
ESCUELA TÉCNICA SUPERIOR DE INGENIEROS
INDUSTRIALES Y DE TELECOMUNICACIÓN

Titulación:

INGENIERÍA DE TELECOMUNICACIÓN.

Título del proyecto:

CHARACTERIZATION AND USE OF THE PAC7001 CAMERA

WITH THE POSIT ALGORITHM ON AN AVR

MICROCONTROLLER.

Ángel González García
Luis Javier Serrano Arriezu
Pamplona, septiembre 2013

Declaration

I con�rm that this paper is entirely my own work. All sources and quotations have been fully
acknowledged in the appropriate places with adequate footnotes and citations. Quotations have
been properly acknowledged and marked with appropriate punctuation. The works consulted are
listed in the bibliography. This paper has not been submitted to another examination panel in the
same or a similar form, and has not been published. I declare that the present paper is identical
to the version uploaded.

Vienna, 29th of September 2013

Place, Date Signature

Resumen:

Este proyecto trata sobre la caracterización y uso de la camara PAC7001 para la implementación
de un sistema de estimación de pose. Este sistema estará orientado al uso en tecnologías asistivas
como un sistema de posicionamiento de la cabeza. La pose se calcula mediante el algoritmo
POSIT, ejecutado en un microcontrolador AVR. Este algoritmo a su vez será optimizado para su
uso en disposivos AVR de 8 bits.
En este proyecto las capacidades de la camara son analizadas, comprobando las diferentes

con�guraciones tanto de hardware como de software. Para probar las diferentes con�guraciones
se montará un prototipo del sistema, y se analizará la respuesta del mismo para las diferentes
con�guraciones.
Además del software del microcontrolador, se implementan diferentes programas auxiliares para

analizar el sistema desde el PC , de forma que se facilite el desarrollo del mismo en un futuro.

Kurzfassung

Diese These beschreibt die Charakterisierung und Verwendung des Kamerachips PAC7001 zur
Positionsbestimmung im Raum mittels Infrarot Referenzsignalen.
Die Position wird per POSIT Algorithmus bestimmt, welcher auf einem AVR Microcontroller

ausgeführt wird und für diesen optimiert wurde.
Es wird sowohl die Eignung der Kamera an sich analysiert, als auch ein einfaches Head-Tracking

system aufgebaut welches als Maus-Ersatz benützt werden kann.

Schlagwörter: POSIT, Positionsbestimmung, PAC7001, AVR

Abstract

This thesis focus in the characterization and use of the PAC7001 camera in order to implement
pose estimation system. This system would be used in assistive technologies as a head tracking
system. The pose is calculated with a POSIT algorithm running in an AVR microcontroller, the
algorithm is improved to work on AVR 8-bits devices.
In this thesis the possibilities of this camera are analysed, by both hardware and software

con�guration. Therefore a initial head tracking system is implemented. Along with the microcon-
troller software, debug programs for the PC are implemented in order to help in future development.

Keywords: POSIT, Pose estimation, PAC7001, AVR

Contents

1. Introduction 1
1.1. Objetives . 1
1.2. State of the Art . 1
1.3. Methods, concepts and devices . 12

2. Development 20
2.1. Hardware research and design . 20
2.2. Software design . 22

2.2.1. Software overview . 24
2.2.2. Data format and structures . 25
2.2.3. Actual block diagram . 28

2.3. System operating range . 36
2.4. Tests . 38
2.5. Support programs . 51
2.6. Future improvements . 55
2.7. Summary and conclusions . 56

Bibliography 58

List of Figures 62

List of Tables 63

List of Abbreviations 64

A. Provided Files 65

B. Hardware schematic 66

1. Introduction

1.1. Objetives

The focus of this project is the characterization and analysis of the PAC7001 camera, in order to
implement a head tracking system, using the POSIT algorithm in an AVR microcontroller.
The �rst goal is to reverse engineer the PAC7001 camera. This camera came, at �rst, with a

very simple and incomplete datasheet, so the understanding of the camera, and its registers, is
the �rst step in the project.
The second step is to implement the POSIT algorithm in an 8-bits AVR microcontroller. One

of the challenges when implementing the algorithm in this microcontroller, is the lack of �oating
point operations, which are necessary in the POSIT algorithm. This �oating point operations are
programmed in the AVR, which makes them slow.
Finally with the camera and the POSIT algorithm implemented, the goal is to check if it is

possible, with these devices , the development of a head tracking system.

1.2. State of the Art

Nowadays, there are several devices, adapted to be used by disable people, which make them
less dependant. Some of the devices improves mobility (i.e: wheel chairs or walkers), others
replace parts of the body, the prosthesis, or help with di�erent disabilities. Due to the wide range
of existing systems, it is impossible to explain all of them, so we are focusing on the interface
human-computer, where a computer can be a PC, a laptop or a smarthphone.
The interfaces human-computer can be unidirectional or bidirectional. The interest in this

Master Thesis is about unidirectional systems, more speci�cally the input devices adapted to
disabled people, so a enumeration and description of them is made in the next paragraphs. The
systems that we are talking about can be grouped in:

• Physical Switches

• Mouse interfaces

• Image recognition

• Voice Input

Physical Switches

The simplest of this kind consists in a single push button, which has been enlarged so it is easier
to hit. These devices need less force to be activated and deal better with bouncing. These push
buttons are limited by the fact that they can only have two states, activated or deactivated, so
the usefulness is limited. That is why these kind of inputs are more used by people with severe
disabilities, as they can not use a more complex system. To increase the utility, arrays of buttons

1

CHAPTER 1. INTRODUCTION

are used. They are usually arrays of special push buttons (the ones just commented) with bold
colors to be easily distinguishable. We can �nd a lot of examples of this kind of buttons:

• Gumball Switches1

• Big Buddy2

• Switch it up 3

• It switch 4

Figure 1.1.: Example of big push buttons.[1]

These arrays of buttons can be designed for a specialized purpose or to work as a keyboard. To
keep all the keys in the keyboard the quantity of needed buttons make impossible to make them
big, so other solutions are followed. The keyboard layout is changed to be used by only one hand
or with low mobility in the �ngers. The main problem is that the keys keep the same size or even
smaller. Some examples can be found:

• Keyboard BigKeys ABC layout5: In this product, the size of the keys has been increased,
improving visibility and accuracy while typing.

• Contoured Advantage6: This is an example of how the position of the keys are changed to
adapt to low mobility and to be more ergonomic.

• BAT Keyboard7: The last one is a single hand controlled keyboard. The di�erent key
combinations give us all the possible characters of a keyboard.

1http://enablingdevices.com/catalog/capability_switches/best-sellers/

gumball-switches-accessories
2http://www.spectronicsinoz.com/product/big-buddy
3http://www.adaptivetechsolutions.com/pd-switch-it-up-switch.cfm
4http://www.infogrip.com/products/it-switch.html
5http://www.iltsource.com/BigKeys_Plus_Color_ABC_p/bigkeysmp6.htm
6http://www.infogrip.com/products/keyboards/contoured-advantage.html
7http://www.infogrip.com/products/keyboards/bat-keyboard.html

2

http://enablingdevices.com/catalog/capability_switches/best-sellers/gumball-switches-accessories
http://enablingdevices.com/catalog/capability_switches/best-sellers/gumball-switches-accessories
http://www.spectronicsinoz.com/product/big-buddy
http://www.adaptivetechsolutions.com/pd-switch-it-up-switch.cfm
http://www.infogrip.com/products/it-switch.html
http://www.iltsource.com/BigKeys_Plus_Color_ABC_p/bigkeysmp6.htm
http://www.infogrip.com/products/keyboards/contoured-advantage.html
http://www.infogrip.com/products/keyboards/bat-keyboard.html

CHAPTER 1. INTRODUCTION

Figure 1.2.: Keyboards adapted to di�erent diseases[2][3]

In some cases more sophisticated systems are needed. The sip-and-pu� systems, are switches in
which each action, sip and pu�, has a di�erent function. The function depends on the application
and it is speci�cally design for each case. However, the research in this devices makes it possible to
increase the number of functions, with the distinction between soft and hard sip and pu�. These
switches are used when severe mobility diseases are present, since no movement is necessary to
activate it. They are activated with the mouth, so they can be mounted on the head, on a table
or on a wheel chair. From this devices we can �nd:

• SB-4H Sip and Pu� switch with hardware 8

• Sip and Pu� with headset9

Figure 1.3.: Two implementations of the sip and pu� systems.[4][5]

Mouse interfaces

Simple machines can be used with a few buttons, however most of the devices we use, such as
smartphones or PCs, require a pointer controller. The usual interfaces are mouse and digitizer,
however these interfaces are not suitable for some disabilities. In this scenario di�erent approaches
have been followed.
In hardware the simplest way to implement a mouse interface is by a joystick, the move of the

joystick in each axis moves the pointer in that axis. The adapted joystick usually consists in one
or two switches and a bigger than usual handle. Depending on the disability the joystick is going

8http://www.zygo-usa.com/usa/index.php?page=shop.product_details&flypage=vmj_naru.

tpl&product_id=314&category_id=139&option=com_virtuemart&Itemid=11
9http://www.spectronicsinoz.com/catalogue/sip-and-puff-switch-solutions-by-origin-instruments

3

http://www.zygo-usa.com/usa/index.php?page=shop.product_details&flypage=vmj_naru.tpl&product_id=314&category_id=139&option=com_virtuemart&Itemid=11
http://www.zygo-usa.com/usa/index.php?page=shop.product_details&flypage=vmj_naru.tpl&product_id=314&category_id=139&option=com_virtuemart&Itemid=11
http://www.spectronicsinoz.com/catalogue/sip-and-puff-switch-solutions-by-origin-instruments

CHAPTER 1. INTRODUCTION

to cover, it may change its behaviour: resistance to movement, total displacement of the handle
or available axes. We can see some examples of this kind of mice in �gure 1.4, and a list of
commercialized adapted mice:

• Funkey Joystick10

• OPTIMAX Wireless Joystick11

Figure 1.4.: Di�erent implementations of joysticks, working as mice.[6][3]

When the disability prevents moving the joystick, the pointer can be moved using buttons (�gure
1.6) or trackballs. The layout of the buttons in the �rst solution varies among products. In some
of them there are only four buttons, two for each axis, but more complex systems can include
combinations of the basic axis, implementing i.e.: diagonal movement in some keys. The trackball
alternative consists of a ball in which the pointer moves according to the amount and direction
of the rotation. The advantages of the trackball over the buttons and joysticks is the freedom of
movement of the pointer. However, it is more di�cult to use than the others.

• Mouse button box12

• Footime Foot Mouse with Programmable Pedal13

Figure 1.5.: Trackball systems with di�erent buttons layout.[7]

10http://www.keytools.co.uk/funkey-joystick.html
11http://www.infogrip.com/products/mice/optimax-wireless-joystick.html
12http://www.enablemart.com/mouse-button-box
13http://www.enablemart.com/footime-foot-mouse

4

http://www.keytools.co.uk/funkey-joystick.html
http://www.infogrip.com/products/mice/optimax-wireless-joystick.html
http://www.enablemart.com/mouse-button-box
http://www.enablemart.com/footime-foot-mouse

CHAPTER 1. INTRODUCTION

Figure 1.6.: Mouse buttons system, activated with the feet.[7]

In the case of not so severe disabilities special mice can be used. These mice may be bigger,
have less buttons or di�erent sensibility than ordinary mice. Sometimes the mouse has the buttons
moved apart and they have to be activated by the other hand, this is used when the disability
prevents movement of �ngers.
In some cases touch screens can also be used. These interfaces do not require force to be

applied but work only with skin contact. The size, resolution and behaviour to touches vary
among di�erent models and uses, increasing the utility of these interfaces. They can be used as
switch buttons, mouse or even both at the same time. The implementation of movement patterns
increases the versatility of this input systems. They can be controlled by the �ngers, the whole
hand or with a stick. And they can be prepared to avoid unintentional pushes. Some examples of
track pads are:

• Orbitrack14

• Track-IT15

Figure 1.7.: Two trackpad system.[8][6]

14http://www.pretorianuk.com/orbitrack
15http://www.keytools.co.uk/trackit.html

5

http://www.pretorianuk.com/orbitrack
http://www.keytools.co.uk/trackit.html

CHAPTER 1. INTRODUCTION

Image Recognition

When the previous systems are not enough, image recognition can be used, which consists in the
recognition of patterns or shapes (i.e.: Head, eyes and body) in images recorded by a camera. The
method used by the cameras varies among systems: some cameras work with visible light (regular
cameras), on the other hand the IR cameras, which usually have IR light sources, see the rebound
of the IR light. The complexity of this method lies in the recognition algorithm. In all three
cases (Head, eyes and body), the shape, size and layout vary among individuals, which makes the
recognition of all possible shapes, sizes and layouts very complex. Since few years ago this kind of
input can be seen in commercial products, the most important is the Kinect for Xbox16 but due
to its complexity it will be reviewed later.
One of the �rst image recognition system researched tracked the gaze. It was one of the �rst

implemented methods because of the low variance in the algorithm for di�erent eyes, that is, the
algorithm has to distinguish a circle (the pupil) and the cornea, which are almost the same for
every eye. To do this, the camera has to record images from the eye. In these images the software
recognizes the pupil and the rest of the eye. With the position of the pupil relative to the rest of
the eye, the software is capable of calculating the gaze orientation and translate it in a movement
of the pointer on the computer. To make it easier, the camera which detects the eye, is usually
head mounted and positioned just over an eye, so even when the head is moved, the eye keeps in
the same position relative to the camera. The eye tracking can be used to move the pointer in
a screen or to use simple machines. One of its disadvantages is the losing of the view, of what
one is doing, because the eyes are moved. The utility of these systems are scenarios in which
the important event takes place where you are looking at (like moving the pointer, the important
thing is where the pointer is). In addition, implementation of patterns is hard because it is not
easy to do movements with the eyes for a long time.

Figure 1.8.: Eye tracking, pupil's features[9]

As the eye tracking was the �rst developed system, there are eye tracking systems for di�erent
purposes, from psychology studies to marketing and human-computer interaction research. In
�gure 1.9 the Tobii X2-69 Eye Tracker 17 can be seen, which is a small implementation of an
eye tracking system, this device can record the position of the eyes so they can be later analyzed,
for example, to study how people look at the websites or pictures. This device has the added
complexity that the camera is not near the eyes so the algorithm has to recognize the face and
the eyes, and then calculate the position and orientation of them. Another eye tracking system is

16http://www.xbox.com/es-ES/Kinect/GetStarted
17http://www.tobii.com/en/eye-tracking-research/global/products/hardware/

tobii-x2-60-eye-tracker/

6

http://www.xbox.com/es-ES/Kinect/GetStarted
http://www.tobii.com/en/eye-tracking-research/global/products/hardware/tobii-x2-60-eye-tracker/
http://www.tobii.com/en/eye-tracking-research/global/products/hardware/tobii-x2-60-eye-tracker/

CHAPTER 1. INTRODUCTION

the Eye tracker type L18. This one is mounted near the eye so the implementation is easier than
in the �rst one. Although two examples are given, many others exist, but there are not so many
di�erences among them. Other examples that can be found are:

• S2 Eye Tracker19

• EMR-920

• RED25021

Figure 1.9.: Examples of eye tracking system already developed.[10][11]
[11]

Due to the loss of vision while working and the impossibility to do complex moves with the
eyes, head tracking was researched. Head tracking works in the same way as eye tracking, but in
this case the position and orientation of the head are tracked. The procedure is also the same:
the camera records the images and then the software has to recognize the head to calculate its
position and orientation. With the eye tracking, only the orientation of the eyes can be used as
an input parameter. However, with the head tracking the position and the orientation can be
used, which gives more possible inputs. This system has its advantages, but this requires a more
complex algorithm for detection. The face of di�erent people varies more than their eyes, and
the head has to be distinguishable from the environment which also varies, from dark rooms to
the most illuminated o�ce. In some cases, the background of the image may be the same tone
as the face which also complicates the head recognition. In most of the cases the recognition is
not for the head but for the face. Once the position and orientation of the face is calculated, the
same values are for the head. We can see in �gure 1.10 how the algorithm detects the face and
calculate the position and orientation of it.
The head/face tracking products that are commercialized are harder to �nd, this is because

they are more complex than eye tracking. The FaceLABTM522 is a device capable of doing eye
and head tracking. It can track the head movement in all the axis and rotation in the x and y
axes. This device not only can acts as an input for the pointer, but also as a study device. It can
create heat maps (example of heat map of a website �gure 1.12) so one can study where people
spend more time starring.

