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Abstract

The cleaning up of waste present in transboundary rivers, which requires

the cooperation of different authorities, is a problematic issue, especially

when responsibility for the discharge of the waste is not well-defined. Fol-

lowing Ni and Wang (2007) we assume that a river is a segment divided

into several regions from upstream to downstream. We show that when

the transfer rate of the waste is unknown, the clean-up cost vector provides

useful information for estimating some limits in regard to the responsi-

bility of each region. We propose a cost allocation rule, the Upstream

Responsibility rule, which takes into account these limits in distributing

costs “fairly” and we provide an axiomatic characterization of this rule

via certain properties based on basic ideas concerning the responsibility

of regions.
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1 Introduction

Motivation The presence of waste in river channels is a major environmental

problem faced by authorities since, on the one hand, waste can pollute water,

which can be harmful for people, plants and animals, causing serious diseases

and affecting ecosystems. As a consequence, the inhabitants of a region with

more waste in its part of the river confront a cost: they consume lower qual-

ity water and/or face higher water depolluting costs. On the other hand, the

presence of accumulated waste in a river is known to have a substantial effect

on the probability of flooding when there is heavy rain, so it seems advisable to

clean river channels regularly to reduce this danger. Around the world, about

200 rivers (see Ambec and Sprumont, 2002 and Barrett, 1994) flow across na-

tional borders, and a much greater number across borders between regions or

municipalities. All the activities for cleaning transboundary rivers may require

cooperation on the part of the different authorities involved and coordination of

efforts if they are to be effective. However, the distribution of the costs of these

activities among the different regions may be a problematic issue, particularly

when the extent to which each region is responsible for the waste discharged is

not well-defined.

As far as we know, the first paper to analyze the problem of sharing the costs of

cleaning a river among different regions from a theoretical point of view is that

of Ni and Wang (2007). They model a river as a segment which is divided into

subsegments from upstream to downstream such that each region is located

in one of them. They assume that there is a central agency that determines

the cost of cleaning each of these segments and they axiomatically propose two

methods for allocating the total cleaning costs among all regions along the river.

The first method, called Local Responsibility Sharing, establishes that the total

cost that each region should pay is directly the cost of cleaning the segment

in which this region is located. The second method, called Upstream Equal

Sharing, states that the total cost that each region should pay is obtained by

distributing equally the cost of cleaning each segment among the region in that

segment and all the regions situated upstream from it.1 We show that neither

1These methods are based on the theories or principles of Absolute Territorial Sovereignty

and Unlimited Territorial Integrity, respectively (see Godana, 1985 and Kilgour and Dinar,

1996).
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of these methods allocates the costs in a way that reflects the responsibility of

each region in producing the waste present in river channels. The first does

not take into consideration that the water of a river flows from one segment

to another, taking part of the waste with it. The second implicitly assumes

that the region in a segment and all the regions situated upstream from this

have the same degree of responsibility for the waste present in the segment

in question. However, this would only be “fair” if all regions have discharged

exactly the same quantity of waste of the one present in that segment, which is

not necessarily the case.

Overview of results In this paper, we seek to develop an alternative rule

to the methods proposed by Ni and Wang (2007) which takes into account

the responsibility of the regions for the presence of the waste. We explicitly

introduce into our model the fact that the waste is transferred, with the water,

from upstream to downstream at a particular rate, an idea that is implicitly

assumed in Ni and Wang (2007). If the social planner knew this rate, she could

use the cost vector to accurately calculate the amount of waste discharged by

each region into the river, and the costs could thus be distributed according

to their actual responsibilities. However, in practice, the transfer rate may be

unknown.2 In that case, we show that the social planner could estimate certain

limits of that rate from the cost vector. Those limits provide useful information

for distributing the costs fairly, since they enable certain limits of responsibility

to be inferred for each region. We show that the rules that naturally adapt

the methods proposed by Ni and Wang (2007) do not always assign costs in

the intervals constructed with these limits, thus violating this basic principle of

fairness.

We introduce a set of desirable properties taking into account this information

concerning the responsibility of each region in discharging the waste. Those

properties are: (i) Limits of Responsibility, which requires the cost paid by each

region for cleaning its own segment always to be within its limits of responsi-

bility; (ii) No Downstream Responsibility, which states that a region j situated

downstream from another region i has no responsibility for the waste present in

i and therefore does not have to pay anything towards the cost of cleaning it up;

2This uncertainty about the transfer rate is usually assumed in the literature on non-point

source pollution (see Segerson (1988)).
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(iii) Consistent Responsibility, which ensures that the part of the cost of clean-

ing a segment paid by one region relative to the part paid by another region is

consistent throughout all the segments situated downstream from both regions;

and (iv) Monotonicity with respect to Information on the Transfer Rate, which

states that when information on the transfer rate improves in such a way that it

becomes natural to induce a higher (lower) estimated value for the real transfer

rate, the amount of waste in any segment for which all its upstream regions are

responsible must not be lower (higher) than before.

That set of properties characterize a new cost allocation rule, the Upstream

Responsibility rule, which works as follows: first, it assigns to the region situated

in a given segment the value of its responsibility taking as the transfer rate the

mid-point in the interval between its lower and its higher limits. The remaining

cost of cleaning the segment in question is divided among the upstream regions,

maintaining the proportions of the allocation of the cost of cleaning the previous

segment.

Related literature The study of allocation problems using game theoretical

and/or axiomatic models to solve issues related to transboundary rivers has

developed in two directions. On the one hand (the harmful side) some authors

have developed models for studying how to share the costs of cleaning a river

among the regions located along it. On the other hand (the beneficial side)

some papers have analyzed models for determining how to share water resources

among the different regions along a river.

Among the papers dealing with the harmful side, which is the body of litera-

ture into which our paper fits, there are two main approaches. Several papers,

starting with Ni and Wang (2007) and including ours, consider a river as a seg-

ment divided into different regions and assume that the cost of cleaning each

region is exogenously given. Along these lines, Ni and Wang (2007) propose

and characterize the two methods - Local Responsibility Sharing and Upstream

Equal Sharing - described above. They also defend these methods as the Shap-

ley values of two appropriately defined TU games and as solutions belonging to

the core of this problem. Van den Brink and van der Laan (2008) show that

these additional results are particularizations of certain well-known results of

cooperative game theory (in particular, the problem is essentially an airport
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cost game, see Littlechild and Owen (1973)) and they provide an alternative ax-

iomatic characterization of these methods. This model is extended by Dong et

al. (2012) by considering a river as a network. Based on a different principle (the

“polluter-pays” principle), Gómez-Rúa (2013) defines water taxes according to

regions’ responsibilities for pollution and characterizes several cost allocation

methods based on properties of those taxes. Other papers such as Gengenbach

et al. (2010) and van der Laan and Moes (2012) take a substantially different

approach by assuming that the cost allocation method adopted may affect the

decision of each region about how much waste to discharge.

On the beneficial side, papers generally analyze water allocation problems and

the fair distribution of the welfare resulting from distributing the water of a

river among different regions. Based on cooperative game theory, Ambec and

Sprumont (2002) model this situation by defining a coalitional form game. They

analyze how water should be allocated across the agents and propose what mon-

etary transfers should be made. Along these lines, Ambec and Ehlers (2008)

generalize the aforesaid model by allowing for satiable agents. Wang (2011),

using a similar model but with a market-based approach, analyzes efficient allo-

cations when trade is restricted to neighboring agents along the river. Khmel-

nitskaya (2010), and van den Brink et al. (2012) extend the previous models by

considering rivers with multiple springs.3 Rebille and Richefort (2012) analyze

the problem of water allocation from a non-cooperative point of view.

