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the current static spectrum allocation, has made spectral resources
scarce and has left very few bandwidth to new applications. How-
ever, actual measurements of spectrum utilization show that many
assigned bands are not being used at every location and time. A
solution that allows secondary users to transmit information using
available spectrum is cognitive radio. A cognitive radio transceiver
performs spectrum sensing, that is, it estimates the power spectral
density of the received signal and then reliably detects whether un-
used spectrum is available or not. The estimation has to be done over
a wide frequency range in order to increase the probability of finding
available spectrum. With uniform sampling, the scheme considered
in classical sampling theory, estimation over a wide frequency band
requires very high sampling rates, which for current analog-to-digital
conversion technology means a high power consumption.

In this thesis, we study several methods for estimation of the
power spectral density. They use non-uniform sampling schemes
which allow reductions in the sampling rate, hence the word ‘compres-
sive’. These methods are least squares with hard limiting, maximum
likelihood and a correlogram approach. The first two strategies use
compressive sampling, while the last one employs random sampling.
The performance of each method is studied by means of computer
simulations. Besides, we have attempted to find new sampling matri-
ces that guarantee the statistical identifiability of the power spectral
density when compressive sampling is employed.
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Abstract

Wireless communications have experienced a fast growth over the last two decades, which is
still going on nowadays. This fact, together with the current static spectrum allocation, has
made spectral resources scarce and has left very few bandwidth to new applications. How-
ever, actual measurements of spectrum utilization show that many assigned bands are not
being used at every location and time. A solution that allows secondary users to transmit
information using available spectrum is cognitive radio. A cognitive radio transceiver per-
forms spectrum sensing, that is, it estimates the power spectral density of the received signal
and then reliably detects whether unused spectrum is available or not. The estimation has
to be done over a wide frequency range in order to increase the probability of finding avail-
able spectrum. With uniform sampling, the scheme considered in classical sampling theory,
estimation over a wide frequency band requires very high sampling rates, which for current
analog-to-digital conversion technology means a high power consumption.

In this thesis, we study several methods for estimation of the power spectral density.
They use non-uniform sampling schemes which allow reductions in the sampling rate, hence
the word ‘compressive’. These methods are least squares with hard limiting, maximum like-
lihood and a correlogram approach. The first two strategies use compressive sampling, while
the last one employs random sampling. The performance of each method is studied by means
of computer simulations. Besides, we have attempted to find new sampling matrices that
guarantee the statistical identifiability of the power spectral density when compressive sam-
pling is employed.
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Introduction 1
In this thesis, we study compressive spectral estimation using non-uniform sampling. Spec-
tral estimation is the problem of determining, from a finite number of measurements, the
distribution of the average power of a signal over frequency. The word ’compressive’ refers
to the rate at which these measurements are acquired. With uniform sampling, which is the
most common type of sampling in signal processing, the rate is required to exceed the Nyquist
rate in order to avoid aliasing, which prevents meaningful spectral estimation. Thus, over
the years, research has been conducted in several schemes of non-uniform sampling that can
avoid aliasing, even when the total sampling rate is below the Nyquist rate.

In this chapter, we motivate the need for studying compressive spectral estimation meth-
ods and explain the organization and content of subsequent chapters.

1.1 Motivation

One of the important problems in the field of signal processing is spectral estimation, which
aims at extracting meaningful characteristics of a signal in the frequency domain. When the
signal is modelled as a random process, it is often of interest to obtain its autocorrelation
function or equivalently, under the assumption of wide sense stationarity, its power spectral
density (PSD). This function describes the distribution of the average power of the signal of
interest over frequency. In order to avoid aliasing, traditionally the power spectral density is
estimated from samples taken from the signal at a rate higher than the Nyquist rate, which is
twice the maximum frequency present in its spectrum, as proven in the Shannon-Whittaker-
Kotelnikov1 theorem [3]. The Nyquist rate sets a limit on the frequency ranges that can
be estimated digitally, because sampling wideband signals would require very high sampling
rates that nowadays are unfeasible for analog-to-digital converters, or would require a very
high power consumption.

On pair of this, wireless communications have experienced a fast growth over the last
two decades, which is still going on nowadays. The current regulatory laws allocate portions
of the spectrum to licensed operators, who have to pay fees for its use. Thus, unlicensed
applications are restricted to certain frequency bands, such as the well known ISM band 2.4 -
2.4835 GHz which is employed, among other technologies, by IEEE 802.11 (WiFi networks)
and Bluetooth. As a consequence of the sustained growth of wireless communications, this
static spectrum allocation has made spectral resources scarce and has left very few bandwidth
to new applications. However, actual measurements of spectrum utilization show that many
assigned bands are not being used at every location and time. Studies on spectrum use date
back as far as 2002, with a report published by the Federal Communications Commission [4].
This report also discusses possible solutions that will improve accessibility to the spectrum
and its efficient use.

1For historical details on the name, the first and second chapters of [2] provide a good overview.
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A solution to the problems of spectrum scarcity and spectrum access that has been pro-
posed by the scientific community is cognitive radio [5]. In this new approach to wireless
communications, every device belonging to an unlicensed user scans the environment in order
to detect occupied and unoccupied bands, and adjusts its communication parameters accord-
ingly. In the case of detecting an emtpy band, the device can use the available spectrum
to transmit information. By doing this, unlicensed users only transmit during the periods
when the licensed users are inactive, so ideally harmful interference to them is avoided. In [6],
cognitive radio is defined as an ‘intelligent wireless communication system that is aware of its
surrounding environment (i.e., outside world), and uses the methodology of understanding-by-
building to learn from the environment and adapt its internal states to statistical variations
in the incoming RF stimuli by making corresponding changes in certain operating parame-
ters (e.g., transmit-power, carrier-frequency, and modulation strategy) in real-time, with two
primary objectives in mind:

• highly reliable communications whenever and wherever needed;

• efficient utilization of the radio spectrum.’

In order to learn from the environment, a cognitive radio transceiver must perform spectrum
sensing, that is, it must estimate the power spectral density of the received signal and then
reliably detect whether unused spectrum is available or not. Estimation requires time and
power to collect measurements from the incoming signal and process them, so one of the
challenges is to estimate the PSD of a wideband signal spending as less time and power as
possible. A major source of high power consumption in analog-to-digital converters is a large
sampling rate [7], so research efforts have been made in spectral estimation methods with
the aim of reducing the sampling rate necessary for wideband sensing. Thus, our work is
developed with this goal in mind.

1.2 Organization of the thesis

Before describing the content of each chapter, we summarize our contributions. We have stud-
ied several estimation methods using two different sampling schemes at sub-Nyquist rates.
These schemes are compressive sampling, which includes multicoset sampling as a particular
case, and random sampling· For compressive sampling, we have studied maximum likeli-
hood estimation and least squares estimation after hard limiting, and we have addressed the
problem of designing sampling matrices that guarantee statistical identifiability of the power
spectral density. For random sampling, we have studied a modification of the additive random
sampling model by quantizing the sampling instants, so the scheme can be implemented in a
synchronous digital system. The estimation method in this case uses the classical unbiased
estimator of the autocorrelation. Besides, we addressed the problem of computing the prob-
ability of a certain lag being present, and we showed that the exact computation is a difficult
problem.

Chapter 2: Overview of Spectral Estimation and Sampling In this chapter, we
review sampling theory and spectral estimation, and we present a literature review on both
topics. Regarding sampling theory, we explain the sampling schemes we will use throughout
this work. Regarding spectral estimation, we review the definition of the power spectral
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density and the properties of the autocorrelation matrix. Finally, we address the conditions for
statistical identifiability, which are needed to guarantee that consistent estimation is possible.
Within this section, we also explain the concept of a sparse ruler, which is important when
multicoset sampling is used.

Chapter 3: Least Squares Estimation with Hard Clipping This chapter begins with
an explanation of a PSD estimator proposed in [1]. The reason is that we study a modified
version of this estimator that applies a hard limiter to the measurements. The use of hard
limiters in the context of spectral estimation has already been addressed in the literature,
but, to the best of our knowledge, it has not been combined together with compressive sam-
pling. We describe our modified estimator, detailing its use within the compressive sampling
framework for complex signals that come from a Gaussian process. This assumption is neces-
sary in order to allow the recovery process, because this method relies on a mapping between
the correlation of two real Gaussian processes and their hard limited versions. Finally, its
performance is studied by means of computer simulations, and compared to the method in
[1].

Chapter 4: Maximum Likelihood Estimation Here we study maximum likelihood
(ML) estimation, which is a very popular estimation method due to its good statistical prop-
erties when the sample size is large. In the case where the received signal is Gaussian, we have
derived the equations that yield the ML estimator for real signals. Because of the difficulty of
obtaining an analytical solution and the high computational cost of the numerical methods
that find the true solution, we investigate two algorithms which yield an approximate solu-
tion that asymptotically approaches the true one. We briefly consider under which conditions
these algorithms can be used for complex signals, and finally we compare the performance of
these two algorithms with the least squares estimator of [1].

Chapter 5: Sampling Matrix Design In this chapter, we focus on the problem of design-
ing sampling matrices for compressive sampling that guarantee the statistical identifiability of
the PSD. We begin by considering this problem in general, which boils down to constructing
a basis where each element is the auto- or cross-correlation of two finite length sequences.
Because of its difficulty, we have left open the general construction for further research. Then,
we restrict the sequences to have only elements from the set {0, 1}, though we note that the
sets {−1, 1} and {−1, 0, 1} may also be interesting. For multicoset sampling, we propose a
design, based on the concatenation of sparse rulers of different lengths, that no longer has
the minimum compression rate property, but allows more design flexibility. However, the
statistical identifiability is not guaranteed. For binary matrices with two ones per row, we
study the conditions for the statistical identifiability to be satisfied, but we have not been
able to find sufficient conditions.

Chapter 6: Spectral Estimation with Random Sampling This chapter is devoted
to random sampling, a scheme where the time between samples is a random variable. An
important result from the literature is that consistent estimation is possible even for mean
sampling rates lower than the Nyquist rate. First of all, we explain our modification of
the classical model of additive random sampling by rounding each sampling instant to the
closest instant in a Nyquist rate grid. This eliminates the possibility of two sampling instants
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being infinitely close. Then, we study the probability of obtaining a certain lag, whose exact
computation is difficult, as we show. Finally, we present a numerical study of the performance
of the PSD estimator, which is based on the classical unbiased estimator of the autocorrelation.

Chapter 7: Conclusions and Future Work This chapter summarizes the main ideas
from the thesis and gives suggestions for further work.
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Overview of Spectral
Estimation and Sampling 2
Spectral estimation aims at obtaining the distribution of power over frequency of a signal,
which is sampled in order to process its measurements digitally. With classical sampling
theory, the samples are taken uniformly at a rate higher than twice the maximum frequency
present in the signal. The purpose is to avoid aliasing, which makes reconstruction impossible.
Reducing partially or completely aliasing and decreasing the sampling rate are some of the
main challenges in both spectral estimation and signal reconstruction. Research has been
conducted at least since 1960 with the work of [8], and in the recent years renewed interest
has come from the fields of cognitive radio [6] and compressive sampling [9]. In this chapter,
we review sampling theory and some spectral estimation methods proposed in the literature.
Besides, we highlight some of the concepts that we use in our work.

2.1 Sampling theory

Sampling theory is a field of mathematics dealing with methods to accurately represent a func-
tion from a countable number of its values. For functions over the real numbers, the problem
can be stated as how to reconstruct the function f(t), ∀t ∈ R, from the set {f(tn)}n∈Z. In
signal processing, solutions to this problem are of key importance, as they provide a way to
preserve the information of real world signals, which are analog, from measurements taken at
certain instants.

One of the most celebrated theorems in this field is the Shannon-Whitakker-Kotelnikov
theorem, which deals with perfect reconstruction of a bandlimited function from samples
taken at equidistant instants. Shannon applied this result to communication theory in his
work [3]. Mathematically, the reconstruction formula can be stated as

f(t) =
∞∑

n=−∞
f(nTs) sinc

(
t− nTs
Ts

)
, (2.1)

where sinc(x) = sin(πx)
πx , and Ts is the distance between sampling instants, called the sampling

period. We note here that this formula has the form of a convolution with the impulse response
of an ideal low-pass filter, which is non-causal, making it physically irrealizable. In practice,
other interpolation methods are used. The theorem also provides sufficient conditions for the
interpolation formula to hold. The first is that f(t) is bandlimited, which means that its
Fourier transform must vanish outside an interval [−f0, f0]. The second is that the sampling
rate fs = 1

Ts
has to be at least twice higher than the maximum frequency f0. The rate fs = 2f0

is called the Nyquist rate, and it is the minimum rate that guarantees perfect reconstruction.
Satisying these two conditions avoids aliasing, that is, it is guaranteed that replicas of the
spectrum of f(t) do not overlap.

From a signal processing point of view, this theorem provides a simple way of taking
samples from an analog signal, which can be stored and processed by digital means with ideally
no loss of information. Sampling at equidistant instants tn = nTs is called uniform sampling,
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and it is the basis of digital signal processing. For more details, the reader can consult [10].
However, when the bandwidth is very high, satisfying the condition fs ≥ 2f0 imposes a heavy
burden on analog-to-digital converters, especially regarding power consumption, as studied
in [7]. In certain applications, such as spectrum sensing, this is an important issue when the
sensing task has to be done by devices powered by batteries. For instance, in the field of
cognitive radio, unlicensed users need to estimate the distribution of power over frequency in
order to detect inactive bands, which they can use for their own purposes, as we explained in
Chapter 1.