18http://en.pertech.fr/eye-tracker-l.html
19http://mirametrix.com/products/eye-tracker/
20http://www.nacinc.com/products/Eye-Tracking-Products/EMR-9/
21http://www.smivision.com/en/gaze-and-eye-tracking-systems/products/red-red250-red-500.html
22http://www.seeingmachines.com/product/facelab/specifications/

7

http://en.pertech.fr/eye-tracker-l.html
http://mirametrix.com/products/eye-tracker/
http://www.nacinc.com/products/Eye-Tracking-Products/EMR-9/
http://www.smivision.com/en/gaze-and-eye-tracking-systems/products/red-red250-red-500.html
http://www.seeingmachines.com/product/facelab/specifications/

CHAPTER 1. INTRODUCTION

Figure 1.10.: Example of head tracking methods and results.

Figure 1.11.: FaceLABTM5 [12]

Figure 1.12.: Heat map generated by a eye tracking system, which colour the webpage indicating
where the user stay more time looking at.[13]

8

CHAPTER 1. INTRODUCTION

The last step in image recognition is the body recognition. Although, this kind of recognition
is not very useful in people with disabilities, it is worth mentioning. This is the most complex
system of image recognition since it has to distinguish between the body and the environment.
The main problem is that the body may not be looking forward to the camera, but turned so the
camera can not see an arm or leg. The di�erent types of bodies and clothes makes the task more
di�cult. The most successful device capable of body tracking is the already mentioned Kinect

for Xbox. In �gure 1.13 can be seen that the device has[14]: color and depth-sense lenses ,voice
microphone array and a motor for tilt adjustment of the sensor. According to [14] it can track up
to 6 people and 20 joints per active user. The device is also capable of speech, face and gesture
recognition.

Figure 1.13.: Kinect system for Xbox.[15]

Speech recognition

The speech recognition (SR) consists in the translation of spoken words into text or orders that
can be understood by a computer or a device. Some SR systems are trained, requiring the user to
read a text. Then, the SR learns to recognize the voice. Other systems are speaker independent,
meaning training is not necessary. If the SR needs to be trained it should be used only by one
person, which makes the implementation easier and the recognition more accurate. The speaker
independent, on the other hand, is harder to implement and the recognition less accurate. For
disabled people the speaker dependent SR is more suitable, as it is used only by one person.
The SR does not require physical movement of the user, so can be used with severe movement

impairment. This fact makes it useful in various situations: it can be used when severe mobility
disabilities are present, or to increase the comfort when using devices. The main disadvantage of
this kind of input systems appears when moving the pointer. When speci�c orders are necessary
(such as open, close, move,
..) the SR systems are useful. However, moving the pointer can be
hard.
There are di�erent options in SR: there are SR engines, so developers can use them to do

their own programs, fully functional programs, which the user only have to install, and integrated
solutions, in which the SR is integrated in the operating system. The �rst group, the engines, is
suitable for speci�c situations in which is hard to �nd software that ful�ll the requirements. These
scenarios, which require special conditions, need to be implemented by SR engines. We can �nd
some example of these engines:

• CMU Sphinx23: This is an open source toolkit for speech recognition.

23http://cmusphinx.sourceforge.net/

9

http://cmusphinx.sourceforge.net/

CHAPTER 1. INTRODUCTION

• Julius24: It can be used under BSD license but need of citation.

• RWTH ASR25: Proprietary speech recognition toolkit.

• Zanzibar OpenIVR26: It uses the CMU Sphinx ASR engine and can also work with TTS(Text
to speech)

The general purpose programs are already programmed and usually cover the basics functional-
ities. Due to the existence of di�erent operating systems, there are programs for the most popular
ones. Some examples are:

• LumenVox27: for Linux and Windows, it can understand 6 languages.

• Dragon Naturally Speaking28: Made by Nuance, is the Windows version.

• Dragon Dictate29: The same company of Dragon Naturally Speaking made this one for
MAC users

• Dragon Dictation30: This is the iPhone and iPad version from Nuance software.

• Vocapia31: Is a completely functional software for Unix systems.

Even these fully operational programs are used, most of the main operating systems have their
own SR system integrated in them. Usually the integrated SR only covers the basics requirements
for elementary use. Nowadays Windows, MAC OS and android implement a speech recognition
software, so the use of more complex SR system is only in cases with special requirements.

IR Tracking

The IR tracking systems usually consist of an IR light source, an IR camera and in some cases
re�ective stickers. The camera registers the IR light from the light sources, or the stickers, and
calculates the position and the orientation of the object to be tracked. The layout of the devices
varies between implementations, in some cases the lights or the stickers are in the tracked object.
In other cases, the camera is mounted on the tracked object.
The implementation of the lights on the tracked objects is used in many scenarios. In the

audiovisual industry, for complex special e�ects, the body of the actor is covered by IR light sources
and, with several cameras, the body is tracked and can be easily modi�ed in post-production, i.e.:
modifying the shape or the texture of the skin. In high-level sport training, it is usually used
to track the movement of the sportsman, so it can be analyzed in slow motion and therefore
improved. For 3D face model animation these kinds of systems are used, a human model has
re�ective stickers on his face. These stickers are tracked and then passed to the 3D face model so
it moves as the human model. The scenarios use a complex layout of lights and cameras so they
are not suitable for home implementation. There are simpler layouts suitable for use at homes,
which consist in a camera and a few small light sources. Some implementations are:
24http://julius.sourceforge.jp/en_index.php?q=en/index.html
25http://www-i6.informatik.rwth-aachen.de/rwth-asr/
26http://www.spokentech.org/index.html
27http://www.lumenvox.com/products/speech_engine/
28http://www.nuance.com/dragon/index.htm
29http://www.nuance.com/dragon/whats-new-dragon-dictate/index.htm
30http://www.nuance.com/for-business/by-product/dragon-dictation-iphone/
31http://www.vocapia.com/

10

http://julius.sourceforge.jp/en_index.php?q=en/index.html
http://www-i6.informatik.rwth-aachen.de/rwth-asr/
http://www.spokentech.org/index.html
http://www.lumenvox.com/products/speech_engine/
http://www.nuance.com/dragon/index.htm
http://www.nuance.com/dragon/whats-new-dragon-dictate/index.htm
http://www.nuance.com/for-business/by-product/dragon-dictation-iphone/
http://www.vocapia.com/

CHAPTER 1. INTRODUCTION

• TrackIR 532: this is a commercial head tracking which works with IR lights. It consists of an
IR camera, and a set of lights which have to be mounted on the head (they can be attached
to a hat, or to a headset).

• Johnny Chung Lee33 developed a head tracking system with the Wiimote camera and the
LED bar mounted on the head, can track the position and modify the images on the screen
according to the head position.

On the other hand, the other implementation mounts the camera on the head and the lights
are �xed. The system knows the layout of the lights, and has to calculate the position of the
camera based on what the camera detects. This system is used by the Wiimote; the element that
is moved is the camera and the lights are always �xed in top of the screen. This project follows
this implementation, the camera will be mounted on the head, while the lights will be on the
screen.

Pose estimation method

With the image of the lights taken by the camera, it is necessary to estimate the pose, translation
and rotation of the camera. In order to do that several algorithms exist, however only the most
important ones are commented.

• CamPoseCalib (CPC)

• POSIT algorithm.

• Direct Linear Transform (DLT)

The CPC is the algorithm implemented in the BIAS library34. This algorithm is based in the
non-linear least squares problem, in which it is necessary to minimize a function error:

φ̂ = arg min
φ

m∑
i=1

(ri(φ))2

In Gauss-Newton method, the term ri(φ) represents the �rst order derivative of the residual.
The algorithm is used to estimate the rotation and translation of an object. It needs the initial
pose and then it is able to calculate the new pose. The goal of this method is to �nd the new
pose by looking for the minimum of the error function. This minimum is found by calculating the
derivative of the residuals. Once the minimum is found, the new pose is taken as correct.
To use this method, the functions for the derivatives are directly set, that is, the steps that

the algorithm takes are prede�ned and may not be correct for some situations. In some cases the
Gauss-Newton method is interpolated with the gradient descend. This makes the algorithm more
robust, since it can start far o� the correct minimum and still �nd the pose.
The POSIT algorithm uses a scaled orthographic projection (SOP), which gives a wrong per-

spective projection. However, when the algorithm converges, the true perspective is calculated.
The SOP approximation leads to a linear equation system for the rotation and translation. This
method uses a scale value for the points, and it is updated in every iteration.

32http://www.naturalpoint.com/trackir/products/trackir5/
33http://johnnylee.net/projects/wii/
34http://www.mip.informatik.uni-kiel.de/tiki-index.php?page=BIAS

11

http://www.naturalpoint.com/trackir/products/trackir5/
http://johnnylee.net/projects/wii/
http://www.mip.informatik.uni-kiel.de/tiki-index.php?page=BIAS

CHAPTER 1. INTRODUCTION

This algorithm iterates by calculating the value of the scale value for the di�erent points, until
the change of the values between two consecutive iterations converges to 0. When that occurs
the algorithm converges, and the solution is the translation and rotation vectors obtained by the
algorithm. The advantage of this algorithm is that it does not require a starting pose, as in CPC.
However, when the object is planar, the POSIT algorithm fails because di�erent poses have the

same orthographic projection. In that case the POSIT for coplanar points is used. This algorithm
creates two poses for the object, two I and two J. At the end of the algorithm, it selects one of
them according to the distance between the points and a threshold level.
The DLT estimates the parameters of the projection matrix. To estimate all 12 parameters in

the matrix, at least 6 points are needed. This method is the simplest one, however it is much
slower than the CPC or the POSIT.
In our project the POSIT algorithm will be used, since it is the fastest one and it does not need

the �rst pose to calculate the next one. That means that the POSIT can calculate the pose from
one image.

1.3. Methods, concepts and devices

In this section the devices and algorithms used in the project will be explained. For the hardware
part the next devices can be found:

• PAC7001CS: This is an IR camera which also implements object tracking algorithm. This
implies that the camera does the job of analysing the image and get the coordinates of the
objects in the image.

• AT90USB1286: This is the microcontroller with AVR architecture, it works at 16 MHz at
5V.

• LED structure: A structure holding the regular IR LEDs.

In the software part, the algorithm used by our application to calculate the position of the
camera relative to the lights, is called POSIT. The communication between the camera and the
microcontroller is over UART and the microcontroller uses USB to send the pointer data to the
computer or device.

PAC7001CS

The PAC7001CS is the IR camera used for the project. This camera has the IR sensor with the
DSP processor implemented. Therefore, the coordinates and size, of the object that are tracked,
are sent instead of the IR image that the camera receives. Some features of the camera are:

• Electronic features:

� Tracks up to 4 object

� The supply voltage range is from 3V to 5V, but the data must me 3.3V

� The communication interface is UART at maximum of 1687500 baud

� System clock of 27MHz (oscillator included in the package)

� Maximum current consumption 60 mA

� Frame rate from 10 to 200 fps.

12

CHAPTER 1. INTRODUCTION

• Camera features

� Focal length: 1.3mm

� Pixel size: 11µm× 11µm

� Sensor size: 0.3 cm = 1/10�

The camera has two operational mode: Initial mode and Operation mode. In initial mode the
camera does not track objects or send data trough the UART, but wait for the master to send
the registers con�guration. In this mode the camera accepts four orders:

• Check device (0xEA): This command is used to check the connectivity and functionality of
the camera. Once the camera receive 0xEA it answers with �Tracking V01� string. The �rst
time the camera is powered on, this command must be sent in order to activate it. If the
string is received, the connection is correct and the camera can start sending and receiving
data.

• Set register (0x10): The set register command should be followed by two or three another
bytes. The �rst byte after the 0x10 is the register number one wants to change and the
following one or two are the new value for that register. The number of bytes depends on
the register to be changed, some registers need only one byte while other ones require two.
Once the register is changed the camera will answer with a 0x10 byte.

• Read register (0x11): This byte must be followed by the number of the register which on
wants to be read.

• Switch to Operation Mode (0x8D): With this instruction the camera switches to Opera-
tion Mode.

While in Initial mode the register can be set, these registers change some parameters of the
camera. There are several register which can be con�gured, however the most important ones for
our project are explained.

Name of byte Name Function

0x00 Gain 1 Sensor analog gain
0x01 Gain 2 Sensor analog gain
0x02 Sensor update �ag It has to be changed to 1 to update the reg-

isters once are changed.
0x05 IW (2 bytes) Image Width
0x06 IH (2 bytes) Image Heigh
0x0F Feature option en-

able �ag
Which features of the tracked object wanted
to be included in the data while in Operation
mode.

0x11 Baud rate Change the baud rate of the UART commu-
nication

Table 1.1.: Some register of the camera.

Once the camera has been con�gured by the master, it can be turned to Operation mode. In
this mode the camera does not accept more con�guration orders, it just send the object's features

13

CHAPTER 1. INTRODUCTION

set in the Feature option enable �ag register. The structure of the data received during Operation
mode can be seen in table 1.2. The data received is structured in Frames, every frame has the
data of four objects. The frame starts with the frame header, then the features of the objects
come four times.
The communication between the camera and the microcontroller is through the UART port.

The baud rate of the communication is set in the register 0x11, as can be seen in table 1.1, the
possible values for the baud rate go from 19200 Bd to around 17 MBd. The UART transmission
must be con�gured to start with a start bit, followed by 8 bits of data, and the stop bit. The
number of objects that the camera tracks, depends on which is the UART baud rate. With the
default baud rate the camera only sends data of one object, while with 115200 Bd, the camera
can send the data of up to four objects.

Byte name Bit Function

Header 0xFF 0x00 0xFF 0xFF Frame header to distinguish between frames

Flag Byte

Bit 7: Always 1
Bits [5:6]: 01 when trace
is OK
Bits[0:4]: Frame number

Used to check if the object has been tracked
or not.

Object Flag Byte

Bit 7: Always 0
Bits[4:6] : Reserved
Bits[2:3]: 00 Circle

01 Bar
10 Circle-hole
11 Bar-hole

Bit 1: Reserved
Bit 0: 0 if �nished

It is used to check which kind of object is
the camera tracking.