Remainder The rest of this paper is organized as follows. Section 2 describes

the basic model, adapts the existing solutions of the literature to our framework

and introduces a result that shows that the cost vector can provide useful in-

formation worth considering when constructing a cost allocation rule based on

responsibility. Section 3 discusses some axioms for cost allocation rules reflecting

basic ideas of responsibility, defines the Upstream Responsibility rule, provides

a characterization of it based on the axioms defined previously and compares

it with the other solutions. Section 4 contains several extensions of the basic

model covering more complex situations and, finally, Section 5 concludes. The

Appendix contains the proofs of the results.

3For more details on the use of cooperative game theory to model water allocation problems,

readers are referred to any of the numerous surveys on the matter. See for instance, Béal et

al. (2013), Beard (2011) and Parrachino et al. (2006).
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2 The basic model

Notation and definitions

Consider a river which is divided into n segments of the same size from upstream

to downstream. There is a set of regions, each of which is located in one of the

segments, which have discharged waste into the river.4 This river has a transfer

rate t that measures the proportion of waste that is transferred from one segment

of the river to the next. This transfer rate may not be exactly known. Consider

a general case in which the social planner knows that t is situated within an

interval [t, t], where t ∈ [0, 1) and t ∈ (0, 1].5 Cases in which t = t are situations

in which the social planner knows the actual transfer rate, while the cases in

which t = 0 and t = 1 are situations in which there is no information at all

about t.

There is a central agency that determines the cost of cleaning the river in each

segment. We assume that this cost is exactly the amount of waste present in

the segment in question.6 The agency has to allocate the costs of the cleaning

process to the different regions in a fair way. Our main objective is to find rules

for allocating those costs in a way that reflects the responsibility of each region

in the discharging of the waste.

Formally, let N = {1, ..., n} ⊂ N be a finite set of regions such that i is situated

upstream of i + 1 for all i ∈ {1, . . . , n − 1}. Let C = (c1, ..., cn) ∈ Rn
+ be the

cleaning cost vector, where ci represents the cost incurred to clean the river in

region i. Then, a cost allocation problem is a tuple (N,C, t, t).7

4To make the results clearer, we start in the basic model with the strong assumption that

all segments are the same size. In Section 4 we explain how the results can be generalized to

cover the cases in which the segments may be of different sizes.
5We exclude from the basic analysis the extreme cases in which either t = 0 or t = 1.

Similarly, this basic model assumes a uniform transfer rate along the river. We explain in

Section 4 how the results can be adapted when these assumptions are dropped.
6This assumption is made for the sake of fluency. We could have assumed instead that the

cost of cleaning each segment is an increasing linear function of the amount of waste present

in it, without essentially altering the results.
7A problem can also be defined by a triple (C, t, t) given that the information on N is

included in C. However, we prefer to maintain both to be consistent with the notation used

by Ni and Wang (2007).
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A cost allocation rule is a mapping x that assigns to each problem (N,C, t, t)

a matrix of size n × n, (xj
i )i,j∈N (N,C, t, t) such that all its components are

non–negative and
∑
i∈N

xj
i (N,C, t, t) = cj . With this interpretation, xj

i (N,C, t, t)

represents the part of the cost of cleaning segment j that region i pays. When

there is no risk of confusion about the description of the problem, we will only

write xj
i (·). We will denote by xi(N,C, t, t) the total cost allocated to region

i by the rule x in the problem (N,C, t, t); i.e. xi(N,C, t, t) =
∑
j∈N

xj
i (·). Note

that the definition of a rule implies that
∑
i∈N

xi(·) =
∑
i∈N

ci.
8 A different solution

concept to cost allocation problems that was proposed by Ni and Wang (2007)

and also studied by van den Brink and van der Laan (2008) is a cost allocation

method. This solution concept is a function x that assigns to each cost allocation

problem (N,C, t, t) the vector (xi(N,C, t, t))i∈N ∈ Rn
+; i.e. the total cost that

each region pays for cleaning the entire river.9

The LRS and UES rules

In this subsection we discuss the solutions proposed by Ni and Wang (2007) and

also studied by van den Brink and van der Laan (2008): the Local Responsibility

Sharing method, x̄, defined by x̄i(N,C, t, t) = ci for all i ∈ N ; and the Upstream

Equal Sharing method, x̂, defined by x̂i(N,C, t, t) =
∑
j≥i

cj
j for all i ∈ N .

A cost allocation method is a less precise solution concept than a cost allocation

rule given that the latter also makes it explicit how the total cost that each

region pays to clean the entire river is attributed to each segment of the river

(i.e. how each xi(·) is decomposed into xj
i (·) for each j). We consider that a

cost allocation rule is not only more informative but is also a better solution

concept if the social planner decides to take into account the responsibility

held by each region for the discharging of the waste present in each segment

of the river. This is because a cost allocation rule explains explicitly how the

cost of cleaning each segment has to be shared (i.e. how each cj is allocated

8This condition is imposed in the studies of Ni and Wang (2007) and van den Brink and

van der Laan (2008) as an axiom called Efficiency. We consider that this property should be

included in the definition of a rule.
9Notice that, as mentioned in the Introduction, these papers do not explicitly consider

information about the transfer rate (t and t). However, we prefer to maintain it in the

definition of their framework to highlight the main difference between the solution concepts.
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to xj
i (·) for each i). Note that each cost allocation method, and x̄ and x̂ in

particular, corresponds to multiple cost allocation rules. It could be argued

that this makes it hard to compare these solutions to those formulated in terms

of cost allocation rules. Thus, it is convenient to determine a matching between

each of those method and a particular rule. To that end, we adapt the set of

axioms that characterize each method to the case of cost allocation rules and

are able to isolate one particular rule for each particular method. We use the

characterizations proposed by van den Brink and van der Laan (2008).10

The first axiom is No Blind Cost, which states that the total cost paid by a

region in which there is no waste should be zero. We maintain this property

invariant with respect to its original version.

No Blind Cost (NBC): For all problems (N,C, t, t) and all i ∈ N such that

ci = 0,

xi(·) = 0.

The second property is Cost Symmetry, which states that region i and all its

upstream regions should pay the same total cost if there is no waste in any

segment upstream from i. We adapt the property to our framework by requiring

not only that the total cost paid by each of these regions should be the same,

but also its decomposition in terms of each segment.

Cost Symmetry (CS): For all problems (N,C, t, t) and all i, j, k ∈ N such that

j, k ≤ i and ck = 0 for all k < i,

xl
j(·) = xl

k(·) for all l ∈ N.

The third and last property needed for these characterizations is Independence

of Upstream Costs, which states that the total cost paid by a region should

depend only on the waste present in its segment and in all the regions situ-

ated downstream from it. Similarly to CS, we also adapt this property to our

10Unlike those proposed by Ni and Wang (2007), the characterizations proposed by van den

Brink and van der Laan (2008) do not require an additivity property. They show that this

axiom becomes unnecessary for the characterizations when the set of the other properties is

slightly modified.
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framework by requiring not only that the total cost paid by each region be in-

dependent of the waste upstream from it, but also its decomposition in terms

of each segment.

Independence of Upstream Costs (IUC): For all problems (N,C, t, t) and

(N,C ′, t, t) and all i ∈ N such that ch = c′h for all h > i,

xk
j (N,C, t, t) = xk

j (N,C ′, t, t) for all j, k ∈ N such that j > i.

We consider that these additional requirements in CS and IUC appropriately

complement the original idea of the axioms when the solution concept adopted

is a cost allocation rule.