Before the emergence of the cognitive radio idea, the desire to avoid aliasing led researchers
to investigate new sampling schemes that are different from uniform sampling, such as ran-
dom and multicoset sampling. More recently, several researchers proposed a new sampling
framework, called compressed sensing [11, 12], which aims at perfect reconstruction of a high
dimensional vector from samples that are linear functionals of the vector. Assuming that
the vector is sparse in some basis, this will allow a sampling rate reduction by using sparse
recovery methods. We will briefly explain the sampling schemes we consider in this work in
the following sections.

2.1.1 Compressive Sampling

Compressive sampling, which is another name for compressed sensing, approaches sampling
in a different way from (2.1). The signal of interest is assumed to be a finite dimensional
vector that is k-sparse in some basis. This means that it can be represented by k non-zero
coefficients in that basis. Instead of signal values, the measurements are inner products of
the signal vector with a predefined set of vectors, which are grouped in a matrix called the
sampling matrix. From these inner products, the goal is to reconstruct the signal vector
using optimization techniques or greedy algorithms. These techniques find a solution to an
underdetermined system of linear equations that has the same sparsity order k. An overview
of compressive sampling is given in [9].

In our work, we use the same acquisition scheme of compressive sampling, but our recon-
struction techniques are different, as we are interested in recovering statistical parameters.
We consider a bandlimited signal x(t) and we denote its Nyquist rate samples by the sequence
x[n]. These samples can be grouped in the N × 1 vector sequence x[k], which is given by

x[k] = [x[kN ], x[kN + 1], . . . , x[kN +N − 1]]T .

The compressive measurements are collected in the M × 1 vectors y[k], given by

y[k] = [y0[k], y1[k], . . . , yM−1[k]]T .

The relationship between the measurements and the Nyquist rate samples of x(t) can be
represented mathematically by a sampling matrix C, which establishes a linear relationship
between them as follows

y[k] = C x[k]. (2.2)

We can express the M ×N sampling matrix C in terms of its rows,

C = [c0, c1, . . . , cM−1]T , (2.3)
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where ci = [ci[0], ci[−1], . . . , ci[1−N ]]T . Then we can also write the relationship between the
measurements and the Nyquist rate samples as

yi[k] =
0∑

n=1−N
ci[n]x[kN − n]. (2.4)

Thus, the measurements can be seen as the N -fold downsampled output of M non-causal
digital filters whose impulse responses ci[n] have length N, and whose input is x[n].

This acquisition model was used in [1], where they propose an analog implementation
based on a bank of mixers and low-rate analog-to-digital converters, and they prove that its
operation is equivalent to (2.4). In the i-th branch, the incoming signal x(t) is multiplied
by a piecewise constant function that encodes the values ci[n], and the resulting signal is
sampled uniformly by an integrate-and-dump device working at a rate NT , where T is the
Nyquist rate corresponding to the scanned bandwidth. As the device has M branches, the
compression rate is M

N .

2.1.2 Multicoset Sampling

Multicoset sampling, also called periodic non-uniform sampling, is a scheme where a subset of
the Nyquist rate samples is selected. It has been used for perfect reconstruction of multiband
signals with reduced sampling rates and with partial or no knowledge of the bands locations
in several works. In [13], the locations of the bands must obey a mathematical relationship
to allow perfect reconstruction. A fully blind system that recovers the locations of the bands
prior to reconstruction is proposed in [14]. The limitations of multicoset sampling to directly
acquire multiband signals are addressed in [15], where they propose a new device called
modulated wideband converter.

Let N and M be positive integers, and let N be a set of M different positive integers N =
{n0, n1, . . . , nM−1}, such that nm ≤ N ,∀m. The sampling instants in multicoset sampling
are given by

{nmT + kNT}M−1
m=0 , k ∈ Z,

where 1
T is the Nyquist rate. The average sampling rate is given by M

NT , so if M < N the
scheme provides compression. For a given N , the set N characterizes which Nyquist rate
samples are selected. The sampling scheme is periodic because the signal is divided in blocks
of length N and the indexes kept are the same up to a shift by a multiple of N . Using
the compressive sampling notation, multicoset sampling retains from x[k] only the samples
indexed by N . Thus, we can write y[k] as

y[k] = [x[kN + n0], x[kN + n1], . . . , x[kN + nM−1]]T .

The corresponding M ×N sampling matrix C is the one whose rows contain a single one, in
the positions given by N , and N −1 zeros. This is equivalent to saying that C is a submatrix
of the identity matrix IN formed by selecting its rows according to the set N .

2.1.3 Random Sampling

Random sampling is a type of sampling where the time between samples is a random variable
following a specific distribution. This randomness may be caused by diverse factors, such as
the physical process from which the signal is extracted, the measurement conditions, or the
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will of the designer. In this last case, research regarding random sampling has been carried
out at least since 1960, with the work presented in [8]. The authors prove that it is possible
to avoid aliasing even at sub-Nyquist mean sampling rates for certain classes of sampling
schemes. Sampling with a Poisson random process is treated in [16], and a more general
approach is taken in [17] to obtain conditions for alias free consistent estimation. These
papers also prove consistency for mean sampling rates less than the Nyquist rate. More
recently, [18] analyzed several types of random sampling for spectral estimation, comparing
their properties and their possible application to radio transceiver design. An application of
spectral analysis of random sampling to communications is proposed in [19], where they focus
on detection of the active bands rather than in estimation of the power spectral density.

In our work we focus on a particular model of random sampling called additive random
sampling, which was first proposed in [8]. The samples in additive random sampling are taken
at the instants

t0 = 0,

tn = tn−1 + τn n ∈ {1, 2, . . . , N − 1}.

The random variables τn are independent and identically distributed (i.i.d), which means that
all intervals between consecutive samples are independent and have the same distribution. We
will address Poisson and uniform sampling in Chapter 6.

2.2 Spectral Estimation

Spectral estimation deals with the problem of estimating the power spectral density of a ran-
dom process from a finite number of measurements, typically noisy. Mathematically, if the
received signal is modelled as a wide-sense stationary (WSS) random process x(t), its auto-
correlation function rx(t1, t2) = E [x(t1)x∗(t2)], where the superscript * represents complex
conjugation, only depends on the time difference τ = t1 − t2. Then, the well known Wiener-
Khinchin theorem proves that the power spectral density Φx(ω) and the autocorrelation rx(τ)
form a Fourier transform pair. The name power spectral density comes from the fact that

rx(0) = E
[
x2(t)

]
=

∫ ∞
−∞

Φx(ω) dω. (2.5)

This means that the average power of x(t) can be found as the area under Φx(ω).

If we assume that x(t) is bandlimited with frequency support [−f0, f0], it suffices to
consider the discrete-time random process x[n] obtained by sampling x(t) at the Nyquist
rate, which is 1

T = 2f0. The process x[n] is also wide-sense stationary, and we can define its
power spectral density φx(Ω) using the discrete time Fourier transform as

φx(Ω) =

∞∑
m=−∞

rx[m] e−jΩm, 0 ≤ Ω < 2π, (2.6)

where rx[m] is the autocorrelation sequence of x[n], defined by rx[m] = E (x[n]x∗[n−m]),
and Ω is the angular frequency measured in rad/sample. More details on the power spectral
density can be found in [20].

As we can see from equation (2.6), estimating φx(Ω) can be done by estimating rx[m]
and then taking its discrete time Fourier transform, which is usually done employing the
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discrete Fourier transform. The methods for spectral estimation can be classified in two
types, depending on whether they assume a particular signal model or not. Non-parametric
methods estimate rx[m] without assuming any other condition than wide-sense stationarity
of x(t), while parametric methods use a signal model, such as autoregressive moving average,
or multiple sinusoids. If the model is accurate for a particular situation, parametric methods
yield better performance with shorter data records. However, they are sensitive to model
mismatch. Several books that cover classical spectral estimation are available, and we refer
to [21]. A survey on methods for spectral estimation with irregular sampling is the subject
of [22].

Because in this work we are interested in wideband signals that cannot be assumed to
belong to a particular model, we only study non-parametric techniques. These techniques will
often use the properties of the autocorrelation matrix of a vector formed by N Nyquist rate
samples from x(t), which we defined as x[k]. For this reason, we will review these properties
in the next section.

2.2.1 The Autocorrelation Matrix

In order to estimate the autocorrelation sequence of the Nyquist rate samples rx[m], we can
construct the N × N autocorrelation matrix of x[k], defined as Rx = E

(
x[k]xH [k]

)
. This

matrix is Hermitian and positive semidefinite, and because of our assumption that x[n] is a
wide-sense stationary process, it has also a Toeplitz structure. When the process x[n] has
zero mean, Rx is also the covariance matrix. For details, the reader can consult [21]. The
Hermitian Toeplitz structure means that the element [Rx]i,j is given by

[Rx]i,j = rx[i− j] = r∗x[j − i].

Thus, the first column of Rx contains the values rx[0], rx[1], . . . , rx[N −1], and the rest of the
matrix contains the same elements or their conjugates. We can group the first column and
row in the (2N − 1)× 1 vector

rx = [rx[0], rx[1], . . . , rx[N − 1], rx[1−N ] . . . , rx[−1]]T , (2.7)

which is the vector of parameters we want to estimate. In the case where x[n] is real, Rx is
symmetric, and it suffices to consider the autocorrelation values at the positive lags, which
we collect in the N × 1 vector

r̃x = [rx[0], rx[1], . . . , rx[N − 1]]T . (2.8)

Then, obtaining rx can be done by concatenating r̃x and its reversed version without the first
element, i.e., [rx[N − 1], rx[N − 2], . . . , rx[1]]T .

Now we consider the relationship between Rx and the M ×M autocorrelation matrix of
the compressive measurements y[k], which is defined as Ry = E

(
y[k]yH [k]

)
. Using (2.2), we

can write
Ry = CRxC

H . (2.9)

This matrix is not Toeplitz for most matrices C, which means that the measurement vectors
y[k] are not WSS.

Once the estimate r̂x is calculated, the PSD estimate φ̂x is obtained by using the discrete
Fourier transform (DFT). This can be written as

φ̂x = F2N−1r̂x,
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where F2N−1 is the (2N − 1)× (2N − 1) DFT matrix.
We note here that we have constrained our reconstruction of rx[m] to the interval [1 −

N,N − 1]. Thus, unless the process x[n] has zero autocorrelation outside this interval, there
is a truncation error in the PSD estimator. In practice, the value of N has to be selected
according to prior knowledge of the rate of decay of the autocorrelation of the process.

2.2.2 Statistical identifiability

Statistical identifiability is the property of a statistical model that tells whether it is possible
or not to consistently estimate the desired parameters. In particular, if the parameters are
identifiable, then different values of the parameters give a different probability distribution
for the data. For example, in the problem of estimating the variance σ2 of Gaussian data,
every different value of σ2 gives a different Gaussian probability density function, and thus
identifiability is satisfied.

In our case, without compression, the parameter vector rx is identifiable, because every
different value of rx yields a different autocorrelation matrix Rx. However, this is not nec-
essarily the case after compression, because it might happen that different autocorrelation
vectors rx,1, rx,2 yield the same matrix Ry, depending on the sampling matrix C. A study on
the identifiability of compressive covariance matrix estimation was conducted in [23], where
they study the general criterion for a sampling matrix C to satisfy identifiability, and they
prove which matrices satisfy this condition for multicoset sampling.

The general condition states that, expressing Rx in a basis for the subspace of N × N
Toeplitz positive semidefinite matrices, the linear transformation of this basis given by (2.9)
has to yield an independent set of matrices, that is, it must preserve linear independence. For
multicoset sampling, this boils down to choosing the set N according to a sparse ruler. This
multicoset sampling design was first applied to compressive spectral estimation in [1, 24],
where they prove that solving the minimal (N − 1)-length sparse ruler problem yields the
minimum compression rate for their algorithm while maintaining statistical identifiability. In
the next section, we explain the concept of a sparse ruler.

2.2.2.1 Sparse Rulers

Intuitively, a sparse ruler of length N is a ruler with M marks that is still able to measure all
integer distances up to N . To state this concept mathematically, we first define the difference
set ∆(S) of a set S as

∆(S) = {d = si − sj ; ∀si, sj ∈ S s.t. d ≥ 0}.

This is the set of all non-negative differences that can be obtained from elements of S. Now
we can state formally the concept of a sparse ruler.

Definition: A sparse ruler of length N − 1 is a set R ⊂ {0, 1, . . . , N − 1} such that
∆(R) = {0, 1, . . . N − 1}. It is called minimal if no other sparse ruler of length N − 1 exists
with less elements.

The problem of sparse rulers has been studied in [25]. To the best of our knowledge, there
is no quick procedure for finding minimal sparse rulers of a given length, making a brute force
search necessary. This is more time consuming as N increases. However, several sparse rulers
have been tabulated, making multicoset sampling based on sparse rulers feasible, at least for
not very large values of N .
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Least Squares Estimation with
Hard Clipping 3
In this chapter, we study least squares estimation (LSE) of the autocorrelation sequence rx[m]
using compressive sampling. We begin by explaining the method proposed in [1, 24], which
derives a linear relationship between the cross-correlations of the compressive measurements
and the autocorrelation sequence of the Nyquist rate samples. Afterwards, when the signal
x(t) is assumed to come from a Gaussian process, we propose a modification of this method
that adds a hard limiter, a device that returns 1 when the input is greater than 0 and -1
when it is lower than 0. This means that we work with the sign of the samples and not with
the samples themselves. In order to recover the autocorrelation of the received signal, we use
least squares and a one-to-one mapping between the correlation of two real Gaussian processes
and the correlation of their hard limited versions, which was derived in [26]. For complex
signals, we show that the method can be applied by considering the real and imaginary parts
separately. Finally, we compare the performance of both methods using computer simulations.