X coordinate First goes the High byte,
then the Low byte

Gives the X coordinate of the center of the
tracked object.

Y coordinate First goes the High byte,
then the Low byte

Gives de Y coordinate of the center of the
tracked object.

Size First goes the High byte,
then the Low byte

Gives the size of the tracked object.

EOB
Bit 7: Always 0
Bits[4:6]: Object number
Bits[0:3]: Checksum

Distinguish between objects

Table 1.2.: Structure of the data received from the camera.

AT90USB1286

The AT90USB1286 is a AVR 8-Bit Microcontroller, which is mounted in a USB based microcon-
troller development board called Teensy 2++35. The features of the AT90USB1286 that are more
important for this project can be found in table 1.3. The maximum frequency depends on the
supply voltage, for 5.5V is 16Mhz and for 2.7V is 8Mhz.

35http://www.pjrc.com/store/teensypp.html

14

http://www.pjrc.com/store/teensypp.html

CHAPTER 1. INTRODUCTION

The rest of the characteristics can be found in the datasheet, and they will be not commented
due to its extension.

Figure 1.14.: Image of the Teensy2++[16]

Feature Value

Supply voltage 2.7 - 5.5V
Maximum frequency 8 - 16Mhz
In-System Reprogrammable
Flash program memory

128 KB

EEPROM Data Memory 4KB
Internal SRAM 8KB
USB Full Speed 2.0 (Device)
UART Channels 1

Table 1.3.: Some register of the camera.

POSIT Algorithm

The POSIT algorithm(Pose from Orthography and Scaling with Iterations) is an algorithm used
to estimate the 3D pose from a 2D camera. The POSIT requires to detect feature points in
the image, and to know the real shape of these points in 3D. With this data the algorithm can
calculate the position of the camera/object in 3D space.
It is needed to select one of the feature points of our model as reference point. From there,

the algorithm with the vectors from this reference point to the other feature points, will do the
calculation of the rotation and translation vector of the object.
In �gure 1.15 we can see how the 3D coordinate of an object (M0-Mi) project in the camera

plane (m0-mi). The Pi and pi points are the scaled orthographic projection of the point Mi. f
is the focal length of the camera and Z0 is the distance between the camera and the reference
point in our 3D model.
From [17] can be seen that the equations that are need to be solved are:

M0Mi · I = xi(1 + εi) − x0 (1.1)

M0Mi · J = yi(1 + εi) − y0 (1.2)

I =
f

Z0
i (1.3)

J =
f

Z0
j (1.4)

εi =
1

Z0
M0Mi · k (1.5)

15

CHAPTER 1. INTRODUCTION

Figure 1.15.: Points in real world and their projection in the image plane[17]

When values are given to εi the equation system become a linear system in which only I and J
are unknowns. Once I and J are found, we can calculate i and j by normalization. This part of the
algorithm is the called POS(Pose from Orthography and Scaling). The orthography projection
point pi depends on the value of εi, so given an ε which is not exact to the actual value gives us
only approximations to the pose. But once the I and J vectors have been calculated, improved
values of εi can be computed and used in the next iteration to get better approximations to the
pose. This last part is called POSIT(POS with iterations).
For the implementation two matrices are necessary: The A and B matrix. The A matrix is a

matrix with the vectors of the points relative to the reference point in 3D space, and the B matrix
is the pseudoinverse matrix of the A matrix. The shape of our real 3D shape will be �xed so the
B matrix can be computed before so the microcontroller does not have to calculate it every time
the program is executed. With this two matrices the algorithm is:

• Step 1: Set εi = 0 for every feature point in the object, so the POS algorithm can be used.

• Step 2: compute i, j and Z0

� Compute the image vectors x′ and y′ coordinates. Each coordinate is calculated as:

x′i = xi(1 + εi) − x0 (1.6)

y′i = yi(1 + εi) − y0 (1.7)

� With the image vector the I and J can be obtained by multiplying them, I = Bx′ and
J = By′.

� Compute the scale of the projection for each coordinate and calculate the average
between them as the scale of the projection. s1 = I · I1/2, s2 = J · J1/2, s =
(s1 + s2)/2.

16

CHAPTER 1. INTRODUCTION

� Compute the non normalized vectors: i = I/s1, j = J/s2

• Step 3: Calculate the new εi values:

� Compute the k vector as k = i× j

� Compute the Z0 of the translation vector as Z0 = f
s

� Compute the new εi for each feature point. εi = 1
Z0

M0Mi · k

• Step 4: Check if the error is acceptable, di�erence between the new ε and the old one is
less than a threshold. If the di�erence is greater than the threshold go to step 2.

• Step 5: Compute the translation vector and rotation matrix. The translation vector is
Om0/s, and the rotation matrix is formed with the i, j and k vector previously calculated.

By the end of the algorithm the translation vector and rotation matrix are obtained. The
threshold level for the comparison between ε of di�erent loops has to to be set manually, the
smallest it is, the more iterations the algorithm will need.

LED structure

For the POSIT algorithm a �xed position of the lights should be used, so a structure to support
the LEDs is necessary. Due to the limitations of the POSIT algorithm, the points can not be
coplanar, so a cube with 4 light in alternative vertexes is used (�gure 1.16). It is necessary to
select one reference point to the POSIT algorithm, in this case the lower left light is our reference
point, and the rest of the points are in clockwise order.

Figure 1.16.: Image of the LED structure used in this project.

USB

The USB protocol is a well known wired communication protocol. In our case the USB protocol
is used to establish the communication between the microcontroller and a device capable of act
as USB host. The con�guration of the USB protocol is a very extensive topic so only the mouse
descriptor will be commented. The base is a common mouse descriptor available as an example
in the HID Descriptor Tool for the USB Webpage36. In this example the descriptor is for a mouse
36http://www.usb.org/developers/hidpage/

17

http://www.usb.org/developers/hidpage/

CHAPTER 1. INTRODUCTION

with 3 buttons, 2 axis of movement, and the wheel, but for our project, a customized version is
used.

1 static uint8_t PROGMEM mouse_hid_report_desc [] = {

2 0x05 , 0x01 , // Usage Page (Generic Desktop)

3 0x09 , 0x02 , // Usage (Mouse)

4 0xA1 , 0x01 , // Collection (Application)

5 0x05 , 0x01 , // Usage Page (Generic Desktop)

6 0x09 , 0x30 , // Usage (X)

7 0x09 , 0x31 , // Usage (Y)

8 0x15 , 0x00 , // Logical Minimum (0)

9 0x26 , 0x00 , 0x08 , // Logical Maximum (2048)

10 0x35 , 0x00 , // Physical Minimum (0)

11 0x46 , 0x00 , 0x08 , // Physical Maximum (2048)

12 0x75 , 0x10 , // Report Size (16),

13 0x95 , 0x02 , // Report Count (2),

14 0x81 , 0x02 , // Input (Data , Variable , Absolute)

15 0xC0 // End Collection

16 };

With this descriptor the data that the USB host waits for is two blocks of 16 bits. Both
blocks have to send the values between 0 and 2048, and the host will translate them as absolute
movement in the X and Y axis.

libusbx

The libusbx37 is a library that provides methods and functions to easily access to USB devices. It
is a fork of libusb38 which is less updated, so the libusbx is used.
The only con�guration needed is to include the library directory in the linker. In the GCC

compiler, with the Eclipse IDE, it is done by adding in the project properties the path and the
library, or by adding the following line in the linker.

-L"<...>/LibUSB-Win32/lib/gcc" -lusb-1.0

Qt

Qt is a development framework to build applications and user interfaces for di�erent platforms.
The framework contains tools designed to speed up the development of the GUIs. The Qt code is
reusable and the same code can be compiled to run on Windows, Linux or MAC, among others.
This framework was selected for all the mentioned reasons, so it is used to make the PC program.
For this project the version 4.8.4 is used. It can be downloaded from Qt download web page39.

Once downloaded the installation use 1.8 GB of hard drive.
In order to compile Qt code, an IDE is provided in the framework. However, the compilation

of code, in which the lib-usb library was necessary, had some issues with MinGW (Windows GNU
compiler). Therefore to write the code, the Eclipse IDE is used since it provides autocompletion
when working with custom classes. To get the autocompletion with the Qt classes, the includes
�les have to been included in the properties of the project, as can be seen in �gure 1.17.
With this con�guration the Eclipse helps when writing the code providing autocompletion,

however in order to compile the Qt code the command line has to be used.

37http://libusbx.org/
38http://www.libusb.org/
39http://qt-project.org/downloads

18

http://libusbx.org/
http://www.libusb.org/
http://qt-project.org/downloads

CHAPTER 1. INTRODUCTION

Figure 1.17.: Includes con�guration in Eclipse for autocompletion with Qt libraries.

According to Qt tutorials around the web the following steps have to been followed to compile:

1. qmake -project

2. qmake

3. make

The �rst command generate the .pro �le. This �le contains some directives so the qmake can cre-
ate a correct Make�le to the make. However, in our project the lib-usb has to be included in order to
enable USB communication with the Teensy. In order to do that the -L<lib_usb_dir> -lusb1.0

parameters should be added to the linker. The qmake -project does not add the necessaries
lines in the .pro �le so the make�le fails when try to link the lib-usb library.
To �x this, the next line, in the case of using Windows, should be added in the .pro �le to

include the library:

LIBS += -L"<...>/LibUSB-Win32/lib/gcc" -lusb-1.0

The qmake -project generates a di�erent .pro �le if the project has new �les or libraries.
Then, as long as no new �les are added to the project, the qmake -project command and
manual editing of the .pro �le can be avoided.

19

2. Development

2.1. Hardware research and design

The �rst job in the hardware part was to discover how the camera is connected and which are the
function of all the six pins it has. The camera were joined with a PL2303HX1 which convert the
data from the camera from the UART protocol to USB so it can be connected to the PC. The
�rst task was to check the pins while the system was working.

Figure 2.1.: Frontal image of the camera with the PINs numbered as in the schematic.

First, with the multimeter the DC pins were discovered, these pins are 1, 3 and 6, which are the
ground, the reset and the supply respectively. Following the traces from the UART-USB bridge
to the camera, the pins 4 and 5 turn out to be for transmission and reception. The last pin, the
number 2 was unused, so it was the most di�cult to understand. But after connecting it to an
oscilloscope the clock signal was found out. This pin is and extra pin, that can be used to get the
clock signal from the oscillator in the camera.
Once the camera was understood, the hardware design consists in the physical connection of

the Teensy2++ module with the camera. The camera works with 3.3V in the data lines while the
Teensy is con�gured to work with 5V, so the main task in the hardware design was to connect
them with the right voltages. In the Teensy webpage2 explains how can it be con�gured to work
with 3.3V. The connection between them can be done:

• Directly if the modi�cation to 3.3V is used in the Teensy.

• With some interface between the Teensy and the camera that adapts the voltages.

The �rst option, using 3.3V modi�cation, implies that the microntroller has to work at 8Mhz
since 16Mhz can only be achieved with 5V. This project is oriented to real time processing, so the

1http://www.electronicaestudio.com/docs/PL2303.pdf
2http://www.pjrc.com/teensy/3volt.html

20

http://www.electronicaestudio.com/docs/PL2303.pdf
http://www.pjrc.com/teensy/3volt.html

CHAPTER 2. DEVELOPMENT

frequency of the microcontroller has to be as high as possible, so it can do more operations per
second. This option is therefore rejected.
The second option consists in adding an interface between them. As the Teensy is working with

5V we have to adapt the data and the supply lines. For the constant supply the easiest way is to
use a voltage regulator LF33CV which converts the voltage from 5V to 3.3V. The con�guration
is as shown in �gure 2.2. This circuit supply constant 3.3V in the supply pin of the camera.

Figure 2.2.: Schematic con�guration of the voltage regulator with the stability capacitors.

With the supply voltage for the camera, the necessary voltages in the data lines can be calculated
so the microcontroller and the camera detects zero as zero and one as one. To achieve that, it
is necessary that the voltages in the devices ful�l the requirements shown in table 2.1. According
to the table, the transmission is possible in both ways. However, the maximum input voltage for
the IO ports of the PAC7001CS is 3.6V, so an interface in need to down the voltage output from
the AT90USB1286 to 3.3V.

PAC7001CS AT90USB1286

Input high voltage ≥ 2.31 ≥ 3
Input low voltage ≤ 0.99 ≤ 1

Output high voltage ≥ 2.97 ≥ 4.2
Output low voltage ≤ 0.33 ≤ 0.7

Table 2.1.: Electrical requierements for the data communcation

For the data transmission, the bandwidth of the elements is important, so the supply regulator
cannot be used. Two options were considered: using a Zener diode of 3.3V or a voltage divider
build from resistors. The Zener system would consist in a resistor in series with a Zener diode, the
diode would let the necessary current �ow so the voltage drop at the diode is 3.3V while the rest
would drop in the resistor. The two resistors in parallel will do the same work but with a higher
bandwidth. In that system the voltage drop at the �rst resistor, when the input is 5V, has to be
1.7V and 3.3V in the second resistor. This second approach is simpler and cheaper so it is the
implemented one.
For the calculations of the resistor values, we have to take into account which is the maximum

current in the pins of the microcontroller and camera. The AT90USB1286 can output up to 40mA
of current. However, there is no data about the maximum input current.

21

CHAPTER 2. DEVELOPMENT

Figure 2.3.: Implementations of the voltage divider with the resistors and the Zener diode.

Vi − Vo
R1

= Io +
Vo
R2

(2.1)

Vi − Vo
R1

< 40mA (2.2)

From the second equation we can get the lowest possible value for R1 is 42.5Ω. The output
current will depend on the R1 and since the limit value is 42.5Ω we select a higher value so the
necessary current from the microcontroller pin is lower than the limit. The selected value for R1

is 2.2KΩ. With this value of R1, and if Vo is 3.3V, then the current from the I/O pin of the
microcontroller will be 0.77mA. From the equation 2.1 and the values obtained, we can derive:

Io =
5 − 3.3

2.2KΩ
− 3.3

R2
= 0.77mA− 3.3

R2
(2.3)

With R2 = 2.2MΩ the current that will be derived to the camera will be 0.769 mA which is
not a high value, therefore the design of the interface can be seen in the next table:

Name Value

R1 2.2KΩ

R2 2.2MΩ

Ii 0.77 mA
Io 0.769 mA

Table 2.2.: Design parameters for the interface microcontroller-camera

With the design of the interface, and once the function of the pins of the camera is known, the
�nal step is to connect everything together with the microcontroller. From the microcontroller
only the UART TX and RX pins are used (pins 5 and 6 from the diagram, D2 and D3 from the
Teensy2++ reference). The connection can be seen in �gure 2.4. The 3.3V source comes from a
part of the circuit shown in �gure 2.2.

2.2. Software design

The implementation of the software part is done in C language. The IDE used is the Eclipse with
the AVR plug-in and compiled with avr-gcc. The software can be structured in modules in order

22

CHAPTER 2. DEVELOPMENT

Figure 2.4.: Connection diagram of the Teensy2++ and the camera

Figure 2.5.: Software structure divided in modules.

