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1. INTRODUCTION 

 

The aim of this project is to analyze the buckling strength of thin cylindrical shells subjected to 

uniform and non-uniform axial and radial compressive loads. 

 

1.1. Motivation 

It is well known that thin cylindrical shell structures have wide applications as one of the 

important structural elements in many engineering fields. Moreover, its load carrying capacity 

is decided by its buckling strength which depends strongly on geometrical imperfections 

presented in it.  

Thin cylindrical shell structures are in general highly efficient structures and they have wide 

applications in the field of mechanical, civil, aerospace, marine, power plants, petrochemical 

industries, etc. The thin cylindrical shell structures are prone to a large number of 

imperfections, due to their manufacturing difficulties. These imperfections affect the load 

carrying capacity of these shells. Reliable prediction of buckling strength of these structures is 

important, because the buckling failure is catastrophic in nature. That is the reason why the 

stability tests are increasing and more and more engineers are being asked for the necessary 

skills to perform calculations in a more accurate way. 

Moreover, cylindrical shells used in civil engineering applications are often subjected to very 

non-uniform axial compressive stresses, but very little research has been conducted on the 

failure criteria to which they should be designed. Furthermore, cylinders under uniform radial 

compression have been widely studied, but non-uniform loading has received much less 

attention. Wind loaded cylinders, which develop non-uniform radial compression have also 

received some attention, but very limited information exists on the buckling, nonlinear and 

post-buckling behavior to more general patterns of non-uniform compressive stress. 
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1.2. Task and procedure 

The themes of this thesis are: 

- Finite Element Method studies on the stability behavior of cylindrical shells under 

external uniform and non-uniform axial load. 

- Finite Element Method studies on the stability behavior of cylindrical shells under 

external uniform and non-uniform radial load. 

 

The present work deals with the stability analysis of thin-walled cylindrical shells, with 

different combinations of loads. It examines how the variable external loads affect the 

deformation of a cylindrical shell. 

The application of thin-walled cylindrical shells, as the essential structural members, has been 

widely studied by engineers, due to their importance in modern industries. These structures 

are prone to fail by buckling under external pressure, either axial or radial, which could happen 

during discharging or wind load. Buckling phenomena occur when most of the strain energy, 

which is stored as membrane energy, can be converted to bending energy requiring large 

deformation resulting in catastrophic failure.  

The analysis of the different models will be developed with the finite element program ANSYS. 

 

1.3. Literature review 

 

Because of the tremendous and continuous interest in shell buckling and the multitude of 

reported theoretical and experimental investigations, reviews and surveys have appeared in 

the open literature since the 1950s. 

 

The first theoretical investigations on the subject dealt with axially loaded configurations, and 

they were performed by Lorenz, Timoshenko and Southwell. The first experimental studies are 

those of Lilly, Robertson, Flugge, Lundquist and Donnell. The initial theoretical investigations 

were based on many simplifying assumptions, and they reduced the mathematical model to a 
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linear Eigen-boundary-value problem (classical bifurcation approach).  

 

Comparison between theoretical predictions (critical loads) and experimental results (buckling 

loads) revealed discrepancy of unacceptable magnitude. A tremendous effort was made in 

order to explain the discrepancy both analytically and experimentally. From the analytical 

point of view, the initial simplifying assumptions were later reevaluated and removed. This led 

to studies which attempted to attribute the discrepancy to different factors such as the effects 

of pre-buckling deformations, in-plane boundary conditions, or initial geometric imperfections. 

 

Initially, the imperfection sensitivity of the system was established through strict post-buckling 

analyses of the perfect configuration. In addition, some of these investigators explained that 

the minimum post-buckling equilibrium load is a measure of the load carrying capacity of the 

system. This thinking came to an end when Hoff, Madsen, and Mayers concluded from their 

calculations that the minimum post-buckling load tends towards zero with increasing number 

of terms in the series expansion and with diminishing thickness. 

 

Another approach for imperfection sensitivity studies is to deal directly with the imperfect 

configuration and employ nonlinear kinematic relations. The first attempt is Donnell's. Koiter 

was the first to question the use of the minimal post-buckling load as a measure of the load 

carrying capacity. He also dealt directly with the imperfect configuration. His theory is limited 

to the neighborhood of the classical bifurcation load (immediate post-buckling), and therefore 

to small initial imperfections. Many researchers adopted this approach. The single and most 

important conclusion of all the theoretical investigations of cylindrical shells is that the primary 

reason for the discrepancy between (linear) theoretical critical loads and buckling loads is that 

the system is extremely sensitive to initial geometric imperfections. 

 

In parallel to the above analytical investigations, many experimental studies were performed 

with the same objective in mind. While the old buckling loads fell in the range of 15-50% of the 

classical critical load, the new ones, with use of carefully manufactured specimens, fall in the 

range of 40-90% of the classical critical load. Moreover, Thielemann and Esslinger extended 

their research to include theoretical post-buckled state calculations on the basis of observed 

experimental results. 

 

A similar development was followed for the case of buckling under lateral loading (pressure). 
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The first analysis is attributed to von Mises. Several investigations based on linear analyses 

appear in the literature. Batdorf used simplified Donnell-type of shell equations to predict 

critical loads. Soong employed Sanders' shell theory. Simitses and Aswani compared critical 

loads for the entire range of radius to thickness and length to radius ratios and for various load 

behaviors during the buckling process (true pressure, constant directional pressure, and 

centrally directed pressure) for a thin cylindrical shell, employing several linear shell theories: 

Koiter-Budiansky, Sanders, Flugge, and Donnell. Sobe studied the effect of boundary 

conditions on the critical pressure. 

 

Post-buckling and imperfection sensitivity analyses appear in the literature, as in the case of 

axial compression. These studies follow the same pattern and include strictly post-buckling 

analyses, and Koiter-type of analyses. Orthotropic, stiffened, and other constructions were 

considered by several researchers, including Becker and Gerard, Meek, Hutchinson and 

Amazigo, Sheinman, and Giri. 

 

Buckling analyses for torsion started with the work of Donnell. Several studies followed with 

the emphasis on different considerations. Hayashi dealt with orthotropic cylinders, and 

Lundquist and Nash are two of several that reported experimental results. Hayashi Hirano and 

Budiansky are among those who reported on post-buckling analyses. 

 

Furthermore, cylindrical shells used in civil engineering applications are often subject to very 

non-uniform axial compressive stresses (Rotter, 1985, 1998), but very little research has been 

conducted on the failure criteria to which they should be designed. Most of the existing 

relevant work examined only the linear bifurcation buckling behavior of a perfect shell (Teng, 

1996; Teng and Rotter, 2004). Many civil engineering shells (silos, tanks and digesters) are very 

thin, so the design is controlled by elastic buckling. Cylinders under uniform axial compression 

have been widely studied, but non-uniform axial loading has received much less attention. 

Cylinders under global bending have received some study (Lundquist, 1935; Flügge, 1973; 

Seide and Weingarten, 1961; Stephens and Starnes, 1975; Antoine, 2000), but the 

circumferential variation of membrane stress is so slow that the behavior is rather similar to 

that under uniform compression.  

 

Wind loaded cylinders, which develop non-uniform radial compression have also received 

some attention (Greiner and Derler, 1995), but very limited information exists on the buckling, 



1. INTRODUCTION 

Myriam Iturgaiz Elso 
 

5 

nonlinear and post-buckling behavior of imperfect cylindrical shells subject to more general 

patterns of non-uniform axial compressive stress (Libai and Durban, 1977; Peter, 1974; Saal, 

1982; Rotter, 1985; Cai et al., 2002). Some studies of the load-carrying capacity of column-

supported shells have recently been undertaken (e.g. Guggenberger et al., 2000), but these 

relate to failure above supports rather than buckling within the shell. The studies of Cai et al. 

(2002, 2003) used similar analyses to explore a problem under different patterns of non-

uniform axial compression.  

 

The failure of wind-loaded cantilever cylinders has been reported and investigated since the 

1960s.For example, the collapse of oil-storage tanks in England in 1967 was reported by 

Kundurpi et al. (1975), but failures of this kind have also occurred in many other areas of the 

world that are subject to high wind conditions without being reported in the open literature.  

Pressure coefficients for tanks with dome roof (Maher 1966) or flat roof (Purdy et al. 1967) 

were reported from wind tunnel experiments in the 1960s. A fine set of wind tunnel 

experiments was done by Johns and co-workers during the 1970s (Kundurpi et al. 1975), who 

tested small scale cylinders with 1<L/R<5 and 376<R/t<555. Resinger and Greiner (1982), 

Uematsu and Uchiyama (1985), and Megson et al. (1987) reported other tests on cylinders 

carried out in wind tunnel facilities. Schmidt et al. (1998) published post-buckling results from 

tests on PVC and steel cylinders under internal suction, and also under a static simulation of 

wind by means of a pressure that varies over segments of the shell; all cylinders included ring 

stiffeners on top, except for one case with L/R = 1 and R/t = 2500, which was tested under 

internal pressure. 
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2. DEFORMATIONS AND STRESSES OF CYLINDERS 

 

2.1. Introduction 

Depending on the type of material, size, geometry of an object and forces applied, various 

types of deformation may result: 

1. Elastic Deformation 

This type of deformation is reversible. Once the forces are no longer applied, the 

object returns to its original shape.  Linear elastic deformation is governed by Hooke's 

law, which states: 

𝜎 = 𝐸𝜀 

where 𝜎 is the stress, 𝜀 indicates the resulting strain and 𝐸 is a material constant called 

Young´s modulus. This relationship only applies in the elastic range and indicates that 

the slope of the stress vs. strain curve can be used to find Young's modulus. The elastic 

range ends when the material reaches its yield strength. At this point plastic 

deformation begins. 

2. Plastic Deformation  

This type of deformation is irreversible. Two different phases can occurred during the 

plastic deformation: 

• Strain hardening: The material becomes stronger through the movement of atomic 

dislocations.  

• Necking: It is indicated by a reduction in cross-sectional area of the structure. 

Necking begins after the ultimate strength is reached. During necking, the material 

can no longer withstand the maximum stress and the strain rapidly increases. 

Plastic deformation ends with the fracture of the material. 

http://en.wikipedia.org/wiki/Hooke%27s_law
http://en.wikipedia.org/wiki/Hooke%27s_law
http://en.wikipedia.org/wiki/Linear_elasticity
http://en.wikipedia.org/wiki/Linear_elasticity
http://en.wikipedia.org/wiki/Yield_stress
http://en.wikipedia.org/wiki/Dislocation
http://en.wikipedia.org/wiki/Dislocation


2. DEFORMATIONS AND STRESSES OF CYLINDERS 

Myriam Iturgaiz Elso 
 

7 

That can be checked in the strain-stress graphic, which provide a huge amount of information.  

 

 Figure 1: Stress vs. Strain 

 

2.2. Thin-walled Cylinders 

 

2.2.1. Stresses 
 

The stresses in thin-walled cylinders have been wide studied, due to the huge amount of 

applications that they have, such as boiler shells, pressure tanks, pipes… 

Generally three types of stresses are developed in pressure shells: 

• Circumferential or ring stresses (𝝈𝜽) 

• Longitudinal or axial stresses (𝝈𝑳) 

• Radial stresses (𝝈𝒓) 

 

ELASTIC 
DEFORMATION 

PLASTIC 
DEFORMATION 
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Figure 2: Thin-walled Cylinder under pressure 

 

1. Ring stresses 

It is a type of mechanical stress of a cylindrically shaped part as a result of internal or 

external pressure. It can be defined as the average force exerted circumferentially 

(perpendicular both to the axis and to the radius) on every particle in the cylinder wall. 