3.1 Least Squares Estimation of [1]

In this section, we provide an overview of the method proposed in [24] and also in [1] under
the name of Alternative Time Domain method. The authors show that there exists a lin-
ear relationship between the cross-correlations of the measurements and the autocorrelation
vector rx, and thus a least squares estimator can be used.

The first step is applying vectorization to equation (2.9), which yields

vec(Ry) = (C∗ ⊗C) vec(Rx), (3.1)

where vec(·) is the operator that stacks all the columns of a matrix in one column vector and
⊗ represents the Kronecker product. Using the Hermitian Toeplitz structure of Rx, we can
write vec(Rx) in terms of rx as

vec(Rx) = T rx, (3.2)

where T is an N2× (2N − 1) repetition matrix whose i -th row is given by the ((i− 1 + (N −
2)b i−1

N c) mod (2N − 1) + 1)-th row of the identity matrix I2N−1. The matrix T can also be
written as a block matrix, as we consider in Chapter 5. Joining these equations we can write
(3.1) as

vec(Ry) = Θ rx, (3.3)

where the M2 × (2N − 1) matrix Θ is given by

Θ = (C∗ ⊗C) T, (3.4)

The system of linear equations in (3.3) can be under-determined, if M2 < 2N − 1, or over-
determined if M2 ≥ 2N − 1, considering the determined case as part of the over-determined.
As explained in [24], the under-determined case can be solved using one of the signal recon-
struction techniques proposed in the compressive sensing literature, assuming that either the
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power spectrum or the edge spectrum are sparse. For more details of this case, the reader
can consult [27] and the references therein. However, we are more interested in the over-
determined case as it allows a least squares solution, which is simpler and does not require
sparsity assumptions. The best solution of (3.3) in terms of minimizing the Euclidean norm
of the error is the least squares solution, which is given by

r̂x = (ΘHΘ)−1ΘHvec(Ry). (3.5)

The condition for the least squares solution to be unique is that Θ has full column rank.
Thus, on view of (3.4), C needs to be selected in a way that guarantees this property for Θ.

In [24], it is shown that each row of Θ is the cross-correlation between two rows of C.
The cross-correlation of two deterministic sequences is defined as

rci,cj [m] = ci[n] ? c∗j [−n] =
0∑

n=1−N
ci[n] c∗j [n−m], (3.6)

where ? is the convolution operator. We note that the elements of Ry are E
{
yi[k] y∗j [k]

}
,

which can be expressed as the cross-correlation sequence between yi[k] and yi[k] at lag 0. In
general, the cross-correlation sequence ryi,yj at any lag l is

ryi,yj [l] = E
{
yi[k] y∗j [k − l]

}
=

N−1∑
s=1−N

rci,cj [s] rx[lN − s], (3.7)

where the last equality follows from (2.4), (3.6) and algebraic manipulations. Now, the j-th
column of Ry can be written as

ryj [0] =
[
ry0,yj [0], ry1,yj [0], . . . , ryM−1,yj [0]

]T
.

Then we can write

vec(Ry) =
[
rTy0 [0], rTy1 [0], . . . , rTyM−1

[0]
]T
. (3.8)

Taking into account (3.3) and setting l = 0 in (3.7), it is clear that each row of Θ, which we
denote by rci,cj , is given by

rci,cj =
[
rci,cj [0], . . . , rci,cj [1−N ], rci,cj [N − 1], . . . , rci,cj [1]

]T
.

With this notation, we can write

Θ =
[
rc0,c0 , . . . , rcM−1,c0 , . . . , rc0,cM−1 , . . . , rcM−1,cM−1

]T
, (3.9)

In the real case, it suffices to estimate r̃x, defined in (2.8), so a different N2 ×N matrix
TR is used to relate this vector with vec(Rx). The matrix TR can be written as a block
matrix, where each block is an N ×N matrix given by

Ξ0 = IN = [e1, e2, . . . , eN ] , (3.10)

Ξ1 = [e2, e1, e2, . . . , eN−1] , (3.11)
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Ξn = [en+1, en, . . . e2, e1, . . . , eN−n] , (3.12)

where n ∈ {2, . . . , N − 1}, IN is the identity matrix of order N , and {ej}Nj=1 is the standard

basis of RN . Now we can write TR as

TR = [Ξ0,Ξ1, . . . ,ΞN−1]T . (3.13)

Then equation (3.3) changes to
vec(Ry) = ΘR r̃x, (3.14)

where the M2 ×N matrix ΘR is given by

ΘR = (C⊗C) TR, (3.15)

Now, using the even symmetry of rx[m], we can rewrite (3.7) as

ryi,yj [0] = rci,cj [0]rx[0] +

N−1∑
s=1

(rci,cj [s] + rci,cj [−s]) rx[s]. (3.16)

Thus, each row of ΘR is given by[
rci,cj [0], rci,cj [−1] + rci,cj [1], . . . , rci,cj [1−N ] + rci,cj [N − 1]

]
.

Now we can see that the first columns of ΘR and Θ are equal. For m ∈ {2, . . . , N}, the
m-th column of ΘR is given by the sum of the m-th and the (2N −m+ 1)-th columns of Θ.
Moreover, if Θ has full column rank, then ΘR has full column rank as well, because each of
its column vectors is the sum of two linearly independent vectors, and none of these vectors
is repeated. Thus, any matrix C that guarantees full column rank for Θ can be used for the
real case as well.

Finally, [1, 24] provide conditions for Θ to have full column rank in the case where multi-
coset sampling is employed. As we explained in Section 2.2.2, when multi-coset sampling is
employed, C is a binary matrix with a single one per row, and acts as a row selection matrix.
As proven in [24], full column rank is achieved when every column of Θ has a one, because
there is necessarily a one in each row. This boils down to an (N − 1)-length minimal sparse
ruler problem.

3.2 Least Squares Estimation with Hard Clipping

In this section, we study a modification of the least squares estimation method explained in
Section 3.1, where we add a hard limiter after the compressive sampling system. A limiter, or
clipper, is a device that limits the amplitude of its input according to a predefined function.
A hard limiter uses the sign function, that is, it returns 1 when the input is greater than 0 and
-1 when it is lower than 0. This may be useful as the system would only need to store the sign
of the samples instead of its value. Interestingly, there is a one to one mapping between the
correlation of two real Gaussian processes and the correlation of their hard limited versions,
as proven in [26]. This relationship can also be found in [20]. If the real input processes are
denoted by x(t) and y(t), and their clipped versions by xc(t) and yc(t), their cross-correlation
satisfies

rxc,yc(τ) =
2

π
arcsin

(
rxy(τ)

rxy(0)

)
, (3.17)
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Thus, rxy(τ) can be reconstructed from an estimate of rxc,yc(τ), which is easy to compute as
xc(t) and yc(t) are bipolar signals, and an estimate of rxy(0). The reconstruction is given by

r̂xy(τ) = r̂xy(0)sin
(π

2
r̂xc,yc(τ)

)
. (3.18)

This method is called in the literature the polarity coincidence (PC) method, and was used in
[28] to estimate the cross-correlation of the phase and quadrature components of a bandpass
signal.

Now, we would like to apply the PC method to the compressive sampling framework. If
we apply a hard limiter to each branch of the compressive sampling device1, we would obtain
the clipped measurement vector z[k], defined as

z[k] = sign(y[k]),

where the function sign(·) is applied element-wise, and we assume that y[k] is real. In the
same fashion, we can define

s[k] = sign(x[k]).

However, we need to take into account that the measurement yi[k] is the inner product of
x[k] and ci. Thus, the information about the sign of x[n] is distorted, unless the sampling
matrix C preserves the sign information. Mathematically, the required condition is given by

sign(y[k]) = sign (C x[k]) = C sign(x[k]). (3.19)

If the last equality holds, we can apply the same reasoning of Section 3.1 to the clipped mea-
surements z[k] in order to recover the autocorrelation of the clipped Nyquist-rate samples s[k].
Then, using (3.18), an estimate of rx can be obtained from an estimate of the autocorrelation
of s[k]. Clearly, multicoset sampling satisfies (3.19), because it just selects certain samples
from x[k]. However, we need an estimate of rx[0], which cannot be recovered from the clipped
measurements because amplitude information is lost after the hard limiter. Thus, we shall
assume that the input signal is normalized, so it has rx[0] = 1. This limits the application of
our method, because the average power of the received signal has to be estimated separately
by another means.

Besides, this method would only be able to deal with real data. In order to deal with
complex data, we can estimate the autocorrelation of a complex signal by separating its real
and imaginary parts, estimating their auto- and cross-correlation sequences separately, and
then combining the estimates to get an estimate of the complex autocorrelation. Mathemat-
ically, the autocorrelation of a complex random sequence f [n] = g[n] + jh[n] in terms of the
correlations of its real and imaginary parts is given by

rf [m] = E {f [n]f∗[n−m]} =

E {(g[n] + j h[n])(g[n−m]− j h[n−m])} =

E {g[n]g[n−m]}+ E {h[n]h[n−m]}+ j (E {h[n]g[n−m]} − E {g[n]h[n−m]} . (3.20)

We note here that for m = 0, the imaginary part vanishes2. Thus, when using equation
(3.18), only E

{
g2[n]

}
and E

{
h2[n]

}
need to be estimated separately.

With these considerations, our reconstruction method can be expressed in the block di-
agram of Fig. 3.1. The sampling device collects K measurement vectors y[k]. Applying

1In Section 2.1.1, we described the device proposed in [1] for implementing compressive sampling.
2Which we already knew because rf [m] has Hermitian symmetry, so rf [0] has to be real.
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Figure 3.1: System for Least Squares estimation with a Hard Limiter

the sign function separately to their real and imaginary parts yields the vectors zR[k] and
zI [k]. We denote their autocorrelation matrices by RzR and RzI , and their cross-correlation
matrices by

RzRI = E
(
zR[k] zTI [k]

)
,

RzIR = E
(
zI [k] zTR[k]

)
= RT

zRI
.

Now, equation (3.3) can be applied to find the (2N − 1)× 1 vectors rs,R, rs,I , rs,RI , rs,IR,
which contain the values of the auto- and cross-correlations of the real and imaginary parts
of x[k] after applying the hard limiter, indexed in the same way as rx in (2.7). In the block
diagram, these operations are performed within the block named LSE. We can write

vec(RzR) = Θ rs,R, vec(RzI ) = Θ rs,I ,

vec(RzRI ) = Θ rs,RI , vec(RzIR) = Θ rs,IR. (3.21)

Once this step is completed, we can recover the correlation values of the Nyquist rate
samples with equation (3.18). For the autocorrelation of the real part of x[k] this is written
as

rx,R = sin
(π

2
rs,R

)
, (3.22)

where the function sin(·) is applied component-wise. The vectors rx,I , rx,RI and rx,IR are
reconstructed in an analogous way.

Finally, they have to be combined using (3.20) to get the desired autocorrelation vector
r̂x, as follows,

rx = rx,R + rx,I + j (rx,IR − rx,RI) . (3.23)
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3.3 Simulation results

In the next section, we compare the performance of our modified estimation method with the
least squares estimator of [1] using computer simulations. The performance criterion is the
normalized mean squared error (NMSE), which for φ̂x is given by

NMSE(φ̂x) =
E
(
||φ̂x − φx||2

)
||φx||2

, (3.24)

where || · || is the Euclidean norm. In order to calculate the MSE in practice, the expectation
operator is substituted by the sample mean, resulting in the following expression:

M̂SE(φ̂x) =
1

P

P∑
i=1

||φ̂(i)
x − φx||2,

where φ̂
(i)
x is the i-th PSD estimate, and P is the number of estimates, which is set to 500 in

our simulation. Dividing it by ||φx||2 we obtain the NMSE.
Besides, the estimates of the correlation matrices are used, which are the matrices SzR ,

SzI , SzRI and SzIR . Considering that we collect, after the hard limiter, K measurement
vectors in the matrix

Z = [z[0], z[1], . . . , z[K − 1]] ,

the matrix SZRI
is defined as

SzRI =
1

K
ZRZTI ,

where, as before, the subscripts (·)R and (·)I mean real and imaginary parts. The other
matrices are defined in an analogous way.

In all the simulations, the compressive sampling scheme is multicoset based on a minimal
sparse ruler of length 62, given by

R = {0, 1, 4, 5, 9, 18, 29, 35, 41, 47, 54, 57, 60, 62}.

This yields a compression rate of 14
63 = 0.22. For higher compression rates, we select randomly

rows of I63 and add them to the ones selected by the sparse ruler. The signals x[n] considered
are drawn from a complex circularly-symmetric Gaussian WSS random process whose PSD
is obtained by filtering white Gaussian noise. Thus, the autocorrelation sequence rx[n] of the
process is

rx[n] = h[n] ? h∗[−n] ? σ2
0 δ[n],

where h[n] is the impulse response of the filter, σ2
0 is the power of the white noise driving

the filter and ? represents convolution. Because our algorithms estimate the autocorrelation
in the interval [1−N,N − 1], we will choose this support for rx[n]. This is achieved using a
filter h[n] with length N , which is designed so that the PSD of the output process has active
bands in [−0.9π,−0.65π], [0.1π, 0.35π] and [0.55π, 0.8π], as shown in Fig. 3.2. The filter has
not unit energy, so we use the value of rx(0) to normalize our PSD estimator, as required by
our method.