23

CHAPTER 2. DEVELOPMENT

to abstract the hardware and the basic operations of the microcontroller. In �gure 2.5 it is shown
how the software is divided in modules that only depend on the layer beneath them.
In order to abstract all the microcontroller registers and variables, the functions to operate the

UART, the FIFO and the USB are implemented. This method allows to program the software in
a more readable way. The main software uses these libraries to access the more basic functions of
the Teensy. These libraries also use the set of registers and instructions provided by the AVR-GCC
library, which connects the software layer with the hardware layer. The physical elements of the
microcontroller are found in the hardware layer.

2.2.1. Software overview

The main task of the software is to turn on the camera, get the object's coordinates and send the
orders to the PC or device through the USB. For this purpose the software can be divided into
simpler tasks:

• Con�gure the microcontroller.

• Turn on and con�gure the camera.

• Get the data from the camera.

• Apply the POSIT algorithm to the data.

• Send the data through the USB.

The �rst task is to con�gure the microcontroller. In this step the software turns on the services
that are necessary in the next steps, also the FIFO queue is initialized, the clocks, USB and UART
are turned on and con�gured. The interruptions of the USB and UART are enabled, so after this
point the software does not need to con�gure or initialize protocols or pins, it just uses them.
Once all the systems inside the microcontroller are turned on and con�gured, the next step in

to con�gure the devices outside of the AT90USB1286. In this project the only device that needs
con�guration outside the microcontroller is the camera. In this part of the process the camera is
turned on and checked for possible errors. Once the correct message is received from the camera,
the next step is to con�gure the registers of the camera for our purpose. The registers are set and
then the camera is turned to Operation mode. In this mode the camera starts sending data of the
objects it tracks. The data is stored in a FIFO queue which has been initialized in the �rst step.
With the data of the camera in the FIFO queue, the next step is to get the data and store it in

an easier way to handle. The data of the camera comes in frames of data which are separated into
structures that store the data in more human-readable format. Once the structures are �lled with
the necessary data, de POSIT algorithm is applied. The POSIT algorithm works with matrices of
data, so the required values of the structures are therefore stored in matrix form before applying
the algorithm.
From the FIFO algorithm we get the translation and rotation vectors for the camera. With this

data the software has to calculate the coordinates for the mouse pointer to send them through
the USB. For testing purposes there are two USB endpoints, the mouse endpoint and the debug
endpoint. In the last one some debug information is sent and can be visualized in the PC.

24

CHAPTER 2. DEVELOPMENT

2.2.2. Data format and structures

For the di�erent parts of the project some structures and data formats are used. The �rst step in
our software is to get the data from the camera. The data is sent at 115200 baud per second, which
is the baud rate that allows to send a full frame (four object in a frame,table 1.2). Depending on
the processing speed of the data, a real time processing system can be achieved. For that reason,
it is necessary to save the data obtained by the camera during the processing, in some bu�er, so
no data is lost. In this case, a circular FIFO queue was selected to act as the bu�er for the UART
input data. Due to simplicity purposes only the basic operations are implemented. The security
checks are also kept at minimum. The structure that allocates the main variables of the FIFO
queue is shown below.

typedef struct{

unsigned char *pwrite;

unsigned char *pread;

unsigned char *end;

unsigned char *buffer;

volatile unsigned int count;

}fifo_t;

The FIFO queue consist on 4 pointers, pwrite, pread, end and buffer. The �rst two ones
are used when read or write operations are implemented. pwrite points to the �rst available
position to write, so when a write operation is necessary, the library writes where pwrite points
and increments its position. If the end of the queue is reached (pwrite = end) then the new
data is written in pwrite and after that the pointer is set to buffer. For the read operation the
operations are the same but the read operation will fail if pread is equal to pwrite. The pread

pointer points to the data to be read.

Figure 2.6.: Representation of the FIFO queue with its pointers.

The operations that are implemented for this queue are the followings ones:

void fifo_init(volatile fifo_t *fifo, unsigned char *buf);

char fifo_push(volatile fifo_t *fifo, unsigned char byte);

unsigned char fifo_pop(volatile fifo_t *fifo);

unsigned char fifo_empty(volatile fifo_t *fifo);

unsigned char fifo_full(volatile fifo_t *fifo);

void fifo_reset(volatile fifo_t *fifo);

Only the most important functions of the queue are implemented, the fifo_push and fifo_pop
functions are to write and read respectively. In case of fifo_pop the returned value is the read
data, while in fifo_push, the return value is a value representing the correctness of the operation.

25

CHAPTER 2. DEVELOPMENT

The fifo_empty and fifo_full are auxiliary functions which return if the FIFO is empty or full
respectively. The function fifo_reset is used to empty the FIFO queue. In pop and reset cases
even if the data is read or �deleted�, it is still stored only the pointers of the FIFO change. Finally
the fifo_init initialize the FIFO queue, the input parameter is the FIFO to be initialized and a
bu�er (already initialized) which will store the data of the queue. With this functions the FIFO is
fully operational for our purpose. In this project the FIFO is ful�lled with the data, but once the
data necessary for the processing has been acquired the UART stop receiving data. Then FIFO is
reset at the end of the processing so the available data is the newest one. The software does not
need too much memory, therefore the length of the FIFO is set to 1024, that is bigger than we
need. However, the available memory is not a problem.
Once the data is stored in the FIFO queue it is necessary to store it in more human readable

format, for this purpose, in �les PAC7001.h and PAC7001.c, the next structures and functions can
be found.

typedef struct{

uint8_t FlagByte;

uint8_t ObjFlagByte;

uint16_t CenterX;

uint16_t CenterY;

uint16_t Size;

uint8_t EOB;

}Objects;

typedef struct{

unsigned char Header[4];

Objects obj[4];

}CamFrame;

The function of these structures is to store the data from the camera, which come in a burst
of bytes, in a more ordered manner. The structure of the struct Objects depends on how the
camera sends the data, especially in how the register Feature option enable �ag is con�gured, in
our case this value will be 0x93 which correspond with the structure shown above. There are two
structures, one for each object and the other for the full frame. The Header of the CamFrame is
necessary to identify when a frame starts and to check that everything is working as expected,
since if a header is di�erent from 0xFF00FFFF something has gone wrong. With these structures
the following function can be used.

int FrameCheckHeader(CamFrame *Frame);

int FrameFlagByte(int Getinfo, Objects *obj);

int FrameObjectCheck(int Check, Objects *obj);

unsigned char ProcessData(unsigned char* buffer, CamFrame *Dest);

void PACSetRegister(unsigned char RegNum, unsigned char RegValueHigh,unsigned char RegValueLow);

void PACReadRegister(unsigned char RegNum);

void SwitchMode(unsigned char Mode);

The names of the functions are in most of the cases self-explanatory but a small overview will
be done. The FrameCheckHeader check if the header of a CamFrame structure is correct. The
next function,FrameFlagByte, is used to check if the object has been tracked or not, or to get

26

CHAPTER 2. DEVELOPMENT

the frame number. The FrameObjectCheck is an auxiliary function to check the �rst bit of the
Flag Byte and Object Flag Byte, which have to be one in both cases, if not an error has occurred.
In ProcessData is where most of the work is done. This function takes as input the burst of
bytes from the camera and store them in a structure. The �rst step is to recover the header and
check it, if there is an error with the header, then the rest is rejected. If the header is correct
the rest of the data is stored in the structure for future processing. The PACSetRegister and
PACReadRegister work with the camera through the UART. These functions set and read de
register, for the set operation RegValueHigh is only used in two register(the two registers with
2 bytes, IW and IH). The last function is used when the camera has to be changed from Initial
Mode to Operation Mode and vice versa. These are the necessary functions to move the data
from the bu�er to structures, and then do the checks. With the data in the structure the �nal
step is to apply the POSIT algorithm to the data.
In the POSIT algorithm some matrix and vectors are used. For the vectors the structure is a

normal array, in which every position of the array corresponds to one element in the vector. For
the matrix there are di�erent possibilities:

• Arrays of arrays: In this case the pointer to the matrix will point to an array of pointers
in which each pointer point to another array representing the row or column of the matrix.
This format forces the processor to access one pointer, then move through the array, read
the pointer and move to another array doing therefore lots of work to access one element
of the matrix.

Figure 2.7.: Representation of a matrix build as an array of arrays.

• All in a row: this kind of matrix representation store all the matrix in one array in which
the rows or columns are stored one row after another. This scheme is faster since only
one address has to be accessed, the pointer to the matrix. Supposing pmatrix is a
pointer to the matrix array storing a mxn matrix, to access one element the code will
be pmatrix[COL*n+ROW] with the COL and ROW starting at 0.

Figure 2.8.: Representation of a matrix build in only one array.

27

CHAPTER 2. DEVELOPMENT

For the implementation of the POSIT algorithm the second option is used, storing one row after
another. This method improves the speed and memory performance.

2.2.3. Actual block diagram

With the data structures and format the main program can be explained. The full block diagram
can be seen in �gure 2.9. The �rst step in the software is to con�gure the AT90USB1286
microcontroller so it can handle all the system that will be used.

Figure 2.9.: Full software block diagram.

Figure 2.10.: Initialization procedure.

In the AVR initialization (�gure 2.10) block the UART is turned on with a baud rate of 19200
baud ,which is the default baud rate that the camera has, when it turns on. Then the UART is
con�gured to work with the camera protocol, that means with no parity bit nor stop bit and words
of 8 bits. The UART of our microcontroller has the double speed option to achieve higher speeds
of transmission. For the �rst baud rate high speed is not necessary, however when the UART
has to work at 115200 Bd, the high speed register is set. In �le uart.h the UART initialization
function can be found as:

void uart_init(unsigned long baud_rate, unsigned char double_speed)

This function has to calculate the baud rate that the registers of the UART need. This
value,when double speed is o�, is calculated:

Baud rate to registers =
CPU freq.

baudrate · 16
− 1

28

CHAPTER 2. DEVELOPMENT

When double speed is on, the factor 16 changes to 8. The value obtained from the last equation
is used in the registers UBRR1H and UBRR1L. The UBRR1H register stores the most signi�cant bits
of that value, while the rest is stored in UBRR1L. When the baud rate is set in the registers, the
transmission and reception are enabled with no parity, 1 bit stop and character size of 8 bits with:

UCSR1B = _BV(TXEN1) | _BV(RXEN1); //Enable Tx and Rx

UCSR1C = ~_BV(UPM11) | ~_BV(UPM10); // No parity

UCSR1C = ~_BV(USBS1); //1 bit stop

UCSR1C = ~_BV(UCSZ12) | _BV(UCSZ11) | _BV(UCSZ10); //character size 8-bits

To send data through the UART the function uart_send_byte is used:

void uart_send_byte(unsigned char byte)

{

while (!(UCSR1A & (1<<UDRE1)));

UDR1=byte;

}

This function waits until the bit UDRE1 (USART Data Register Empty) in the register UCSR1A
is set to zero. That means that the transmit bu�er of the UART is empty and ready to receive
more data. In that moment the data to be sent is stored in register UDR1, which will send the data
as soon as possible. When the software needs to send a byte through the UART, this function
will be used in order to abstract from how the microcontroller is doing it.
After turning on and con�guring the UART, interrupts from UART receives are activated.

Following the UART initialization comes the USB, with the activation of the USB pins and
internal registers, the internal PLL for clocking the USB pins and the interruptions are enabled.
The USB code comes in an example in the webpage of the Teensy2++, the USB mouse example3,
but after some changes it is suitable for our proyect. In order to identify the USB in the PC or
USB host, the USB device has to be con�gured with some product ID and vendor ID. In our case
the values for this parameters are de�ned as:

#define VENDOR_ID 0x16C0

#define PRODUCT_ID 0x047F

The communication between the device and the host is done through two pipes. The con�guration
of these pipes can be seen in table table 2.3.

Interface Endpoint Type Use

0 3 IN Mouse data
1 4 IN Debug data

Table 2.3.: Pipes con�guration for USB communication.

For the data format in the USB frames, the example comes with a simple mouse implementation,
2 axis, a wheel and 3 buttons, and a debug descriptor. The debug descriptor can be used without
any change, however the descriptor of the mouse has to be adapted to our project. The example
descriptor of the mouse is:

3https://www.pjrc.com/teensy/usb_mouse.html

29

https://www.pjrc.com/teensy/usb_mouse.html

CHAPTER 2. DEVELOPMENT

1 static uint8_t PROGMEM mouse_hid_report_desc [] = {

2 0x05 , 0x01 , // Usage Page (Generic Desktop)

3 0x09 , 0x02 , // Usage (Mouse)

4 0xA1 , 0x01 , // Collection (Application)

5 0x05 , 0x09 , // Usage Page (Button)

6 0x19 , 0x01 , // Usage Minimum (Button #1)

7 0x29 , 0x03 , // Usage Maximum (Button #3)

8 0x15 , 0x00 , // Logical Minimum (0)

9 0x25 , 0x01 , // Logical Maximum (1)

10 0x95 , 0x03 , // Report Count (3)

11 0x75 , 0x01 , // Report Size (1)

12 0x81 , 0x02 , // Input (Data , Variable , Absolute)

13 0x95 , 0x01 , // Report Count (1)

14 0x75 , 0x05 , // Report Size (5)

15 0x81 , 0x03 , // Input (Constant)

16 0x05 , 0x01 , // Usage Page (Generic Desktop)

17 0x09 , 0x30 , // Usage (X)

18 0x09 , 0x31 , // Usage (Y)

19 0x15 , 0x81 , // Logical Minimum (-127)

20 0x25 , 0x7F , // Logical Maximum (127)

21 0x75 , 0x08 , // Report Size (8),

22 0x95 , 0x02 , // Report Count (2),

23 0x81 , 0x06 , // Input (Data , Variable , Relative)

24 0x09 , 0x38 , // Usage (Wheel)

25 0x95 , 0x01 , // Report Count (1),

26 0x81 , 0x06 , // Input (Data , Variable , Relative)

27 0xC0 // End Collection

28 };

The �rst problem with this implementation is that in our case we are not moving the mouse
relatively but absolute to where the head is pointing, so the �rst step is to change the move from
relative to absolute, changing the line 23 from:

0x81, 0x06,// Input (Data, Variable, Relative)

to

0x81, 0x02,// Input (Data, Variable, Absolute)

In our project the wheel and buttons are not used. Therefore, the following lines are deleted:

0x05, 0x09,// Usage Page (Button)

0x19, 0x01,// Usage Minimum (Button #1)

0x29, 0x03,// Usage Maximum (Button #3)

0x15, 0x00,// Logical Minimum (0)

0x25, 0x01,// Logical Maximum (1)

0x95, 0x03,// Report Count (3)

0x75, 0x01,// Report Size (1)

0x81, 0x02,// Input (Data, Variable, Absolute)

0x95, 0x01,// Report Count (1)

0x75, 0x05,// Report Size (5)

0x81, 0x03,// Input (Constant)

...

0x09, 0x38,// Usage (Wheel)

0x95, 0x01,// Report Count (1),

0x81, 0x06,// Input (Data, Variable, Relative)

30

CHAPTER 2. DEVELOPMENT

When trying to run the software with this USB descriptor the range of movement of the pointer
was so limited because for relative movement, with a range between 0 and 127, is enough reso-
lution. However for absolute movement 127 di�erent points are not enough, so the resolution is
changed in lines 19 and 20. Since the resolution necessary is higher than 255 points, the size of
the report will also be increased from 8 bits to 16 bits.

