal steel to adapt it to 

the steel ASTM A743 used for the blade. The next step done was drawing the blade. As it was said 

before,  the  shape  used is  not  the real  one.  It  was  simplified to  make the  drawing easier.  This 

assumption is made to allow the program do all calculations correctly. After this, the constraints and 

loads were setted in their correspondent place. The constrain on the blade axis is due to the fact that 

it is embedded into the impeller hub. To set the loads, another simplification were done. Due to the 

impossibiltiy to set a single load in the centre of the blade with the value of 18859 Newtons, the 

area of the blade was calculated to set a pressure in the surface with the same value as the load. The 

area of the blade is: 

A=70º∗π (0.922−0.48652)
360º

=0.3725m2

P= F
A

= 18859
0.3725

=50628.2 Pa

This value is exactly the one that can be seen in the software.
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Figure 29, loads on blade (Made by project's author)

Figure 30, pro-engineer stress result (Made by project's author)
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In the last Figure, the results of the simulation can be seen. In this case it is the stress Von Misses  

test. The most stressed part is the blade and its axis junction. This is due to the sharp edge in which 

they are together. It can be rounded to improve the behaviour of the blade and avoid problems as the 

appearance of cracks.  Anyway, the maximum value of the Von Misses stress is 135400000 Pa, 

which is less than the shear stress admissible, 185000000 Pa, which means that the blade is well  

designed because it works perfectly. 

In the detailed Figure below this we can see better the junction of blade and axis. 

Figure 31, pro-engineer stress result on axis (Made by project's author)

Another result can be seen if we choose the displacement outcome. In the figure below this, we can 

see that the maximum displacement is 6.142*10-4=0.0006 m= 0.6mm. This displacement is very 
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small,  what  means that  the  blade  works  perfectly also  taking into  consideration  the  maximum 

displacement admitted for the blade. 

Figure 32, blade displacement (Made by project's author)

The Von Mises stress test and the displacement one says that there will not be failure of the blade. 

However, if we leave the junction between axis and blade like this, a crack can appear with time. 

The way to avoid it is rounding the edges. The rounding will affect every edge of the blade, to avoid 

also the cavitation that sharp edges produce. The maximum stress in the blade will be decreased,  

what means that the qualities of the blade will be improved. We can see it in the next figure. 
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Figure 33, blade with rounded edges (Made by project's author)

The maximum value of the Von Misses stress is 37870000 Pa, which is even less than what we had 

before, so it is less than the shear stress admissible, 185000000 Pa. 

Verification of the resistance of the guide vane

The same process is done to test the behaviour of the guide vane. So as it was said, the first step was 

drawing it and set the displacements and loads. 
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Figure 34, guide vane with loads (Made by project's author)

Figure 35, guide vane stress result (Made by project's author)

The most stressed part is the blade and its axis junction, again. The maximum value of the Von 

Misses stress is 96950000 Pa, which is less than the shear stress admissible, 185000000 Pa. The 
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vane is correctly designed. But we are going to round the edges to see the difference. 

Figure 36, guide vane axis (Made by project's author)

Figure 37, guide vane axis with rounded edge (Made by project's author)

The maximum value of the Von Misses stress is 79460000 Pa, which is even less than what we had 

before,  without  the  round edges,  so again,  the  characteristics  and resistance  of  the  guide  vane 

improved.
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6- CONCLUSIONS

This project served his author to review some modules he studied in his degree and to learn new 

things.  Learning the process that involves the complete  realization of the project  was specially 

important as it is something that is not learned in any module. How to deal with the proposal, 

searching and finding the way to solve the questions raised, choosing the best option in each case 

and deadlines were the most challenging issues in the process of solving the project.

Initially, the project idea was much more extensive than what it was achieved finally. What it was 

wanted to do is a simulation with a fluid software, and with that, knowing results of stress in blades 

and flow issues. After the realization that it was almost impossible, due to the length of the project,  

the lack of time and the lack of a good software, it had to be done in other way. However, it did not  

affect the final result of the project. The “practical” method was replaced by a more theoretical one.  

The stress of the blades and guide vanes could be known and cavitation and the flow of water could 

also be solved with the fundamentals of physics.  

The main purpose of the project was achieved. The most important parts of a turbine were designed. 

They are the ones that are directly in contact with the water. This design of the parts of the turbine is 

based in calculations that normally fits similar projects than this one, but with a bigger amount of 

water and a higher head gross. It was proven that this design is very simple, so cheap.  This raises 

the possibility to build these kind of small hydroelectric power plants in rivers like this one, and 

shows the importance to use renewable energies with an important hypothetical percentage of the 

energy demand covered. 

The review of literature part is the most time absorbent one, but the most interesting. Knowing how 

turbines work was one of the most enjoyable parts. Unluckily, the turbine that suited the conditions 

of the river in that point, the kaplan one, is the less studied one. So it was difficult to find good  

sources to use in this case, but, at the same time, motivational as it was a success to find the way to 

solve every problem that the design of the turbine had. 

During the development of the design of the turbine, some problems were found. For example, there 

are some integrals and equations very difficult to solve. The way to calculate it was using some web 

pages that solved that kind of operations. In general, the design process was successful. The design 
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of the more important parts were done, calculating their sizes and shape. 

The last part of the project consisted in the resistive calculation of the most stressed parts of the 

turbine and the testing of this calculation using computer aid. The most important thing here was 

the interpretation of the computer results. It could be seen that the design was correct, but it also 

revealed that some improvements could be done, like the rounding of edges to avoid critic points in 

which cracks could appear with time. 

To summary of the project is that the realization of the project was successful. Even knowing that 

the initial idea was so ambitious that could not be possible to do, the second option was correct and 

more simple. 

7- RECOMMENDATIONS FOR FURTHER WORK

The realization of the initial idea of this project is not possible to do in the amount of time used. 

Seven months, having other modules is not enough time. In addition, the software used is a little bit  

simple  for  a  real  project.  The  complete  design  of  this  hydroelectric  plant  must  be  done by a 

complete  team  of  engineers.  The  mechanical  engineer  is  the  one  who  is  responsible  of  the 

mechanical parts of the turbine. This is the part that was developed in this project. The electrical 

engineer is the one who is responsible of the electrical part of the turbine. It is the generation of 

electricity. He is the one that is in charge of the design of the control systems and the generator of 

the turbine. An industrial engineer is the responsible of the project. He is in charge of the other  

members of the team that are designing the project. He is also the one who makes all the legal part  

of the project, the organization of the assembly and construction steps. 

To sum up,  this  project  included part  of  the  mechanical  design  of  the  hydropower  plant.  The 

complete project must be done by a professional team of engineers, including different engineers to 

solve every problem that this project have. There is also need of computer aid, that big companies 

can afford but maybe not an university. There is need of software to design the electrical circuits,  

the flow of water throughout the turbine, a drawing program to do every simple part of the machine  

with the dimensions and a 3D program, like the one used in this project, pro-engineer. 
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Figure, Integrals Calculator

Figure, Equation Calculator
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Figure, Table of different Steel Characteristics
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Figure, Old Weir

Figure, New Weir
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Figure, Turbine Size Estimation

Figure, Turbine With the Scroll case and Draft Tube
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Figure, Power House Access

Figure, Power House 
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Figure, Power House and Turbine 
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