Now we introduce two cost allocation rules that are particular extensions of the

two methods proposed and studied by Ni and Wang (2007) and van den Brink

and van der Laan (2008).

Definition 1 The Local Responsibility Sharing (LRS) rule, α, is given by

αj
i (·) =

{
0 if i ̸= j

ci if i = j.

Definition 2 The Upstream Equal Sharing (UES) rule, β, is given by

βj
i (·) =

{
0 if i > j
cj
j if i ≤ j.

We show that these are the only cost allocation rules isolated by using the

natural adaptations of the axioms that characterize the original methods.11

Proposition 1 A cost allocation rule satisfies NBC and IUC if and only if it

is the Local Responsibility Sharing rule α.

Proposition 2 A cost allocation rule satisfies CS and IUC if and only if it is

the Upstream Equal Sharing rule β.

11The proofs, which can be found in the Appendix, follow the same arguments used by van

den Brink and van der Laan (2008).
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Limits of responsibility

We have assumed that the transfer rate t may be not totally known a priori

by the social planner. However, there is some information that can be deduced

from the cleaning cost vector. Let us first explain this idea with an (extreme)

case: Consider a river with a cleaning cost vector such that c1 > 0, c2 = 0

and c3 > 0. On the one hand, the presence of waste in region 1 implies that

t ̸= 1, since otherwise there would be no waste left in this segment and c1

would be 0. On the other hand, the absence of waste in region 2 implies that

t /∈ (0, 1), because those values of the transfer rate jointly with the presence of

waste in region 1 would imply the presence of some waste in region 2 and c2

would be strictly positive. Thus, we say that the unique value for the transfer

rate compatible with this problem is 0.

In general, we say that a value t̂ for the transfer rate is compatible with a cost

allocation problem if the amounts of waste present in each segment described

by the cost vector can occur given the value t̂ for the transfer rate. Otherwise

we say that t̂ is incompatible with the problem. The following proposition

determines what values for the transfer rate are compatible with each possible

cost allocation problem.

Proposition 3 A value t̂ for the transfer rate is compatible with a cost alloca-

tion problem (N,C, t, t) if and only if t̂ ∈ [t, t
∗
(t, C)], where

t
∗
(t, C) = min

{
min

i∈{2,...n−1}

{
ci

ci−1

}
,

cn
cn−1 + cn

, t

}
.12

This result allows us to reduce the uncertainty over the transfer rate. In partic-

ular, the cost vector C provides, jointly with t, a maximum limit for this rate

that we denote t
∗
(t, C). To see the capacity of this result, consider the following

example.

Example 1 Suppose a problem in which N = {1, 2, 3, 4}, the cost vector is

C = {10, 16, 8, 24} and the social planner has no information a priori about the

12The possible quotients with the indeterminate form 0
0

have not to be considered in the

determination of t
∗
(t, C). Obviously, t

∗
(t, C) has to be not smaller than t because in other

case the problem (N,C, t, t) would not be well-defined.
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transfer rate, i.e. t = 0 and t = 1. Then, focusing on the costs of cleaning the

segments, the information about the transfer of the waste can be improved using

Proposition 3. In this case, we obtain that t∗(t, C) = min{ 8
5 ,

1
2 ,

3
4 , 1}. Therefore,

Proposition 3 indicates that the transfer rate is at most one half and, then, the

information about the transfer rate after observing the cost vector can be adapted.

Given a problem (N,C, t, t), we will denote by lji (N,C, t, t) the amount of waste

present in segment j that has been discharged by region i. When there is no

risk of confusion about the description of the problem, we simply write lji (·).
When the actual transfer rate t is unknown, lji (·) cannot be precisely calculated.

However, some limits of this value can be deduced from the information about

the transfer rate held by the social planner and from what the planner can infer

from the cost vector via Proposition 3. We will denote the lower and higher

limits of lji (·) by lji (·) and l
j

i (·), respectively. The following proposition will

provide formulas for lii(·) and l
i

i(·) for all i ∈ N .13

Proposition 4 Let (N,C, t, t) be a problem. Then,

lii(·) =


ci if i = 1

ci − ci−1 · t
∗
(t, C) if i ∈ {2, . . . , n− 1}

ci − ci−1·t∗(t,C)

1−t
∗
(t,C)

if i = n and t
∗
(t, C) < 1

0 if i = n and t
∗
(t, C) = 1.

l
i

i(·) =


ci if i = 1

ci − ci−1 · t if i ∈ {2, . . . , n− 1}
ci − ci−1·t

1−t if i = n

It is natural to require that any rule that seeks to allocate costs in terms of

each region’s responsibility for producing the waste present in each segment

should always respect the limits calculated in Proposition 4 when the costs are

allocated. In the rest of this section, we discuss whether the LRS and UES rules

fulfil this requirement.

On the one hand, the LRS rule meets the aforesaid requirement of responsibility

only when t = 0. However, it can only be accepted as a rule that allocates costs

13It is also possible, but extremely tedious, to construct formulas for the limits of any lji (·)
in a similar way, but these ones are sufficient for our purposes.
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taking responsibilities into account if the real transfer rate, t, is 0 in all rivers.

Nevertheless, this literature only makes sense when waste is transferred from

one region to another, an idea that is realistic. On the other hand, the following

example shows that, independently of the information about t (t and t), the UES

rule does not satisfy the requirement of allocating costs within the intervals of

responsibility defined in Proposition 4.

Example 2 Consider the family of cost allocation problems (N,C, t, t) such

that N = {1, 2, 3, 4} and C = {10, 16, 8, 24}. In all these problems, the UES rule

assigns to region 2 only half of the cost of cleaning its own segment; i.e. β2
2(·) =

8. However, given that t
∗
(t, C) ≤ 1

2 , it is easy to calculate from Proposition 4

that l22(·) ≥ 11 for all possible values of t and t. Hence, region 2 should pay at

least 11 to clean its own segment if responsibilities are considered.

3 The Upstream Responsibility Rule

Axioms, definition and characterization

The axioms that we present for a rule are based on basic ideas about respon-

sibility for the waste present in the river channel. The first axiom, Limits of

Responsibility, seeks to avoid the problem found in the LRS and UES rules

studied in the previous section. To that end, the property requires that the cost

paid by each region for cleaning its own segment should always be within the

limits calculated in Proposition 4.

Limits of Responsibility (LR): For all problems (N,C, t, t), and for all i ∈ N ,

xi
i(·) ∈ [lii(·), l

i

i(·)].

The second axiom, No Downstream Responsibility, states that a region j located

downstream from another region i has no responsibility for the waste present in

i, and should therefore not pay any part of the cost of cleaning it up.

No Downstream Responsibility (NDR): For all problems (N,C, t, t) and all

i, j ∈ N such that i < j, xi
j(·) = 0.

To introduce the next property, Consistent Responsibility, assume three regions

i, j and k such that i is located upstream from j and j upstream from k. A
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rule decides how the cost of cleaning the river in region j should be divided

among all the regions depending on their responsibility for the waste present in

this region. In particular, it establishes the responsibility of region i relative to

the responsibility of region j for producing that waste

(
xj
i (·)

xj
j(·)

)
. Observe that

part of the waste that has at some time entered j, which comprises the waste

discharged by j and some of the waste discharged by the regions upstream from

it including i, remains in j and part flowed on to j+1. Given that regions i and

j do not produce any waste other than that which arrived at some time at j,

then the amount of waste that entered j+1 from j must contain the same ratio

of waste discharged by region i to waste discharged by region j as exists in the

waste present in j. By a similar argument, that ratio must also be maintained

in the amount of waste that remains in region j+1 and did not flow on to j+2.