0x15, 0x81, // Logical Minimum (-127)

0x25, 0x7F, // Logical Maximum (127)

0x75, 0x08, // Report Size (8),

0x95, 0x02, // Report Count (2),

to

0x15, 0x00, // Logical Minimum (0)

0x26, 0x00, 0x08, // Logical Maximum (2048)

0x35, 0x00, // Physical Minimum (0)

0x46, 0x00, 0x08, // Physical Maximum (2048)

0x75, 0x10, // Report Size (16),

0x95, 0x02, // Report Count (2),

With all this changes the USB descriptor �t our purpose and therefore is used. The �nal
descriptor is as shown:

1 static uint8_t PROGMEM mouse_hid_report_desc [] = {

2 0x05 , 0x01 , // Usage Page (Generic Desktop)

3 0x09 , 0x02 , // Usage (Mouse)

4 0xA1 , 0x01 , // Collection (Application)

5 0x05 , 0x01 , // Usage Page (Generic Desktop)

6 0x09 , 0x30 , // Usage (X)

7 0x09 , 0x31 , // Usage (Y)

8 0x15 , 0x00 , // Logical Minimum (0)

9 0x26 , 0x00 , 0x08 , // Logical Maximum (2048)

10 0x35 , 0x00 , // Physical Minimum (0)

11 0x46 , 0x00 , 0x08 , // Physical Maximum (2048)

12 0x75 , 0x10 , // Report Size (16),

13 0x95 , 0x02 , // Report Count (2),

14 0x81 , 0x02 , // Input (Data , Variable , Absolute)

15 0xC0 // End Collection

16 };

The way the data is send to the computer has changed from 2 buttons, wheel and axis to only
the axis, with 2 bytes for each axes. Therefore, the function that send the data to the computer
need to be changed in order to send the correct data.

1 int8_t usb_mouse_move(int16_t x, int16_t y, int8_t wheel)

2 {

3 ...

4 /* keeps the same */

5 ...

6

7 UEDATX = LSB(x);

8 UEDATX = MSB(x);

9 UEDATX = LSB(y);

10 UEDATX = MSB(y);

11

12

13 UEINTX = 0x3A;

31

CHAPTER 2. DEVELOPMENT

14 SREG = intr_state;

15 return 0;

16 }

With the mouse data, the USB has to send the debug messages. The debug endpoint of USB
and the function to operate it are included in the example program and need no change. For
the use of the debug endpoint there are di�erent functions to send data as numbers or strings.
The function print_P is used to send complete strings through the USB debug endpoint. This
function can be accessed through the print function. For numbers there are two options: phex
and phex16, they should be used with 1 byte or 2 bytes numbers respectively. Their prototypes
are:

void print_P(const char *s);

void phex(unsigned char c);

void phex16(unsigned int i);

All of this functions use the usb_debug_putchar. This function sends the characters through
the USB. It waits until the USB lines are ready to transmit. Then, it selects the debug endpoint
to transmit the data, and store it in the FIFO queue for the USB transmission. Once the USB has
a complete packet of data, it sends it. The print_P function reads all the characters of a string
and use the usb_debug_putchar to send them, one by one.

Figure 2.11.: Flowchart to set camera's registers.

The USB is the last system that needs to be initialized in the microcontroller, so once the USB
has been con�gured, the next step is to turn on the camera, con�gure it and start receiving data
(�gure 2.11). The camera needs the 0xEA command to be turned up so it is sent, followed by a
0x8E just to be sure that the camera is in Initial Mode. In that mode the camera's registers can
be set up, the values of them vary between applications and the actual values for each test will
be commented on the tests part. After setting all the values of the registers the baud rate of the
communication is set to 115200 baud. Then, in the debug window it is checked that the �Tracking
V01� message and the ACKs from the camera are received. If everything were as expected the
camera is changed to Operation Mode and the main loop of the program starts.
The main loop (�gure 2.12) starts with a delay of 100 ms waiting for the data to arrive, until

there are not enough bytes of data in the bu�er the algorithm keeps waiting. When there is enough
data the FIFO is read until a header (0xFF00FFFF) is found which means that from that point
the bu�er can be passed to the ProcessData function and be stored in a CamFrame structure. If
the data is processed and there are not errors, then each of the objects in the frame is checked
with FrameFlagByte function which checks the bit of the byte that represent if the object has
been tracked or not. If is the case then the necessary operations are applied, in some cases is to

32

CHAPTER 2. DEVELOPMENT

Figure 2.12.: Flowchart from the main loop of the software. The options A and B are for using
the data with the POSIT algorithm or debugging it at PC.

33

CHAPTER 2. DEVELOPMENT

send the data through the debug channel to be analyzed with some PC software, in other cases
the data of the four objects are stored and passed to the POSIT algorithm.
For the POSIT algorithm the matrices A and B are necessary, as shown in the methods sections.

The matrix A is constructed with the vector connecting the reference point with each of the others
points. The order in which the objects are included in the matrix has to be the same as the order
in which the objects are sent to the POSIT algorithm. That is, if the �rst element in the matrix is
the vector connecting the reference point to object a�, then the �rst element in the array of data,
for the POSIT, has to be the image coordinates of that object �a�.
The tracked objects are, therefore, arranged in the same way that in the matrix for the POSIT.

In the devices section we can see how is the structure for the LEDs (�gure 1.16). The reference
point is the lower left one, and then the objects are arranged in the matrix in clockwise order. In
order to arrange them like that, the �rst step is to look for the reference point, which will be the
one which has less Y value, from the two objects with higher X value (supposing that the camera
orientation is as in the images, X axis vertical, Y axis horizontal).
The algorithm to order the objects will be:

1. Order all the elements in increasing X order.

2. From the two with higher X value, select the one with lower Y value, as reference point,
and the other as last point.

3. From the two with lower X value, the one with lower Y will be the �rst point, and the other
one the second point.

This method, of detecting which object is the �rst one and so on, includes a restriction in the
pose detection. In some angles (extreme angles), the objects can be wrong assigned since the
top objects are treated like bottom ones. The position, of the camera and the LED structure,
necessary to achieve these angles are not common in normal use.
The data from the camera is referred to one corner of the image, however for the POSIT

algorithm it is necessary that the coordinates are referred to the center of the image, so the �rst
step in the POSIT algorithm is to refer the coordinate to the center. Then the needed variables
are created and initiated, for the ε values there are 2 arrays, one for the current iteration and the
other one for the last one, so at the end of the iteration they can be compared. The values of x′

and y′ are calculated:

x_[0] = x[1]*(1 + eps0[0]) - x[0];

x_[1] = x[2]*(1 + eps0[1]) - x[0];

34

CHAPTER 2. DEVELOPMENT

x_[2] = x[3]*(1 + eps0[2]) - x[0];

y_[0] = y[1]*(1 + eps0[0]) - y[0];

y_[1] = y[2]*(1 + eps0[1]) - y[0];

y_[2] = y[3]*(1 + eps0[2]) - y[0];

Then the calculation of vectors I and J, and the values of s1, s2 and s are done. With these
values the vectors will be normalized. Then the new values of ε are calculated. After that the
error is calculated and if the error is below a threshold or the number of iterations exceed the limit,
the translation and rotation vectors are calculated and stored in the respective matrices, else the
new values of ε are used to do the same calculations and the process is done again. The auxiliary
functions for the POSIT algorithm are related with vector operations. The functions are for the
inner product, cross product and the di�erence between vectors. The prototypes are:

float InnerProduct(float *v,float *u, int len)

void CrossProduct3(float *v,float *u, float *res)

void difference3(float *v1, float *v2, float *v3)

The �rst implementation of the POSIT algorithm gives positive results, however some improve-
ments can be made. To make the changes there are some facts that have to be taken into
account. The used microcontroller only implement integer operation in the ALU, so �oating point
operations have to be implemented by software. That means that operations with �oating points
are expensive in microcontroller cycles. So, the operations with �oating points should be avoided.
The �rst change made to decrease the number of operations with �oating points numbers is to

remake the calculation of x′ with in the �rst implementation is:

x_[0] = x[1]*(1 + eps0[0]) - x[0];

Which is the direct implementation of:

x′i = xi(1 + εi) − x0 (2.4)

However this equation can be rewritten to:

x′i = (xi − x0)︸ ︷︷ ︸
Integers

+ xiεi︸︷︷︸
Floats

(2.5)

Since the main goal is to reduce operations of �oating points, the algorithm goes from 3 �oating
points operations to 2 �oating point operations and one integer operation. Since the di�erence
between xi and x0 is always the same, for one set of feature points, it can be calculated before
the loop and stored in a variable. As result, the calculation of one element of the x′ is:

x_[0] = Difs[0] + x[1]*eps0[0];

The second step consists in reducing the operations while calculating the I and J vectors and
length. The �rst implementation calculates the values of the elements, and then calculates the
length of the vector. For each step a loop it is necessary, however if the length of the vector is
calculated as the elements are, one loop can be avoided. The length of the vector is calculated
by the square root of the sum of the squares of its elements. If the sum is done while getting the
values, the second loop is avoided.

35

CHAPTER 2. DEVELOPMENT

The third improvement comes in the calculation of the Z0. The �rst option was to store the
value of Z0 calculated as the focal distance of the camera divided by the parameter s. And when
calculating the new values for ε, the inverse of the Z0 is calculated. Since the value of Z0 it is not
used until the algorithm converges, the inverse of Z0 is calculated so it is not necessary to invert
it in every loop.
The last step is to include, the values that makes the algorithm converge in the last image, in

the new calculation. According to [17], if the system is tracking the position of an object, once
the algorithm has converged for one set of feature points, the values for ε should be used by the
POSIT algorithm for the next image. Therefore in the main program the values of the ε are stored
between images, so they can be used as starting point for the algorithm. With all this changes
the prototype of the function is as follows

void POSIT(unsigned short *xx,

unsigned short *yy,

float *A,

float *B,

float focal,

short ImageCenterX,

short ImageCenterY,

float *translation,

float *rotation,

unsigned char *eps_

)

Where the *xx and *yy are the arrays with the coordinates of the objects, already ordered. *A
and *B are the matrices for the POSIT algorithm. Then comes the e�ective focal length of the
camera. The *translation and *rotation are the matrices where the output (translation and
rotation) will be stored once the algorithm has �nished. Finally the *eps_ is the array in which
the value of ε is stored between images.

2.3. System operating range

Before the camera is used a more theoretical analysis is made in order to get the best spatial
resolution that can be achieved. To do that we need the physical data of the camera which can
be seen in section 1.3. The values that are interesting to do the analysis are grouped in table 2.4,
while the diagram that represent the points, the camera and the image plane is in �gure 2.13.

Parameter Value

Focal length 1.3 mm
Pixel size 11µm×11µm

Sensor size (in pixels) 128x96

Table 2.4.: Camera necessary characteristics for the analysis.

In �gure 2.13 de distance between the objects is M1M2 = s and the distance between the
two points in the image plane is m1m2 = p. With all this values we can now calculate which is
the maximum and minimum distance s so the objects can be di�erentiated. The best conditions

36

CHAPTER 2. DEVELOPMENT

Figure 2.13.: Representation of the points in real world(M1 and M2) and in the image plane(m1
and m2).

are when the points, that the camera detects, use only one pixel per object. Which this premises
the minimum distance that the camera will detect is when there is only one dark pixel between
two bright pixels(the objects). This condition implies that the distance between the objects in the
image plane must be at least 2 pixels of distance(p > 2pixel). In the limit p = 2pixel, so with
this condition and from the �gure 2.13 we can obtain the minimum distance between objects in
real world.
If an imaginary line cut the diagram horizontally in two, two similar triangles are found, so the

relation between its sides is:
p/2

f
=

s/2

f + d
(2.6)

Which comes to:

s =
f + d

f
p (2.7)

In f + d the focal distance is 1.3mm and the distance of the objects will be usually around 1
meter, so the focal distance can be omitted. In the limit, the distance p between two points, has
to be two times the pixel size, so changing the equation:

smin = d
2 · 11µm

1300µm
= 0.0169 · d (2.8)

Distance d(m) Min. separation s(cm)

0,8 1,35
0,85 1,44
0,9 1,52
0,95 1,61
1 1,69

1,05 1,77
1,1 1,86

Table 2.5.: Values of minimum separation around the expected distance between the camera and
the LEDs.

With the actual LED system in which the LEDs are separated by around 8 cm the maximum
achievable distance is 4.73 meters, under best conditions. For the minimum distance in which

37

CHAPTER 2. DEVELOPMENT

the camera will see the four lights, the calculation is similar. Using the diagram in �gure 2.13,
the distance m1m2 = p is the size of the sensor. In the biggest size the sensor has 128 pixels
of 11µm, that gives 1408 µm. Using the same equivalence as for the maximum distance, the
closest the camera can be to the structure (which is 11 cm long) is 10.17 cm, according to:

s =
f + d

f
p (2.9)

However, the biggest size of the structure is only seen when looking from the front, when
the camera moves and change the angle of view, the distance between the points, seen by the
camera, is not the 11 cm, so in some situations the distance can be even closer. Therefore, the
range in which the camera would work should be between 10.17cm to 4.7 meters, under optimal
conditions.

2.4. Tests

During the development of the software several test have been made. In each test some part of
the software is tested. The following table shows the relation between the test that have been
made, the �le to compile and the description of the test.

Test File Description

Test 1 TestUSB.c Communication between the camera and the
USB host is tested. Basic communication is
made, some text and random numbers are sent
to the PC.

Test 2 TestTracking.c Communication between the camera and the
Teensy2++. The data from the camera is sent
to the PC through the USB so it can be analysed.

Test 3 TestACKs.c Camera con�guration is tested. Some registers
are set and read to check they actually have been
changed with the orders from the microcontroller.

Test 4 TestCameraData.c The data from the camera is stored and saved in
the structures. The correctness of the algorithm
that do the change is tested.

Test 5 TestPOSIT.c With all the data from the camera, the POSIT
algorithm is tested.

Table 2.6.: Relation between test's �les and description.

Test 1: USB test

The �rst test checks the communication between the Teensy and the computer. The functions
to communicate over USB were already implemented and can be found in the Teensy web page4.
Because all the function related to USB were already implemented, the software of this test
keeps really simple. The functions provided in the library, that are used, are print, phex and

4https://www.pjrc.com/teensy/usb_debug_only.html

38

https://www.pjrc.com/teensy/usb_debug_only.html

CHAPTER 2. DEVELOPMENT

phex16. They are capable of sending text and numbers of 8 or 16 bits respectively. In the test
some sentences and two numbers are send as an example. In the PC side, the data from the
microcontroller can be seen with the hid_listen.exe program.
After con�guring the USB, the program wait 6 seconds until start sending data. This delay is

used because the operating system has to load the driver for the new USB device before it can be
used. After the delay the messages are sent using:

print("\nTesting....!\n");

print("8 bits number: ");

phex(123);

print("\n16 bits number: ");

phex16(16023);

print("\n");

Obtaining the the output in �gure 2.14. As we can see the numbers are sent in hexadecimal
format but everything work as expected, so now the work with the camera can start.