 

Figure 3: Hoop Stress 

 

So long as the wall thickness is small compared to the diameter then the force trying to 

split the cylinder due to the pressure is   

𝑭 = 𝟐�  𝒑𝒓𝑳 𝐜𝐨𝐬𝜽

𝝅
𝟐

𝟎

𝒅𝜽 = 𝟐𝒑𝒓𝑳 = 𝒑𝑫𝒊𝑳 
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The cross-section area which sustains this force is given by 

𝑨 = 𝟐𝒕𝑳 

Therefore the ring stress is defined by 

𝝈𝜽 =  
𝑭
𝑨

=
𝒑𝑫𝒊𝑳
𝟐𝒕𝑳

=
𝒑𝑫𝒊

𝟐𝒕
 

An alternative to ring stress in describing circumferential stresses is wall stress or wall 

tension (T), which is usually defined as the total circumferential force exerted along 

the entire radial thickness. 

𝑻 =
𝑭
𝑳

 

The classic example of this stress is the tension applied to the iron bands of a wooden 

barrel. 

 

2. Axial stresses 

They are the stresses that occur in the longitudinal direction. 

 

Figure 4: Axial Stress 

 

In this case we consider the forces trying to split the cylinder along the length. The 

force due to the pressure is  



2. DEFORMATIONS AND STRESSES OF CYLINDERS 

Myriam Iturgaiz Elso 
 

10 

𝑭 =  �𝟐 𝒑𝝅𝒓
𝒓

𝟎

𝒅𝒓 = 𝟐𝒑𝝅
𝒓𝟐

𝟐
= 𝒑

𝝅𝑫𝒊
𝟐

𝟒
 

The cross-section area which sustains the force in this case is given by: 

𝑨 = 𝝅𝑫𝒊𝒕 

This area has been approximated to a rectangle whose dimensions are the length of 

the circumference (𝝅𝑫𝒊) and the thickness. 

Consequently the axial stress is defined by: 

𝝈𝑳 =  
𝑭
𝑨

=
𝒑𝝅𝑫𝒊

𝟐

𝟒
𝝅𝑫𝒊𝒕

=
𝒑𝑫𝒊

𝟒𝒕
 

 

3. Radial stresses 

The radial stresses are normal to the curved plane of the isolated element. 

In thin-walled cylinder theory, they are normally not considered, because they are 

neglibly small compared to the other two stresses. 

 

2.2.2 Thin-walled Cylinder Displacement 

Consider a small rectangular area which is part of the wall in a thin walled cylinder. 

 

Figure 5: Thin-walled cylinder wall 
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There are two stresses perpendicular to each other, the axial (𝝈𝑳) and circumferential (𝝈𝒄) 

stresses, as explained before. 

From basic stress and strain theory the corresponding axial strain is: 

𝜺𝑳 =
𝟏
𝑬

(𝝈𝑳 − 𝝁𝝈𝒄) 

Substituting both stresses with the formulas calculated in the last chapter, the following 

formula for the longitudinal strain is obtained: 

𝜺𝑳 =
∆𝑳
𝑳

=
𝟏
𝑬
�
𝒑𝑫
𝟒𝒕

− 𝝁
𝒑𝑫
𝟐𝒕
� =

𝒑𝑫
𝟒𝒕𝑬

(𝟏 − 𝟐𝝁) 

The circumferential strain may be defined as follows. 

𝜺𝒄 =
𝒄𝒉𝒂𝒏𝒈𝒆 𝒊𝒏 𝒄𝒊𝒓𝒄𝒖𝒎𝒇𝒆𝒓𝒆𝒏𝒄𝒆
𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 𝒄𝒊𝒓𝒄𝒖𝒎𝒇𝒆𝒓𝒆𝒏𝒄𝒆

 

𝜺𝒄 =
𝝅(𝑫 + ∆𝑫)− 𝝅𝑫

𝝅𝑫
=
∆𝑫
𝑫

 

The conclusion obtained is that the circumferential stress is the same as the strain based on 

diameter, in other words, the diametric strain. 

From basic stress and strain theory, the corresponding circumferential strain is: 

𝜺𝒄 =
𝟏
𝑬

(𝝈𝒄 − 𝝁𝝈𝑳) 

Substituting both stresses with the formulas calculated in the last chapter, the following 

formula for the circumferential strain is obtained: 

𝜺𝒄 =
∆𝑫
𝑫

=
𝟏
𝑬
�
𝒑𝑫
𝟐𝒕

− 𝝁
𝒑𝑫
𝟒𝒕
� =

𝒑𝑫
𝟒𝒕𝑬

(𝟐 − 𝝁) 

For defining the volumetric strain, it is necessary to take into account the following 

parameters: 
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• 𝐎𝐫𝐢𝐠𝐢𝐧𝐚𝐥 𝐋𝐞𝐧𝐠𝐭𝐡 = 𝐋𝟏 

• 𝐎𝐫𝐢𝐠𝐢𝐧𝐚𝐥 𝐜𝐫𝐨𝐬𝐬 𝐬𝐞𝐜𝐭𝐢𝐨𝐧𝐚𝐥 𝐚𝐫𝐞𝐚 =  𝛑𝐃
𝟐

𝟒
 

• 𝐎𝐫𝐢𝐠𝐢𝐧𝐚𝐥 𝐕𝐨𝐥𝐮𝐦𝐞 =  𝛑𝐃
𝟐

𝟒
𝐋𝟏 

• 𝐍𝐞𝐰 𝐋𝐞𝐧𝐠𝐭𝐡 =  𝐋𝟐 = 𝐋𝟏 + ∆𝐋 

• 𝐍𝐞𝐰 𝐜𝐫𝐨𝐬𝐬 𝐬𝐞𝐜𝐭𝐢𝐨𝐧𝐚𝐥 𝐚𝐫𝐞𝐚 =  𝛑(𝐃+∆𝐃)𝟐

𝟒
 

• 𝐍𝐞𝐰 𝐕𝐨𝐥𝐮𝐦𝐞 = �𝛑(𝐃+∆𝐃)𝟐

𝟒
� (𝐋𝟏 + ∆𝐋) 

 

Then, the volumetric strain can be written as 

𝜺𝒗 =
∆𝑽
𝑽

=
�𝝅(𝑫 + ∆𝑫)𝟐

𝟒 � (𝑳𝟏 + ∆𝑳) − � 𝝅𝑫
𝟐

𝟒 �𝑳𝟏

� 𝝅𝑫
𝟐

𝟒 �𝑳𝟏
 

Dividing out, clearing brackets and ignoring the product of two small terms, this reduces to 

𝜺𝒗 =
∆𝑳
𝑳𝟏

+ 𝟐
∆𝑫
𝑫

= 𝜺𝑳 + 𝟐𝜺𝒄 

Substituting the equations for the axial and circumferential stresses into this, leads to 

𝜺𝒗 =
𝒑𝑫
𝟒𝒕𝑬

(𝟓 − 𝟒𝝁)
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3. BUCKLING 

 

3.1. Introduction 

Buckling is a process by which a structure cannot withstand loads with its original shape, so 

that it changes its shape in order to find a new equilibrium configuration. It is generally 

resulting from structural instability due to a compressive action on the element involved. The 

effects are basically geometric, like large displacements or even plasticity in the walls of the 

structure.  

Different stability theories have been formulated in order to determine the conditions under 

which a structural system, which is in equilibrium, ceases to be stable.  The load for which a 

structure ceases to be stable and starts to buckle is known as the “Critical Buckling Load” (Pcr). 

 

Figure 6: Load deflection diagram 

 

It is a so relevant value in order to analyze the behavior of a structure. Three different types of 

equilibriums can be reached: 
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1. Stable equilibrium: The pressure applied doesn´t reach the critical load, so that the 

structure returns to its original equilibrium state when the force is removed. 

 

Figure 7: Stable equilibrium 

 

2. Neutral or indifferent equilibrium: The load reached exactly the critical point and the 

elastic restoring force is not sufficient to return the structure to its initial position. 

 

Figure 8: Neutral equilibrium 

 

3. Unstable equilibrium:  If the system is subjected to a compressive load that exceeds 

the critical buckling pressure, the column will bend considerably. Depending on the 

magnitude of the load, the structure either will remain in the bent position or will 

completely collapse and fracture. 
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Figure 9: Unstable equilibrium 

 

3.2 Types of Buckling 

The way in which buckling occurs depends on how the structure is loaded and on its 

geometrical and material properties. The pre-buckling process is often non-linear if there is a 

reasonably large percentage of bending energy being stored in the structure throughout the 

loading history.  

According to the percentage of bending energy, the two basic ways in which a conservative 

system may lose its stability are: nonlinear or limit point buckling and bifurcation buckling. 

 

3.2.1 Nonlinear collapse  

In this way of buckling, the systems initially deform slowly and the stiffness of the structure or 

the slope of the load-deflection curve, decreases with increasing load. At the critical buckling 

point, the load-deflection curve has zero slope, and if the load is maintained, failure of the 

structure is usually dramatic and instantaneous.  



3. BUCKLING 
 

Myriam Iturgaiz Elso 
 

16 

 

Figure 10: Load deflection diagram: Nonlinear buckling 

 

3.2.2. Bifurcation Buckling 

It refers to a different kind of failure. At the bifurcation point (critical load is reached), where 

the primary and secondary paths intersect, more than one equilibrium position is possible. The 

primary path is not usually followed after loading exceeds this point and the structure is in the 

post-buckling state. The slope of the secondary path at the bifurcation point determines the 

nature of the post-buckling. Positive slope indicates that the structure will have post buckling 

strength, whilst a negative slope means that the structure will simply collapse. 

 

Figure 11: Load deflection diagram: Bifurcation buckling 
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3.3. Post-buckling of perfect and imperfect systems 

After the bifurcation point, three main situations can happen depending on the type of system 

under study. 

1. Stable-symmetric point of bifurcation: The buckling is characterized by a quick growth 

of the deflections after the critical point of the perfect system is reached.  

 

Figure 12: Stable-symmetric point of bifurcation 

After the bifurcation, the load can be increased, that means the structure has a stable 

behavior after buckling. It is a common case of post-buckling in columns, beams and 

plates. 

2. Unstable-symmetric point of bifurcation: After reaching the bifurcation load the 

structure collapses immediately. Imperfections play a more important role that in the 

case before. Small imperfections can have a huge influence reducing the critical load. 

 

  Figure 13: Unstable-symmetric point of bifurcation 
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3. Asymmetric point of bifurcation: Depending on the direction of the imperfection, a 

symmetric stable or an asymmetric unstable behavior results. It is the extreme case, 

because the system loses its stability at a limit point (quite reduced comparing to the 

critical point) for small positive values of the imperfection. 

 

Figure 14: Asymmetric point of bifurcation 

 

3.4. Buckling of thin cylindrical shells 

As commented before, thin-walled shells have many applications in engineering such as 

underground pipes and outer shells of submarines. When designing those structures one 

should consider not only the strength problem in service, but also the buckling problem. They 

are prone to a large number of imperfections, due to their manufacturing difficulties.  

These imperfections affect the load carrying capacity of these shells. The imperfections that 

affect the strength of thin cylindrical shells are classified into three main groups: 

1. Geometrical:  Out-of straightness, initial ovality and geometrical eccentricities. 

2. Structural: Small holes, residual stresses and material inhomogenities. 

3. Loading imperfections: Imperfect boundary conditions, non-uniform edge load 

distribution, load eccentricities. 

