Show simple item record

dc.creatorHigueras Sanz, Inmaculadaes_ES
dc.creatorRoldán Marrodán, Teodoroes_ES
dc.date.accessioned2015-10-01T08:59:48Z
dc.date.available2017-06-01T23:00:11Z
dc.date.issued2016
dc.identifier.issn1573-7691 (Electronic)
dc.identifier.urihttps://hdl.handle.net/2454/18334
dc.descriptionThe final publication is available at Springer via http://dx.doi.org/ 10.1007/s10915-015-0116-2en
dc.description.abstractSpace discretization of some time-dependent partial differential equations gives rise to systems of ordinary differential equations in additive form whose terms have different stiffness properties. In these cases, implicit methods should be used to integrate the stiff terms while efficient explicit methods can be used for the non-stiff part of the problem. However, for systems with a large number of equations, memory storage requirement is also an important issue. When the high dimension of the problem compromises the computer memory capacity, it is important to incorporate low memory usage to some other properties of the scheme. In this paper we consider Additive Semi-Implicit Runge-Kutta (ASIRK) methods, a class of implicitexplicit Runge-Kutta methods for additive differential systems. We construct two second order 3-stage ASIRK schemes with low-storage requirements. Having in mind problems with stiffness parameters, besides accuracy and stability properties, we also impose stiff accuracy conditions. The numerical experiments done show the advantages of the new methods.es_ES
dc.description.sponsorshipSupported by Ministerio de Economía y Competividad, project MTM2011-23203.en
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherSpringer USen
dc.relation.ispartofJournal of Scientific Computing (2016) 67:1019–1042en
dc.rights© Springer Science+Business Media New York 2015en
dc.subjectAdditive Runge-Kutta methodsen
dc.subjectStrong stability preservingen
dc.subjectLow-storageen
dc.subjectStiff problemsen
dc.subjectTime discretization schemesen
dc.titleConstruction of additive semi-implicit Runge-Kutta methods with low-storage requirementsen
dc.typeArtículo / Artikuluaes
dc.typeinfo:eu-repo/semantics/articleen
dc.contributor.departmentUniversidad Pública de Navarra. Departamento de Ingeniería Matemática e Informáticaes_ES
dc.contributor.departmentNafarroako Unibertsitate Publikoa. Matematika eta Informatika Ingeniaritza Sailaeu
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.embargo.terms2017-06-01
dc.identifier.doi10.1007/s10915-015-0116-2
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/6PN/MTM2011-23203
dc.relation.publisherversionhttps://dx.doi.org/10.1007/s10915-015-0116-2
dc.type.versionVersión aceptada / Onetsi den bertsioaes
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record