Figure 2.14.: Output of the hid_listen.exe program for the testUSB.c

Test 2: Camera connection

With the USB connection working the next step is to connect the camera. The software for this
program is a continuation of the last one. As the UART is going to be used, the FIFO queue must
be therefore activated and con�gured. So in the con�guration step the UART and the FIFO are
initialized. The interruption function for the UART stores the data in the FIFO, and turn on and
o� a LED so it can be used as sign of good operation. The interruption function is:

ISR(USART1_RX_vect)

{

LED_ON;

unsigned char rc = UDR1;

fifo_push(&fifouart,rc);

LED_OFF;

}

To turn on the camera the byte 0xEA is sent using uart_send_byte function. Then, the
message �Tracking V01� is expected to be received so, the data that is received from the camera
is sent through the USB to the PC in order to be checked. The output of the program can be
seen in �gure 2.15. The camera message it is as expected

Test 3: Camera registers

Once the debugging messages can be analysed in the PC we can start working with the camera and
the data it sends. Before the camera tracks the objects it is necessary to con�gure its registers.

39

CHAPTER 2. DEVELOPMENT

Figure 2.15.: Output of the TestTracking.c

The registers are set with the 0x10 following by the number of the register to set and the new
value for the register. For that purpose the next function is implemented:

void PACSetRegister(unsigned char RegNum,

unsigned char RegValueHigh,

unsigned char RegValueLow)

{

uart_send_byte(0x10);

_delay_ms(30);

uart_send_byte(RegNum);

_delay_ms(30);

if(RegNum == REG_IW || RegNum == REG_IH)

{

uart_send_byte(RegValueHigh);

_delay_ms(10);

}

uart_send_byte(RegValueLow);

_delay_ms(30);

}

The camera send an ACK, which is a 0x10 code, after every register set command. To check
that all the register have been set, the ACKs are checked and some registers are read as an
example. As it can be seen in �gure 2.16 all the ACKs arrive at the camera with the data of the
�rst three registers.

Figure 2.16.: Output of the TestACKs.c

Test 4: Data and structures

When the camera is connected and con�gured, it starts sending data. The data that is received
has to be stored in the structures with the functions provided to do that. In order to test these
functions this test is made.
Once a full frame is received it is stored in the structure by the function ProcessData. Then,

in order to debug, the data of the tracked objects are sent to the PC. In the following code it

40

CHAPTER 2. DEVELOPMENT

can be seen that, if the frame is correctly processed then a loop checks every object, and if it is
tracked it shows the data on the PC, as shown in �gure 2.17. At this point the �rst research on
the camera can be done.

if(ProcessData(<databuffer>, &<frame_structure>) == OK_)

{

for(i = 0; i<4; i++)

{

temp = Frame.obj[i];

if(FrameFlagByte(FLAGBYTE_CONDITION, &temp) == FLAGBYTE_TRACEOK)

{

/* Send the formated data */

}

}

}

Figure 2.17.: Output of the TestData.c

With the �rst data sheet provided by the manufacturer, the register's function were not clear,
the limit values of the documented ones were not in the data sheet, and some registers were not
documented at all. Therefore the �rst months, the goal was to understand the registers and how
they a�ect the behavior of the camera. Although some of them were understood, they were not
enough to achieve a correct behavior, the distance of tracking was too low, and the data the
camera sent was not clear.
With the second data sheet, which was from another but close model, the research speeds up.

And the true development of the head tracking system could start.
From this point on, the same base con�guration(�gure 2.7) for the camera will be used for every

test, and only the values that are changed will be commented. The base con�guration will be a

41

CHAPTER 2. DEVELOPMENT

small modi�cation of the recommended by the manufacturer in the data sheet from May 2006.
The modi�cations are due to the example program, in which some registers were also changed, so
they are also changed in our base con�guration.

Register Num. Name Value

0x00 Gain 1 0xA
0x01 Gain 2 0x0
0x03 LPF 118
0x04 NY 1
0x05 IW 0x400
0x06 IH 0x300
0x07 - 0x88
0x0E Obj. Assign mode 1
0x0F Feature opt. enable �ag 0x93
0x10 - 4
0x11 Baud rate 5
0x18 - 0x14
0x1A - 30
0x1B - 3
0x1E Np_H 0
0x1F Np_L 3

Table 2.7.: Base register con�guration for camera operation.

With this con�guration the �rst research can be done. The �rst step is to know how the camera
sends the X and Y axes, which axis is the X axis and which one is the Y. The result can be seen
in �gure 2.18.

Figure 2.18.: Orientation and maximum limits of the image from the camera.

Once the orientation of the camera is known, the next step is to know which are the limits for
the X and Y axes, which is to see which is the higher and lower value that the camera reports,
which are 0x57F for the Y axis and 0x77F for the X axis. However, while doing the research, there
were some issues with the data received from the camera. There are some forbidden values which
are never reported. The received values from the X and Y axes are always in the ranges showed in
the table 2.8. That means that if an object goes in the X axis, from 0x0 to 0x77F, when it reach,

42

CHAPTER 2. DEVELOPMENT

for example, the coordinate 0x7F then the next position will be 0x100, and that is the same for
every block.

X axis Y axis

0 - 7F 0 - 7F
100 - 17F 100 - 17F
200 - 27F 200 - 27F
300 - 37F 300 - 37F
400 - 47F 400 - 47F
500 - 57F 500 - 57F
600 - 67F -
700 - 77F -

Table 2.8.: Valid values for the X and Y axis (in hexadecimal)

This �jumps� in coordinates can be due to some malfunction of the hardware, a problem of the
interpolation algorithm of the camera, or the data is sent as expected but needs more processing.
If we focus on the data received and the ranges of the coordinates we can see that the last available
coordinate is, in binary format:

XXXXXXXX︸ ︷︷ ︸
Byte 2

0111 1111︸ ︷︷ ︸
Byte 1

The data of the camera could be said that is divided into blocks, indicated by the second byte.
Each block is also divided in coordinates which are reported by the camera in the �rst byte. As the
last available coordinate is always 0111 1111, the camera may work with signed integers even when
the negative numbers are never used. In addition to that, if we sum up all the possible coordinates
available in the ranges then it gives us: 1024 and 768 for the X and Y axis respectively, which
are the image size con�gured in the registers. For these reasons the problems with the hardware
or the camera's algorithm are rejected, and the camera and hardware are supposed to work as
expected.
For the next steps in the project the coordinates have to be continuous. In order to �x it the

coordinates received from the camera are processed in a simple way, the second byte is shifted 1
bit to the right and the �rst 0 from the �rst byte is deleted. This operation can be done with the
next line of code, where CenterX and CenterY are variables of 2 bytes storing the coordinates.

X = ((CenterX & 0xFF00) >> 1) | (CenterX & 0x007F);

Y = ((CenterY & 0xFF00) >> 1) | (CenterY & 0x007F);

With this correction the values of the coordinates X and Y are continuous from 0 to 0x400 and
0x300 respectively. However, in order to use the POSIT algorithm, 4 lights are needed. While
doing the tests some issues were noticed. The camera cannot track the four lights when the
structure of lights is a bit far away from the camera. Sometimes the structure is reported as only
one bright object, and even with the structure near the camera, most of the time the camera only
detects 2 or 3 objects.
In order to make the system usable, it is necessary that the camera detects 4 objects from a

distance of at least half a meter. The reasons to prevent that to happen may be:

43

CHAPTER 2. DEVELOPMENT

• Bright lights: The light from the LEDs is so bright that the camera get overexposed, and
the glow, from the di�erent objects, intersects and makes the camera detects them as one
object.

• Light beam: The light emitted from the LEDs may be wide enough so the camera see two
light as one, and treat it as only one object.

• Blur due to the lens: The quality of the lens may blur the image and the objects. Even if
the lights are focused they become blurry until they are detected as one.

• Lack of focus: Maybe some manufacturing issues make the image to be out of focus,
generating blurry images as in the last option, blur due to lens.

Since the last two problems are out of our control, the system has to be improved trying to
solve the �rst two problems, managing the lights and the camera parameters. To �atten the light,
the LEDs are sanded down, so the light from them come in a more di�use way, avoiding direct
light to the camera. For the �rst problem with the parameters that we can touch are the gain of
the sensor and the exposure time. For the gain of the sensor the registers that must be used are
Gain 1 and Gain 2 , 0x00 and 0x01 respectively, while for the exposure time the LPF, Ny and
Np_H and Np_L, registers 0x03, 0x04, 0x1E and 0x1F, must be used. The relation of these
registers to get the exposure time can be found in the second datasheet and it is:

Exp.time =
187 ∗ (LPF + 1 −Ny) ∗ 2 ∗Np

system clock
(2.10)

The Np register also a�ects the frame rate, so in order to a�ect only the exposure time the
registers LPF and Ny should be used. Since the minimum of the LPF register is 110, and by
default it is set to 118, the Ny parameter will be changed. It can be changed between 1 and the
value of LPF (118 in our case).
The registers values that were tried can be seen in table 2.9. There can be seen how the

system is improved, but not enough to work at normal distances. The �rst con�guration is the
default con�guration recommended by the manufacturer. With these values the detection of the 4
lights can only be accomplished with really short distances between the camera and the structure
(around 4∼6 cm), and only in some positions. As the lights keep getting confused in the camera,
the next step, to reduce the amount of light that the camera detects, is to reduce the gain. This
is done by taking the gain 1 value down to 0x3. With this change the camera start to detect
the structure as one bright point easier, and getting 4 points of lights became mostly impossible.
With this con�guration can be seen that the problem is not with high gain in the sensor, so the
next step is to reduce exposure time.
Since the decrease of the gain does not solve the problem, the exposure time is taken down,

but compensated by higher gain. This is done by increasing the Ny register, the higher the value
the lower the exposure time. In this case, the tracked objects just disappeared. Since they cannot
be tracked, the exposure time is increased (fourth con�guration). With this con�guration the
detection of the 4 objects becomes easier and the distance increases around 1 or 2 cm. The gain
of the �rst register is at its maximum so to increase the gain, the second gain register should be
used. However, the use of this second register has a bigger impact in the SNR, so this register
has to be used carefully. With the second gain at 0xF and the Ny at 20, the detection gets worse.
That could be produced by the fact that, the gain has been increased, but the exposure time has
been kept the same, so the light that the sensor detects increases. With this increase in the global

44

CHAPTER 2. DEVELOPMENT

light, the objects get bright again and get tracked as one object. So the next step would be to take
down the exposure to compensate the increase in the gain. In the con�guration 5 the exposure
has been compensated by the exposure time. However, with these values, the performance of the
system decrease and the tracked object get harder to track again.
Considering the results, the best con�guration for the camera registers is the third one, with

gain 0xF and 0x0 and Ny 20. With this con�guration the camera can track the four lights from
a distance of around 8 cm up to 18 cm. Where the lights start to join and the camera sees them
as 3 or 2 lights.

Nr. Gain 1 Gain 2 Ny

1 0xA 0x0 1
2 0x3 0x0 1
3 0xF 0x0 50
4 0xF 0x0 20
5 0xF 0xF 20
6 0xF 0xF 40

Table 2.9.: Register con�gurations to solve overexposure images

Test 5: POSIT

With the track of the four objects, the POSIT algorithm can be tested. The �rst modi�cation to
the last code is to add some method to track how many objects are tracked. A counter is added,
and while the structure is being processed the data of the X and Y coordinates are added to arrays,
so they are ready to the POSIT algorithm. If the four objects are tracked, they are ordered in the
same way as in the A matrix, and sent to the POSIT algorithm.

Figure 2.19.: LEDs structure and coordinates.

The coordinates of the camera should now be set. According to the orientation of the camera,
the axes, showed in �gure 2.19, are assigned with the origin in the lower left LED. The LEDs are
orderer also in the way shown in the �gure, and that is the order for the A matrix. The separation
between the LEDs positions is 11 cm in X axis, 8.5 cm in Y axis and 9 cm in Z axis. With the

45

CHAPTER 2. DEVELOPMENT

dimension of the structure, the A and B matrix are:

A =

 −11 0 −9
−11 8.5 0

0 8.5 −9

 A−1 = B =

 −0.0455 −0.0455 0.0455
−0.0588 0.0588 0.0588
−0.0556 0.0556 −0.0556


The POSIT algorithm also needs the focal length of the camera, in pixels. Since the size of the

pixels is 11µm× 11µm, and the focal length is 1.3 mm, the focal length in pixels is 1300
11 , 180.18

pixels.
With this data, the POSIT algorithm can be tested. According to [17], when the relation

between the size of the object and the distance to the camera is above 0.5, the algorithm must
converge in few steps. In our case the algorithm did not converge. In order to study the reasons,
the POSIT tester software is used. With some data from the camera we can test the POSIT
algorithm and save the evolution of the ε values in a �le. With the algorithm of the camera
several tests were made, however the debug information that can be obtained from the camera,
in �oating point operations, is limited. So in some scenarios, the values of the coordinates were
introduced in the POSIT tester. The tests that were made are shown in table 2.10.

X coordinates Y coordinate

Test Nr. X1 X2 X3 X4 Y1 Y2 Y3 Y4

1 2AA 1B3 1B4 1A2 0EB 085 1DC 235
2 37C 217 208 31E 0F2 134 216 1F5
3 265 1DF 1C1 30C 053 0D1 1B6 19E
4 394 21E 1FE 324 06F 0C4 18D 19A
5 37B 1EF 1BD 306 062 0C0 19A 1A8
6 29E 12C 06F 272 064 130 1B3 22B

Table 2.10.: Firsts values for the POSIT tests.

In all these cases the algorithm diverges. With the data in the PC it can be analyzed. In the
following graphs the variation of the �rst value of ε is plotted. This value should go to 0 when the
algorithm converges. The graphs show the evolution of the POSIT algorithm until the divergence
is clear. The divergence can occur in di�erent ways, sometimes the divergence occurs at the �rst
iterations, however in other cases it took more iterations, the algorithm can even oscillate, as will
be shown in the next �gures.
We can see how in tests 1, 3 and 6 (�gure 2.20, �gure 2.22 and �gure 2.25) the divergence

occurs in the �rst steps of the algorithm, between 10 and 15 iterations. However in test 2 (�gure
2.21), the algorithm seems to diverge at iteration 33 but it is at the iteration 63 when it really
diverges. The cases of the tests 4 and 5 (�gure 2.23 and �gure 2.24), are examples of oscillation
in the algorithm. In this last case the algorithm will stay forever working and never improve.
Since the algorithm did not converge in any possible scenario, the problem may be the im-

plementation of the algorithm, or the data introduced to the POSIT. In order to check the �rst
possible source of the problem, the data from [18] is used. In order to use the coordinates, minor
changes were done to the algorithm, the input parameters needed to be signed, and the correction
of the center of the image were no longer necessary.

A =

 −56 0 0
0 −56 0
0 0 56

 A−1 = B =

 −0.0179 0 0
0 −0.0179 0
0 0 0.0179



46

CHAPTER 2. DEVELOPMENT

Figure 2.20.: Result of the �rst test of the POSIT.

Figure 2.21.: Result of the second test of the POSIT.

Figure 2.22.: Result of the third test of the POSIT.

47

CHAPTER 2. DEVELOPMENT

Figure 2.23.: Result of the fourth test of the POSIT.

Figure 2.24.: Result of the �fth test of the POSIT.

Figure 2.25.: Result of the sixth test of the POSIT.

48

CHAPTER 2. DEVELOPMENT

X Y

-4 29
-180 86
-5 -102
76 137

Table 2.11.: Example data input for the POSIT algorithm.

