
Appendix B

In this Appendix we explain in detail how the proofs of the results of the pa-

per can be derived for the extended cost allocation problems defined in the

subsection entitled “Extension on the structure of the transfer rate” of Sec-

tion 4. Consider then the cost allocation problems (Nt, Nu, C, t, t, u, u) where

Nt = {1, 2, 3} and Nu = {3, 4, 5}. Then, we can establish some limits for the

transfer rate in a similar way as in Proposition 3 of the paper.

Remark 1 (Extension of Proposition 3) The values t̂ and û for the trans-

fer rates are compatible with a problem (Nt, Nu, C, t, t, u, u) if and only if t̂ ∈
[t, t

∗
(t, u, C)] and û ∈ [u∗(u, t, C), u∗(u,C)], where

t
∗
(u, t, C) = min{c2

c1
, t, ℎ(u∗(u,C))},

u∗(u,C) = min{c4
c3
,

c5
c4 + c5

, u}, and

u∗(u, t, C) = max{ℎ−1(t), u},

being ℎ(u) = c3
c3+c2⋅(1−u) .

Proof. Let (Nt, Nu, C, t, t, u, u) be a problem where Nt = {1, 2, 3} and Nu =

{3, 4, 5}. If the actual transfer rate t is 1, we have that ci = 0 for all i ∈ {1, 2}
and t = 1. Therefore, t

∗
(u, t, C) = 1. Similarly, if the actual transfer rate u is

1, we have that ci = 0 for all i ∈ {3, 4} and u = 1. Therefore, u∗(u,C) = 1.

Let us assume now that t and/or u are smaller than 1. Then, the cost that

we observe, ci, is the difference between all the waste entering the segment,

denoted as V ∗
i , and the amount transferred to the next segments, given by tV ∗

i

if i ∈ {1, 2}, by uV ∗
i if i ∈ {3, 4} or by 0 if i = 5. Then, we have that

V ∗
i =

⎧⎨⎩
ci
1−t if i ∈ {1, 2}
ci

1−u if i ∈ {3, 4}
ci if i = 5.

(1)

Similarly, the amount thrown into the water by region i, denoted as Vi, is the

difference between the total amount entered segment i, V ∗
i , and the amount

transferred from its immediate upstream segment, given by 0 if i = 1, by tV ∗
i−1

if i ∈ {2, 3} and by uV ∗
i−1 if i ∈ {4, 5}. Then, we can deduce using expression

(1) that:
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Vi(t, u, C) =

⎧⎨⎩

ci
1−t if i = 1
ci
1−t −

ci−1

1−t t if i = 2
ci

1−u −
ci−1

1−t t if i = 3
ci

1−u −
ci−1

1−uu if i = 4

ci − ci−1

1−uu if i = 5.

(2)

Given that Vi(t, u, C) ≥ 0 by definition and taking into account the expressions

obtained in (2), we have that

∙ c2
1−t −

c1
1−t t ≥ 0. If c1 = c2 = 0, the condition is satisfied. Otherwise, we

deduce that t ≤ c2
c1

.

∙ c3
1−u −

c2
1−t t ≥ 0. If c2 = c3 = 0, the condition is satisfied. Otherwise,

we deduce that t ≤ c3
c2(1−u)+c3

= ℎ(u) or, what is the same, that u ≥
t(c2+c3)−c3

c2t
= ℎ−1(t).

∙ c4
1−u −

c3
1−uu ≥ 0. If c3 = c4 = 0, the condition is satisfied. Otherwise, we

deduce that u ≤ c4
c3

.

∙ c5 − c4
1−uu ≥ 0. If c4 = c5 = 0, the condition is satisfied. Otherwise, we

deduce that u ≤ c5
c4+c5

.

Then, we have obtained that u ≤ u∗(u,C) = min{ c4c3 ,
c5

c4+c5
, u}. Given that the

function ℎ(u) is increasing, we obtain a new upper limit for t: t ≤ ℎ(u∗(u,C)).

Therefore, we have that t ≤ t
∗
(t, u, C) = min{ c2c1 , t, ℎ(u∗(u,C))}. Moreover,

using the inverse function of ℎ, we have a new lower limit for u: u ≥ u∗(u, t, C) =

max{ℎ−1(t), u}.

Additionally, it is easy to see from the previous reasoning that any value of t̂ be-

tween t and t
∗
(t, u, C) and of û between u∗(u, t, C) and u∗(u,C) are compatible

with (Nt, Nu, C, t, t, u, u). Then we have arrived at the desired result.

Remark 2 (Extension of Proposition 4) Let (Nt, Nu, C, t, t, u, u) be a prob-

lem where Nt = {1, 2, 3} and Nu = {3, 4, 5}. Then,
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lii(⋅) =

⎧⎨⎩

ci if i = 1

ci − ci−1 ⋅ t
∗
(t, u, C) if i = 2

ci − ci−1 ⋅ t
∗
(t,u,C)

1−t
∗
(t,u,C)

⋅ (1− u∗(u, t, C)) if i = 3 and t
∗
(t, u, C) < 1

0 if i = 3 and t
∗
(t, u, C) = 1

ci − ci−1 ⋅ u∗(u,C) if i = 4

ci − ci−1⋅u∗(u,C)
1−u∗(u,C) if i = 5 and u∗(u,C) < 1

0 if i = 5 and u∗(u,C) = 1.