Reasoning in the same way for the subsequent segments, it can be stated that

this ratio must be maintained for any downstream segment k. Thus, the axiom

states that the rule should establish the same degree of responsibility of region i

relative to the responsibility of region j for the waste present in region k
(

xk
i (·)

xk
j (·)

)
as the relative responsibilities established for these regions in the waste present

in j. For example, if region i is responsible for twice as much waste as region

j in j

(
xj
i (·)

xj
j(·)

= 2

)
, the axiom establishes that region i is also responsible for

twice as much as region j in k
(

xk
i (·)

xk
j (·)

= 2
)
. In general, the axiom establishes

that

(
xj
i (·)

xj
j(·)

)
should be equal to

(
xk
i (·)

xk
j (·)

)
.14

Consistent Responsibility (CR): For all problems (N,C, t, t) and all i, j, k ∈
N such that i < j < k,

xj
j(·) · x

k
i (·) = xk

j (·) · x
j
i (·).

The last property, Monotonicity with respect to Information on the Transfer

Rate, refers to situations in which, ceteris paribus, the information on the trans-

fer rate improves. Given a problem (N,C, t, t), it is known from Proposition 3

that the transfer rate t is within the interval [t, t
∗
(t, C)]. Assume that informa-

tion on the transfer rate becomes more precise in such a way that some previ-

ous possible values of t can now be ruled out; that is, consider a new problem

14The axiom is not expressed in terms of these quotients but in terms of products so as to

avoid indeterminate forms.
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(N,C, u, u) such that [u, u∗(u,C)] ⊂ [t, t
∗
(t, C)]. If this informational improve-

ment is such that the values discarded are mainly from the lower (higher) part

of the interval [t, t
∗
(t, C)], it would be natural to induce a not lower (not higher)

estimated value for the real transfer rate.15 Given that the cost vector is the

same, the quantity of waste in any segment for which responsibility lies with all

the upstream regions must be no lower (no higher) under the new estimation.

Therefore, the axiom requires that for any segment the total amount paid by

all its upstream regions for cleaning the segment in question should now be no

lower (no higher).

Monotonicity with respect to Information on the transfer rate (MIT):

For all problems (N,C, t, t) and (N,C, u, u) such that [u, u∗(u,C)] ⊂ [t, t
∗
(t, C)]

and for all j ∈ N ,

u− t > t
∗
(t, C)− u∗(u,C) ⇒

∑
i<j

xj
i (N,C, u, u) ≥

∑
i<j

xj
i (N,C, t, t)

u− t < t
∗
(t, C)− u∗(u,C) ⇒

∑
i<j

xj
i (N,C, u, u) ≤

∑
i<j

xj
i (N,C, t, t).

Observe that the above list of axioms includes, on the one hand, a basic principle

of fairness in this context (LR) and, on the other hand, a set of three very

weak properties (NDR, CR and MIT) that are satisfied by many possible rules

which are very different one from another (for example, both α and β satisfy

them). However, as we are going to show, the addition of LR to these three

axioms isolates one new rule, the Upstream Responsibility rule. We begin by

presenting it in an intuitive way. To assign the total cost of cleaning each

segment i, this rule first imputes to the region situated in that segment the

value of its responsibility obtained from Proposition 4 taking as the transfer

rate the mid-point in the interval between t and t
∗
(t, C). The remaining cost,

if any, is allocated to the upstream regions in line with the proportions applied

in the allocation of the cost of the previous segment. The formal definition of

the rule is as follows.

15This deduction makes sense if the uncertainty of the social planner on the transfer rate

takes the form of a symmetric random variable (for example, a uniform distribution). More

general cases are analyzed in Section 4.
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Definition 3 The Upstream Responsibility rule, γ, is given by:

γj
i (N,C, t, t) =



0 if i > j,

ci · sj−i − ci−1 · sj+1−i if i ≤ j < n,

ci − ci−1·s
1−s if i = j = n,

ci·sj−i−ci−1·sj+1−i

1−s if i < j = n,

where s = t+t
∗
(t,C)
2 , c0 is set to 0 and the indeterminate form 00 is set to 1.

The Upstream Responsibility rule is based on the responsibility of the agents

involved in discharging waste into a river. In particular, if the social planner

knows the actual transfer rate (t = t
∗
(t, C) = t), it can be shown that this

rule establishes that the total cost that each region has to pay to clean the

entire river exactly matches the total quantity of waste that it has discharged,

which can be deduced from the cost vector. To express it formally, we have

that the quantity of waste discharged by a region i, that we denote by Vi,

can be deduced observing t and C. This amount of waste Vi(t, C) is exactly

the total cost that region i pays under the Upstream Responsibility rule. If,

however, there is uncertainty over the transfer rate, the rule assigns to each

region the total cost corresponding to the amount of waste that it is considered

to have discharged, using s = t+t
∗
(t,C)
2 as the estimated value of the transfer

rate. That is, it assigns Vi(s, C) to each region i. In other words, the cost

allocation method corresponding to the Upstream Responsibility rule (which is

uniquely determined and will be called the Upstream Responsibility method)

assigns a distribution equal to the responsibility of each region, using s as the

estimated transfer rate.

Proposition 5 Let (N,C, t, t) be a cost allocation problem. Then, the Upstream

Responsibility method Γ is

15



Γi(N,C, t, t) = Vi(s, C) =



ci
1−s if i = 1,

ci
1−s − ci−1·s

1−s if i ∈ {2, . . . , n− 1},

ci − ci−1·s
1−s if i = n,

where s = t+t
∗
(t,C)
2 .

The following result states that the Upstream Responsibility rule is character-

ized by the combination of the four axioms introduced above.

Theorem 1 A rule satisfies LR, NDR, CR and MIT if and only if it is the

Upstream Responsibility rule γ.

We also show that this characterization is tight.

Proposition 6 Axioms LR, NDR, CR and MIT are independent.

A comparison with the LRS and UES solutions

In Section 2 we have constructed cost allocation rules that maintain the spirit

of the LRS and UES methods. In order to avoid the problems detected in those

rules, we have defined and characterized a new rule: the Upstream Respon-

sibility rule. In this subsection, we discuss the differences between the three

solutions. First, to illustrate how the three rules behave, we apply them to a

particular cost allocation problem.

Example 3 Consider again the cost allocation problem defined in Example 1,

where N = {1, 2, 3, 4}, C = {10, 16, 8, 24}, t = 0, t = 1 and t
∗
(t, C) = 1

2 . On the

one hand, the solutions proposed to this problem by α and β are, respectively:

α(·) =


10 0 0 0

0 16 0 0

0 0 8 0

0 0 0 24


16



β(·) =


10 8 8

3 6

0 8 8
3 6

0 0 8
3 6

0 0 0 6

 .

On the other hand, the Upstream Responsibility rule assigns to this problem the

following solution:

γ(·) =


10 5

2
5
8

5
24

0 27
2

27
8

9
8

0 0 4 4
3

0 0 0 64
3

 .

To discuss the differences between all these rules, we use their axiomatic decom-

positions. Consider first the new rule, γ. It is characterized by the combination

of four properties: one based on the responsibilities inferred from the cost vec-

tor, LR, and three more basic properties (NDR, CR and MIT). As mentioned

above, α and β satisfy all these properties except LR. Hence, the property LR

is the source of the discrepancies between our proposal γ and the other two

proposals, α and β. This is because LR compels us to consider the information

that can be inferred from the cost vector about the responsibility of each region

in producing the waste.