With the coordinates of the objects that the example tracks, and the matrices for the POSIT
algorithm, the only parameter left is the focal length. In the example use 640, the image width,
as the e�ective length. With the data of the example, the algorithm converges in a few steps, as
can be seen in �gure 2.26, and the error is low almost since start.

Figure 2.26.: Error evolution with the example data in the POSIT algorithm.

Since with the data of the example the algorithm converges, and gives the same values as in
the example, the algorithm seems to work. So the only source of error is the data the POSIT
algorithm is using. The value of the focal length in the example is much bigger than in our case.
The �rst try is to increase the focal length to an arbitrary number. With a focal length of 1000,
the algorithm always converges, and in few steps. So the problem can be the focal length, which
is not the correct one.
The problem with the focal length is that it is referred to the sensor size of 128x96, however

when doing the interpolation the image from the camera has a size of 1024x768. The values
of the tracked object pass from being in the range 0-128 to the range 0-1024 in the X axis, for
example. In order to have the same �eld of view, with the new size of the image, the relation
between the size of the sensor and the focal length has to be the same in both cases. Since the
size of the image is 8 times bigger than the size of the sensor (in pixels), the focal length has to
be increased accordingly. If the normal focal length is 118.18 the e�ective focal length for the
POSIT algorithm should be 945.44.
With the new focal length the same tests are repeated, but this time with the value of the new

e�ective focal length. In all the cases the algorithm converges in few steps. Only the �rst example
is shown as the convergence is similar among the examples.

49

CHAPTER 2. DEVELOPMENT

Figure 2.27.: Error evolution with the new e�ective focal length, for the �rst test data.

In �gure 2.27 can be seen how the error, for the �rst test's set of data, evolve. As can be seen
the algorithm converges, and it does for every set of data. So the next step is to introduce the
new data in the microcontroller and move the pointer.
When the POSIT algorithm converges it creates a 3x3 rotation matrix. From this matrix, the

move of the mouse has to be calculated. Since the XY plane of the reference system of the
LED structure coincides with the monitor plane, and the Z vector of the camera points in the
direction in which the camera is pointing at, the coordinates of the Z vector, referred to the
LED structure's coordinate system, are used. With this situation, the X and Y coordinates in the
structure's reference system are the Y and X coordinates for the mouse pointer.
In the rotation matrix, the last row is the Z vector of the camera, in the structure axes, so the

X and Y component of that row are the displacement of the point of view from the center. This
is a simple way to implement it, since the mouse will move according to the head pitch and yaw.
However, to make the system working with, where the person is pointing at, is a little bit more
complicated. And, since the camera does not work from user operation distance, the solution
would be unable to be tested.
The values of the rotation vector are in the range between 0 and 1, because the values of the

vector are normalized. The values that the mouse admits are between 0 and 2048. However, the
values for the X and Y coordinates of the Z vector may not go to 1, because that would mean
that the camera is oriented in the X or Y axis, and in that orientation the camera would not see
the LEDs.
Therefore the values of the movement of the mouse should be approximated, i.e.: in this case,

where the camera can only track objects from a distance of around 20 cm, in a screen of 15"
(32x20cm), the maximum angle, to point , to one limit of the screen is 38.6◦ and 26.5◦. With
these angles the projection of the X and Y components are at maximum 0.44 and 0.62 respectively.
If the values of this component are restricted to the range [0, 0.44] and [0, 0.62], and normalized
so the maximum is 1024 (from the center), the mouse coordinates that have to be sent are:

50

CHAPTER 2. DEVELOPMENT

Xmouse =
Rx
0.44

· 1024 (2.11)

Ymouse =
Ry

0.62
· 1024 (2.12)

These values are the displacement of the point of view from the center. So the values that
the algorithm is actually sending as pointer coordinates are, 1024-Xmouse and the same for the
Y coordinate. That is because in the USB descriptor the screen coordinates are in the range [0,
2048] and not in [-1024, 1024].
However, this way of sending data did not work, because the values of the coordinates exceeded

the limits (0.44 and 0.62) and the values are truncated to them. In some cases the values fall into
the range, in that case two things happen: in some range of data the system work as expected,
but only in a few range, and in other cases the system did not converge as expected. That means
that the POSIT algorithm is not converging to a good pose. Once the system is working as
expected, and the moves are smooth, if suddenly the moves become awkward, should be because
the algorithm did not converge properly. The reason for that could be that small changes in the
actual pose imply big changes in the solution of the algorithm.
If the limitation for the values and the normalization, are eliminated (they are no longer forced

to be in the ranges [0, 0.44] and [0, 0.62]), the system improves. In the X axis of the screen
the movement is smooth in a big range, while the Y axis keeps the same value, or the variations
are small, for every pose whatever is the position of the camera. The rest of the values in the
rotation matrix were tested and no one gives positive results. The X coordinate of the vectors
in the rotation matrix , which is the Y coordinate in the screen, does not change even when a
change in the X axis occurs.
This bad pose estimation could occur because of the interpolation done by the camera DSP.

The camera only has 128x92 pixels, and it gives images of 1024x786. That means that the camera
has to interpolate some pixels, in the process some error may occur, and that errors a�ect to the
algorithm result.

2.5. Support programs

While researching the camera, some support programs have been used and implemented. Some
ones are already implemented by others while in some cases, when custom programs are needed,
they are implemented for the project. Four programs are used:

• hid_listen

• HID Descriptor Tool5

• Debug GUI

• POSIT Tester

The �rst program, hid_listen, was used to show on the screen what the Teensy sends through
USB. The program for the microcontroller and the hid_listen can be found in the Teensy web

5http://www.usb.org/developers/docs/hidpage/

51

http://www.usb.org/developers/docs/hidpage/

CHAPTER 2. DEVELOPMENT

page6. This program connects to the Teensy, receives the data from the debug endpoint and
shows it in a console. This is the main resource to debug the software in the microcontroller.
The HID Descriptor Tool is software provided by USB organization, which is useful to check

the correctness of the HID descriptors. It comes with examples of di�erent common uses, such as
mouse, keyboard or joystick. This program helps with the modi�cations of the descriptor of the
mouse, it can check the correctness of the size of the data and the order or the items.

Debug GUI

For the initial debugging the hid_listen is enough, however in the last steps of the project, more
graphical debugging is necessary. For that purpose the debug GUI is implemented, this GUI is
based in the Qt libraries, which provide methods to implement it easily. The GUI has to provide
a graphical representation of the data, so the basics functions that the program has to do are:

• Create the GUI

• Connect to the USB Device

• Get the data from the device.

• Treat the data and convert from a burst of data to coordinates of objects.

• Shows the data.

The data from the USB is received through the debug endpoint in plain text, that is why the
data has to be formatted. Since the device never stops sending data, and the painting may be
slow, the multi-threading approach is taken. In this approach there are two threads:

• Main program: Which renders the GUI and paints the objects representing the information
from the camera. This program will create the other thread.

• USB Thread: The USB thread is the one connecting to the USB, receiving de data and
sending it to the main thread so it can be painted. The data is sent through the USB with
few control of what is in every packet. That means that in one packet of data of the USB
there may not be a full frame of the camera. So this thread maintain a control of when the
frame starts and ends, so only the necessary information is sent to the main program.

The communication between the microcontroller and the GUI needs a protocol to separate the
frames and the data, so the GUI can treat them and paint the data. The frame starts with
'III '(space included) then the object that is tracked is followed by 2 characters and a space.
After that, the three coordinates beginning with x, y and s for X coordinate, Y coordinate and
Size, are separated with a space. The data from the four objects are included if they are tracked.
Finally the end of the packet is ' XX'. A example of a frame, formatted the way just commented
would be:

III 00 x0249 y012B s0515 01 x050B y0215 s0478 02 x031F y042E s0458

03 x050A y0f78 s0531 XX

6https://www.pjrc.com/teensy/hid_listen.html

52

https://www.pjrc.com/teensy/hid_listen.html

CHAPTER 2. DEVELOPMENT

With the all the concepts regarding to the GUI, it can be implemented. The �rst step is to
decide the layout of the GUI. The GUI is composed of 2 text boxes, one paint area and the start
button. In �gure 2.28 the position of these elements can be seen. The �rst text box is used to see
the plain text that the main program gets from the USB thread, usually a frame from the camera.
The second text box is used for debug messages from the Debug GUI, instead of the data from
the USB. The button just starts the USB thread so the program connects to the device and starts
receiving data. The paint area is where, with the data from the camera, the objects are going to
be drawn. Inside this paint area the bounds of the camera are painted to get a reference of the
view of the camera.

Figure 2.28.: Debug GUI layout.

Once the GUI is implemented and working, the function of the program is quite simple. When
the USB thread is started, it connects to the USB device with Vendor ID 0x16C0 and Product ID
0x47F, at the endpoint 4, which is the debug endpoint. Once it is connected, it starts receiving
data. The thread waits until a full frame of the camera is received, before sending the data to the
main program. That means that the data that the thread has received has to have the start and
�nal marks ('III' and 'XX'). Then the data stored by the USB thread is cut from the head mark
to the �nal one, and it is sent to the main program to be treated. In the main program the frame
is analyzed and the data from the objects of the camera are set of the objects to be painted, so
they are drawn like the camera sees them. The USB thread stops receiving data while the GUI is
still processing the last frame. When the processing �nishes the USB thread starts receiving data
again.
In order to coordinate the two threads, the Qt library implements the signals (source of the

signal) and slots (destination). The signals has to be connected to one or various slots. The slots
are the function that are going to be executed when the corresponding signal is emitted. This
program has three signals:

• Signal 1: Connects the USB thread and the GUI. This signal sends to the GUI the data

53

CHAPTER 2. DEVELOPMENT

Figure 2.29.: Debug GUI �owchart

from the USB to be processed by the GUI.

• Signal 2: Connect the GUI to the USB thread. This signal is used to tell the USB thread
that the processing of data has �nished and it is waiting for more USB data.

• Signal 3: Connects the GUI to the USB thread. It is used to start the USB thread.

The signals and slots that are used in the program are in table 2.12.

Signal Slot Description

DataFound(String) ChangeText(String) When the USB thread has a full
frame it sends it to the GUI so
the data in painted and showed.

DataProcessed() StopWaiting() This signal is sent when the GUI
ends processing the data and
is available to receive new data
from the USB.

clicked() start() This signal is used to start the
USB thread when the start but-
ton is pressed.

Table 2.12.: Signals and slots of the Debug GUI

This program is used to represent the data from the camera. It shows where the camera see the
objects. In �gure 2.30 we can see how this data in shown. In the paint area, the circles represent
the positions of the tracked objects. In the �rst text box, the data from the USB can be seen.
In this example there is data about the coordinates of the objects with debug data of the POSIT
algorithm. In the second text box, the debug information is about the program, is added to know
how the program extract the coordinates from the USB data.

54

CHAPTER 2. DEVELOPMENT

Figure 2.30.: Example of the Debug GUI, with some data.

POSIT Tester

The POSIT tester is a debug program for the POSIT algorithm. It is needed to analyze the data
of how the algorithm is working. The debug information that can be obtained from the Teensy
can only be integers and characters. Since the POSIT algorithm uses �oating point numbers, the
debugging though the USB becomes di�cult.
The program therefore consists of a copy of the POSIT algorithm implemented in the AVR

microcontroller with all the debug messages. The debug messages include all the steps in the
algorithm in all the iterations. With the debug messages a .txt �le is generated with the value
of the eps value, so then can be analyzed, in this case with a Matlab script. The Matlab script,
calculate the di�erence between the ε values between iterations and represent it, so the convergence
can be easily viewed.
The implementation of the algorithm in the PC makes possible to change the values of the

matrices A and B, or the focal length, easier and faster than in the microcontroller. This way the
algorithm can be improved and corrected easily.

2.6. Future improvements

The purpose of the characterization and analysis of the system is focused on the application of
tracking objects. More exactly in the tracking of a LEDs structure, so it can be used as a head
tracking device. The requirements that the system must ful�l are easy to use, con�gure and install
and it should be comfortable.
In the part of ease of use and installation, the system is already simple. It can be used as

plug-and-play device, so once it is connected the system, it starts working as a mouse. Only with
the movement of the head the pointer moves. However the movement of the pointer is awkward,

55

CHAPTER 2. DEVELOPMENT

it can be improved by smoothing the transition between positions, or by implementing a shaking
detection algorithm, so even when the head moves a bit, the pointer stays in the same place. The
di�cult part of this algorithm is to know when the user has changed the pose on purpose, or it
was a shaking �t. Also in the actual design, the move of the mouse is done with the yaw and
pitch of the head, however it would be better if the mouse moves to where the user is pointing
regardless of the yaw and pitch, i.e.: If the user has the screen, lower than the camera, he would
need to point down to the head, to look at the center of the screen. With actual implementation,
when he looks down, the mouse would not be in the center of the screen but at the bottom.
For the ease of con�guration, there are two important improvements. The �rst one may be a

con�guration endpoint in the USB so the camera registers and the AVR could be con�gured from
the PC. That would need an extra software for the PC where the registers were set and sent to
the AVR through another USB endpoint. This improvement is not so important because, once
the system is con�gured to one scenario it would work without any changes, and if the user is
not an expert the change in some values can make the system to fail. The second improvement
in con�guration would be some calibration method for the �rst time user. One option for the
calibration method would be similar to the calibration with touchscreens, the user is asked to
point at 4 points in the corners of the screen, with the data of rotation in X and Y for each
of those points, the limits of the rotations are calculated and therefore the following values are
limited to the limit previously calculated.
In the comfort area, the main task is to increase the distance at which the camera still tracks

the full structure. With the current achievable distance, the use of this system in head tracking
system is impossible, since the user has to be too close to the screen, and that can be harmful to
his eyes. Also, if the position is not good it can be harmful for his back and neck. Therefore this
area should be improved. However this improvement is not made by software but by hardware,
changing the light sources, the layout or by changing the sensor.
In more special parts, the algorithm could be improved to be executed in less time with more

e�cient algorithms. The hardware is a prototype, so the wiring is poor. In future versions the
system can be mounted on a PCB with better traces. For the camera, using the algorithm with
only the 128x92 pixels, without the interpolation could be an improvement in the system.
In the debug part, the software provided is useful for its purpose. However they can be improved

to have more user friendly interfaces, or to add more functionalities.

2.7. Summary and conclusions

Since the start of the project the goal was to assemble the devices in order to implement a head
tracking device. The steps that were made were:

• Camera disassembly and reverse engineered (Section 2.1)

• Hardware design to connect the AVR to the camera (Section 2.1)

• Implement the software for the AVR in order to communicate with the camera and the USB
Host. (Section 2.2)

• Analyse camera's data and registers(Section 2.4)

• Implement the POSIT algorithm (Section 2.2)

56

CHAPTER 2. DEVELOPMENT

The main problems during the development were found in the reverse engineering. Since, once
the hardware part was understood, the registers of the camera were more di�cult. Also, the data
provided by the manufacturer was incomplete until the last months of the development. Once
the new complete data were delivered by the manufacturer the process speeds up. With the new
datasheet the camera is con�gured to work with the 4 lights. Furthermore, POSIT algorithm is
implemented and a bit improved in performance, for the AVR microcontroller.
From the tests we can get that even when the algorithm converges, the position of the camera

and lights are not suitable for a head tracking system. This system could be tested with more
bright and distant set of lights, maybe to track bigger and distant objects, or with less bright
and near lights. For example the set for a small device, such as smartphone or tablets, where the
distance between the device and the user is smaller.
Since the algorithm converges for small distances between the camera and the LEDs, the

movement of the pointer is very nervous. The distance of the camera and structure, that makes
the algorithm converges are small, and the structure use a big part of the image. That implies
that small moves make the structure to not �t in the image, causing the algorithm to fail. That
makes the algorithm to work only in small distances.
Because the development with the data provided by the manufacturer was di�cult, the project

also focuses in setting up debug software, so if this project is continued, the work of debugging is
easier. These debug software can be used with every device that is programmed to send the data
in the necessary format (Section 2.5), and with the proper Vendor ID and Product ID.