In order to give a rough idea of what the estimates yielded by the algorithms we studied
look like, one outcome of the estimators is shown in Fig. 3.3.
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Figure 3.2: True power spectral density, N = 63, complex Gaussian process.

Figure 3.3: PSD estimates using the least squares methods with and without hard limiting.
The compression rate is 0.413 and K = 1024 measurement vectors were used.

We want to study the influence of the compression rate in the NMSE, so we do not add
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noise in this simulation. The number of measurement vectors collected is K = 2048. The
results can be seen in Fig. 3.4, where we can see that the curves have a constant difference
between them, which means that our method introduces an additional estimation error.

Figure 3.4: NMSE vs Compression Rate for Least Squares and Least Squares with a Hard
Limiter.

3.4 Conclusions

In this chapter, we studied a modification of the least squares PSD estimator proposed in [1].
We add a hard limiter, which retains only the sign of the compressive measurements. This may
be useful as the system that processes the samples only needs to store their sign. However,
the average power of the received signal must be estimated by other means, because after
the hard limiter the amplitude information is lost. By using a one-to-one mapping between
the correlation of two real Gaussian processes and their versions after hard limitation, we can
recover the autocorrelation of the received signal. For complex signals, the real and imaginary
parts need to be considered separately, and the autocorrelation can be reconstructed from
their auto- and cross-correlations. Finally, we compared the NMSE of our method and the
least squares method of [1], and we saw that using the hard limiter introduces an additional
error.
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Maximum Likelihood
Estimation 4
In this chapter, we investigate maximum likelihood estimation (MLE) of the autocorrelation
sequence rx[m] using compressive sampling, when the signal x(t) is assumed to come from a
Gaussian process. This assumption is common in many estimation problems due to its math-
ematical tractability and the fact that several physical problems can be well approximated
by the Gaussian distribution, owing to a group of mathematical theorems that fall under the
name of Central Limit Theorems.

The problem of estimating rx is a particular case of the general problem of estimating
the covariance matrix of a random vector, when it is known that the matrix has a Toeplitz
structure due to the wide-sense stationarity of x[n]. In the Gaussian case and without com-
pression, this problem has been analyzed in [29], where the authors propose an algorithm to
find the maximum likelihood estimator when independent outcomes of the random vector are
available. More recently, [30] has studied maximum likelihood, using compressive sampling,
to estimate the power of each band in a multiband signal, provided that the power spec-
tral densities of the individual bands are known, or, equivalently, the associated covariance
matrices. In our work, we study maximum likelihood estimation of the covariance matrix
using compressive sampling without any prior information. Thus, our approach falls under
the non-parametric methods for spectral estimation.

4.1 Statistical assumptions

In order to study maximum likelihood estimation, we must make an assumption about the
statistical distribution of x[n], which is assumed to be a zero-mean real Gaussian process.
At the end of this section, we consider the case where x[n] is complex valued. If x[n] is a
Gaussian process, every x[k] will be a random vector with multivariate Gaussian distribution.
Its probability density function (pdf) is given by

f(x[k]|Rx) =
1

(2π)N/2|Rx|1/2
exp

{
−1

2
xT [k]R−1

x x[k]

}
=

1

(2π)N/2|Rx|1/2
exp

{
−1

2
tr
(
R−1
x x[k]xT [k]

)}
. (4.1)

In order for the pdf to exist, Rx must be positive definite, which we will assume from now.
Because x[n] is a real process, Rx is symmetric instead of Hermitian, and can be written
as Rx = E

(
x[k]xT [k]

)
. Owing to its Toeplitz structure, every element in the m-th lower

diagonal is equal to rx[m] and, because of the symmetry, all the elements in the m-th upper
diagonal are also equal to rx[m]. We can use this property to express Rx as

Rx =

N−1∑
m=0

rx[m]Bm, (4.2)
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where the matrices Bm form a basis for the subspace of square symmetric Toeplitz matrices
of order N . These matrices have all zeros but in the m-th lower and upper diagonals, where
they have ones. As an example, we show B1, which is given by

B1 =



0 1 0 0 · · · 0 0 0 0
1 0 1 0 · · · 0 0 0 0
0 1 0 1 · · · 0 0 0 0
...

...
...

... · · ·
...

...
...

...
0 0 0 0 · · · 1 0 1 0
0 0 0 0 · · · 0 1 0 1
0 0 0 0 · · · 0 0 1 0


.

Now we can characterize the statistics of y[k]. Due to the linear relationship in (2.2) and
the assumption that x[k] is Gaussian, it follows that y[k] is also an M × 1 Gaussian random
vector with zero mean and covariance matrix Ry = CRxC

T . Using (4.2), we can express Ry

as linear combination of matrices as follows

Ry = C

(
N−1∑
m=0

rx[m]Bm

)
CT =

N−1∑
m=0

rx[m] CBmCT . (4.3)

In order for the parameters {rx[m]}N−1
m=0 to remain identifiable, the set of matrices

{CBmCT }N−1
m=0 must still be linearly independent. This restricts the choice of the sampling

matrix C, as we explained in Section 2.2.2.

Here, the likelihood function is the pdf of y[k] given particular values of the parameters
we want to estimate. In this case, our parameter vector is r̃x. We can write the likelihood
function as

f(y[k] | r̃x) =
1

(2π)M/2|Ry|1/2
exp

{
−1

2
tr
(
R−1
y y[k]yT [k]

)}
. (4.4)

The vector r̃x that maximizes this function for a given set of measurements y[k] is the maxi-
mum likelihood estimator. In view of (4.3), this is equivalent to find the values of rx[m] that
make the best agreement between the matrix Ry and the observed values y[k]. However,
we note that so far we have considered the statistical properties of each measurement vector
y[k] separately. As our sampling device operates in a periodic fashion, we can collect K
measurement vectors in the M ×K matrix Y = [y[0],y[1], . . . ,y[K − 1]].

Within the most common approach to obtain the maximum likelihood estimator of a
covariance matrix, all the measurement vectors are assumed to be mutually independent,
regardless of whether there is compression, like in our case, or not, like in [29]. However,
the vectors y[k] come from one outcome of the random process x[n], and are clearly not
independent because they are correlated. If they were independent, the joint pdf of all the

vectors, which we denote by f
(
{y[k]}K−1

k=0 | r̃x
)

, would be the product of the individual pdfs
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of each vector. We could write then

f
(
{y[k]}K−1

k=0 | r̃x
)

=
K−1∏
k=0

f (y[k] | r̃x) =

K−1∏
k=0

1

(2π)M/2|Ry|1/2
exp

{
−1

2
tr
(
R−1
y y[k]yT [k]

)}
=

1

(2π)KM/2|Ry|K/2
exp

{
−1

2

K−1∑
k=0

tr
(
R−1
y y[k]yT [k]

)}
. (4.5)

By using the properties of the trace, we finally arrive to

f
(
{y[k]}K−1

k=0 | r̃x
)

=
1

(2π)KM/2|Ry|K/2
exp

{
−K

2
tr
(
R−1
y Sy

)}
, (4.6)

where the matrix Sy, commonly called the sample covariance matrix, is defined as

Sy =
1

K

K−1∑
k=0

y[k]yT [k] =
1

K
YYT , (4.7)

This matrix performs averaging of the measurement vectors over time, and it has the desir-
able property of being a consistent estimator of Ry. A consistent estimator of a parameter
converges in some sense to the true value of the parameter as the sample size increases. This
does not happen with y[k]yT [k] because, as the sample size increases, y[k]yT [k] clearly does
not converge to Ry in any sense.

Now back to our case, the measurement vectors y[k] are not independent, so we cannot use
equation (4.6), and the consistency of Sy might not hold. However, if we assume {yi[k]}M−1

i=0

to be ergodic, then this time average converges to the ensemble average Ry as K →∞, and
this means that Sy is a consistent estimator of Ry. The ergodicity of {yi[k]}M−1

i=0 implies
that x[n] has to be ergodic as well, which is reasonable in the context of the estimation of
second-order statistics from signal measurements. For more details on ergodicity, we refer to
[20].

Taking these facts into account, we can first derive the maximum likelihood estimator
considering a single measurement vector y[k], and then, using the consistency of Sy, we
can obtain asymptotic solutions that reduce the computational complexity without critically
decreasing the accuracy.

4.2 Derivation of the Maximum Likelihood Estimator

In order to maximize f(y[k] | r̃x), we need to set its gradient to zero. This task is easier if
we take the natural logarithm, because it is a monotonically increasing function and thus the
maximum will be attained for the same argument. Applying the logarithm yields

lnf(y[k] | r̃x) = −M
2

ln(2π)− 1

2
ln|Ry| −

1

2
tr
(
R−1
y y[k]yT [k]

)
. (4.8)

We first need to calculate the derivative of lnf(y[k] | r̃x) with respect to each rx[n],

∂ lnf(y[k] | r̃x)

∂rx[n]
= −1

2

∂ ln|Ry|
∂rx[n]

− 1

2

∂

∂rx[n]

{
tr
(
R−1
y y[k]yT [k]

)}
.
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We now have

∂ ln|Ry|
∂rx[n]

=
1

|Ry|
∂ |Ry|
∂rx[n]

=
1

|Ry|
tr

{
Adj (Ry)

∂Ry

∂rx[n]

}
= tr

{
R−1
y CBnC

T
}
,

where we have used the fact that
∂Ry

∂rx[n] = CBnC
T as seen from (4.3). The second term is

given by

∂

∂rx[n]

{
tr
(
R−1
y y[k]yT [k]

)}
= tr

{
∂

∂rx[n]

(
R−1
y y[k]yT [k]

)}
=

−tr

{
R−1
y

∂Ry

∂rx[n]
R−1
y y[k]yT [k]

}
= −tr

{
R−1
y CBnC

TR−1
y y[k]yT [k]

}
,

where we have used ∂A−1

∂t = −A−1 ∂A
∂t A−1. The maximum will be found by setting each

derivative to zero and solving the resulting system of equations. Using the derived results,
we can write

∂ lnf(y[k] | r̃x)

∂rx[n]
= −1

2
tr
{
R−1
y CBnC

T
}

+
1

2
tr
{
R−1
y CBnC

TR−1
y y[k]yT [k]

}
.

Setting this derivative to zero yields

tr
{
R−1
y CBnC

TR−1
y Ry

}
= tr

{
R−1
y CBnC

TR−1
y y[k]yT [k]

}
, (4.9)

where we have introduced the factor R−1
y Ry in the first term, which does not affect the result.

Expanding Ry by using (4.3), we arrive at

N−1∑
m=0

rx[m] tr
{
R−1
y CBnC

TR−1
y CBmCT

}
= tr

{
R−1
y CBnC

TR−1
y y[k]yT [k]

}
, (4.10)

which has to hold for ∀n ∈ {0, 1, . . . , N − 1}. Solving this linear system of N equations with
N unknowns would give our desired estimator ˆ̃rx. However, there is no analytical solution
known to this problem, so we need to search for numerical solutions, that generally trade off
simplicity for accuracy.

4.3 Asymptotic Solutions to the ML Equations

Solving (4.10) numerically can lead to high computational complexity. As we stated at the
end of Section 4.1, by using the consistency of Sy we can obtain solutions that converge
asymptotically to the true ML solution. Calculating these solutions can reduce the computa-
tional complexity, at the expense of increasing the sensing time in order to make the sample
size K large enough.

First, we notice that equation (4.10) includes the term y[k]yT [k], which is not a consistent
estimator of Ry. It is easy to see that if we replace y[k]yT [k] with a consistent estimator
of Ry, then (4.9) would hold when K → ∞. Using this property, we can solve a modified
version of (4.10), employing Sy instead of y[k]yT [k], and obtain a good approximation of the
true solution. We can formulate two strategies that will approximate the ML solution in the
case where K is large.
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4.3.1 Asymptotic Maximum Likelihood

A very simple solution is substituting R−1
y with S−1

y in (4.10), which would be a good approx-
imation as we know Sy ≈ Ry for large K. The linear system of equations to solve changes to

N−1∑
m=0

r̂x[m] tr
{
S−1
y CBnC

TS−1
y CBmCT

}
= tr

{
S−1
y CBnC

T
}
, (4.11)

where n ∈ {0, 1, . . . , N − 1}. This requires the matrix Sy to be invertible, or equivalently,
that it has full rank. For any real matrix A it holds that rank(A) = rank(AAT ), and
thus requiring rank(Sy) = M is equivalent to require that rank(Y) = M . A necessary but
not sufficient condition is K ≥ M , which is satisfied as we have assumed that K is large.
Besides, due to the assumption of x[n] being a Gaussian process, the columns of Y come
from a continuous non-degenerate probability distribution, so they are linearly independent
with probability one. This guarantees that Sy is full rank.

4.3.2 Simplified Inverse Iteration Algorithm

In order to find a better approximation, we can iterate over (4.10) by remembering that we
use Sy instead of y[k]yT [k]. This follows the work in [30], where they also choose the name
of this algorithm, because it is a simplified version of the algorithm presented in [29].