Another way to see this divergence between the rules is to focus on the charac-

terizations of α and β. Remember that α is characterized by a combination of

NBC and IUC, while β is characterized by IUC and CS. However, our rule only

satisfies NBC. Again, this happens because the other two properties ignore the

information that can be inferred from the cost vector about responsibilities. In

particular, γ does not satisfy IUC because the estimated responsibility of region

i for waste in the river is not totally independent of the waste present in the

regions upstream from it: the waste in region i− 1 gives important information

about the amount of waste that passed on to region i from its upstream regions

and, therefore, γ takes it into account in estimating responsibilities. Similarly,

γ does not satisfy CS because the responsibilities for the waste present in a

segment are not symmetric across all its upstream regions: the cost vector gives

information about these heterogeneous responsibilities that γ takes into account.
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Besides comparing our cost allocation rule with the LRS and UES ones, we

could compare their associated cost allocation methods directly. This analysis

is important since, theoretically, it could happen that a cost allocation rule

does not satisfy a particular property but its associated method does satisfy

the adapted axiom for cost allocation methods. In the case of the Upstream

Responsibility method, we can analyze whether or not it satisfies the original

axioms that characterize the LRS and UES methods. It can be seen that it

satisfies the original NBC axiom, but it does not satisfy the original IUC and

CS properties for the same reasons expressed in the previous paragraph, so the

direct analysis of our method does not differ in this aspect from the analysis of

the rule. Unfortunately, since there is no direct way of adapting our new axioms

for cost allocation methods, we cannot evaluate any method, and in particular

the LRS and UES ones, on the basis of these properties.

4 Extensions of the basic model and related prob-

lems

We have shown that given a transboundary river with waste transfer, the costs

of cleaning each region provide information about the responsibility of each one

for producing the waste which can be used to construct a new cost allocation

rule. To infer this information, we have followed a simplified model that has

enabled us to obtain results in a simple manner. Although such a model may

seem too simple to be applied to real cost allocation problems, it is not difficult

to extend it to more general situations. Some of those extensions are discussed

below, with an explanation of how the axioms and results can be adapted.

We also include a subsection discussing an interesting dual problem to the one

studied in this paper and how our results can be adapted to it.16

Extensions on the definition of the segments

One of the assumptions of the basic model is that a river is divided into segments

of the same size. A river with segments of different sizes could be posited to

reflect the fact that regions can occupy different extensions along a river. We

can analyze this more general case from our framework by associating a cost

16We thank two anonymous referees for drawing our attention to some of these topics.
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allocation problem in which segments have different sizes with a new problem

in which all segments have the same size. The number of segments in this

new problem should be the total length of the river divided by the maximum

common divisor of the lengths of all regions in the original problem. Formally,

let (N,C, l, t, t) be an extended cost allocation problem in which N , C, t and

t have the same meaning as in the basic model and l ∈ Rn
++ describes the

(possibly different) lengths of each region. Then, the associated problem has a

set of segments N∗ with cardinality |N∗| =
∑
i∈N

li

mcd(l) , where mcd(l) refers to the

maximum common divisor of the values of l. In this way, each region i ∈ N is

associated with a set of segments in the new problem {i1, . . . , ik} ⊂ N∗, with

k = li
mcd(l) . The cost vector C∗ of the associated problem has to satisfy that

ci =
k∑

j=1

c∗ij . Thus, using this strategy, we construct an associated problem

(N∗, C∗, t, t) to (N,C, l, t, t).17 Now, given that all segments in the problem

(N∗, C∗, t, t) are of the same size, this associated problem is included in the

domain of our basic model and, therefore, our results would imply the use of

the γ rule to assign the costs. We can thus use this solution to define an

assignment for the original problem by allocating to each region i ∈ N the sum

of the costs allocated by γ to each of the segments in the associated problem:
k∑

j=1

γij (N
∗, C∗, t, t).

An interesting aspect of this extension that deserves more discussion is the

distribution of the cost over the subsegments of a particular region. Although

there is only one way of constructing N∗ from N , there are many different

ways of constructing C∗ from C. In contexts in which the social planner has

information about the waste present in each subsegment of a region, it suffices to

apply γ and there is no room for further research. However, if the social planner

only knows the total cost of cleaning the entire region i but is unaware of how

it breaks down by subsegments, the precise distribution of ci into ci1 , . . . , cik

could be relevant in the final allocation selected by the rule. We illustrate this

with the following simple example.

Example 4 Consider the extended cost allocation problem (N,C, l, t, t) such

that N = {1, 2, 3}, C = {10, 16, 24}, l2 = 2l1 = 2l3, t = 0 and t = 2
5 . Thus,

17The meaning of upstream and downstream in N∗ is similar than in N : ih is upstream

from jm if i < j or if i = j and h < m.
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a new problem must be considered in which region 2 is decomposed into two

subsegments, 21 and 22, in such a way that all subsegments are the same size.

Then, c2 must also be broken down into c21 and c22 and we have to work with

the problems ({11, 21, 22, 31}, (10, c21 , c22 , 24), 0, 2
5 ) such that c21 + c22 = 16. If

the cost of cleaning region 2 is decomposed such that c21 = c22 = 8, then the

total cost that region 2 pays to clean the entire river by applying γ is 15.5, while

if the decomposition is c21 = 4 and c22 = 12, it is 16.5.18

Example 4 points out the importance of having the most disaggregated data

possible on the waste present in each segment of the river. If the social planner

has no access to such data then, as this example shows, the regions could have

incentives to misrepresent them.

Another natural extension of our model is to consider a river which is not a

segment but a network divided into segments. This could be useful in modeling

a river with tributaries and/or forks. In that case, all the results of the paper

can be easily adapted by incorporating the number of outlets on each fork into

the calculation of the limits of the transfer rate and extending the rule as Dong

et al. (2012) extend the methods of Ni and Wang (2007).19

Extensions on the values of t and t

We have assumed t ∈ [0, 1) and t ∈ (0, 1] in our basic model, thus excluding

the cases in which the social planner knows for certain that the actual transfer

rate is 0 (t = 0) and those in which she knows that the actual transfer rate is

1 (t = 1). Although these are extreme cases without much practical relevance,

the results of the basic model can also be applied to them after some details are

considered.

Cases in which the social planner knows that there is no transfer of waste be-

tween two adjacent regions (t = 0) can be included in our basic model without

changes, keeping the axioms and the characterization result invariant. Observe

that in these extreme cases the Upstream Responsibility rule assigns the cost

18Notice that Proposition 3 implies a maximum limit for t of 2
5

for both decompositions.

However, other decompositions might affect this maximum limit, biasing also the allocation

selected.
19More details on this extension can be provided upon request.
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of cleaning each segment entirely to the region located there, thus coinciding in

such cases with the LRS rule.

With respect to the cases in which the social planner knows that all the waste

that enters a region is transferred to the next downstream region (t = 1), observe

that they are compatible only with cost vectors C such that ci = 0 for all

i < n.20 In such cases no information can be deduced from the cost vector to

infer responsibilities for the waste present in the last region, cn. Thus, sharing

this cost equally among all regions could be a reasonable possibility.

Consider the extended domain that includes these extreme cases; that is, the

domain of all cost allocation problems (N,C, t, t), where N = {1, . . . , n} ⊂ N,
C ∈ Rn

+, t, t ∈ [0, 1] with t ≤ t. Our characterization result can be extended to

this extended domain by adding a new property to the axioms of Theorem 1.

This property is Weak Cost Symmetry, which applies the spirit of CS only to ex-

treme cases in which there is total uncertainty about which region is responsible

for each unit of waste.

Weak Cost Symmetry (WCS): For all problems (N,C, 1, 1) and all j, k ∈ N

such that ck = 0 for all k < n,

xl
j(·) = xl

k(·) for all l ∈ N.