57

Bibliography

[1] Enabling Devices, �Assistive technology - products for people with disabilities,� [Accessed:
17.06.2013]. [Online]. Available: http://enablingdevices.com/

[2] Independent Living Source, �Keyboards and mice,� [Accessed: 17.06.2013]. [Online].
Available: http://www.iltsource.com/Assistive_Technology_Products_s/25.htm

[3] Infogrip, Inc., �Products,� [Accessed: 17.06.2013]. [Online]. Available: http://www.infogrip.
com/products/

[4] ZYGO-USA, �Sb-4h sip and pu� switch with hardware,� [Accessed: 17.06.2013]. [Online].
Available: http://www.zygo-usa.com/usa/index.php?page=shop.product_details&�ypage=
vmj_naru.tpl&product_id=314&category_id=139&option=com_virtuemart&Itemid=11

[5] Spectronics, �Catalogue,� [Accessed: 17.06.2013]. [Online]. Available: http://www.
spectronicsinoz.com/catalogue

[6] Hypertec Ltd., �url=http://www.keytools.co.uk/, note = "[accessed: 17.06.2013]".�

[7] EnableMart, �Shop our computer accessibility,� [Accessed: 17.06.2013]. [Online]. Available:
http://www.enablemart.com/computer-accessibility

[8] Pretorian Technologies, �Mouse alternative,� [Accessed: 17.06.2013]. [Online]. Available:
http://www.pretorianuk.com/mouse-alternatives

[9] A. Czajka, P. Strzelczyk, and A. Pacut, �Making iris recognition more reliable and spoof
resistant,� [Accessed: 17.06.2013]. [Online]. Available: http://spie.org/x14548.xml

[10] Tobii Technology GmbH, �Solutions for gaze interaction, development and integration
of eye tracking,� [Accessed: 17.06.2013]. [Online]. Available: http://www.tobii.com/en/
gaze-interaction/global/solutions/

[11] Pertech, �Eye tracker Type L EyeTechSensor,� [Accessed: 17.06.2013]. [Online]. Available:
http://en.pertech.fr

[12] Seeing Machines Inc, �About faceLAB 5,� [Accessed: 17.06.2013]. [Online]. Available:
http://www.seeingmachines.com/product/facelab/

[13] D. E. Alonso, �Eye tracking search marketing 2009,� [Accessed: 17.06.2013]. [Online]. Avail-
able: http://consultoriaenred.com/marketing-online/eye-tracking-search-marketing-2009

[14] L. Plunkett, �Report: Here are kinect's technical specs,� [Accessed: 17.06.2013]. [Online].
Available: http://kotaku.com/5576002/here-are-kinects-technical-specs

[15] C. Foster, �Xbox kinect: Microsoft's key to the living room?� [Ac-
cessed: 17.06.2013]. [Online]. Available: http://readwrite.com/2013/01/07/
xbox-kinect-microsofts-key-to-the-living-room

58

http://enablingdevices.com/
http://www.iltsource.com/Assistive_Technology_Products_s/25.htm
http://www.infogrip.com/products/
http://www.infogrip.com/products/
http://www.zygo-usa.com/usa/index.php?page=shop.product_details&flypage=vmj_naru.tpl&product_id=314&category_id=139&option=com_virtuemart&Itemid=11
http://www.zygo-usa.com/usa/index.php?page=shop.product_details&flypage=vmj_naru.tpl&product_id=314&category_id=139&option=com_virtuemart&Itemid=11
http://www.spectronicsinoz.com/catalogue
http://www.spectronicsinoz.com/catalogue
http://www.enablemart.com/computer-accessibility
http://www.pretorianuk.com/mouse-alternatives
http://spie.org/x14548.xml
http://www.tobii.com/en/gaze-interaction/global/solutions/
http://www.tobii.com/en/gaze-interaction/global/solutions/
http://en.pertech.fr
http://www.seeingmachines.com/product/facelab/
http://consultoriaenred.com/marketing-online/eye-tracking-search-marketing-2009
http://kotaku.com/5576002/here-are-kinects-technical-specs
http://readwrite.com/2013/01/07/xbox-kinect-microsofts-key-to-the-living-room
http://readwrite.com/2013/01/07/xbox-kinect-microsofts-key-to-the-living-room

Bibliography

[16] P. J. Sto�regen and R. C. Coon, �Teensy usb development board,� [Accessed: 17.06.2013].
[Online]. Available: http://www.pjrc.com/teensy/

[17] D. F. DeMenthond and L. S. Davis, �Model-based object pose in 25 lines of code.�

[18] A. Kirillov, �3d pose estimation,� [Accessed: 17.06.2013]. [Online]. Available:
http://www.aforgenet.com/articles/posit/

[19] G. R. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV Library.

[20] Adaptive Tech Solutions, �Adapters, switches & mounts,� [Accessed: 17.06.2013]. [Online].
Available: http://www.adaptivetechsolutions.com/cat-adapters-accessories.cfm

[21] u. n. . A. . Mirametrix Inc., title=S2 Eye tracker.

[22] NAC Image Technology, �Eye tracking products,� [Accessed: 17.06.2013]. [Online].
Available: http://www.nacinc.com/products/Eye-Tracking-Products/

[23] SensoMotoric Instruments, �Smi gaze and eye tracking systems,� [Accessed: 17.06.2013].
[Online]. Available: http://www.smivision.com/en/gaze-and-eye-tracking-systems/home.
html

[24] Carnegie Mellon University, �Cmusphinx wiki,� [Accessed: 17.06.2013]. [Online]. Available:
http://cmusphinx.sourceforge.net/wiki/

[25] Julius development team, �Open-source large vocabulary csr engine julius,� [Accessed:
17.06.2013]. [Online]. Available: http://julius.sourceforge.jp/en_index.php

[26] Aachen University, �Rwth asr - the rwth aachen university speech recognition system,�
[Accessed: 17.06.2013]. [Online]. Available: http://www-i6.informatik.rwth-aachen.de/
rwth-asr/

[27] Spokentech, �Welcome to the zanzibar openivr project,� [Accessed: 17.06.2013]. [Online].
Available: http://www.spokentech.org/index.html

[28] LumenVox LLC, �Lumenvox automated speech recognizer (asr),� [Accessed: 17.06.2013].
[Online]. Available: http://www.lumenvox.com/products/speech_engine/

[29] Nuance Communications, Inc., �Dragon for pc,� [Accessed: 17.06.2013]. [Online]. Available:
http://www.nuance.com/for-individuals/by-product/dragon-for-pc/index.htm

[30] Vocapia Research, �Speech-to-text technology,� [Accessed: 17.06.2013]. [Online]. Available:
http://www.vocapia.com/speech-to-text-technology.html

[31] NaturalPoint, Inc., �Premium head tracking for gaming,� [Accessed: 17.06.2013]. [Online].
Available: http://www.naturalpoint.com/trackir/products/trackir5/

[32] J. C. Lee, �Johnny Chung Lee - Projects - Wii,� [Accessed: 17.06.2013]. [Online]. Available:
http://johnnylee.net/projects/wii/

[33] Multimedia Information Processing Group at Kiel University, �Bias - basic image algorithms
library,� [Accessed: 17.06.2013]. [Online]. Available: http://www.mip.informatik.uni-kiel.
de/tiki-index.php?page=BIAS

59

http://www.pjrc.com/teensy/
http://www.aforgenet.com/articles/posit/
http://www.adaptivetechsolutions.com/cat-adapters-accessories.cfm
http://www.nacinc.com/products/Eye-Tracking-Products/
http://www.smivision.com/en/gaze-and-eye-tracking-systems/home.html
http://www.smivision.com/en/gaze-and-eye-tracking-systems/home.html
http://cmusphinx.sourceforge.net/wiki/
http://julius.sourceforge.jp/en_index.php
http://www-i6.informatik.rwth-aachen.de/rwth-asr/
http://www-i6.informatik.rwth-aachen.de/rwth-asr/
http://www.spokentech.org/index.html
http://www.lumenvox.com/products/speech_engine/
http://www.nuance.com/for-individuals/by-product/dragon-for-pc/index.htm
http://www.vocapia.com/speech-to-text-technology.html
http://www.naturalpoint.com/trackir/products/trackir5/
http://johnnylee.net/projects/wii/
http://www.mip.informatik.uni-kiel.de/tiki-index.php?page=BIAS
http://www.mip.informatik.uni-kiel.de/tiki-index.php?page=BIAS

Bibliography

[34] libusbx, �libusbx expand your usb potential,� [Accessed: 17.06.2013]. [Online]. Available:
http://libusbx.org/

[35] Qt Project Hosting, �Qt project.� [Online]. Available: http://qt-project.org/

[36] H. A. Rodrigo, L. Carceroni, and C. M. Brown, �A fully projective formulation to improve the
accuracy of lowe's pose-estimation algorithm.�

[37] T. Petersen, �A comparison of 2d-3d pose estimation methods,� 2008.

60

http://libusbx.org/
http://qt-project.org/

List of Figures

1.1. Big push buttons . 2
1.2. Keyboard layouts . 3
1.3. Sip-pu� systems examples. 3
1.4. Joysticks mice. 4
1.5. Name and year printed on spine. 4
1.6. Pedal mouse buttons. 5
1.7. Mouse trackpads . 5
1.8. Eye tracking, pupil's features[9] . 6
1.9. Examples of eye tracking . 7
1.10. Head tracking examples. 8
1.11. FaceLABTM5 . 8
1.12. Heat map generated by a eye tracking system. 8
1.13. Kinect system for Xbox.[15] . 9
1.14. Image of the Teensy2++[16] . 15
1.15. Points in real world and their projection in the image plane[17] 16
1.16. Image of the LED structure used in this project. 17
1.17. Includes con�guration in Eclipse for autocompletion with Qt libraries. 19

2.1. Frontal image of the camera with the PINs numbered as in the schematic. 20
2.2. Schematic con�guration of the voltage regulator with the stability capacitors. . . 21
2.3. Implementations of the voltage divider with the resistors and the Zener diode. . . 22
2.4. Connection diagram of the Teensy2++ and the camera 23
2.5. Software structure divided in modules. 23
2.6. Representation of the FIFO queue with its pointers. 25
2.7. Representation of a matrix build as an array of arrays. 27
2.8. Representation of a matrix build in only one array. 27
2.9. Full software block diagram. 28
2.10. Initialization procedure. 28
2.11. Flowchart to set camera's registers. 32
2.12. Flowchart from the main loop. 33
2.13. Representation of the points in real world(M1 and M2) and in the image plane(m1

and m2). 37
2.14. Output of the hid_listen.exe program for the testUSB.c 39
2.15. Output of the TestTracking.c . 40
2.16. Output of the TestACKs.c . 40
2.17. Output of the TestData.c . 41
2.18. Orientation and maximum limits of the image from the camera. 42
2.19. LEDs structure and coordinates. 45
2.20. Result of the �rst test of the POSIT. 47
2.21. Result of the second test of the POSIT. 47

61

List of Figures

2.22. Result of the third test of the POSIT. 47
2.23. Result of the fourth test of the POSIT. 48
2.24. Result of the �fth test of the POSIT. 48
2.25. Result of the sixth test of the POSIT. 48
2.26. Error evolution with the example data in the POSIT algorithm. 49
2.27. Error evolution with the new e�ective focal length, for the �rst test data. 50
2.28. Debug GUI layout. 53
2.29. Debug GUI �owchart . 54
2.30. Example of the Debug GUI, with some data. 55

62

List of Tables

1.1. Some register of the camera. 13
1.2. Structure of the data received from the camera. 14
1.3. Some register of the camera. 15

2.1. Electrical requierements for the data communcation 21
2.2. Design parameters for the interface microcontroller-camera 22
2.3. Pipes con�guration for USB communication. 29
2.4. Camera necessary characteristics for the analysis. 36
2.5. Values of minimum separation around the expected distance between the camera

and the LEDs. 37
2.6. Relation between test's �les and description. 38
2.7. Base register con�guration for camera operation. 42
2.8. Valid values for the X and Y axis (in hexadecimal) 43
2.9. Register con�gurations to solve overexposure images 45
2.10. Firsts values for the POSIT tests. 46
2.11. Example data input for the POSIT algorithm. 49
2.12. Signals and slots of the Debug GUI . 54

63

List of Abbreviations

ASR Automatic Speech Recognition
BSD Berkeley Software Distribution
CPC CamPoseCalib
DLT Direct Linear Transform
FIFO First In First Out

IR Infra Red
POS Pose from Orthography and Scaling

POSIT Pose from Orthography and Scaling with Iterations
SOP Scaled Orthographic Projection
SR Speech Recognition

TTS Text To Speech
UART Universal Asynchronous Receiver and Transmitter

64

A. List of provided files

Along with the Master thesis, some �les are provided. They are separated in folders:

• AVRprogram: This folder contains the �nal code use in the project, it includes all the
changes commented in the tests.

• DebugSoftware: Here are the �les or the code to compile the programs used to debug the
microcontroller and the POSIT algorithm.

� DebugGUI: Includes the �les to compile the Debug GUI for the microcontroller. This
code should be compiled using the instructions in the introduction.

� HID Descriptor Tool: Is the software from the USB webpage, as it comes from the
web.

� PACTest: The �les for testing the POSIT algorithm in the PC. It only needs a GCC
compatible compiler.

� hid_listen.exe: Is the software provided by the Teensy manufacturer in order to debug
it.

• Docs: Documents of the PAC7001, the �rst and second datasheet provided by the manu-
facturer.

• MasterThesis: The source code and the �les necessaries to compile this pdf.

• Tests: In this folder the �les used for the Tests are present, with all the �les named in table
2.6, the �le TestCameraDataALL.c is provided, where all me modi�cations commented in
the last test are included. This �les can be just changed from the �le in the project (folder
ARVprogram) and compile it to use the �les.

• teensy.exe: Is the program provided by Teensy web page, to program the microcontroler.

65

B. Hardware schematic

In the next page all the hardware connections and schematic are included.

66

LF33CV

+5
V

+5
V

+3
V

3
GND

GND

10u 20u

GND GND

MOT

GND

+3
V

3

+3
V

3

2.2K

2.
2M

GND

JP1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

JP2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

IC1

ADJ

VI3
1

VO 2

C1 C2

1 2 3 4 5 6

JP
3

R1

R
2

RX

RX

TX

TX

NC

	MasterThesisUPNA
	Introduction
	Objetives
	State of the Art
	Methods, concepts and devices

	Development
	Hardware research and design
	Software design
	Software overview
	Data format and structures
	Actual block diagram

	System operating range
	Tests
	Support programs
	Future improvements
	Summary and conclusions

	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Provided Files
	Hardware schematic