The differential equation of the classical buckling theory of a thin-walled shell is written as 

𝑫
𝒉 
𝛁𝟖𝒘 + 𝑬𝒌𝒙𝟐  𝝏

𝟒𝒘
𝝏𝒚𝟒

+ 𝟐𝑬𝒌𝒙𝒌𝒚
𝝏𝟒𝒘

𝝏𝒙𝟐𝝏𝒚𝟐
+  𝑬𝒌𝒚𝟐

𝝏𝟒𝒘
𝝏𝒙𝟒

− 𝝈𝒙
(𝟎)𝛁𝟒 �𝝏

𝟐𝒘
𝝏𝒙𝟐

� − 𝟐𝝈𝒙𝒚
(𝟎)𝛁𝟒 � 𝝏

𝟐𝒘
𝝏𝒙𝝏𝒚

� −

−𝝈𝒚
(𝟎)𝛁𝟒 �𝝏

𝟐𝒘
𝝏𝒚𝟐

� = 𝟎 
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where  𝜎𝑥
(0),𝜎𝑥𝑦

(0),𝜎𝑦
(0)  are the initial membrane stresses; 𝑤 is buckling deflection in the z 

direction; 𝐸 is Young´s modulus; 𝜇 is the Poisson´s ratio;  h and L are, respectively thickness 

and length of the shell; 𝐷 = 𝐸ℎ3

[12(1−𝜇2)] is the bending stiffness; 𝑘𝑥 ,𝑘𝑦 , curvature in x ,y 

direction. 

 

Figure 15: Structure of a thin-walled shell and its coordinate system 

 

3.5. Buckling of thin-walled cylinders under axial pressure 

 

3.5.1. Introduction 

 

Thin-walled cylindrical shells are, in general, highly efficient structures; and they have wide 

practical application, for example, in the aerospace, petrochemical and construction industries. 

When thin-walled shell structures are loaded in compression, their strength is limited by 

buckling; and since such buckling is often catastrophic, reliable prediction of the buckling 

strength of shells is a strong aspiration of engineers.  

 

In addition to this, cylindrical shells used in civil engineering applications are often subject to 

very non-uniform axial compressive stresses, but very little research has been conducted on 

the failure criteria to which they should be designed. Cylinders under uniform axial 
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compression have been widely studied, but non-uniform axial loading has received much less 

attention. Wind loaded cylinders, which develop non-uniform radial compression have also 

received some attention, but very limited information exists on the buckling, nonlinear and 

post-buckling behavior to more general patterns of non-uniform axial compressive stress.  

 

Therefore, the present section is concerned with aspects of the elastic buckling of thin 

cylindrical shells under uniform and non-uniform axial compression. 

 

 

3.5.2. Ways of solving the buckling problem 

 

3.5.2.1. Analytic Solution 

 

If a cylindrical shell simply supported at the ends is uniformly compressed in the axial direction 

as shown in Fig. 16, the general solution for very small displacements can be given in the 

following form[1]: 

 

Figure 16: Cylindrical shell subjected to axial load 

[1] Subtracted from the article “Buckling strength of the cylindrical shell and tank subjected to axially compressive 

loads”; Seung-Eock Kim, Chang-Sung Kim 
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𝑢 = 𝐴 sin(𝑛𝜃) 𝑐𝑜𝑠 �𝑚𝜋𝑥
𝐻
� ,                (1) 

𝑣 = 𝐵 sin(𝑛𝜃) 𝑐𝑜𝑠 �𝑚𝜋
𝐻
� ,                    (2) 

and 

𝑤 = C sin(nθ) cos �mπ
H
�                 (3) 

where A, B and C are constants; H is the height of the cylindrical shell; and n and m are the 

buckling number of circumferential and longitudinal half-waves, respectively. When the simply 

supported conditions of w = 0 and d2w/dx2 = 0 are used at the ends, the critical stress is 

obtained as 

σcr = Nx
t

= R E
S(1−ν2)

   ,                   (4) 

 

𝑅 = (1 − 𝜈2) 𝜆4 + 𝛼[(𝑛2 + 𝜆2)4 − (2 + 𝜈)(3− 𝜈)𝜆4𝑛2 + 2𝜆4(1− 𝜈2) − 𝜆2𝑛4(7 + 𝜈) +

          𝜆2𝑛2(3 + 𝜈) + 𝑛4 − 2𝑛6] , 

𝑆 = λ² �(𝑛2 + 𝜆2)2 + 2
1−𝜈

�𝜆2 + 1−𝜈
2
𝑛2� [1 + 𝛼(𝑛2 + 𝜆2)2]− 2𝜈2𝜆2

1−𝜈
+ 2𝛼

1−𝜈
�𝜆2 + 1−𝜈

2
𝑛2� [𝑛² +

       (1 − 𝜈)𝜆2]� , 

𝛼 =
𝑡2

12𝑅2
 , 

𝜆 =
𝑚𝑅𝜋
𝐻

 , 

Nx is the axial force, E is Young’s modulus, 𝜈 is Poisson’s ratio, t is the thickness of the shell, 

and R is the radius of the shell. Theoretically, the critical stress of Eq. (4) has an infinite number 

of solutions as the values of m and n vary. The minimum critical stress among these is 

determined as the buckling stress. One difficulty in using Eq. (4) is that the m and n values 

leading to the buckling stress are unknown until a large number of critical stresses are 

calculated and compared. As a result, the equation essentially requires a lot of calculations of 

critical stresses depending on the values of m and n in order to get the lowest critical stress, 
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i.e. buckling stress. 

Assuming that many buckling waves (m) form along the length of the cylinder, the value of 𝜆2 

becomes large. Then, Eq. (4) can be simplified in the following form: 

𝜎𝑐𝑟 =
𝑁𝑥
𝑡

=
1 − 𝜈2

𝐸 �𝛼
(𝑛2 + 𝜆2)2

𝜆2
+

(1 − 𝜈2)𝜆2

(𝑛2 + 𝜆2)2�                                                                          (5) 

When the value of n in Eq. (5) is equal to zero, axisymmetric buckling occurs, and Eq. (5) is 

simplified as 

  

𝜎𝑐𝑟 =
𝑁𝑥
𝑡

= 𝐷�
𝑚2𝜋²
𝑡𝐻2 +

𝐸𝐻2

𝑅2𝐷𝑚²𝜋²
�                                                                                                   (6) 

 

where D = Et3/[12(1− ν2)] is the flexural rigidity. Since σcr is a continuous function of 

mπ/H, the minimum value of Eq. (6) can be written in the following form: 

 

𝝈𝒄𝒓 =
𝑬𝒕

𝑹�𝟑(𝟏 − 𝝂𝟐)
                                                                                                                                (7) 

 
where E is Young´s Modulus, t is the shell thickness, R is the shell radius, 𝜈 is Poisson’s ratio.  
 
 

Furthermore, it is possible to see that the classical buckling stress doesn´t depend on the 

buckling form. This calculation is valid only for purely axially loaded isotropic cylinders with 

traditional bearing. 

 

Applying the classical buckling stress to this work, the determination of a linear critical load is 

required, so the 𝜎𝑐𝑟 will be multiplied by the thickness of the cylindrical shell in order to obtain 

a result in N/mm. 
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3.6. Buckling of thin-walled cylinders under radial pressure 

 

3.6.1. Introduction 

The stability of circular cylindrical shells under uniform lateral pressure has been widely 

investigated. The behavior of cylindrical shells under external pressure is quite sensitive to 

geometric imperfections. There have been many theoretical studies investigating the strength 

of cylinders with specific imperfection forms, and it is well established that axisymmetric 

imperfections cause the greatest reductions in the buckling strength. 

When thin shells are subjected to external pressure, the collapse is initiated by yielding, which 

is often the dominant factor, while the interaction with the instability is meaningful. In fact, 

the presence of imperfections reduces the load bearing capacity, so the classical elastic 

solution appears to be not adequate. 

The major factors that affect the collapse pressure of thin-walled cylinders are the diameter-

to-thickness ratio 𝐷/𝑡, the Young's modulus and yield stress of the material in the 

circumferential direction, and initial imperfections in the form of ovality and wall thickness 

variations. 

 

3.6.2. Ways of solving the buckling problem 

3.6.2.1. Analytic Solution 

There are a lot of different analytic solutions for thin-walled cylinders under external pressure, 

depending on the characteristics of the cylinder and the constraints applied. 

Considering a single-wave buckling mode, Glock calculated a solution of the buckling problem 

of constrained elastic cylinders. Glock used energy formulation in order to obtain the formula 

of the critical buckling load. 
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Figure 17: Glock´s Model Section 

 

According to the Glock´s approach, the deflection is described by the following equation[2]: 

𝑤 = 𝑤1 𝑠𝑖𝑛2 �
𝜋𝜃𝑣
2𝜃

� 

where   w = deflection of the buckled area  

 w1 = deflection amplitude in the buckling area 

 θv = variable of angle 

θ = angle of the buckling area 

As the cylinder buckles, the potential energy includes three parts: 

1. Flexural moment M within the buckling region. 

2. Ring compressive force N 

3. External uniform pressure Pcr accumulated during the process. 

Combining these parts, the following expression can be obtained: 

Π = 1
2
𝐸𝐼
𝑟3

 ∫ (𝑤 + 𝑤̈)2𝜃𝑜
0 𝑑𝜃 + ∫ 𝑁2

2𝐸𝐹
𝜋
0 𝑟 𝑑𝜃 − ∫ (𝑤 + 𝑤̈)2𝜃𝑜

0 ∫ 𝑃𝑐𝑟
𝜃𝑜
0 𝑤𝑟𝑑𝜃 

 

[2] Subtracted from the article ”Buckling Models and Influencing Factors for Pipe Rehabilitation Design”; Leslie K. 

Guice and J.Y. Li 
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where  Π  =  potential energy 

 EI = flexural stiffness of the thin cylinder 

 EF = tensile stiffness of the thin ring 

 N = hoop compressive force 

After substituting and integrating the equation above, the potential energy may be written as 

Π =
1

16
𝐸𝐼
𝑟3
�
𝜋
𝜃
�
4
𝑤14 𝜃 +

𝑁2

2
𝑟𝜋
𝐸𝐹

−
𝑃𝑐𝑟𝑟

2
𝑤1𝜃 

The minimum potential energy criterion should satisfy the following requirements: 

𝛿Π
𝛿𝑤1

=
1
4
𝐸𝐼
𝑟3
𝜃 �

𝜋
𝜃
�
4
𝑤1³ + 𝑁

𝛿𝑁
𝛿𝑤1

 𝑟𝜋
𝐸𝐹

−
𝑃𝑐𝑟
2
𝑟𝜃 = 0  

 

𝛿2Π
𝛿𝑤12

=
3
4
𝐸𝐼
𝑟3
𝜃 �
𝜋
𝜃
�
4
𝑤12 + ��

𝛿𝑁
𝛿𝑤1

�
2

+ 𝑁�
𝛿²𝑁
𝛿𝑤1²

��
 
𝑟𝜋
𝐸𝐹

= 0 

 

Solving both equations simultaneously, the following equation for the critical external pressure 

is reached: 

�
𝑃𝑐𝑟𝑟3

𝐸𝐼 �
𝑐𝑟

= 0.969�
𝑟2𝐸𝐹
𝐸𝐼 �

2
5

 

 

That equation is the result of Glock´s approach, but if the assumption is made that the flexural 

modulus of elasticity is approximately equal to the tensile modulus and considering the 

condition of plane-strain, the equation can be simplified as: 

𝑝𝑐𝑟 =
𝐸

1 − 𝜈2
�
𝑡
𝐷
�
2,2

 



3. BUCKLING 
 

Myriam Iturgaiz Elso 
 

26 

where E is the Young’s modulus, 𝜈 the Poisson’s ratio, D the cylinder diameter, and t the wall 

thickness. 