The introduction of WCS implies that the rule must coincide with the UES rule

for the extreme cases in which t = 1. The Upstream Responsibility rule can be

therefore extended for this domain in the following way:

Definition 4 The Extended Upstream Responsibility rule, Γ, is given by

Γj
i (·) =


γj
i (·) if t ∈ [0, 1) and t ∈ (0, 1]

γj
i (·) = αj

i (·) if t = 0

βj
i (·) if t = 1.

The general characterization can then be presented for this extension.21

20Note that these cost vectors are also compatible with other values of the transfer rate.
21The proof is straightforward using Theorem 1 for all the natural cases, applying LR to

the extreme cases of t = 0 (in which lii(·) = l
i
i(·) = ci) and applying WCS to the extreme

cases in which t = 1. We therefore omit it.
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Theorem 2 A rule satisfies LR, NDR, CR, MIT and WCS if and only if it is

the Extended Upstream Responsibility rule Γ.

Extension on the structure of the transfer rate

We have also assumed in the basic model that the transfer rate is uniform along

the river. A possible extension of the model in regard to this assumption is to

consider that the transfer rate changes in some areas of the river. This could be

useful in modeling rivers that run through regions with different types of terrain,

weather or biosystems. In such cases the model could be adapted by dividing

the problem into subproblems with homogeneous characteristics. By applying

Proposition 3 to each of them, different limits can be deduced for each particular

transfer rate. Additionally, new limits can be deduced with the information of

the entire river.

Below, we explain how the limits of each transfer rate must be calculated and,

as a result, how the Upstream Responsibility rule is adapted in this extended

model for a particular case.

Consider the cost allocation problems with five regions such that the terrain

is homogeneous in the transitions from regions 1 to 3 and in the transitions

from regions 3 to 5, but is different in these two parts. These problems can be

formulated using two transfer rates: t, which measures the proportion of waste

transferred from one segment to the next between segments 1 and 2 and between

segments 2 and 3, and u, which does the same from segment 3 to 4 and from

4 to 5. Thus, the cost allocation problems are defined as (Nt, Nu, C, t, t, u, u),

where Nt = {1, 2, 3} and Nu = {3, 4, 5} specify between the segments to which

each of the transfer rates (t and u, respectively) apply. In such cases, following

arguments similar to those in Proposition 3, an upper limit for u is obtained

with the same form as in the basic case:

u∗(u,C) = min{c4
c3

,
c5

c4 + c5
, u}.

The upper limit for t is also similar to that in the basic model, but here a new

restriction can be established for it based on the information for region 3, where

the two transfer rates interact:22

22The proof of all the arguments of this subsection follows a similar path to the proofs of

the basic model and can be found in Appendix B (Supplementary Material).
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t
∗
(u, t, C) = min{c2

c1
, t, h(u∗(u,C))},

where h(u) = c3
c3+c2·(1−u) .

Additionally, this new interaction enables a lower limit for u to be introduced:

u∗(u, t, C) = max{h−1(t), u}.

Thus, in this extended model the results of Proposition 4 could be adapted

according to the information about the transfer rates, adapting also axiom LR.

On the other hand, axioms NDR and CR need no adaptation in this context,

while MIT has to be applied to the information on both transfer rates. As a

result, the characterized rule for these problems uses the values s = t+t
∗
(u,t,C)
2

and v = u∗(u,t,C)+u∗(u,C)
2 to estimate the transfer rates t and u, respectively, and

considers them in allocating costs in a way similar to that in the basic model:

s is used for transfers between segments upstream from 3 and v for transfers

downstream from 3. The formal definition of the rule for the five player case is

as follows:
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γj
i (Nt, Nu, C, t, t, u, u) =



0 if i > j,

ci · sj−i − ci−1 · sj+1−i if i, j ∈ {1, 2} and i ≤ j,

ci·sj−i·(1−v)−ci−1·sj+1−i·(1−v)
1−s if i < j and j = 3,

ci · vj−i − ci−1 · s
1−s · (1− v) · vj−i if i = 3 and j ∈ {3, 4},

ci − ci−1 · v if i = j = 4,

ci·sj−i−1·(1−v)·v−ci−1s
j−i·(1−v)·v

1−s if i ∈ {1, 2} and j = 4.

ci − ci−1·v
1−v if i = j = 5,

ci·v−ci−1·v2

1−v if i = 4 and j = 5,

ci · vj−i

1−v − ci−1 · s
1−s · vj−i if i = 3 and j = 5,

ci·(sj−i−2·v2)−ci−1·(sj−i−1·v2)
1−s if i ∈ {1, 2} and j = 5,

where c0 is set to 0 and the indeterminate form 00 is set to 1.

Extension on the information about the transfer rate

Another implicit assumption of the basic model is that the uncertainty of the

social planner on the transfer rate takes the form of a symmetric random variable

(for example, a uniform distribution) on the interval [t, t
∗
(t, C)], so the mean

value between t and t
∗
(t, C) is always a good estimator of t. However, other

distributions that are not symmetric may be assumed a priori and, axiom MIT

would have to be reformulated to adapt our results to those cases. To be more

precise, a modified version of MIT would have to be considered in which the

changes in the intervals are evaluated on the basis not of their lengths but their

masses of probability of the specific random variable assumed. As a result, the

characterized rule would change to one in which the transfer rate considered in

allocating costs is the expected value of the random variable. This process is

24



explained below for the case of any arbitrary continuous variable.

Consider the cost allocation problems defined by 5−tuples (N,C, t, t, f(t)) such

that the information of the social planner about t takes the form of a random

variable with density function f(t) with support in [t, t
∗
(t, C)]. In this extended

model, axiom MIT is thus formulated as follows:

Monotonicity with respect to Information on the transfer rate (MIT):

For all problems (N,C, t, t, f(t)) and (N,C, u, u, g(u)) such that [u, u∗(u,C)] ⊂
[t, t

∗
(t, C)] and f(t) truncated at [u, u∗(u,C)] is equal to g(u) 23 and for all

j ∈ N ,

F (u) > 1− F (u∗(u,C)) ⇒
∑
i<j

xj
i (N,C, u, u) ≥

∑
i<j

xj
i (N,C, t, t)

F (u) < 1− F (u∗(u,C)) ⇒
∑
i<j

xj
i (N,C, u, u) ≤

∑
i<j

xj
i (N,C, t, t),

where F is the cumulative distribution function corresponding to f .

Using this new general formulation of axiom MIT and maintaining the other

axioms as in the basic model, the characterized rule is found to have exactly

the same structure as in the basic case, except that the value of the parameter

s in the formula of γ is equal to the expected value of t: s =
∫ t

∗
(t,C)

t
t · f(t)dt.

A dual problem

We have studied a model in which there is already waste in a river and the

clean-up costs have to be shared. However, there are situations in which certain

identified polluters produce most of the residues and, in such cases, the social

planner may be interested in implementing preventive policies to avoid subse-

quent problems. These policies may consist of giving such polluters incentives

to reduce their levels of pollution. For instance, some public agencies have in-

troduced contracts in which farmers commit to reducing their levels of pollution

in return for a payment from the agencies (see also Barrett, 1994).24

23That is, g(u) =
f(u)·I[u,u∗(u,C)](u)

F (u∗(u,C))−F (u)
, where F is the cumulative distribution function cor-

responding to f and I[u,u∗(u,C)](u) = 1 if u ∈ [u, u∗(u,C)] and 0 otherwise.
24More recently, the OECD has also argued that it is necessary to assess the efficiency and

effectiveness of water pollution abatement measures in the context of river basin management

(OECD, 2008).
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The model studied in this paper so far assumes that polluting regions must be

required to pay a cost for their activities, but this other framework implicitly

assumes that they have the right to pollute the water and must be compensated

for not doing so. As a result, the question of where the necessary funds should

come from is dual to the question of who has to pay the clean-up costs in the

other cases. Thus, in these cases, the social planner should allocate the costs

of the incentive program to the regions situated downstream from the polluter,

which will be the beneficiaries of the pollution abatement.