The system of equations to solve in every iteration is

N−1∑
m=0

r̂(k+1)
x [m] tr

{
(R̂(k)

y )−1CBnC
T (R̂(k)

y )−1CBmCT
}

=

tr
{

(R̂(k)
y )−1CBnC

T (R̂(k)
y )−1Sy

}
, ∀n, (4.12)

where R̂
(k)
y , r̂

(k)
x [m] are the estimates at iteration k of Ry and rx[m], respectively. For initial-

ization, we set R̂
(0)
y = Sy, and for k ≥ 1 the relationship between R̂

(k)
y and r̂

(k)
x [m] is given

by equation (4.3). Note that R̂
(k)
y has to be invertible in every iteration, and also that the

initialization step is equal to the previous strategy we described, called Asymptotic Maximum
Likelihood. The number of iterations is not fixed and can be performed indefinitely, as long
as the invertibility condition is satisfied. A study of the convergence of this algorithm is not
provided in this work. The computational complexity of SIIA is much greater than AML

4.4 Complex data

In order to deal with complex data, we have to modify our statistical asumptions about the
random process x[n]. For a complex Gaussian random process or vector to have its distribution
completely specified, we need to take into account the possible dependency between the real
and imaginary parts of each element. In particular, if the real and imaginary parts of each
element are independent and have the same variance, the complex random vector x[k] has a
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circularly-symmetric complex Gaussian distribution [31], with probability density function

f (x[k] |Rx) =
1

πN |Rx|
exp

{
−xH [k]R−1

x x[k]
}

=

1

πN |Rx|
exp

{
−tr

(
R−1
x x[k]xH [k]

)}
. (4.13)

Note that the pdf is very similar to (4.1). However, as we discussed in Section 2.2.1, the
matrix Rx is Hermitian Toeplitz, so we need to consider the subspace of square Hermitian
Toeplitz matrices of order N . A basis for this subspace is given by the N × N matrices
{Bm}N−1

m=0 that we used in (4.2), and the N × N matrices {B̃m}N−1
m=1. These matrices have

all zeros but in the m-th lower and upper diagonals, where they have the values of −j and j
respectively. As an example, we show B̃1, which is given by

B̃1 =



0 j 0 0 · · · 0 0 0 0
−j 0 j 0 · · · 0 0 0 0
0 −j 0 j · · · 0 0 0 0
...

...
...

... · · ·
...

...
...

...
0 0 0 0 · · · −j 0 j 0
0 0 0 0 · · · 0 −j 0 j
0 0 0 0 · · · 0 0 −j 0


.

Then we can write (4.2) for the complex case as

Rx =
N−1∑
m=0

αmBm +
N−1∑
m=1

βmB̃m, (4.14)

where rx[m] = αm − jβm and αm, βm ∈ R ∀m ∈ {0, 1, . . . N − 1}. Due to the Hermitian
symmetry, rx[0] has to be real and thus β0 = 0. Finding the MLE for this case has a very
similar derivation to the one in Section 4.2. Thus, for this case we can use both AML and
SIIA to estimate the power spectral density.

4.5 Simulation results

In this section, we illustrate the performance of the algorithms with numerical examples. We
compare AML and SIIA with the method based on least squares proposed in [1] under the
name of Alternative Time Domain approach. To avoid a high computational burden, we set
the number of iterations of SIIA to 10. The performance criterion is the normalized mean
squared error (NMSE), which we defined in (3.24). In this case, it is difficult to obtain it
theoretically, so we estimate it with computer simulations. As we explained in Section 3.3, in
order to calculate the MSE in practice, the expectation operator is substituted by the sample
mean, resulting in the following expression:

M̂SE(φ̂x) =
1

P

P∑
i=1

||φ̂(i)
x − φx||2,

where φ̂
(i)
x is the i-th PSD estimate, and P is the number of estimates, which is set to 500 in

this simulation study. Dividing it by ||φx||2 leads to the NMSE.
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In all the simulations, the employed compressive sampling scheme is multicoset sampling
based on a minimal sparse ruler of length 62, given by

R = {0, 1, 4, 5, 9, 18, 29, 35, 41, 47, 54, 57, 60, 62}.

This yields a compression rate of 14
63 = 0.22. For higher compression rates, we randomly

select rows of I63 and add them to the ones selected by the sparse ruler, until the appropiate
compression rate is achieved. The signals x[n] considered are drawn from a real Gaussian
WSS random process whose PSD is obtained by filtering white Gaussian noise. Thus, the
autocorrelation sequence rx[n] of the process is

rx[n] = h[n] ? h[−n] ? σ2
0 δ[n],

where h[n] is the impulse response of the filter, σ2
0 is the power of the white noise driving the

filter and ? represents convolution. Because our algorithms estimate the autocorrelation in
the interval [1−N,N − 1], we will choose this support for rx[n]. This is achieved by using a
filter h[n] with length N , which is designed so that the PSD of the output process has active
bands in [0.1π, 0.2π], [0.45π, 0.65π] and [0.8π, 0.9π], as shown in Fig. 4.1.

Figure 4.1: True power spectral density, N = 63, real Gaussian process.

In order to give a rough idea of what the estimates yielded by the algorithms we studied
look like, one outcome of the estimators is shown in Fig. 4.2.

The influence of three factors is considered in the performance of the algorithms, i.e., the
compression rate, the signal-to-noise ratio (SNR) and the sensing time. As an attempt to
model different sensing times, we generated two different numbers K of vectors x[k], namely
1024 and 3663. Having K vectors corresponds to KN Nyquist rate samples. In order to
evaluate the effect of compression rate and SNR, two separate simulations were conducted.
The first computes the NMSE in the noiseless case for several compression rates. The resulting
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Figure 4.2: PSD estimates using AML, SIIA and LSE. The compression rate is 0.413 and
K = 1024 measurement vectors were used.

graph can be seen in Fig. 4.3. The second fixes the compression rate to 0.349 and adds white
Gaussian noise of different powers, so that the SNR changes in the range of 0 to 30 dB, as
can be seen in Fig. 4.4.

As we can see, all three algorithms perform acceptably in terms of MSE. Both AML and
SIIA perform better than Least Squares, which can be explained by the fact that our data
come from a Gaussian population, and that the maximum likelihood estimation is asymp-
totically efficient, as shown in [32]. In Fig. 4.3, we can see that the performance of AML
and SIIA is almost equal for a strong compression. The point where SIIA starts to perform
better than AML is between 0.32 and 0.35. The difference in performance is less pronounced
as the number of measurement vectors available K increases. In Fig. 4.4 we can see that, for
moderately high SNRs, the performance of AML is the best of the three.

4.6 Conclusions

We studied Maximum Likelihood Estimation of the PSD using compressive sampling, where
the data is assumed to be Gaussian. The true solution cannot be found analytically, and
numerical methods may be very computationally intense. Thus, we turned to two algorithms
that yield asymptotically the ML solution in order to reduce the computational cost. We
evaluated their performance using computer simulations to obtain estimates of their mean
squared error, and compared them to another existing method in the literature based on least
squares [1].
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Figure 4.3: NMSE vs Compression Rate for AML, SIIA and LSE

Figure 4.4: NMSE vs SNR for AML, SIIA and LSE

27



28



Sampling Matrix Design 5
In this chapter, we study the possibility of constructing new sampling matrices C that guar-
antee the statistical identifiability of the autocorrelation vector rx. Our criteria will be that
the matrix Θ, which is used in the least squares estimator proposed in 3.1, has full column
rank.

5.1 Conditions for Full Column Rank

We start by rewriting equation (3.9) again, where Θ was expressed in terms of its rows as
follows

Θ = [rc0,c0 , . . . , rcM−1,c0 , . . . , rc0,cM−1 , . . . , rcM−1,cM−1 ]T ,

where rci,cj =
[
rci,cj [0], . . . , rci,cj [1−N ], rci,cj [N − 1], . . . , rci,cj [1]

]T
. Taking this into account,

it seems easier to work with the rows in order to obtain conditions for the full column rank
of Θ. As the column rank of a matrix is equal to the row rank, we need to guarantee that
2N − 1 linearly independent rows exist. In other words, a basis of C2N−1 must be obtained
from the M2 possible cross-correlations of the M sequences {ci[n]}M−1

i=0 that constitute the
rows of the sampling matrix C.

As we are working with vectors, it is convenient to express (3.6) in matrix form,

c∗j [0] c∗j [−1] c∗j [−2] · · · c∗j [2−N ] c∗j [1−N ]

0 c∗j [0] c∗j [−1] · · · c∗j [3−N ] c∗j [2−N ]
...

...
... · · ·

...
...

0 0 0 · · · 0 c∗j [0]

c∗j [1−N ] 0 0 · · · 0 0
...

...
... · · ·

...
...

c∗j [−1] c∗j [−2] c∗j [−3] · · · c∗j [1−N ] 0





ci[0]
ci[−1]
ci[−2]

...
ci[2−N ]
ci[1−N ]


=



rci,cj [0]
rci,cj [−1]

...
rci,cj [1−N ]
rci,cj [N − 1]

...
rci,cj [1]


.

More compactly we will write
T∗cj ci = rci,cj . (5.1)

The matrix T∗cj is a (2N − 1)×N Toeplitz matrix. Multiplying any N × 1 vector ci with this
matrix yields the cross-correlation of the corresponding sequences ci[n] and cj [n]. From its
structure it can be seen that it has rank N as long as cj [n] 6= 0 for some n ∈ {0,−1, . . . , 1−N}.
In other words, it has rank N except when it is the zero matrix. Equation (5.1) implies that
the vector rci,cj lies in the column space Im(T∗cj ) of this matrix. One basis for Im(T∗cj ) can
be found using a singular value decomposition, yielding

T∗cj = UjΣjV
H
j =

[
Ûj Û⊥j

]
ΣjV

H
j , (5.2)

where we have assumed that T∗cj has rank N . The columns of the (2N − 1)×N matrix Ûj

form an orthonormal basis for Im(T∗cj ), and Û⊥j is a (2N−1)×(N−1) matrix whose columns
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form an orthonormal basis for Ker(TH
cj ), which is the orthogonal complement of the column

space. Multiplying by Vj both sides of (5.2) allows us to write

T∗cjVj = UjΣj . (5.3)

This means that the cross-correlation of a right singular vector with cj gives its corresponding
left singular vector scaled by its singular value.

In our problem, we have to select M vectors {c0, c1, . . . , cM−1} of dimension N . Their
corresponding matrices T∗c0 ,T

∗
c1 , . . . ,T

∗
cM−1

have associated M subspaces of C2N−1, namely

their column spaces, each of dimension N . Using (3.9) and (5.1), the M2 rows of Θ can
be divided into M groups of M vectors, where each group belongs to one of the subspaces
Im(T∗cj ). In order to obtain 2N−1 linearly independent vectors, a necessary condition is that
the union of all subspaces spans the complete vector space, that is,

Span

M−1⋃
j=0

Im(T∗cj )

 = C2N−1.

Besides, we would like the number of rows M of the sampling matrix to be as low as possible.
To enforce this condition, we can require that no two subspaces Im(Tcj ), Im(Tci) are the
same, because this would mean that all the rows of Θ generated by ci or cj belong to the
same subspace, and thus either ci or cj is not necessary. Thus, the size of C could be reduced
by eliminating one of them. If at least one of the columns of Ûi is linearly independent from
the columns of Ûj , this condition is satisfied.

The problem is difficult because it is not clear how to select the vectors {c0, c1, . . . , cM−1}
from the conditions given. One approach is to first select a basis for C2N−1, that we denote
by {θk}2N−1

k=1 , which would be the desired set of rows in Θ that guarantees the full column
rank property. However, without prior information about at least one vector cj , equation
(5.1) can only be solved in the case j = i. Without loss of generality we can start with
j = 0, that is, constructing c0. This case corresponds to finding a finite-length sequence
whose autocorrelation is given. It is easily seen that this problem is non-linear, but can be
solved by spectral factorization. However, this imposes that one vector θn must comply with
the properties of the autocorrelation, which means having its maximum in lag m = 0 and
Hermitian symmetry. Once this step is solved, the sequence c0[n] is known, and thus also the
matrix Tc0 . Equation (5.1) with j = 0 and i = 1 is now linear, and the sequence c1[n] can be
found by solving

T∗c0 c1 = θk, (5.4)

where θk is the k-th vector of the basis we have previously chosen. However, as we said before,
for an exact solution of this system of equations it must happen that θk ∈ Im(T∗c0). If this
is not the case for any θk, the best we can do is finding the projection of θk onto Im(T∗c0).
However, once c1[n] is found, it is unclear what is the relationship between Im(T∗c1) and
Im(T∗c0), and how to proceed further to find the remaining rows ci of the sampling matrix.

5.2 Binary sampling matrices

In order to find a set of solutions, we can restrict our problem more. In this work, we will
only consider binary matrices, that is, matrices whose entries are drawn from the set {0, 1},
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and in particular those that have a fixed number of ones per row. We will say that a binary
matrix belongs to class Bb if it has exactly b ones in each row.

The motivation behind this choice is that the compressive sampling process in (2.3) can
be implemented in the analog domain with the periodic sampling architecture proposed in [1],
that we explained in 2.1.1. The sampling is conducted by mixing the incoming signal with a set
of periodic piecewise continuous signals. These signals have a constant value at each interval
nT ≤ t < (n + 1)T , where T is the Nyquist rate corresponding to the scanned bandwidth.
The value in the i-th branch at a particular interval n is given by ci[−n]. The generation of
a periodic signal with only two possible values is easier than other more complicated signals.
We note here that matrices whose elements belong to the sets {−1, 1} or {−1, 0, 1}, named
bipolar and ternary matrices respectively, can also be of interest.