Moreover, considering a single-wave buckling mode for long (free of boundary conditions) 

perfectly round elastic cylinders, the value of the critical pressure is given by the following 

formula: 

𝑝𝐺𝐿 =
𝐸

1 − 𝜇2
�
𝑡
𝐷
�
3

 

This applies for cylinder lengths that fit: 

𝐿 >
4𝜋√6

27
(1 − 𝜇2)0.25𝑑�

𝑑
𝑡

 

If a cylinder does not fall into that “long” category above the last equation is not suitable. 

There are two equations for short cylinders, of which the Von Mises is considered the better. 

The first one is the Southwell equation. It only takes radial pressure into account (not axial) 

and the critical buckling pressure is 

𝑝𝑐 =  
1
3

(𝑛2 − 1)
2𝐸

1 − 𝜇2 �
𝑡
𝑑�

3
+

2𝐸 𝑡𝑑

(𝑛2 − 1)𝑛4 �2𝐿𝜋𝑑�
4 

where n in the number of waves in circumferential direction at collapse. 

 

The second equation is called Von Mises equation. It may be used for cylinders subject to 

combined radial and axial pressure, or just radial. The critical pressure is  

𝑃𝐶 =
1

𝑛2 − 1 + �𝜋𝑑8𝐿�
2

⎣
⎢
⎢
⎢
⎡

��𝑛2 + �
𝜋𝑑
2𝐿
�
2

�
2

− 2𝑘1𝑛2 + 𝑘2� ∗
1
3

2𝐸
1 − 𝜇2

�
𝑡
𝑑
�
3

+
2𝐸𝑡
𝑑

��2𝑛𝐿
𝜋𝑑 �

2
+ 1�

2

⎦
⎥
⎥
⎥
⎤

 

where 
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𝑘1 = (1 + (1 + 𝜇)𝜌)(2 + (1 − 𝜇)𝜌) 

𝑘2 = [1 − 𝜌𝜇] �1 + 𝜌(1 + 2𝜇) − 𝜇2(1 − 𝜇2) �1 +
1 + 𝜇
1 − 𝜇

𝜌�� 

and 

𝜌 =
1

�2𝑛𝐿
𝜋𝑑 �

2
+ 1

 

For both Von Mises and Southwell equations, n is the number of buckling waves, t the wall 

thickness, d the diameter of the cylinder, 𝜇 the Poisson´s ratio and L the length of the cylinder. 

 

3.6.2.2.  Weighted Method Solution 

Theoretical method can only solve some relatively simple problems. However, for more 

complicated problems it leads to a very complicated form such as an exponential series 

solution or a Fourier series solution. The weighted method is a really useful tool for solving 

complicated buckling problems by making use of the solutions of special simple problems. To 

determine the weights, some special known results are applied. 

As mentioned before, the differential equation of the classical buckling theory of a thin-walled 

shell is  

𝐷
ℎ 
∇8𝑤 + 𝐸𝑘𝑥2  𝜕

4𝑤
𝜕𝑦4

+ 2𝐸𝑘𝑥𝑘𝑦
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+  𝐸𝑘𝑦2

𝜕4𝑤
𝜕𝑥4

− 𝜎𝑥
(0)∇4 �𝜕

2𝑤
𝜕𝑥2

� − 2𝜎𝑥𝑦
(0)∇4 � 𝜕

2𝑤
𝜕𝑥𝜕𝑦

� −

−𝜎𝑦
(0)∇4 �𝜕

2𝑤
𝜕𝑦2

� = 0   (1) 

where  𝜎𝑥
(0),𝜎𝑥𝑦

(0),𝜎𝑦
(0)  are the initial membrane stresses; 𝑤 is buckling deflection in the z 

direction; 𝐸 is Young´s modulus; 𝜇 is the Poisson´s ratio;  h and L are, respectively thickness 

and length of the shell; 𝐷 = 𝐸ℎ3

[12(1−𝜇2)] is the bending stiffness; 𝑘𝑥 ,𝑘𝑦 , curvature in x ,y 

direction. 

In axisymmetric problems 𝜎xy
(0) =0. Then, applying that to the equation 1, we have 
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𝐷
ℎ 
𝛻8𝑤 + 𝐸𝑘𝑥2  𝜕

4𝑤
𝜕𝑦4

+ 2𝐸𝑘𝑥𝑘𝑦
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+  𝐸𝑘𝑦2

𝜕4𝑤
𝜕𝑥4

− 𝜎𝑥
(0)𝛻4 �𝜕

2𝑤
𝜕𝑥2

�−𝜎𝑦
(0)𝛻4 �𝜕

2𝑤
𝜕𝑦2

� = 0               (2) 

Because there are no odd partial derivates, variables can be separated so that we can suppose 

a buckling deflection function that satisfies whose general form is 

𝑤 = 𝑓(𝑥) 𝑠𝑖𝑛
𝑛𝑦
𝑅

 

where  

𝑓(𝑥) = �𝑓𝑖(𝑥)
𝑚

𝑖

 

Substituting the last two equations into the equation 2, a series of equations in x is obtained. 

Assuming that coefficients before the same powers of x are equal zero, there are (m+1) 

equations for p0, p1,p2,…pm. 

 Introducing weights 𝜆1, 𝜆2,… 𝜆m, where, the corresponding solution can be written as 

𝑝 = �𝜆𝑖𝑝𝑖

𝑚

𝑖

 

What should we do to determine the weights 𝜆0 ,𝜆1, 𝜆2,… 𝜆m  ? 

We can find 𝜆I, substituting m groups of known results for pi
cr , ni (i=1,2,…m) from  the finite 

elements calculations and solving the group of equations. Finally we can substitute n=1,2,3… 

for different buckling modes into equation 1. The minimum is the desired critical load pcr.
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4. FINITE ELEMENT METHOD 

4.1. Introduction 

The Finite Element Method (FEM) has become very important to solve engineering problems, 

allowing solving cases that until recent time were virtually impossible by traditional 

mathematical methods. This required to prototype, test them and make improvements 

iteratively, what brought high costs both financially and in time of development. 

The FEM provides a mathematical model for calculating the real system, easier and cheaper to 

change than a prototype. However, it remains as an approximate calculating method due to 

the basic assumptions of the method. Therefore, prototypes are still necessary, but in lower 

quantity, since the first one can be well approximated to the optimum design. 

The finite element method as mathematical formulation is relatively new; although its basic 

structure has been known for quite a long time, in recent years a great development has been 

achieved due to the advances in computer technology. These computer advances have 

allowed the user applying many programs that can perform finite element calculations. 

Furthermore, FEM allows detailed visualization of where structures bend or twist, and 

indicates the distribution of stresses and displacements. 

The general idea of the finite element method is to divide a continuum in a set of small 

elements interconnected by a range of points called nodes. 

 

Figure 18: Finite Element Method 
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The equations governing the behaviour of the continuum also govern the element’s behaviour. 

In any system subject to analysis, next parts can be distinguished: 

• Domain:  Geometric space where the system is analysed. 

• Boundary conditions: Known variables that determine changes in the system: load, 

displacement, temperature, voltage, heat sources... 

• Unknown factor: System variables to know after the boundary conditions have been 

applied on the system: displacements, stresses, temperatures... 

 

4.2. How the finite element method works 

In a continuum problem of any dimension the field variable (whether it is pressure, 

temperature, displacement, stress, or some other quantity) possesses infinitely many values 

because it is a function of each generic point in the body or solution region. Consequently, the 

problem is one with an infinite number of unknowns.  

The finite element discretization procedures reduce the problem to one with a finite number 

of unknowns by dividing the solution region into elements and by expressing the unknown 

field variable in terms of assumed approximating functions within each element. The 

approximating functions (sometimes called interpolation functions) are defined in terms of the 

values of the field variables at specified points called nodes. In addition to boundary nodes, an 

element may also have a few interior nodes. The nodal values of the field variable and the 

interpolation functions for the elements define completely the behaviour of the field variable 

within the elements. 

For the finite element representation of a problem, the nodal values of a field variable become 

the unknowns. Once these unknowns are found, the interpolation functions define the field 

variable throughout the assemblage of elements. 

Clearly, the nature of the solution and the degree of approximation depend not only on the 

size and number of the elements used but also on the interpolation functions selected. As one 

would expect, we cannot choose functions arbitrarily, because certain compatibility conditions 

should be satisfied. Often functions are chosen so that the field variable or its derivatives are 
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continuous across adjoining element boundaries.  These are applied to the formulation of 

different kinds of elements. 

However, an important feature of the finite element method that sets it apart from other 

numerical methods has not been mentioned. This feature is the ability to formulate solutions 

for individual elements before putting them together to represent the entire problem. This 

means, for example, that if a problem in stress analysis is being treated, the force–

displacement or stiffness characteristics of each individual element is found and then the 

elements are assembled to find the stiffness of the whole structure. In essence, a complex 

problem reduces to considering a series of greatly simplified problems. 

Regardless of the approach used to find the element properties, the solution of a continuum 

problem by the finite element method always follows an orderly step-by-step process.  

To summarize in general terms how the finite element method works, the steps of proceeding 

are briefly described. 

A body of matter (solid, liquid, or gas) or simply a region of space in which a particular 

phenomenon is occurring is considered. 

 

Figure 19:  Finite element discretization of a turbine blade profile 

 

The steps to follow in order to perform a finite element method analysis are: 

1. Discretize the Continuum. The first step is to divide the continuum or solution region 

into elements. In the example of Figure 17 the turbine blade has been divided into 
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triangular elements that might be used to find the temperature distribution or stress 

distribution in the blade. A variety of element shapes may be used, and different 

element shapes may be employed in the same solution region. Indeed, when analysing 

an elastic structure that has different types of components such as plates and beams, 

it is not only desirable but also necessary to use different elements in the same 

solution. Although the number and the type of elements in a given problem are 

matters of engineering judgment, the analyst can rely on the experience of others for 

guidelines.  

2. Select Interpolation Functions. The next step is to assign nodes to each element and 

then choose the interpolation functions to represent the variation of the field variable 

over the element. The field variable may be a scalar, a vector, or a higher-order tensor. 

Often, polynomials are selected as interpolation functions for the field variable 

because they are easy to integrate and differentiate. The degree of the polynomial 

chosen depends on the number of nodes assigned to the element, the nature and 

number of unknowns at each node, and certain continuity requirements imposed at 

the nodes and along the element boundaries. The magnitude of the field variable as 

well as the magnitude of its derivatives may be the unknowns at the nodes. 

3. Find the Element Properties. Once the finite element model has been established, the 

matrix equations expressing the properties of the individual elements can be 

determined.  

4. Assemble the Element Properties to Obtain the System Equations. To find the 

properties of the overall system modelled by the network of elements we must 

“assemble” all the element properties. In other words, we combine the matrix 

equations expressing the behaviour of the elements and form the matrix equations 

expressing the behaviour of the entire system. The matrix equations for the system 

have the same form as the equations for an individual element but they contain many 

more terms because they include all nodes. 

The basis for the assembly procedure stems from the fact that at a node, where 

elements are interconnected, the value of the field variable is the same for each 

element sharing that node. A unique feature of the finite element method is that the 

system equations are generated by assembly of the individual element equations. In 

contrast, in the finite difference method the system equations are generated by 
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writing nodal equations.  

5. Impose the Boundary Conditions. Before the system equations are ready for being 

solved, they must be modified to account for the boundary conditions of the problem. 

At this stage we impose known nodal values of the dependent variables or nodal loads.  

6. Solve the System Equations. The assembly process gives a set of simultaneous 

equations that we solve to obtain the unknown nodal values of the problem. If the 

problem describes steady or equilibrium behaviour, then we must solve a set of linear 

or nonlinear algebraic equations. There are different standard solution techniques for 

solving these equations. If the problem is unsteady, the nodal unknowns are a function 

of time, and we must solve a set of linear or nonlinear ordinary differential equations.  