The dual problem can be defined starting with a polluted river, defined as in

our basic model (N,C, t, t), where C represents the amount of waste present in

each segment. Consider also that there is an identified polluter in region k ∈ N

that will receive a payment of z from the social planner if it reduces its pollution

emissions by z units. The dual problem is thus defined as (N,C, t, t, k, z) and the

adapted definition of a rule for these problems is a function x that assigns to each

problem a matrix (xj
i (·))i,j∈N of non–negative numbers such that

∑
i∈N

xk
i (·) = z

and
∑
i∈N

xj
i (·) = 0 for all j ̸= k.

To construct a rule, dual axioms to those proposed in our basic model can be

used, with all references to upstream regions being replaced by downstream

ones (and vice versa) in such a way that regions pay in line with how much less

waste they will have in their respective segments with the incentive program.

For example, axiom NDR would be substituted by a dual property, which can be

called No Upstream Beneficiary, stating that no region situated upstream from

k should pay any part of the program because they will not benefit from it. The

other axioms can be adapted similarly and, as a result, the characterized rule

π, which can be called Downstream Beneficiary rule, is dual to the Upstream

Responsibility rule γ:

πj
i (N,C, t, t, k, z) =


0 if j ̸= k,

γi
j(N,C,t,t)

γj(N,C,t,t)
· z if j = k.

The interpretation of this rule for assigning the costs of the incentive program

is also dual to the interpretation of the Upstream Responsibility rule. It assigns

a total cost to each region equal to the amount of pollution that would be

26



eliminated in that region if the polluter is paid to discharge less waste. In cases

in which this amount cannot be precisely calculated because there is uncertainty

over t, the rule uses the estimated transfer rate s = t+t
∗
(t,C)
2 .

The reasoning behind the formal definition of the rule is simple. The proportion

of waste discharged by region k that ends up in region i can be estimated using

the Upstream Responsibility rule by quotient
γi
k(N,C,t,t)

γk(N,C,t,t)
. Thus, if the quantity

discharged by k is reduced by z units thanks to the incentive, it is reasonable

for region i to pay exactly that proportion of the program.

5 Concluding remarks

The presence of waste in rivers produces environmental problems and the costs

of solving them may be quite high. In cases in which different municipalities,

regions or even countries share a river, it is obvious that each region is not

totally responsible for all the waste in its own segment, and it therefore seems

desirable from a social point of view for these costs to be shared between all

the regions responsible. This paper studies the possibility of constructing a

rule for allocating those costs in line with the responsibilities of the regions for

producing the waste. We have shown that the solutions previously proposed

in the literature do not satisfy this objective because they fail to consider the

information about the transfer rate that can be deduced from the cleaning cost

vector. Additionally, we have provided normative foundations for the use of the

new Upstream Responsibility rule to allocate such costs with this objective.

An interesting problem for further research would be to study how the imple-

mentation of this cost allocation rule can affect the incentives for agents to

decide how much waste to discharge. This could be important because the op-

timal rule should incorporate not only a fair allocation of the costs for cleaning

up the waste in the river but also incentives for establishing an equilibrium with

less waste.
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Appendix

Proof of Proposition 1

First, it is easy to see that the LRS rule α satisfies NBC and IUC. To prove the

other implication, consider a problem (N,C, t, t) and let x be a cost allocation

rule that satisfies NBC and IUC. We will show that x equals α.

Let {(N,Ck, t, t)}k∈N be a sequence of cost allocation problems such that cki = 0

for all i < k and cki = ci for all i ≥ k. Consider first the problem (N,Cn, t, t).

By NBC we have that xj
i (N,Cn, t, t) = 0 for all i, j ∈ N such that i < n.

Given that cnj = 0 for all j < n, we also have that xj
n(N,Cn, t, t) = 0 for

all j < n. Therefore, the unique possibility by the definition of a rule is that

xn
n(N,Cn, t, t) = cn.

Now, the proof follows by induction. Assume that we have determined the

solution for each problem (N,Ck, t, t) with k ≥ j + 1 of the sequence and the

resulting allocations for these problems are xi
i(N,Ck, t, t) = ci for all i ≥ k

and xl
i(N,Ck, t, t) = 0 for the remaining elements of the matrix. We have

to determine the solution for the j−th problem of the sequence, (N,Cj , t, t).

First, by NBC we have that xl
i(N,Cj , t, t) = 0 for all i, l ∈ N such that i < j.

Secondly, by IUC and the induction hypothesis we have that xi
i(N,Cj , t, t) = ci

and xl
i(N,Cj , t, t) = 0 for all i, l ∈ N such that i > j. Then, the unique

possibility to satisfy the definition of a rule is that xj
j(N,Cj , t, t) = cj and

xl
j(N,Cj , t, t) = 0 for all l ̸= j. Therefore, we have determined the complete

solution for the j-th problem of the sequence.

It is easy to see that the last problem of the sequence (N,C1, t, t) corresponds

with (N,C, t, t) and that the solution deduced by this induction argument cor-

responds to the solution of the α rule.

Proof of Proposition 2

First, it is easy to see that the UES rule β satisfies CS and IUC. To prove the

other implication, consider a problem (N,C, t, t) and let x be a cost allocation

rule that satisfies CS and IUC. We will show that x equals β.
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Let {(N,Ck, t, t)}k∈N be a sequence of cost allocation problems such that cki = 0

for all i < k and cki = ci for all i ≥ k. Consider first the problem (N,Cn, t, t).

By CS we have that xl
i(N,Cn, t, t) = xl

j(N,Cn, t, t) for all i, j, l ∈ N . Then, we

can deduce that xn
i (N,Cn, t, t) = cn

n and xl
i(N,Cn, t, t) = 0 for all i ∈ N and

l < n. As a result, we have determined the complete solution for the problem

(N,Cn, t, t).

Now, the proof follows by induction. Assume that we have determined the solu-

tion for each problem (N,Ck, t, t) with k ≥ j+1 of the sequence and the resulting

allocations for these problems are xl
i(N,Ck, t, t) = cl

l if (i ≤ l and l ≥ k) and

xl
i(N,Ck, t, t) = 0 otherwise. We have to determine the solution for the j−th

problem of the sequence, (N,Cj , t, t). First, by IUC and the induction hypoth-

esis we have that for all i > j, xl
i(N,Cj , t, t) = cl

l if i ≤ l and xl
i(N,Cj , t, t) = 0

otherwise. Secondly, by CS we have that xl
i(N,Cj , t, t) = xl

k(N,Cj , t, t) for all

i, k ≤ j and all l ∈ N . Then, we can deduce that xl
i(N,Cj , t, t) = cl

l for all i ≤ l

and l ≥ j and xl
i(N,Cj , t, t) = 0 for all l < j. Therefore, we have determined

the complete solution for the j-th problem of the sequence.

It is easy to see that the last problem of the sequence (N,C1, t, t) corresponds

with (N,C, t, t) and that the solution deduced by this induction argument cor-

responds to the solution of the β rule.