In order to study the full column rank property of Θ, we will use its definition given by
equation (3.4). We can omit the complex conjugate as these matrices only have real entries,
and we will use the notation ci,n = ci[−n] for simplicity. Recalling the definition of the
Kronecker product we can write

C⊗C =


c0,0C c0,1C · · · c0,N−2C c0,N−1C
c1,0C c1,1C · · · c1,N−2C c1,N−1C

...
...

...
...

...
cM−1,0C cM−1,1C · · · cM−1,N−2C cM−1,N−1C

 .
It is easily seen that if C is a binary, bipolar, or ternary matrix then C⊗C is, respectively,
a binary, bipolar, or ternary matrix as well. We can also write C⊗C in terms of its rows as

[c0 ⊗ c0, c0 ⊗ c1, . . . , c0 ⊗ cM−1, . . . , cM−1 ⊗ c0, . . . , cM−1 ⊗ cM−1]T . (5.5)

As we can see, each row of C⊗C is given by (ci ⊗ cj)
T = cTi ⊗ cTj .

The repetition matrix T, defined in (3.2), can be written as a block matrix, where each
block is made of rows of I2N−1. In order to express T in a more convenient way, we will
denote by {ej}2N−1

j=1 the standard basis of R2N−1. We define the (2N − 1) ×N matrices En

as
E0 = [e1, e2, . . . , eN ] , (5.6)

En = [e2N−n, e2N−n+1, . . . e2N−1, e1, . . . , eN−n] , (5.7)

with n ∈ {1, 2, . . . , N − 1}. Now we can write T as

T = [E0,E1, . . . ,EN−1]T . (5.8)

The matrix Θ is given by the product of C⊗C and T, and thus each row of Θ is a linear
combination of the rows of T with coefficients given by the corresponding row of C ⊗ C.
Using (5.5) and (5.8) this is expressed as

rTcj ,ci = (cTi ⊗ cTj ) T =

N−1∑
n=0

ci,n cTj ET
n . (5.9)

It can be seen from (5.6) that the product cTj ET
0 gives a 1× (2N − 1) vector of the form

[cTj 0TN−1], where 0N−1 is the (N − 1) × 1 zero vector. From (5.7) it can be seen that the
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rest of the products cTj ET
n are circular shifts of this vector by n positions to the left. For

n ∈ {1, 2, . . . , N − 1}, we can write

cTj ET
n =

[
cj,n, cj,n+1, . . . , cj,N−1,0

T
N−1, cj,0, . . . , cj,n−1

]
. (5.10)

5.2.1 Binary matrices of class B1 and concatenated sparse rulers

These matrices have a single one per row, and correspond to multi-coset sampling matrices.
An M×N matrix C belonging to this class is constructed by selecting M rows of the identity
matrix IN . For them, equation (5.9) becomes

rTcj ,ci = cTj ET
ni
,

where ni is the position where the vector ci has its only one. Because of the left circular shift
introduced by ET

ni
, the position of the one in rcj ,ci is given by ni−nj . We recall here that the

elements of rcj ,ci are indexed as rcj ,ci =
[
rcj ,ci [0], . . . , rcj ,ci [1−N ], rcj ,ci [N − 1], . . . , rcj ,ci [1]

]T
.

As proven in [24, 1], full column rank is achieved when every column of Θ has a one,
because there is necessarily a one in each row. If the compression rate desired is the minimum
possible, the problem of designing C boils down to an (N − 1)-length minimal sparse ruler
problem. As this case is already studied, we refer to [1] for further details.

However, minimal sparse rulers cannot, to the best of our knowledge, be constructed
by any quick procedure, making a brute force search over the set of length (N − 1) sparse
rulers necessary. This has already been done, and several minimal sparse rulers have been
tabulated. If the desired length is greater than the maximum length available, one can
think on concatenating two or more rulers to increase the block length. This would increase
the number of lags that can be estimated, thus widening the applicability of the estimation
methods discussed in this work. Concatenating L minimal sparse rulers of the same length
N − 1 has already been studied in [23], proving that they are optimal in the sense that they
preserve the identifiability of rx while achieving the minimum compression rate. The sampling
matrix associated with this concatenation would be C̄ = IL⊗C, which is an ML×NL block
diagonal matrix, where each block is the sampling matrix associated with an (N − 1)-length
minimal sparse ruler. With this method, the block sizes available are multiples of N . We are
going to study the case of concatenating several sparse rulers of different lengths. By doing
this, we allow more flexibility in the block length N , which can be expressed as the sum of
the individual block sizes of the minimal sparse rulers selected.

Mathematically, concatenating L minimal sparse rulers means choosing the multi-coset
set P = P0 ∪ P1 ∪ · · · ∪ PL−1, defining Pl as the set

Pl = {r +

l−1∑
m=0

Nm, r ∈ Rl},

where Rl is a minimal sparse ruler of length Nl − 1. This means that P is formed by
concatenating sparse rulers without overlap.

We define Ml = |Rl|, that is, Ml is the cardinality of the l -th sparse ruler. As Pi ∩ Pj =

∅ ∀i, j ∈ {0, 1, . . . , L − 1}, the cardinality of P is MT =
∑L−1

l=0 Ml, and the compression rate

is given by MT
NT

, defining NT =
∑L−1

l=0 Nl. We note here that we have given up minimality,
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because a minimal sparse ruler of length NT − 1 will have less elements than MT and thus it
will offer a better compression. The sampling matrix in this case is given by

C̄ =


C0 0 · · · 0
0 C1 · · · 0
...

...
. . .

...
0 0 · · · CL−1

 ,
which is a block diagonal matrix where the l-th block is the matrix Cl associated with the l-th
sparse ruler. This is again a matrix in B1, so the condition we need for statistical identifiabiliy
is that its rows are selected from INT

according to a sparse ruler, or, equivalently, that the set
P is a sparse ruler. Unfortunately, this is not always the case. A counterexample for length
20 is the concatenation of the following minimal sparse rulers of lengths 9 and 10 respectively,

R0 = {0, 1, 4, 7, 9},

R1 = {0, 1, 2, 3, 6, 10}.

The concatenated sparse ruler is the set {0, 1, 4, 7, 9, 10, 11, 12, 13, 16, 20}, and it is easily seen
that the integers 14, 17 and 18 cannot be obtained as a difference of two of its elements.
Thus, concatenating sparse rulers of different lengths does not always lead to the statistical
identifiability of the autocorrelation values. However, checking if a certain sequence of sparse
rulers is a sparse ruler is easy, so several options can be tried until a certain combination that
satisfies the desired block length and the statistical identifiability property is found.

5.2.2 Binary matrices of class B2

These matrices have two ones per row. We denote the locations of the ones in the i-th row
of C by the pair (ni1, ni2), where ni1 < ni2. Besides, we assume that no two different rows
have the same locations for their ones, as this would result in a rank-deficient matrix Θ.

In this case, equation (5.9) becomes

rTcj ,ci = cTj ET
ni1

+ cTj ET
ni2
.

Due to the circular shifts, in the first term of the sum the ones will appear at the locations
ni1−nj1, ni1−nj2, and in the second term they will appear at ni2−nj1, ni2−nj2. Thus, the
number and locations of the non-zero elements of rcj ,ci can be divided in three cases.

1. The pairs (ni1, ni2), (nj1, nj2) have all different elements. In this case two things can
happen. If the pairs satisfy ni1 − ni2 = nj1 − nj2, then ni1 − nj1 = ni2 − nj2 and we
have a two at lag m = ni1 − nj1 and two ones. Otherwise there are four ones and none
of them in the first element, which corresponds to lag m = 0.

2. The pairs (ni1, ni2), (nj1, nj2) have one element in common. Then there will be four
ones again, but one will appear in the first element, which corresponds to lag m = 0.

3. The pairs (ni1, ni2), (nj1, nj2) are equal, which can only happen in the case i = j, as we
imposed that no two rows can have the same locations for their ones. This corresponds
to the M rows corresponding to the autocorrelations rci,ci . In this case there is a two
at lag m = 0 , and two ones at the locations ni1 − ni2 and its opposite ni2 − ni1.
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For real signals it holds that rcj ,ci [m] = rci,cj [−m], so the locations of the ones in rci,cj will
be at the opposite lags of those in rcj ,ci . If two pairs satisfy ni1 + ni2 = nj1 + nj2, then
rci,cj = rcj ,ci , as the locations of their ones will be equal. This can be seen considering the
locations of the ones for rcj ,ci , which are

• ni1 − nj1 = nj2 − ni2 = a

• ni1 − nj2 = nj1 − ni2 = b

• ni2 − nj1 = nj2 − ni1 = −b

• ni2 − nj2 = nj1 − ni1 = −a

Because in rci,cj the ones appear at opposite locations, it is clear that both vectors are equal.
Taking this into account, we need to find sufficient conditions for Θ to have full column rank.
However, we have not been able to do it so far.

5.3 Conclusions

In this chapter, we have addressed the problem of the design of a sampling matrix C that
preserves the statistical identifiability of the autocorrelation values. We took the approach
of guaranteeing that the recovery matrix Θ for the least squares estimator has full column
rank. Because its rows are the auto and cross-correlations between every pair of rows of C, the
problem can be stated as how to find a basis of C2N−1 from the M2 possible cross-correlations
of the M sequences {ci[n]}M−1

i=0 that constitute the rows of the sampling matrix C. We showed
that the general problem is difficult, and we left it open for future research. In the last section,
we considered binary matrices with a single one per row or a single pair of ones per row. In
the first case, they correspond to multicoset sampling, which requires a sparse ruler pattern
to satisfy the identifiability conditions. The possibility of concatenating minimal sparse rulers
of different lengths is considered as a means of obtaining larger values of N using rulers that
are already tabulated. This would avoid the problem of finding long minimal sparse rulers,
which can only be done by brute force search. However, such a concatenation is not always
a sparse ruler, and thus identifiability is not always satisfied. In the second case, we derived
the possible locations of the elements of Θ. However, we failed to find sufficient conditions
for identifiability, and we again left it open for future research.
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Spectral Estimation with
Random Sampling 6
In this chapter, we study spectral estimation with random sampling, a type of sampling we
briefly described in Section 2.1.3. As we explained, random sampling includes every sampling
scheme where the time between samples is a random variable following a specific distribution.
In [8], random sampling was considered as an alternative to uniform sampling, with avoiding
aliasing as the goal. The authors provided a definition of alias-free estimation and showed
that several sampling schemes, based on the Poisson process, were alias-free, while some
others were not. However, they did not study the effects of finite sensing time. The work
[16] studied the properties of a PSD estimator based on a finite number of samples taken at
instants following a Poisson process, and showed that consistent estimation is possible even for
average sampling rates lower than the Nyquist rate. The same author points in [17] that the
definition of alias-free estimation provided in [8] does not imply that consistent estimation can
be obtained from a finite set of samples, and reformulates the definition, providing sufficient
conditions for this new definition to hold. More recently, [18] studied the theoretical properties
of several types of random sampling and applied them to radio receiver design.

In our work, we consider additive random sampling, which is a particular kind of random
sampling that we explain in Section 6.1, and we modify it by imposing a minimum time
between samples, which allows the sampling scheme to be implemented in synchronous digital
circuitry. Spectral estimation is done by employing the classical unbiased estimator for the
autocorrelation and taking its discrete Fourier transform. We also study the probability of a
certain lag being present, which we show is a difficult problem.

6.1 Additive Random Sampling

Additive random sampling was first proposed in [8] in order to obtain alias-free estimators
for the power spectral density. The samples in additive random sampling are taken at the
instants

t0 = 0,

tn = tn−1 + τn, n ∈ {1, 2, . . . },

where the last equation can be written equivalently as

tn = t0 +

n∑
i=1

τi , n ∈ {1, 2, . . . }. (6.1)

The random variables τn are independent and identically distributed (i.i.d), which means that
all intervals between consecutive samples are independent and have the same distribution.

In Poisson sampling, the sampling instants form a Poisson process, which implies that
the distribution of the interarrival times τn is the exponential distribution, with probability
density function

fτn(t) = λe−λt; t ≥ 0.
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Here λ is the mean sampling rate , and its inverse is the mean time between samples µ = 1
λ .

As we can see, two consecutive samples are allowed to be infinitely close, because every
τn can take any real value greater than 0. This is physically irrealizable, because any device
taking measurements requires some time between one and the next. Thus, we have modified
this scheme by rounding each sampling instant tn to the nearest Nyquist rate sample nT ,
where 1

T is the Nyquist rate corresponding to the scanned bandwidth. By doing so, we can
establish a relationship between the samples taken following our scheme and the Nyquist rate
samples. Let us consider that we collect N samples from x[n]. Our sampling scheme selects
the samples whose indexes are given by:

k0 = 0,

kn = round

(
k0 +

n∑
i=1

τi

)
n ∈ {1, 2, . . . },

where round(·) is the operator that rounds its argument to the nearest integer and {τi}∞i=1 are
i.i.d random variables with mean µ. In order to adapt to the finite size of x[n], the maximum
index selected cannot be greater than N − 1 so we add the constraint

max
n
{kn} ≤ N − 1.