7. Make Additional Computations If Desired. Many times we use the solution of the 

system equations to calculate other important parameters. For example, in a 

structural problem the nodal unknowns are displacement components. From these 

displacements we calculate element strains and stresses. Similarly, in a heat-

conduction problem the nodal unknowns are temperatures, and from these we 

calculate element heat fluxes. 

 

4.3. Mechanical variables and basic equations 

An important  advantage of the FEM is that its use is not restricted to certain structures. To 

achieve a uniform and clear presentation, an operator formulation is applied using matrix 

variables. The variables are divided into field and boundary variables.[3] 

Basic mechanical equations: 

𝜀 = 𝐷𝑘 · 𝑢    (Kinematic law)                            (2) 

𝜎 = 𝐸 · 𝜀 + 𝐷 · 𝜀̇   (Material law)                            (3) 

−(𝑝 + 𝑓) = 𝐷𝐺 · 𝜎   (Dynamic equilibrium conditions)            (4) 

[3] Subtracted from “Finite–Elemente–Methode der Statik und Dynamik“; Eller, C. 
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Features in these three basic equations: 

𝑝 - Vector of external force variables 

𝑢 - Vector of external displacement variables 

𝑓 - Vector of d'Alembert inertial forces 

𝜎 - Vector of internal force variables 

𝜀 - Vector of internal displacement variables (Distortion, stretching, curvature) 

 

Along the boundaries the following variables are defined: 

𝑡 - Vector of boundary force variables 

𝑟 - Vector of boundary displacements variables. 

 

In addition, the static and geometric constraints must be satisfied at the boundaries of the 

mechanical system. 

𝑟 = 𝑅𝑟 · 𝑢    (Displacement boundary conditions)   (5) 

𝑡 = 𝑅𝑡 · 𝜎    (Force variables of boundary conditions)  (6) 

 

 

4.4. Equilibrium conditions of geometrically nonlinear structures 

For the formulation of the equilibrium of complex structures energy statements instead of 

differential equations are used. Such an energy principle is the principle of virtual 

displacements. 
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The principle of virtual displacements is a global equilibrium formulation. It is based on the 

evidence that the sum of virtual work is zero. 

𝛿𝑊 = 𝛿𝑊𝑖 + 𝛿𝑊𝑎 = 0     (The basic equation)             (7) 

Thereafter, a deformed body is in balance if the internal and external virtual work due to a 

virtual displacement are identical: 

𝛿𝑊𝑖 = 𝛿𝑊𝑎       (Equilibrium condition)           (8) 

For the present thesis dealt with thin-walled shell structures, this principle is: 

∫ 𝜎𝑇𝐴 · 𝛿𝜀 · 𝑑𝐴 = ∫ 𝑝𝑇𝐴 · 𝛿𝑢 · 𝑑𝐴 + ∫ 𝑡𝑇𝑆𝑡
· 𝛿𝑟 · 𝑑𝑆𝑡              (9) 

As part of geometric non-linear theories, large structural deformations are taken into account. 

The basic kinematic equation in this case reads as 

𝜀 = 𝐷𝑘 · 𝑢 = �𝐷𝐾𝐿 + 1
2

· 𝐷𝐾𝑁 �𝑢�� · 𝑢              (10) 

The kinematic operator Dk can be split into a deformation-independent linear partial operator 

DKL and a deformation-dependent, nonlinear partial operator  DKN�u�. 

The virtual strain δε is obtained from Eq. (10) by variation. 

𝛿𝜀 = 𝑑𝜀
𝑑𝑢

· 𝛿𝑢 = �𝐷𝐾𝐿 + 𝐷𝐾𝑁 �𝑢�� · 𝛿𝑢              (11) 

The material law for physically linear material behavior is: 

𝜎 = 𝐸 · 𝜀 = 𝐸 · 𝐷𝐾 · 𝑢                             (12) 

The virtual boundary displacements 𝛿𝑟 are expressed with the boundary operator 𝑅𝑟 by the 

field distribution displacements 𝛿𝑢: 

𝛿𝑟 = 𝑅𝑟 · 𝛿𝑢                  (13) 

Setting equations (10) to (13) in the equilibrium requirement (9), yields: 
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∫ 𝑢𝑇𝐴 · �𝐷𝐾𝐿 + 1
2

· 𝐷𝐾𝑁 �𝑢��
𝑇

· 𝐸 · �𝐷𝐾𝐿 + 𝐷𝐾𝑁 �𝑢�� · 𝛿𝑢 · 𝑑𝐴 =  

= ∫ 𝑝𝑇𝐴 · 𝛿𝑢 · 𝑑𝐴 + ∫ 𝑡𝑇𝑆𝑡
· 𝑅𝑟 · 𝛿𝑢 · 𝑑𝑆𝑡             (14) 

As a part of the finite element method, the deformations of the elements are approximated: 

𝑢 = Ω · 𝜐                 (15) 

and 

𝛿𝑢 = Ω · 𝛿𝜐                 (16) 

where Ω denotes the matrix of shape function and 𝜐 or 𝛿𝜐 represent the actual or virtual nodal 

displacements. 

Inserting (15) and (16) into the equilibrium requirement (14), yields: 

𝛿𝑣𝑇 �Ω𝑇
𝐴

· �𝐷𝐾𝐿 +
1
2

· 𝐷𝐾𝑁 �Ω · 𝜐��
𝑇

· 𝐸 · �𝐷𝐾𝐿 + 𝐷𝐾𝑁 �Ω · 𝜐𝑢�� · Ω · 𝜐 · 𝑑𝐴 = 

= 𝛿𝑣𝑇 ∫ Ω𝑇𝐴 · 𝑝 · 𝑑𝐴 + 𝛿𝑣𝑇 ∫ Ω𝑇𝑆𝑡
· 𝑅𝑟𝑇 · 𝑡 · 𝑑𝑆𝑡            (17) 

After the introduction of the linear and nonlinear strain displacement matrix: 

𝐻𝐿 = 𝐷𝐾𝐿 · Ω                 (18) 

𝐻𝑁�𝑣� = 𝐷𝐾𝑁 · �Ω · 𝜐� · Ω                (19) 

and simplified division by 𝛿𝑣𝑇, the equation (17) can be written as: 

��𝐻𝐿 + 𝐻𝑁�𝑣��
𝑇 · 𝐸 · �𝐻𝐿 +

1
2

· 𝐻𝑁�𝑣��
𝑇

· 𝑑𝐴 · 𝜐
𝐴

= 

= ∫ Ω𝑇𝐴 · 𝑝 · 𝑑𝐴 + ∫ Ω𝑇𝑆𝑡
· 𝑅𝑟𝑇 · 𝑡 · 𝑑𝑆𝑡                           (20) 

This non-linear relationship for the element equilibrium cannot be solved and may require 

numerical solution methods. For this, the force and deformation variables are incremented, 

i.e. they are split into the fundamental state assumed to be known (-) and the increments (+). 
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Figure 20: Fundamental state and increase parameters 

IS – Initial state 

FS - Fundamental increment 

NS - Neighboring increment 

In the figure below the mentioned states are demonstrated visually for both axial and radial 

pressure: 

 

 

 

IS

 

FS

 

NS
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Figure 21: Visual demonstration of the states under axial pressure. 

 

   Figure 22: Visual demonstration of the states under radial pressure. 

It is therefore: 

𝑣 = 𝑣− + 𝑣+;   𝑝 = 𝑝− + 𝑝+;    𝑡 = 𝑡− + 𝑡+;          (21) 

Introducing the equation (21) into the equilibrium equation (20), yields: 

��𝐻𝐿 + 𝐻𝑁�𝑣− + 𝑣+��𝑇 · 𝐸 · �𝐻𝐿 +
1
2

· 𝐻𝑁�𝑣− + 𝑣+��
𝑇

· 𝑑𝐴 · (𝑣− + 𝑣+
𝐴

) = 

= ∫ Ω𝑇𝐴 · (𝑝− + 𝑝+) · 𝑑𝐴 + ∫ Ω𝑇𝑆𝑡
· 𝑅𝑟𝑇 · (𝑡− + 𝑡+) · 𝑑𝑆𝑡            (22) 

After multiplying out and sorting results, the following element matrices and vectors arise: 

• Elastic stiffness matrix: 

𝑘𝑒 · 𝑣+ = �𝐻𝐿𝑇 · 𝐸 · 𝐻𝐿 · 𝑑𝐴 · 𝑣+
𝐴

 

• Linear initial stress matrix: 

𝑘𝜎𝐿 · 𝑣+ = �𝐻𝑁𝑇�𝑣+� · 𝐸 · 𝐻𝐿 · 𝑣− · 𝑑𝐴
𝐴

 

• Nonlinear initial stress matrix: 
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                                          𝑘𝜎𝑁 · 𝑣+ = ∫ 1
2

· 𝐻𝑁𝑇�𝑣+� · 𝐸 · 𝐻𝑁 · (𝑣−) · (𝑣−)𝑑𝐴𝐴                           (23) 

• Linear initial deformation matrix: 

𝑘𝑢𝐿 · 𝑣+ = �(𝐻𝐿𝑇 · 𝐸 · 𝐻𝑁 · �𝑣−� +𝐻𝑁𝑇�𝑣−� · 𝐸 · 𝐻𝐿) · 𝑑𝐴
𝐴

· 𝑣+ 

• Nonlinear initial deformation matrix: 

𝑘𝑢𝑁 · 𝑣+ = � �𝐻𝑁𝑇 · �𝑣−� · 𝐸 · 𝐻𝑁 · �𝑣−�� · 𝑑𝐴
𝐴

· 𝑣+ 

• Vector of internal forces in the fundamental state: 

𝑔 · 𝑣+ = ��𝐻𝐿 + 𝐻𝑁 · �𝑣−��𝑇 · 𝐸 · �𝐻𝐿 +
1
2

· 𝐻𝑁�𝑣−�� · 𝑣− · 𝑑𝐴
𝐴

 

• Element load vector in the fundamental state: 

𝑝− = �Ω𝑇
𝐴

· 𝑝− · 𝑑𝐴 +� Ω𝑇
𝑆𝑡

· 𝑅𝑟𝑇 · 𝑡− · 𝑑𝑆𝑡 

• Incremental load vector 

𝑝+ = �Ω𝑇
𝐴

· 𝑝+ · 𝑑𝐴 +� Ω𝑇
𝑆𝑡

· 𝑅𝑟𝑇 · 𝑡+ · 𝑑𝑆𝑡 

 

Adding up all the element-related matrices, we obtain the tangential element stiffness matrix 

𝑘𝑇 = 𝑘𝑒+𝑘𝜎𝐿 + 𝑘𝜎𝑁 + 𝑘𝑢𝐿 + 𝑘𝑢𝑁              (24) 

With the introduced matrices and vectors, the element equilibrium relationship can be 

converted into the following matrix representation: 

𝑘𝑇 · 𝑣+ = �𝑘𝑒+𝑘𝜎𝐿 + 𝑘𝜎𝑁 + 𝑘𝑢𝐿 + 𝑘𝑢𝑁� · 𝑣+ = 𝑝 − 𝑔 · (𝑣−)           (25) 
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After the assembly of the finite elements, the system tangential stiffness relationship reads as: 

𝐾𝑇 · 𝑉+ = �𝐾𝑒+𝐾𝜎𝐿 + 𝐾𝜎𝑁 + 𝐾𝑢𝐿 + 𝐾𝑢𝑁� · 𝑉+ = 𝑃 − 𝐺 · (𝑉−)          (26) 

For the application of line-search algorithms, the load is incremented, i.e. divided into small 

load steps. Within this last step, equation (26) is solved iteratively until the right side is zero. 