l
i

i(⋅) =

⎧⎨⎩

ci if i = 1

ci − ci−1 ⋅ t if i = 2

ci − ci−1 ⋅ t
1−t ⋅ (1− u

∗(u,C)) if i = 3

ci − ci−1 ⋅ u∗(u, t, C) if i = 4

ci − ci−1⋅u∗(u,t,C)
1−u∗(u,t,C) if i = 5

Proof. The limits for regions 1, 2, 4 and 5 are derived exactly in the same

way as in the proof of Proposition 4, taking into account the corresponding

transfer rate in each particular segment (t for regions 1 and 2, and u for 4 and

5). Consider then region 3. If t ∈ (0, 1) we have that c2
1−t units of waste entered

region 2. Then c2
1−t ⋅ t units of waste entered region 3 from region 2 and c2

1−t ⋅ t ⋅u
of these units left region 3 to region 4. Therefore, c2⋅t

1−t ⋅ (1 − u) units of waste

present in region 3 are responsibility of the regions situated upstream from 3.

Then we have that l33(⋅) = c3 − c2⋅t
1−t ⋅ (1 − u). If t = 1, we have that c2 equals

0 and, in this case, there is no information at all about how much of the waste

present in region 3 is the responsibility of region 3. Then, l33(⋅) ∈ [0, c3]. Finally,

if t = 0 we have that all the waste present in region 3 is of its own responsibility

and thus l33(⋅) = c3. In situations in which there is uncertainty over t and/or

u, t ∈ [t, t
∗
(t, u, C)] and u ∈ [u∗(u, t, C), u∗(u,C)], we can summarize these

expressions as stated in the remark.

Remark 3 (Extension of Theorem 1) Let (Nt, Nu, C, t, t, u, u) be the cost

allocation problems where Nt = {1, 2, 3} and Nu = {3, 4, 5}. A rule satisfies

LR, NDR, CR and MIT if and only if it is the Upstream Responsibility rule

(whose formal definition is in the paper).

Proof. It is easy to see that the Upstream Responsibility rule 
 satisfies

LR, NDR, CR and MIT. To prove the other implication, consider a problem
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(Nt, Nu, C, t, t, u, u) where Nt = {1, 2, 3} and Nu = {3, 4, 5} and their corre-

sponding t
∗
(t, u, C), u∗(u,C) and u∗(u, t, C) inferred from Remark 1. Let x be

a rule satisfying LR, NDR, CR and MIT. We are going to show that x has to

correspond to 
. We will calculate the assignment given by x in 5 steps. In the

j-th step, we calculate the values of xji (⋅) for all i ∈ {1, . . . , 5}:

∙ Steps 1 and 2: The distribution of the costs c1 and c2 follow the same

arguments as in the proof of Theorem 1. By NDR we have that x1i (⋅) = 0

for all i > 1 and x2i (⋅) = 0 for all i > 2. By LR and MIT we can conclude

that x11(⋅) = c1 and x22(⋅) = c2 − c1s, where s = t+t
∗
(t,u,C)
2 . Then, we

obtain by definition that x21(⋅) = c1s.

∙ Step 3: We distribute the cost c3. By the application of NDR, x3i (⋅) = 0

for all i > 3. Consider other problem (Ns, Nv, C, s, s, v, v) where Ns = Nt,

Nv = Nu, s = t+t
∗
(t,u,C)
2 and v = u∗(u,t,C)+u∗(u,C)

2 . We have by LR that

x33(Ns, Nv, C, s, s, v, v) = c3− c2s(1−v)
1−s . By MIT, using a similar argument

as in the proof of Theorem 1, we have that x33(Nt, Nu, C, t, t, u, u) = c3 −
c2s(1−v)

1−s . If s = 0, we have that x33(Nt, Nu, C, t, t, u, u) = c3 and the proof

of this step is finished. If s ∈ (0, 1), we can deduce by CR as in the proof

of Theorem 1 that

x31(Nt, Nu, C, t, t, u, u) ⋅ (x21(Nt, Nu, C, t, t, u, u)+x22(Nt, Nu, C, t, t, u, u)) =

x21(Nt, Nu, C, t, t, u, u) ⋅ (x31(Nt, Nu, C, t, t, u, u) + x32(Nt, Nu, C, t, t, u, u)).

Given that x21(⋅)+x22(⋅) = c2, x21(⋅) = c1 ⋅s and x31(⋅)+x32(⋅) = c2 ⋅ s(1−v)
1−s we

have that x31(Nt, Nu, C, t, t, u, u) = c1
s2(1−v)

1−s and x32(Nt, Nu, C, t, t, u, u) =

c2
s(1−v)
1−s − c1

s2(1−v)
1−s .

∙ Step 4: We distribute the cost c4. By similar arguments as before, we can

conclude by NDR that x45(⋅) = 0 and by LR and MIT that x44(⋅) = c4−c3⋅v.

Finally, applying CR as before, we obtain that x43(⋅) = c3 ⋅ v − c2 s(1−v)v
1−s ,

x42(⋅) = c2
s(1−v)v

1−s − c1 s2(1−v)v
1−s and x41(⋅) = c1

s2(1−v)v
1−s .

∙ Step 5: We distribute the cost c5. By similar arguments as before, we can

conclude by LR and MIT that x55(⋅) = c5 − c4 v
1−v . Finally, applying CR

as before we obtain that x54(⋅) = c4v−c3v
2

1−v , x53(⋅) = c3v
2

1−v −
c2sv

2

1−s , x52(⋅) =
c2sv

2−c1s
2v2

1−s and x51(⋅) = c1s
2v2

1−s .
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