We note that the rounding gives rise to repeated indexes and this would introduce a bias in
the autocorrelation estimator, because of some samples appearing more than once. In order
to avoid this bias, we erase the repeated indexes leaving a set of indexes {k0, k1, . . . , kM−1}
with the property

k0 < k1 < . . . < kM−1.

Thus, our modified random sampling scheme selects a subset of the Nyquist rate samples of
size M , where each sample can only appear once. As a consequence of the randomness of
the interval between consecutive samples, the number M is also random. If no elimination of
repeated samples was performed the expected value of M would be N

µ , as the average interval
between consecutive samples is µ. However, it is always less due to this elimination. The
compression rate is given by M

N .

6.2 Probability of Obtaining a Certain Lag

In order to estimate an autocorrelation function, which depends on the difference between
instants, and not on the instants themselves, we need every integer lag to be present. This
means that, for each lag, there must be at least a pair of sampling instants whose difference
yields that lag. It suffices to have the lags given by {lT}L−1

l=0 , where 1
T is the Nyquist rate.

For simplicity, we can consider T = 1 and the same results are valid using scaling by the
appropriate value of T . We note here that as the maximum lag considered is L− 1, there is
a truncation error in our PSD estimator, as we mentioned at the end of Section 2.2.1.

In order to find the probability of obtaining a certain lag l, we have to consider the
statistical properties of the set of random variables {Sk,n = tn+k−tn}, where k ∈ {0, 1, . . . , N−
1} and n ∈ {0, 1, . . . , N − 1 − k}. These random variables cover all the differences between
arrival times and thus represent all the lags. They can also be seen as the waiting time for

36



the arrival of k samples, starting from the n-th sample arrival. Their probability distribution
can be found by using (6.1),

Sk,n = tn+k − tn = t0 +
n+k∑
i=1

τi − t0 −
n∑
i=1

τi =
n+k∑
i=n+1

τi. (6.2)

As Sk,n is the sum of k i.i.d. random variables, its distribution is independent of n. In the
case of Poisson sampling, the distribution of the sum of k i.i.d. exponential random variables
is an Erlang distribution with parameters (k, λ), whose probability density function is

fk(t) =
λk tk−1 e−λt

(k − 1)!
; t ≥ 0.

The next step is deriving the probability of obtaining each lag. We will consider that lag l
is present if there is at least one pair of instants tn+k, tn whose difference tn+k− tn belongs to
the interval Λl = [l− 1

2 , l+
1
2). This means that rounding the difference to the nearest integer

gives l. We note here that the lag 0 is always present, because it is the difference between
each instant and itself, so we consider only the intervals Λ1, . . . ,ΛM−1.

We will denote the event of lag l being present by Al. Defining the set Ik as Ik =
{0, 1, . . . , N − 1− k}, we can express Al as

Al ≡ ∃ k ∈ I0, n ∈ Ik : Sk,n ∈ Λl.

The probability of Al can be written as

Pr[Al] = Pr[∃n ∈ I1 : S1,n ∈ Λl ∪ · · · ∪ ∃n ∈ IN−1 : SN−1,n ∈ Λl]. (6.3)

This means that the probability of lag l happening is the probability of a certain difference
tn+1− tn yielding it, or a certain difference tn+2− tn, etc. Evaluating directly the probability
of this union of events using the inclusion-exclusion principle seems tedious, so we try to find
an easier way by taking into account the complementary event Acl , that is, the event of lag l
not being present. It can be expressed as

Acl ≡ ∀ k ∈ I0, n ∈ Ik : Sk,n /∈ Λl.

Because it is the complementary event of Al, it follows that Pr[Al] = 1− Pr[Acl ] and

1− Pr[Acm] = 1− Pr[∀n ∈ I1 : S1,n /∈ Λl ∩ · · · ∩ ∀n ∈ IN−1 : SN−1,n /∈ Λl]. (6.4)

If these events were mutually independent, we could simply express the probability of their
intersection as the product of the probability of each event. However, the random variables
Sk,n are not mutually independent. They satisfy two recursive relationships that follow from
(6.2):

Sk,n+1 =
n+1+k∑
i=n+2

τi = Sk,n + τn+1+k − τn+1, (6.5)

Sk−1,n =
n+k−1∑
i=n+1

τi = Sk,n − τn+k. (6.6)
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However, for each k the variables Sk,n and Sk,n+k are independent, because they represent
the waiting times for k events in non-overlapping intervals. This can also be seen using (6.2),

Sk,n =
n+k∑
i=n+1

τi; Sk,n+k =
n+2k∑

i=n+k+1

τi.

In the case k = 1, we have S1,n = tn+1 − tn = τn+1 and we can compute the probability
of obtaining lag l from a pair tn+1, tn,

Pr[∃n ∈ I1 : S1,n ∈ Λl] = 1− Pr[∀n ∈ I1 : S1,n /∈ Λl] =

1− Pr

[
N−2⋂
n=0

S1,n /∈ Λl

]
= 1−

N−2∏
n=0

Pr[S1,n /∈ Λl]. (6.7)

The last equality follows from the fact that τn are independent random variables. As they are
also identically distributed, Pr[S1,n /∈ Λl] is independent of n. We can define pk,l = Pr[Sk,n ∈
Λl] and write

Pr[S1,n /∈ Λl] = 1− Pr[S1,n ∈ Λl] = 1−
∫ l+ 1

2

l− 1
2

fτn(t) dt = 1− p1,l.

Thus equation (6.7) can be simplified to

Pr[∃n ∈ I1 : S1,n ∈ Λl] = 1−
N−2∏
n=0

Pr[S1,n /∈ Λl] = 1− (1− p1,l)
N−1 (6.8)

As we can see, computing the probability in (6.4) is non-trivial, and so far we have not
been able to advance more.

6.3 Autocorrelation estimation

The autocorrelation estimator we use is given by:

r̂x[l] =
1

Nl

∑
∀kn, (kn+l)∈S

x∗[kn]x[kn + l] l ≥ 0, (6.9)

where S is the set of indexes given by the sampling process and Nl the number of samples
available for lag l. For negative lags, we apply the Hermitian symmetry of the autocorrelation,
r∗x[l] = rx[−l]. This estimator is unbiased as the scaling factor for each lag is the number of
products used to compute it.

This computation is equivalent to applying a slightly changed version of the classical
estimator given by

r̂x[l] =
1

Nl

N−1−l∑
n=0

x∗[n]x[n+ l] l ≥ 0,

to the signal x[n] where the samples whose indexes do not belong to {kn}M−1
n=0 are set to

zero. The difference is that we have used Nl instead of the usual N − l because in general

38



Nl 6= N − l, and to keep the estimator unbiased the factor for each lag has to be the number
of products used to compute it.

The number Nl determines the reliability of the estimator for each lag, as a larger Nl

indicates more samples available and thus more averaging, bringing r̂x[l] closer to is true
value. In order to obtain a reliable estimator for the PSD, Nl should not change sharply
as l grows, as all the values of r̂x[l] are involved in computing the PSD estimate for each
frequency. However, Nl has necessarily to decay with l, because we only collect a finite
amount of samples.

The estimator in (6.9) can be applied up to lag l = kM−1. In practice, we can collect more
samples than the lags we want to estimate, in order to have a large enough Nl at each lag.
We shall denote the maximum lag of interest by L. We can then group the autocorrelation
estimates in the (2L− 1)× 1 vector r̂x, defined as

r̂x = [r̂x[0], . . . , r̂x[L− 1], r̂x[1− L], . . . , r̂x[−1] ]T .

After obtaining the estimate for the autocorrelation, the WSS assumption on x[n] and the
Wiener-Khinchin theorem allow us to compute an estimate of the power spectral density by
using the discrete Fourier transform:

φ̂x = F2L−1 r̂x,

where F2L−1 is the DFT matrix of size (2L− 1)× (2L− 1).

6.4 Simulation results

In this section, we show several graphs of the normalized MSE as a function of the compression
rate. We compare modified Poisson sampling, which we described in Section 6.1, with a
sampling scheme that selects M from the N samples of x[n], and each sample has the same
probability of being selected. The compression rate is M

N .
In all the simulations, the signal x[n] considered is drawn from a complex circularly-

symmetric Gaussian WSS random process whose PSD is obtained by filtering white Gaussian
noise. Thus the autocorrelation sequence rx[n] of the process is

rx[n] = h[n] ? h∗[−n] ? σ2
0 δ[n],

where h[n] is the impulse response of the filter, σ2
0 is the power of the white noise driving

the filter and ? represents convolution. The filter we used has an impulse response h[n] with
length N = 127. It is designed so that the PSD of the output process has active bands in
[−0.9π,−0.65π], [0.1π, 0.35π] and [0.55π, 0.8π], as shown in Fig. 6.1.

For the µ parameter in our modified Poisson sampling, we choose the values 2.0, 2.7, 3.5,
4.2, 5.0, 5.7 and 6.3. In order to compare both schemes, the compression rates chosen for
the scheme that selects M samples with equal probability are the same as those resulting in
modified Poisson sampling.

In order to give a rough idea of what the estimates yielded look like, one outcome of the
estimators is shown in Fig. 6.2.

The results are presented in Fig. 6.3, for three different number of signal lengths N ,
namely 20000, 50000 and 100000. As we can see, both sampling schemes yield the same
NMSE. This can be explained by the fact that, if we sort in increasing order the outcomes of
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Figure 6.1: True power spectral density, N = 127, complex Gaussian process.

Figure 6.2: PSD estimates with random sampling. The compression rate is 0.31 and N =
50000 Nyquist rate samples were generated.
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N i.i.d uniform random variables on the interval [0, t], they representN consecutive occurrence
times of a Poisson process. For details, the reader can consult [33]. The sampling scheme
that selects M samples with equal probability can be approximated by the outcomes of M
i.i.d uniform random variables, sorted in ascending order. Thus, even if our modified Poisson
sampling scheme is not exactly a Poisson process due to the rounding we introduce in the
sampling instants, for large number of samples the relationship holds approximately.

Figure 6.3: NMSE vs Compression Rate for random sampling.

6.5 Conclusions

In this chapter, we studied spectral estimation with random sampling, a type of sampling
where the time between samples is a random variable. This scheme attracted attention from
researchers as a mean to avoid aliasing, and because consistent estimation is possible even for
mean average rates lower than the Nyquist rate. However, most schemes using a continuous
positive random variable for the time between samples can require that two samples are
infinitely close, making the method impossible to implement physically. Thus, we modified
it by rounding each sampling instant to the closest instant in a Nyquist rate grid. This
transforms the scheme into a selection of a subset of the Nyquist rate samples, where the
samples are selected at random.

Using this modified version, we studied the probability of a certain lag being present as
the difference between a pair of samples, and we showed that computing this probability
exactly is a difficult problem, which is left open for further research. Besides, we studied the
performance of the classical unbiased estimator for the autocorrelation applied to modified
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Poisson sampling and to a sampling scheme where each sample has the same probaility of
being selected. This was done by means of computer simulations, and they show that the
NMSE is the same for both types of sampling, which can be explained by the statistical
properties of the Poisson process.
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Conclusions and Future Work 7
In this chapter, we summarize the work done in the thesis, draw the final conclusions, and
suggest directions for further research.

7.1 Conclusions

We have studied several sampling schemes and estimation methods for the power spectral
density that work at sub-Nyquist rates. Besides, we have attempted to find new sampling
matrices that guarantee statistical identifiability when compressive sampling is employed.

In Chapter 3, we combined two existing methods, polarity coincidence and least squares,
and applied them to spectral estimation with compressive sampling when the input signal is
Gaussian. The proposed method works with the sign of the measurements instead of their
value. The recovery stage, however, needs the average power of the signal to be estimated
separately. The computer simulations showed that the mean squared error of our estimator
is worse than the one using only least squares.

Maximum likelihood estimation for Gaussian signals with compressive sampling was in-
vestigated in Chapter 4, where we derived the conditions for the real case. They lead to a
system of equations that has no closed form solution, and thus requires the use of numerical
methods. From the literature, we know that finding the true maximum likelihood solution
leads to a high computational cost, and thus we proposed two algorithms which yield ap-
proximate solutions that converge asymptotically to the true solution. Finally, we compared
the performances of both algorithms and the least squares estimator of [1], using computer
simulations. They showed that both ML algorithms perform better with regard to compres-
sion rate and additive white Gaussian noise. This can be explained by the good statistical
properties of the ML estimator when the sample size is large.

Chapter 5 addresses the problem of designing sampling matrices for compressive sampling.
In order for spectral estimation to be possible, its statistical identifiability has to be satisfied.
Firstly, we studied the general problem of constructing a sampling matrix that preserves the
identifiability, which can be stated as finding a set of M sequences of length N such that their
M2 auto- and cross-correlations contain a set of 2N − 1 linearly independent sequences. As
we show, a general construction is difficult, and we leave open further research on it. Then
we restrict the elements of the sampling matrix to be either 0 or 1, as the implementation of
compressive sampling in hardware may be easier by using those matrices. In particular, we
studied multicoset matrices, which have a single one per row, and binary matrices that have a
single pair of ones per row. For multicoset matrices, their design has to be based on a sparse
ruler in order to satisfy the identifiability condition. To the best of our knowledge, minimal
sparse rulers of a certain length can only be found by brute force search, which is more costly
as the length increases. The current approach is to use a concatenation of minimal sparse
rulers that are already tabulated and have the same length. In order to offer a wider range
of lengths, we propose a design that uses a concatenation of several minimal sparse rulers
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of different lengths. The identifiability is possible if the resulting ruler is sparse, which is
not always the case. Thus, sufficient conditions for a concatenation of sparse rulers to be
a sparse ruler need to be found. Finally, we study binary matrices that have a single pair
of ones per row, and depending on the positions of these pairs we find the locations of the
non-zero elements in the recovery matrix for least squares. However, we have been unable to
find conditions for this matrix to be full column rank, which is equivalent to preserving the
statistical identifiability. We leave this line open for further research.