An algorithm that has proved is the Newton - Raphson – scheme, rebuilding the tangential 

stiffness matrix with each  iteration step. (See figure 20) 

 

Figure 23: Newton-Raphson algorithm 

 

In geometrically linear investigations the arising deformations 𝑉 are by definition very small. 

The fundamental state can be connected to the output state (𝑉 = 0). The deformation vector 

𝑉+ = 𝑉 then describes the sought displacement field. The only system matrix remaining 

independent of the fundamental state deformations is the elastic stiffness matrix, so that from 

equation (26) the following linear system of equations results: 

𝐾𝑒 · 𝑉 = 𝑃                 (27) 

The total stiffness matrix 𝐾𝑒 is symmetric and positive definite, so that efficient solution 

algorithms such as the Cholesky - procedures can be used. 
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4.5. Stability Analysis 

In the implementation of stability testing is most sought after, whether next to a given 

equilibrium state (fundamental state 𝑉) an adjacent equilibrium position (adjacent state 𝑉+) 

without changing the external load is possible. If the deformation vector 𝑉 describes a 

balanced state of equilibrium, then the right side of the equation (26) is zero, because the 

external loads P and the internal stresses 𝐺(𝑉) are in equilibrium. 

The desired equilibrium position in the adjacent state (neighboring state 𝑉+) shall occur at 

unmodified load. The equilibrium condition according to equation (26) reads as: 

𝐾𝑇 · 𝑉+ = 0                 (28) 

with the vector 𝑉+ ≠ 0. 

Equation (28) describes a homogeneous system of equations. For non-trivial solution 𝑉+ the 

determinant of the coefficient matrix 𝐾𝑇 has to be zero. Adjacent equilibrium positions are 

therefore only possible if 

det𝐾𝑇 = 0                 (29) 

This criterion can be examined by the incremental-iterative path-following after each step load 

balanced by an accompanying eigenvalue calculation. If one eigenvalue of 𝐾𝑇 is equal to zero, 

so will be det𝐾𝑇 = 0, there is an instability point. 

As part of this thesis circular cylindrical shells under radial load will be investigated. Therefore 

the fundamental state occurs in only radial deformation, leading to a so called linear 

prebuckling state. The initial deformation matrices 𝐾𝑢𝐿 and  𝐾𝑢𝑁 are zero in this case. 

Assuming further that the fundamental state deformations arising are small, so quadratic 

terms 𝑉 are ignored. This means that the nonlinear initial stress matrix 𝐾𝜎𝑁 is negligibly small. 

Equation (28) is simplified thus: 

(𝐾𝑒 + 𝐾𝜎𝐿) · 𝑉+ = 0                (30) 

In the computer-based implementation of stability analysis, the structure with a reference load 

 0𝑃 (e.g. 𝑞0 = 1𝑁 𝑚𝑚2⁄ ) is loaded and determines the increase in load factor 𝜆𝐾𝑟 in which an 
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instability occurs. Considering this approach in the above equation (30), one gets the initial 

value problem of the so-called “classical stability”: 

(𝐾𝑒 + 𝜆𝐾𝑟 · 𝐾𝜎𝐿( 0𝑃)) · 𝑉+ = 0                (31) 

From the solution of this eigenvalue problem, the critical load factors 𝜆 and the corresponding 

buckling modes 𝑉+ are obtained. For the solution of the eigenvalue problem (see equation 31) 

the Lanczos algorithm was used in the present study.
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5. FINITE ELEMENT MODELLING WITH ANSYS 

 

5.1. Introduction 

ANSYS is a general purpose finite element modeling package for solving different mechanical 

problems numerically, such as static/dynamic structural analysis, heat transfer and fluid 

problems, as well as acoustic and electro-magnetic problems. 

ANSYS is divided into three steps when analyzing and solving a problem with the finite element 

method: 

1. Preprocessing: It is basically defining the problem; the major steps in preprocessing are 

given below: 

• Define key-points, nodes, lines, areas, volumes. 

• Define element type and geometric properties. 

• Meshing. 

2. Solution: the following steps should be specify before solving the problem:  

• Type of analysis: static, modal, buckling,… 

• Loads: point load or pressure, direction of the load,… 

• Constraints. 

3. Post-processing: Viewing of the results, such as: 

• Lists of nodal displacements and displacement plots. 

• Element forces and moments. 

• Stress contour diagrams. 
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5.2. Buckling with ANSYS 

Two techniques are available in ANSYS for predicting the buckling load and buckling mode of a 

structure: 

• Nonlinear buckling analysis 

• Eigenvalue buckling analysis. 

 

5.2.1. Eigenvalue buckling analysis 

Eigenvalue buckling analysis predicts the theoretical buckling strength of an ideal elastic 

structure. This analysis is used to predict the bifurcation point using a linearized model of 

elastic structure. It computes the structural eigenvalues for the given system loading and 

constraints. This is known as classical Euler buckling analysis.  

However, in real-life, structural imperfections and nonlinearities prevent most real-world 

structures from reaching their eigenvalue predicted buckling strength. That means that this 

method over-predicts the expected buckling loads. That is the reason why it is not 

recommended for accurate, real-world buckling prediction analysis.  

 

Figure 24: End shortening vs Axial load 
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The basic form of the eigenvalue buckling analysis is given by: 

�𝐾𝑒�{∅𝒊} = 𝝀𝒊�𝐾𝜎𝐿�{∅𝒊}  

where 

�𝐾𝑒� = Elastic stiffness matrix 

 

{∅𝒊} = Eigen vector 

𝝀𝒊= Eigen value for buckling mode 

�𝐾𝜎𝐿� = Initial stress matrix. This matrix includes the effects of membrane loads on the stiffness 

of the structure. It is also assembled based on the results of a previous linear static analysis. 

 

   The eigenvalue solution uses an iterative algorithm that obtains at first the eigenvalues and secondly 

the displacements that define the corresponding mode shape. 

 The eigenvalue represents the ratio between the applied load and the buckling load. This can be 

expressed as follows:  

 
𝝀𝒊 =

𝑩𝒖𝒄𝒌𝒍𝒊𝒏𝒈 𝑳𝒐𝒂𝒅
𝑨𝒑𝒑𝒍𝒊𝒆𝒅 𝑳𝒐𝒂𝒅

 

 That’s why it is often said that the eigenvalue is like a safety factor for the structure against buckling. 

On one hand, an eigenvalue less than 1.0 indicates that a structure has buckled under the applied 

loads.  On the other hand, an eigenvalue greater than 1.0 indicates that the structure will not buckle.  

 Another important point to note about this formulation is that only the membrane component of 

the loads in the structure is used to determine the buckling load. This means that the effect of 

prebuckling rotations due to moments is ignored.  
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5.2.2. Nonlinear buckling analysis 

It is more accurate than eigenvalue analysis because it employs non-linear, large-deflection, 

static analysis to predict buckling loads. Its mode of operation is very simple: the applied load 

is gradually increased until a load level is found whereby the structure becomes unstable. 

Normally each of these load increments will converge in a small number of iterations.  

It is also common that suddenly a very small increase in the load cause very large deflections.  

The nonlinear solver is ideally suited for modeling structures that do not collapse while 

buckling. In the nonlinear analysis the stiffness matrix is updated periodically (for every 

iteration of every load increment) based on the current deformed shape of the structure. This 

is important from a buckling point of view since the effect of the pre - and post-buckling 

deformations are included in the analysis. When we talk about 'pre-buckling deformations' we 

are generally referring to those deflections caused by the moments in the structure prior to 

buckling. 'Post buckling deformations' refers to those deflections that result from some initial 

buckling failure of the structure.  

It also permits the modeling of geometric imperfections, load perturbations and gaps. Another 

important point that should be made about the nonlinear buckling analysis is that material 

nonlinearities (yielding) can be considered in addition to the geometric effects. 

 

Figure 25: Buckling 
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5.3. ANSYS Elements 

To carry out the simulations of our project, two different elements from ANSYS library will be 

used: 

• SOLID 45 

• SHELL 63 

 

5.3.1. SOLID 45 

This element is used for three-dimensional modeling of solid structures. The element is 

defined by eight nodes, having three degrees of freedom at each node: translations in the 

nodal x, y, and z directions.   

The element has plasticity, creep, swelling, stress stiffening, large deflection, and large strain 

capabilities.   

Pressures may be input as surface loads on the element faces and positive pressures act into 

the element. Temperatures and fluencies may be input as element body loads at the nodes.  

The geometry, node locations, and the coordinate system for this element are shown in the 

following figure: 

 

Figure 26: SOLID 45 
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5.3.2. SHELL 63 

It has both bending and membrane capabilities. Both in-plane and normal loads are permitted. 

The element has six degrees of freedom at each node: translations in the nodal x, y, and z 

directions and rotations about the nodal x, y, and z axes.  

Stress stiffening and large deflection capabilities are included. A consistent tangent stiffness 

matrix option is available for use in large deflection analyses.  

The geometry, node locations, and the coordinate system for this element are shown in the 

following figure: 

 

Figure 27: SHELL63 

 

The element is defined by four nodes, four thicknesses, an elastic foundation stiffness, and the 

orthotropic material properties and the thickness is assumed to vary smoothly over the area of 

the element. 

Pressures may be input as surface loads on the element faces and positive pressures act into 

the element. Edge pressures are input as force per unit length. The lateral pressure loading 

may be an equivalent element load applied at the nodes or distributed over the face of the 

element.  
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The equivalent element load produces more accurate stress results with flat elements 

representing a curved surface or elements supported on an elastic foundation since certain 

fictitious bending stresses are eliminated.  
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6. LINEAR STABILITY ANALYSIS OF CIRCULAR CYLINDRICAL 

SHELLS UNDER AXIAL LOAD 

 

6.1. Analysis of perfect cylindrical shells under axial load 

6.1.1. Introduction 

 

In this part, the stability calculations using the finite element program ANSYS will be carried 

out. Fig. 28 represents the meshed cylindrical shell with the boundary conditions applied. 

 

Figure 28: Model studied with ANSYS. Boundary conditions. 

 

The structure is supported at the bottom, restricting displacements in the three directions, and 

at the top of the shell only the axial direction is free. The load is applied axially. The initial 

phase of the investigation is carried out on a perfect cylindrical shell subjected to uniformly 

distributed load. Then the analytical solution is compared with the results calculated with 
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ANSYS. In the course of this chapter, different configurations of axial loads will be studied: 

 

• Buckling analysis of cylindrical shell under uniform axial load. 

• Buckling analysis of cylindrical shell under partial axial load. 

• Buckling analysis of cylindrical shell under triangularly distributed axial load. 

 

The referent material will be steel. 

 

6.1.1.1. Specifications 

 

In this section, the configuration of the regular cylindrical shell is described. The task is 

formulated in a framework that makes room for assumptions and simplifications. 

Furthermore, assumptions and predefined values are briefly described. 

 

The geometric and material input parameters are listed in the following list: 

 

• Radius: R=5000 mm 

• Height: L=10000 mm 

• Shell thickness: t=20 mm  

• Young’s modulus: E=2.1 x 105 N/mm2 

• Poisson’s Ratio: ν= 0.3 

• Axial Load: P=1 MPa 

 

A cylindrical coordinate system is introduced. The ANSYS internal name of the coordinate 

directions is as follows: 
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• X: Radial direction 

• Y: Circumferential direction 

• Z: Axial direction 

 

All ANSYS plots of sections, sizes and displacement refer to this coordinate system. At the 

bottom, at Z = 0, the displacements in X, Y, Z directions are restricted. At the top, Z = 10000, 

the displacements in X and Y directions are also restricted. The Z direction is free. 

 

6.1.1.2. Discretization and mesh. Validation of the model 

 

The classical buckling stress of axially compressed cylinder is shown in the equation. 

The classical calculation is independent of the buckling form. However, it shall apply only to 

purely axially loaded cylinders with classic bearing (see Figure 24). 

The classical calculation, under an axial compression of P = 1N/mm, gives a result of: 

 

𝝈𝒄𝒓 =
𝐸 ∙ 𝑡

𝑅�3(1 − ν2)
=

2,1 ∙ 105 ∙ 20

5000�3(1 − 0,32)
= 𝟓𝟎𝟖,𝟑𝟗𝟏

𝑵
𝒎𝒎𝟐 

 

To make a comparative calculation, the classical bearing is adopted and the Solid-45 element is 

used. 

 

Total 
number of 
elements 

Circumferential 
direction 

Axial 
direction 

Radial 
direction 

Critical load 
ANSYS (MPa) 

Error 
(%) 

Analytical 
solution 

load (MPa) 

Computing 
time (s) 

12000 120 50 2 514,38 0,63 511,164 10,79 
 

Chart 1: Analysis with Solid-45 
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Figure 29: Model studied with Solid-45 after buckling analysis 

 

It can be seen that the analytical solution and the one given by ANSYS differ in just 0,63 %. 

If another comparative calculation with element Shell-63 is made, it is necessary to modify the 

classical buckling stress, because the element Shell-63 is defined by four nodes. It is a flat 

element so the thickness must be taken on account: 

 

𝝈𝒄𝒓 =
𝐸 𝑡2

𝑅�3(1 − ν2)
=

2,1 ∙ 105 ∙ 202

5000�3(1 − 0,32)
= 𝟏𝟎𝟏𝟔𝟕,𝟖𝟐

𝑵
𝒎𝒎
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Figure 30: Model studied with Shell-63 after buckling analysis 

 

The required mesh fineness is determined by preliminary investigations when setting up the 

model. Often, the calculated values with the program are not the reality. This error can be 

reduced, interpreting the calculations with a very fine mesh. The statement is complicated and 

requires very high computing time. But only one obtained result attain to match the reality. 

Now, the circular cylindrical shell with different mesh densities is investigated. The decision of 

what mesh distribution for the analysis is most suitable will be taken based on these 

calculations. 

The following chart shows the results as a function of different numbers of elements in the 

circumferential and the axial direction for Shell-63. 

Number 
of 

elements 

Circumferential 
direction 

Axial 
direction 

Radial 
direction 

Critical load 
ANSYS 
(MPa) 

Error 
(%) 

Analytical 
solution 

load (MPa) 

Computing 
time (s) 

10000 200 50 1 9223,78 10,23 10167,82 15,55 
14400 240 60 1 9484,19 7,20 10167,82 26,93 
19600 280 70 1 9653,01 5,33 10167,82 37,64 
25600 320 80 1 9726,05 4,54 10167,82 54,27 

 

Chart 2: Analysis with Shell-63 
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The eigenvalues calculated with ANSYS almost agree with the value of the classical calculation.   

On one hand, it is possible to see that the error is bigger when the mesh is rougher (it has less 

elements). On the other hand, the computational time and memory capacity of the computer 

needed by the fine mesh is much bigger when calculating a fine mesh than the rough mesh.  

In the diagrams below, the number of elements of the mesh and the error committed by 

ANSYS are represented as a function of the time needed to calculate the critical load.  

 

 

Diagram 1: Number of elements of the model with Shell-63 vs. computing time 

 

Diagram 2: Error committed by ANSYS vs. computing time 
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Diagram 1 can thus be used to predict the computing time that might be needed to calculate 

the critical load with a specific mesh fineness, always taking on account that with the version 

ANSYS 14.0, the number of elements cannot exceed 32000.  

There is a clearly defined pattern to the Diagram 2, and this can be taken to mean that to 

obtain a precise solution with ANSYS, a long calculating time is required. 

To sum up, for a good analysis, the accurate combination between fineness and time has to be 

found. 

According to the results obtained and the relation error between analytical solution and ANSYS 

solution-computing time, in the following models with Shell-63, a distribution mesh with a 

total number of 19600 elements will be used; models designed with Solid-45 will have a total 

number of 12000 elements. 

 

6.1.2. Buckling analysis of a perfect cylindrical shell under partial axial load, 

using Shell-63 and Solid-45. 

 

In this chapter, the behavior of a perfect cylindrical shell subjected to non-uniform axial load 

will be studied. This means, that the difference in critical load depending on the angle of 

application of the load will be analyzed. The test will be carried out with a load of 1 MPa. 

 

Figure 31: Model under 900 axial load  
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Firstly, the model designed with Shell-63 will be analyzed. The next table shows the results of 

the critical buckling load obtained for each angle, as well as the maximum displacement for 

each value. 

 

α (°) Critical Load (MPa)  
30 10028,2 
60 9744,19 
90 9220,23 

120 8523,93 
150 8153,32 
180 7990,31 
210 7948,19 
240 7995,25 
270 8162,29 
300 8503,19 
330 9211,63 
360 9653,01 

 

Chart 3: Critical load as a function of the load angle with Shell-63 

 

 

Diagram 3: Variation of the critical load depending on the angle of application with Shell-63 
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It can be observed that the critical buckling load depends on the angle of application of the 

load, although not in a downward trend, as it could be expected a priori.  

The next images show the buckling deformation pattern for the following values of the angle 

of application: 90°, 180°, 270° and 360°. 

 

 

Figure 32: Deformed cylinder when is subjected to 90 o axial load 

 

 

 

 

Figure 33: Deformed cylinder when is subjected to 180 o axial load 
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Figure 34: Deformed cylinder when is subjected to 270 o axial load 

 

 

 

 

 

Figure 35: Deformed cylinder when is subjected to 360 o axial load 
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To ensure the results obtained with Shell-63, the same experiment is carried out with the 

element Solid-45. 

 

 

 

 

 

 

 

 

 

Chart 4: Critical load as a function of the load angle with Shell-63 

 

 

Diagram 5: Critical load as a function of the angle of application with Solid- 45 
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α (°) Critical Load (MPa)  
30 595,8069 
60 550,2982 
90 538,43765 

120 496,78005 
150 474,3563 
180 465,06965 
210 462,52285 
240 465,5503 
270 475,6823 
300 496,8563 
330 516,21985 
360 514,38435 
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The experiment with Solid-45 confirms that, for both models, the minimum load needed by a 

steel cylinder to buckle is provided when the angle of application of load lays between 150º 

and 210 º. The maximum values are given when the angle is minimal, and the load applied 

tends to a punctual load. 

 

6.1.3. Buckling analysis of a perfect cylindrical shell under triangularly 

distributed axial load, using Shell-63 and Solid-45. 

 

In this section, the behavior of the same model will be investigated under varying load. This 

varying load consists of two triangularly distributed loads: One with encreasing slope, from 0 

to 180°, and the second one with decreasing slope, from 180 to 360°. In addition to this, 

different values for that slope will be studied.  

 

 

Figure 36: Model under triangularly distributed AXIAL LOAD  
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Slope (MPa/°) Critical load (MPa) 
0,02 2232,4 
0,04 1265,3 
0,06 882,755 
0,08 677,81 
0,1 550,093 

0,15 373,939 
0,2 283,238 
0,3 190,717 
0,4 143,758 
0,6 96,3237 
0,8 72,426 
1 58,0291 

 

Chart 5: Critical load as a function of the triangularly distributed load’s slope 

 

 

Diagram 6: Critical load as a function of the slope of the triangularly distributed load 

 

As the diagram evidences, the critical buckling load decreases when increasing the slope of the 

triangularly distributed load. However, these downward trend differs from a straight line, and 

can be approximated by the power function y = 59,699x-0,95. 
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This function can be used to predict the critical buckling load for any axial triangularly 

distributed load applied over the cylinder under study. 

 

6.2 Analysis of cylindrical shells with variable section under axial load 

 

6.2.1. Introduction 

 

In this section, a cylindrical shell with a gradual variation of thickness along the shell will be 

investigated under the action of several distributions of axial load. To reach this aim, the 

element Solid-45 will be used, as a three dimensional element is needed to provide the gradual 

change of thickness. The dimensions of the model are specified in the next figure and material 

properties remain the same as for the perfect cylindrical shell, as well as the restrictions. The 

tests of these sections will be the same as for the constant wall cylinder, so that they can be 

compared after being studied. 

 

 

Figure 37: Measurements of the cylinder with variable thickness wall 
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6.2.2 Buckling analysis of a cylindrical shell with variable section under 

partial axial load. 

 

In this moment, the model described above will be studied under the action of a varying-with-

angle load. The same experiment carried out in section 6.1.2 will be done for the new 

specimen. The results are given in the following chart. 

 

α (°) Critical Load (MPa) 
30 701,7640984 
60 631,4884401 
90 609,1661408 

120 598,650393 
150 592,7671964 
180 589,1256956 
210 586,7147611 
240 585,0324135 
270 583,7953933 
300 582,824422 
330 581,9631691 
360 579,3607653 

 

Chart 6: Critical load as a function of the triangularly distributed load’s slope 

 

In the next diagram, the critical loads of both cylinders with constant and variable section of 

wall are compared. As it could be expected, the thickness increase on the bottom of the shell 

makes it more stable than the one with constant wall. A remarkable fact lays in the middle of 

the diagram. While in the cylinder with constant section the critical load fell down in the 

middle values of the load applied angle, the new cylinder is not only more stable itself, but 

much more stable for the angles between 90° and 330°.  
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Diagram 7: Critical load as a function of the angle of load applied  

 

To see the effects of the wall variation on the cylindrical deformed shape, models subjected to 

uniform axial load (360°) are plotted.  

 

Figure 38: Behavior of the model with constant thickness wall (left) and variable thickness wall (right). 

 

As the figures depict, variable thickness along the wall does not only affect to the critical load 

needed to buckle, but also to the shape of the cylinder after it: the new cylinder is much more 

stable. 
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6.2.3 Buckling analysis of a cylindrical shell with variable section under 

triangularly distributed axial load. 

 

The cylindrical shell with variable section will be now subjected to triangularly distributed load. 

The results are presented in the next chart. 

Slope (kN/°) Maximum load applied (kN) Critical load(MPa) 
0,02 3,6 2819,86 
0,1 18 698,632 
0,2 36 360,026 
0,4 72 182,8152 
0,6 288 122,5124 
0,8 144 92,1244 
1 180 73,8152 

1,5 270 49,3134 
2 360 37,024 

2,5 420 29,6378 
 

Chart 7: Critical load as a function of the triangularly distributed load’s slope (or maximum load applied) 

In the next diagram, the results of this and the constant wall tests are compared. 

 

Diagram 8: Critical load as a function of the slope of triangularly distributed load  
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The data can be almost perfectly adjusted by the power equations above.  Again, the cylinder 

with variable wall is more stable, having a critical load approximately 20% bigger. The 

functions can be used to predict the behavior of both models for different slopes of 

triangularly distributed load applied axially. 
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7. LINEAR STABILITY ANALYSIS OF CIRCULAR CYLINDRICAL 

SHELLS UNDER RADIAL LOAD 

 

7.1 Analysis of perfect cylindrical shells under radial load 

 

7.1.1 Introduction 

 

In this section, the stability calculations using the finite element program ANSYS will be carried 

out under radial load. 

 

Figure 39: Model studied with ANSYS. Boundary conditions. 

 

As in the axial case, the structure is supported at the bottom, restricting displacements in the 

three directions. In this case, the upper edge of the shell is only restricted in the radial 

direction. The load is applied in the radial direction. The initial phase of the investigation is 

carried out on a perfect cylindrical shell subjected to uniformly distributed load. Then the 

analytical solution is compared with the results calculated with ANSYS. In the course of this 
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chapter, different configurations of radial loads will be studied: 

• Buckling analysis of cylindrical shell under uniform radial load. 