In Chapter 6, we studied spectral estimation with random sampling. We modified the
random sampling model in order to be physically realizable by imposing a minimum distance
between sampling intervals. Then, we attempted to compute, for a finite sample size, the
probability of a certain lag to be present when random sampling is employed. This com-
putation is shown to be difficult and we did not complete it. Finally, we compared the
performances of two sampling schemes, based on Poisson sampling and on random selection
of a subset of the collected samples, each one with equal probability. The estimator used is
the classical unbiased estimator of the autocorrelation, and the performances were shown to
be equal for the sample sizes considered, which may be explained by the properties of the
Poisson process.

7.2 Suggestions for Further Work

Other statistical distributions In the estimation methods we have studied, we made the
assumption that the signal of interest could be modelled as a Gaussian process. Math-
ematically, this is convenient because Gaussian processes are completely determined by
their first and second order statistics (mean and autocovariance), and besides they lead
to mathematically tractable problems. However, it may be of interest to study what
happens when the signal has a different statistical distribution.

Sampling matrix design Here we left several lines open. First of all, a general design of
a sampling matrix that satisfies the statistical identifiability property was addressed,
but no algorithm or constructive procedure could be developed. In order to find an
optimal sampling matrix, further research may be of interest. Later, we restricted our
choices to binary matrices that have a fixed number of ones per row. When there is
a single one in each row, it is already proven that the identifiability is guaranteed by
using sparse rulers, but constructing them for an arbitrary length is a mathematically
difficult problem. We suggested concatenating sparse rulers of different lengths, which
are already tabulated, as means to avoid the problem of finding new rulers. However,
sufficient conditions for such scheme to be a sparse ruler are still left open. Finally, for
binary matrices with a single pair of ones per row, we left open the problem of finding
sufficient conditions for the identifiability property to be satisfied. If these conditions
can be found, it is interesting to see if the design of these matrices is easier than solving
the sparse ruler problem for multicoset matrices.

Random sampling For random sampling, we left open the computation of the probability
of obtaining a certain lag. If this was completed, a criterion could be developed for
obtaining with high probability a sufficient amount of samples that guarantees that
every lag of interest is present, and different statistical distributions could be compared
under this idea.
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Problem Statement

• Spectral Estimation: the problem of estimating the
power spectral density (PSD) Φx(ω) of a signal x(t).
The PSD is the Fourier transform of the autocorrelation
rx(τ) = E (x(t)x∗(t − τ)), under the assumption that
x(t) is wide-sense stationary (WSS).

• Sampling: the problem of guaranteeing that either x(t) or
Φx(ω) can be recovered from measurements of x(t) taken
at certain instants t0, t1, . . . , tN .

• Compression: a reduction in the rate fs used to acquire
the measurements.
Classical sampling theory requires fs ≥ 2f0, assuming that
x(t) is bandlimited with maximum frequency f0.
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Spectrum Management

Current spectrum management laws allocate frequency bands
in a static way.

Due to the growth of wireless communications, few bandwidth
is left for new applications.
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Spectrum Access and Cognitive Radio

• Spectrum Utilization: Several studies1 have shown that
not every assigned band is being used at every location
and time.

• Cognitive Radio: An approach to wireless communications
where transceivers learn from the environment and adapt
its parameters, in order to optimize spectrum utilization
and provide reliable communications.

• Spectrum Sensing: The task of estimating the power
spectral density of the incoming signal and detecting
available spectrum.

1Such as this report from the FCC.
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Motivation for our work

For spectrum sensing, we know that:

• Wideband PSD estimation with classical sampling theory
would require very large sampling rates, because of the
constraint fs ≥ 2f0.

• Very fast analog-to-digital converters have a high power
consumption, which is undesirable for a communication
device.

Thus, we seek to study methods that allow consistent
estimation of the PSD with compression, that is

fs < 2f0.
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Sampling

The types of sampling we considered are:

• Uniform: tn = nTs , n ∈ Z and Ts = 1
fs

.

• Compressive: y[k] = C x[k], where C is an M × N matrix
with M < N, and

x[k] = [x [kN], x [kN + 1], . . . , x [kN + N − 1]]T ,

y[k] = [y0[k], y1[k], . . . , yM−1[k]]T .

A special case is multicoset sampling, where C has a single
one per row, and thus

y[k] = [x [kN + n0], x [kN + n1], . . . , x [kN + nM−1]]T .

• Random: t0 = 0, tn = tn−1 + τn, n ∈ {1, 2, . . . , }, where τn
are independent and identically distributed (i.i.d) random
variables.
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Least Squares and Hard Limiting

This method combines:

• Hard limiting: it works with the sign of the measurements
instead of its values. The signal has to be Gaussian to
allow the recovery of the autocorrelation of the
measurements.

• Compressive sampling: it uses the compressive sampling
model, but imposes a restriction on the allowed sampling
matrices.

• Least squares: recovers the PSD using a linear least
squares method developed in [1].
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Least Squares

• Autocorrelation matrices:
• Rx = E

(
x[k]xH [k]

)
, Ry = E

(
y[k]yH [k]

)
.

• Related by vec(Ry ) = (C∗ ⊗ C) vec(Rx).

• Autocorrelation vector:
• rx = [rx [0], rx [1], . . . , rx [N − 1], rx [1− N] . . . , rx [−1]]T .
• Due to the Hermitian Toeplitz structure of Rx , it follows

vec(Rx) = T rx , where T is a repetition matrix.

• Least Squares:
• vec(Ry ) = Θ rx , which is an over-determined system of

equations if M2 ≥ 2N − 1.
• The M2 × (2N − 1) recovery matrix Θ is given by

Θ = (C∗ ⊗ C) T.
• A unique solution exists only if Θ has full column rank.

Fernando de la Hucha Arce Compressive Power Spectral Density Estimation with Non-Uniform Sampling



Compressive
Power
Spectral
Density

Estimation
with

Non-Uniform
Sampling

Fernando de
la Hucha Arce

Introduction

Least Squares
with Hard
Limiting

Maximum
Likelihood

Random
Sampling

Introduction
Least Squares with Hard Limiting

Maximum Likelihood
Random Sampling

Hard Limiting

The real input processes are denoted by x(t) and y(t), and
their clipped versions by xc(t) and yc(t).

• Hard limiter: a device that returns 1 when the input is
greater than 0 and -1 when it is lower than 0.

• Autocorrelation map: rxy (τ) = rxy (0) sin
(
π
2 rxc ,yc (τ)

)
. The

value rxy (0) has to be estimated separately.

• Sign preservation:
sign(y[k]) = sign (C x[k]) = C sign(x[k]).
If the last equality holds, the least squares method can be
applied to the hard limited measurements.
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Multicoset
sampler

x(t)
yR [k]

yI [k]

zR [k]

zI [k]

LSE

rs,R
rs,I
rs,RI
rs,IR

sin(π2 ·)

rs,R
rs,I
rs,RI
rs,IR

rx ,R
rx ,I
rx ,RI
rx ,IR

The block LSE applies the least squares method:

vec(RzR ) = Θ rs,R , vec(RzI ) = Θ rs,I ,

vec(RzRI ) = Θ rs,RI , vec(RzIR ) = Θ rs,IR .

The complex autocorrelation is then given by

rx = rx ,R + rx ,I + j (rx ,IR − rx ,RI ) .
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Simulation results

The sampling scheme employed is multicoset and the number
of vectors generated is K = 1024.
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Simulation results

The mean squared error with hard limiting is worse than
applying the least squares method without hard limiting.
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Maximum Likelihood

In this method, the signal x(t) is assumed to come from a
zero-mean real Gaussian process.
The distribution of x[k] is multivariate Gaussian, with pdf given
by

f (x[k]|Rx) =
1

(2π)N/2|Rx |1/2
exp

{
−1

2
tr
(

R−1x x[k]xT [k]
)}

.

Because x(t) is real, Rx is symmetric, and it suffices to
estimate

r̃x = [rx [0], rx [1], . . . , rx [N − 1]]T

.
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Now, Rx can be expressed in a basis for the square symmetric
Toeplitz matrices of order N,

Rx =
N−1∑
m=0

rx [m]Bm.

These matrices have all zeros but in the m-th lower and upper
diagonals, where they have ones. For example, B1 is given by

B1 =



0 1 0 0 · · · 0 0 0 0
1 0 1 0 · · · 0 0 0 0
0 1 0 1 · · · 0 0 0 0
...

...
...

... · · ·
...

...
...

...
0 0 0 0 · · · 1 0 1 0
0 0 0 0 · · · 0 1 0 1
0 0 0 0 · · · 0 0 1 0


.
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ML with compressive sampling

In compressive sampling, y[k] and x[k] are linearly related, and
thus y[k] is also an M × 1 Gaussian random vector with zero
mean and covariance matrix

Ry = CRxCT =
N−1∑
m=0

rx [m] CBmCT .

The likelihood function is the pdf of y[k] given r̃x ,

f (y[k] | r̃x) =
1

(2π)M/2|Ry |1/2
exp

{
−1

2
tr
(

R−1y y[k]yT [k]
)}

.

The vector r̃x that maximizes this function for a given set of
measurements y[k] is the maximum likelihood estimator (MLE).
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Setting the gradient of ln f (y[k] | r̃x) to zero yields

tr
{

R−1y CBnCTR−1y Ry

}
= tr

{
R−1y CBnCTR−1y y[k]yT [k]

}
.

which has to hold ∀n ∈ {0, 1, . . . ,N − 1}.

• There is no known closed form solution for this system of
equations, so numerical methods have to be employed.

• We can collect K measurement vectors in the M × K
matrix Y = [y[0], y[1], . . . , y[K − 1]].

• If we replace y[k]yT [k] with a consistent estimator of Ry ,
the equations would hold when K →∞.

• If x(t) is ergodic, then a consistent estimator of Ry is
Sy = 1

K YYT .
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Asymptotic ML solutions

• Asymptotic Maximum Likelihood:

N−1∑
m=0

r̂x [m] tr
{

S−1y CBnCTS−1y CBmCT
}

= tr
{

S−1y CBnCT
}
,

∀n ∈ {0, 1, . . . ,N − 1}.
• Simplified Inverse Iteration Algorithm:

N−1∑
m=0

r̂
(k+1)
x [m] tr

{
(R̂

(k)
y )−1CBnCT (R̂

(k)
y )−1CBmCT

}
=

tr
{

(R̂
(k)
y )−1CBnCT (R̂

(k)
y )−1Sy

}
,

∀n ∈ {0, 1, . . . ,N − 1}.
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Simulation results

The sampling scheme employed is multicoset and the number
of vectors generated is K = 1024.
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Simulation results
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Simulation results

Both AML and SIIA perform better than Least Squares
regarding compression rate and noise.
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Random sampling

In random sampling, the time between samples is a random
variable:

t0 = 0,

tn = tn−1 + τn, n ∈ {1, 2, . . . }.
The random variables τn are independent and identically
distributed (i.i.d). Equivalently, we can write

tn = t0 +
n∑

i=1

τi , n ∈ {1, 2, . . . }.

• Research in random sampling was started to avoid aliasing.
• Consistent estimation from a finite number of samples is

possible, depending on the distribution of τn.
• This holds even with an average sampling rate lower than

the Nyquist rate [2].
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Modified random sampling

• Regardless of the sampling rate, random sampling allows
two samples to be infinitely close.

• In order to avoid this, we round each sampling instant to
the nearest Nyquist rate instant,

k0 = 0,

kn = round

(
k0 +

n∑
i=1

τi

)
, n ∈ {1, 2, . . . },

• We collect a finite number of samples N, so

max
n
{kn} ≤ N − 1.

• Rounding allows repeated indexes, so we eliminate them,
yielding

k0 < k1 < . . . < kM−1.
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PSD estimation with random sampling

We estimate first the autocorrelation by

r̂x [l ] =
1

Nl

∑
∀kn, (kn+l)∈S

x∗[kn]x [kn + l ], l ≥ 0,

where S denotes the set of sampling indexes.

• For negative lags we use the Hermitian symmetry:
r∗x [l ] = rx [−l ].

• The scaling factor is the number of products used to
compute r̂x [l ], so this estimator is unbiased.

• In practice, we estimate rx [l ] until lag L.

r̂x = [r̂x [0], . . . , r̂x [L− 1], r̂x [1− L], . . . , r̂x [−1] ]T .

• Then we can use the DFT to estimate the PSD:

φ̂x = F2L−1 r̂x .
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We considered two random sampling schemes in our work

• Poisson sampling: the sampling instants form a Poisson
process, so τn has an exponential distribution, with
probability density function

fτn(t) = λe−λt ; t ≥ 0.

• Random permutation: this scheme selects M out of N
Nyquist samples at random, and each sample has the
same probability of being selected.
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The occurrence times of N events of a Poisson process can be
represented by N i.i.d. uniform random variables sorted in
increasing order.
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Conclusions

• Spectral estimation with reduced sampling rates provides
acceptable results.

• The methods trade off accuracy and computational
complexity.

• The methods that showed the best performance require
the assumption that the signal is Gaussian.
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THANKS!
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