• Buckling analysis of cylindrical shell under partial radial load. 

• Buckling analysis of cylindrical shell under triangularly distributed radial load. 

 

The referent material will be steel. 

 

7.1.1.1. Specifications 

 

The specifications are the same as the ones assumed in the axial tests. The only change will be 

the load that, in this case, will be applied in the radial direction. 

 

7.1.1.2. Discretization and mesh. Validation of the model 

 

For the validation of the model, Von Mises equation is utilized. It may be used for cylinders 

subject to combined radial and axial pressure, or just radial. The critical pressure is  

𝑷𝑪 =
1

𝑛2 − 1 + �𝜋𝑑8𝐿�
2

⎣
⎢
⎢
⎢
⎡

��𝑛2 + �
𝜋𝑑
2𝐿
�
2

�
2

− 2𝑘1𝑛2 + 𝑘2� ∗
1
3

2𝐸
1 − 𝜇2

�
𝑡
𝑑
�
3

+
2𝐸𝑡
𝑑

��2𝑛𝐿
𝜋𝑑 �

2
+ 1�

2

⎦
⎥
⎥
⎥
⎤

= 𝟎,𝟏𝟎𝟗𝟎𝟓𝟎𝟔 𝑴𝑷𝒂 

where 

𝑘1 = (1 + (1 + 𝜇)𝜌)(2 + (1 − 𝜇)𝜌) = 2,16267 

𝑘2 = [1 − 𝜌𝜇] �1 + 𝜌(1 + 2𝜇) − 𝜇2(1 − 𝜇2) �1 +
1 + 𝜇
1 − 𝜇

𝜌�� = 0,961026 

and 
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𝜌 =
1

�2𝑛𝐿
𝜋𝑑 �

2
+ 1

= 0,037122 

 

The solutions obtained with ANSYS are represented in the following figures. 

 

Figure 40: Solution with Shell-63 

 

 

Figure 41: Solution with Solid-45. 
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It can be observed that the results obtained with ANSYS approximate the analytical solution, 

with a deviation of 11,4 % for Shell-63 and 14,2 % for Solid-45. 

 

7.1.2. Buckling analysis of a perfect cylindrical shell under partial radial load, 

using Shell-63 and Solid-45. 

 

At this point, the behavior of the model subjected to different angles of load will be analyzed. 

The test will be carried out with a load of 1 MPa. 

 

Figure 42: Model under 900radial compression  
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Angle of application (°) 
Critical load Solid 45 

(MPa) 
Critical load Shell 63 

(MPa) 
30 0,22939233 0,21936308 
60 0,16349204 0,15485509 
90 0,14859745 0,14154763 

120 0,1412661 0,13527128 
150 0,13721042 0,13155564 
180 0,13268571 0,12928574 
210 0,13299288 0,12786457 
240 0,1318177 0,12679832 
270 0,13093318 0,12600647 
300 0,13022667 0,12541804 
330 0,12956091 0,12488341 
360 0,12784779 0,12378428 

 

Chart 8: Critical load as a function of the angle of load applied, with Solid-45 and Shell-63 

 

 

Diagram 9: Critical load as a function of the angle of load applied, with Solid-45 and Shell-63 

As the diagram indicates, the critical load drops when increasing the area on which the 

pressure is applied. The following graphs present how the model is deformed when applying 

loads at a quarter, a half, three quarters and the whole cylindrical area. 
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Figure 43: Deformed model after applying 900 radial compression 

 

 

 

 

Figure 44: Deformed model after applying 1800 radial compression 
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Figure 45: Deformed model after applying 2700 radial compression 

 

 

Figure 46: Deformed model after applying 3600 radial compression 
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7.1.3. Buckling analysis of a perfect cylindrical shell under triangularly 

distributed radial load. 

 

In this section, the cylinder will be subjected to a triangularly varying load. The model will be 

subjected to different values of load, in order to be able to predict how it would behave for 

any distribution of triangular load. Next plots represent the distribution applied on the cylinder 

and the section after buckling. 

 

Figure 47: Triangularly distributed radial load applied and deformed shape after buckling   
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This table presents the data obtained after tests. 

Slope (MPa/°) Maximum value of 
the load (MPa) 

Critical load 
(MPa) 

0,0055555 1 0,146782 
0,01 1,8 0,099653 
0,02 3,6 0,068963 
0,04 7,2 0,027554 
0,06 10,8 0,017211 
0,08 14,4 0,012513 
0,1 18 0,009829 
0,2 36 0,004743 
0,3 54 0,003126 
0,4 72 0,002331 
0,5 90 0,001858 
0,6 108 0,001545 
0,7 126 0,001397 
0,8 144 0,001156 
0,9 162 0,001054 
1 180 0,000923 

 

Chart 9: Critical load as a function of the triangularly distributed load’s slope (or maximum load applied) 

 

Diagram 10: Critical load as a function of the triangularly distributed load's slope 

In the graphic above, the data are approximated by the equation y = 0,0009x-1,02, which can be 

used to predict an approximate value of the critical buckling load for different values of the 

slope of the triangularly distributed load. 
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7.1.4. Buckling analysis of a perfect cylindrical shell under wind load. 

 

In this part, the behavior of the cylinder under a model of wind load will be study. The wind 

load is simulated as follows: One half of the cylinder is subjected to external compression 

(where the wind comes into contact with the cylindrical shell), and the other one to internal 

compression (from where the wind leaves the cylinder). Both loads are triangularly distributed, 

having their maximum in the point where the wind is perpendicular. This patron of loading is 

taken from the part of wind loads of the German norm DIN 1055-4. The after coming figure 

represents this wind load. 

 

Figure 48: Model of wind  

 

In the following chart, the results obtained from the simulations are written. 
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Slope (MPa/°) Maximum value of 
load applied(MPa) Critical load (MPa) 

0,01111111 1 0,107099 
0,111111111 10 0,023872 

1 90 0,003905 
2 180 0,001527 
3 270 0,001018 
4 360 0,000764 
5 450 0,000611 
6 540 0,000509 
7 630 0,000487 
8 720 0,000432 
9 810 0,000397 

10 900 0,0003055 
 

Chart 10: Critical load as a function of the load’s slope or maximum value of wind load 

 

 

Diagram 11: Critical load as a function of the maximum value of load applied  

From the diagram can be obtained an equation to approximate the critical load as a function of 

the maximum value of load applied, that is: y = 0,0027x-0,879. The next figures represent de 

buckling deformation pattern of the cylinder under wind load. 
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Figure 49: Wind loaded cylinder after buckling  

 

7.2 Analysis of cylindrical shells with variable section under radial load 

 

7.2.1. Introduction 

 

In this section, the cylindrical shell with a gradual variation of thickness along the shell 

described in section 6.2.1 will be investigated under the action of several distributions of axial 

load.  

 

7.2.2 Buckling analysis of a cylindrical shell with variable section under 

partial radial load. 

 

At this point, the behavior of the cylindrical shell with variable section under various values of 

angles of radial load is study. The results are presented in the following table. 
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Angle (º) Critical load (MPa) Maximum displacement 
(mm) 

30 0,322134 0,005729 
60 0,2211 0,008781 
90 0,21436 0,007533 

120 0,210542 0,006638 
150 0,208307 0,006235 
180 0,206881 0,006049 
210 0,20592 0,005815 
240 0,205262 0,005485 
270 0,204803 0,005336 
300 0,20447 0,005108 
330 0,20418 0,004841 
360 0,203694 0,003132 

 

Chart 11: Critical load and maximum displacement as a function of the load’s angle 

 

Now, the results for the experiment with constant and variable wall thickness are compared. 

 

 

Diagram 12: Critical load as a function of the load's angle of application for variable and constant 

thickness wall 
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One can see that the cylinder becomes between 20-30% more stable when the bottom part of 

the cylinder is doubled. However, both of them follow the same downward trend. 

 

7.2.3 Buckling analysis of a cylindrical shell with variable section under 

triangularly distributed radial load. 

 

In this section, the triangularly distributed load will be applied on the model. The result after 

buckling is presented in the following image. 

 

Figure 49: Shape of the model after buckling under triangularly distributed radial load  
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Slope (MPa/0) 
Maximum 

value of load 
(MPa) 

Critical load 
(MPa) 

0,005555556 1 0,559375 
0,02 3,6 0,163306 
0,04 7,2 0,065196 
0,06 10,8 0,040715 
0,08 14,4 0,03158 
0,1 18 0,02325 
0,2 36 0,011219 
0,3 54 0,00784 
0,4 72 0,005513 
0,5 90 0,004395 
0,6 108 0,003654 
0,7 126 0,003075 
0,8 144 0,002733 
0,9 162 0,002512 
1 180 0,002183 

 

Chart 12: Critical load as a function of the slope of the triangularly distributed load 

 

 

Diagram 13: Critical load as a function of the load's angle of application for variable and constant 

thickness wall 
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Diagram 13 depicts the critical buckling load for both models under study. Again, as expected, 

the cylinder with variable thickness wall is more stable. The equations written on it can be 

used to predict the critical load for any value of the triangularly distributed load’s slope. 

 

7.2.4 Buckling analysis of a cylindrical shell with variable section under wind 

load. 

 

In the last section, the behavior of the variable wall specimen under 

wind load will be examined. Several sets of wind load are introduced 

into the ANSYS program, in order to obtain a trend for the cylindrical 

shell’s response to the different wind forces. 

 

                                                                                                                                              

Figure 50: Model of wind 

The succeeding data represent the response of the cylinder to different slopes of the wind load 

simulation.  

Slope (MPa/°) Maximum value of 
load (MPa) Critical load (MPa) 

0,011111111 1 0,3557 
0,111111111 10 0,035493 

0,5 45 0,012924 
1 90 0,006483 
2 180 0,003242 
3 270 0,002161 
4 360 0,001621 
5 450 0,001346 
6 540 0,001098 
7 630 0,000967 
8 720 0,000883 
9 810 0,000796 

10 900 0,000756 
 

Chart 13: Critical load as a function of the slope of the wind load or its maximum value 
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Figure 51: Deformed shape when applying the model of wind load (slope 1 MPa/0)  

 

The figures above depict the deformation’s pattern of the cylinder after buckling. There are a 

few details to stand out in both displacement figures.  

The displacement are concentrated in just one half of the shell, the part from where the wind 

leaves the cylinder. Moreover, the varying thickness of wall is obvious, and there do not exist 

deformations in the bottom part of the shell. 
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Diagram 14: Critical load as a function of the maximum value of wind load 

 

The graphic above shows the difference that produces increasing the bottom part of the 

former cylindrical shell to the double.  

Moreover, the equations displayed could be used to predict an approximate value of the 

critical buckling load under any maximum value of wind load applied.
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8. CONCLUSIONS 

 

The basic idea of this thesis was to discuss the influence of different load distributions 

(uniform, partial, triangularly distributed) have in the value of the critical buckling load of 

cylindrical shells, both axially and radialy applied. The cases were analyzed using the Finite 

Element Method. 

In order to achieve that aim, also different section configurations have been analyzed. That has 

provided information about the buckling behavior of cylinders subjected to various types of 

load, such as the wind load model. There has been found out how a cylindrical shell behaves 

under unirform and non-uniform loads. Since there are not many researches on the field of 

cylinders subjected to non-uniform loads, the results obtained can be interesting to predict 

how cylindrical shells might buckle under the load distributions that ave been examined. 

Because of my interest in the field of finite element analysis, I have decided to deepen my 

knowledge in this area through this thesis. In this thesis, I have succeeded in this area further 

training and to integrate the measurement program ANSYS with success. 

The skills learned are a good foundation for my career to become a design engineer. 
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