Proof of Proposition 3

Let (N,C, t, t) be a problem. For any segment i ∈ N \ {n}, the cost that we

observe, ci, is the difference between all the waste entering the segment, denoted

as V ∗
i , and the amount transferred to the next segments, given by tV ∗

i . Then,

ci = V ∗
i − tV ∗

i for all i ∈ {1, . . . , n − 1}. If the actual transfer rate t is 1, we

have that ci = 0 for all i ∈ {1, . . . , n− 1} and t = 1. Therefore, t
∗
(t, C) = 1 and

the proposition is proved for that case.

Let us assume now that t < 1. Given that the waste cannot be transferred far
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from the most downstream region25, we have that cn = V ∗
n . Then,

V ∗
i =

{
ci
1−t if i ∈ {1, . . . , n− 1}
ci if i = n.

(1)

Let Vi be the amount of waste thrown into the water by region i. It is imme-

diate that Vi ≤ V ∗
i given that upstream regions may transfer waste to region

i. In particular, the amount thrown into the water by region i is the difference

between the total amount entered segment i and the amount transferred from

its immediate upstream segment. Then, for all i ∈ {2, . . . , n}, Vi = V ∗
i − tV ∗

i−1.

However, for i = 1, since there is no upstream region, V1 = V ∗
1 . Then,

Vi =

{
V ∗
i if i = 1

V ∗
i − tV ∗

i−1 if i ∈ {2, . . . , n}.
(2)

Using expressions (1) and (2), we can obtain an expression of Vi in terms of C

and t:

Vi(t, C) =


ci
1−t if i = 1
ci
1−t −

ci−1

1−t t if i ∈ {2, . . . , n− 1}
ci − ci−1

1−t t if i = n.

(3)

Given that Vi(t, C) is, by definition, non-negative and taking into account ex-

pression (3), the following conditions have to be satisfied:

• ci
1−t −

ci−1

1−t t ≥ 0 for all i ∈ {2, . . . , n− 1}. If ci = ci−1 = 0, the condition is

always satisfied. Otherwise, we deduce that t ≤ ci
ci−1

for all i ∈ {2, . . . , n−
1}.

• cn − cn−1

1−t t ≥ 0. If ci = ci−1 = 0, the condition is always satisfied. Other-

wise, we deduce that t ≤ cn
cn+cn−1

.

25Note that the fact that the region furthest downstream accumulates all the waste that

enters it, contrary to what occurs in the other regions, where part of the waste flows on

to the next region downstream, introduces a particularity into the treatment of this region.

This is compatible with the concept of the river ending in a lake which belongs to a single

region. If, however, the river ends in the sea, the model can be easily adapted by dropping

this differentiation between regions.
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Additionally, it is easy to see from the previous reasoning that any value of t̂

between t and t
∗
(t, C) is compatible with (N,C, t, t). Then we have arrived at

the desired result.

Proof of Proposition 4

Let (N,C, t, t) be a problem. First, take i = 1. Given that this region is the

most upstream region in the river, it is straightforward that all the waste in this

segment is of its own responsibility. Then, l11(·) = l
1

1(·) = c1.

Take now any i ∈ {2, . . . , n − 1}. In this case, if t ∈ (0, 1) we have that ci−1

1−t

units of waste entered region i− 1. Then, ci−1·t
1−t units of waste entered region i

from the immediate upstream region, i− 1, and ci−1·t2
1−t of these units left region

i to the immediate downstream region, i + 1. Therefore, ci−1 · t units of the

waste present in region i are responsibility of the regions situated upstream

from i. Then, we have that lii(·) = ci − ci−1 · t. If t = 1, we have that ci

equals 0 for all i ∈ {1, . . . , n− 1} and, therefore, lii(·) = 0. Finally, if t = 0, we

have that all the waste present in region i is of its own responsibility and, thus,

lii(·) = ci. In situations in which there is uncertainty over t, t ∈ [t, t
∗
(t, C)], we

can summarize all these expressions and we have that lii(·) = ci − ci−1 · t
∗
(t, C)

and l
i

i(·) = ci − ci−1 · t for all i ∈ {2, . . . , n− 1}.

Finally, take i = n. Consider first the case in which t ∈ (0, 1). In this case,

we have that cn−1

1−t units of waste entered region n − 1. Then, cn−1·t
1−t units of

waste entered and remain in region n from its upstream regions and, then,

lnn(·) = cn − cn−1·t
1−t , given that n is the most downstream region. Consider now

the case in which t = 1. In this case, there is no information at all about

how much of the waste is the responsibility of region n. Then, lnn(·) ∈ [0, cn].

Finally, if t = 0, we have that all the waste present in region n is of its own

responsibility and, thus, lnn(·) = cn. It is easy to see that all these expressions

can be summarized as in the proposition. Then, the result is proved.

Proof of Proposition 5

In the proof of Proposition 3 (Equation (3)), we have shown that, knowing

the transfer rate t and the cost vector C, we can deduce the amount of waste
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discharged by each region. This amount, denoted by Vi(t, C) is given by the

following formula:

Vi(t, C) =



ci
1−t if i = 1,

ci
1−t −

ci−1·t
1−t if i ∈ {2, . . . , n− 1},

ci − ci−1·t
1−t if i = n.

Now, we have to show that γi(·) = Vi(s, C). The case of i = n is straightforward

given that γj
n(·) = 0 for all j < n and γn

n(·) = Vi(s, C) by definition. We focus

now on the case of i = 1. By definition of γ, we have that γj
1(·) = c1 · sj−1 for

all j ∈ {1, . . . , n− 1} and γn
1 (·) = c1·sn−1

1−s . Note that

γ1(·) =
n−1∑
j=1

γj
1(·) +

c1 · sn−1

1− s
.

Given that

(1− s) ·
n−1∑
j=1

γj
1(·) = c1 − c1 · sn−1,

we obtain that γ1(·) = c1
1−s = V1(s, C).

Finally, consider the case of i ∈ {2, . . . , n− 1}. By definition of γ, we have that

γj
i (·) = 0 for all j < i, γj

i (·) = ci · sj−i − ci−1 · sj+1−i for all j ∈ {i, . . . , n − 1}
and γn

i (·) =
ci·sn−i−ci−1·sn+1−i

1−s . Note that

γi(·) =
n−1∑
j=i

γj
i (·) +

ci · sn−i − ci−1 · sn+1−i

1− s
.

Given that

(1− s) ·
n−1∑
j=i

γj
i (·) = ci − ci · sn−i − ci−1 · s+ ci−1 · sn+1−i,

we obtain that γi(·) = ci−ci−1·s
1−s = Vi(s, C) and the proposition is proved.

Proof of Theorem 1

First, it is easy to see that the Upstream Responsibility rule γ satisfies LR, NDR,

CR and MIT. To prove the other implication, consider a problem (N,C, t, t) and
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its corresponding t
∗
(t, C) inferred from Proposition 3. Let x be a rule satisfying

LR, NDR, CR and MIT. We are going to show that x has to correspond to γ.

We will calculate the assignment given by x in n steps. In the j−th step, we

calculate the values of xj
i (·) for all i ∈ {1, . . . , n}.

• Step 1: We distribute the cost c1. In this case, by NDR, x1
i (·) = 0 for all

i > 1. Then, by definition of a rule, x1
1(·) = c1. If n = 1, the proof is

finished. If n > 1, go to step 2.

• Step j, with j ∈ {2, . . . , n}: We distribute the cost cj . By the appli-

cation of NDR, xj
i (N,C, t, t) = 0 for all i > j. Consider other problem

(N,C, s, s), where s = t+t
∗
(t,C)
2 . Now, we have two cases:

– If n > j, we have by LR that xj
j(N,C, s, s) = cj − cj−1 · s. We

are going to prove that xj
j(N,C, s, s) = xj

j(N,C, t, t). If t = s =

t
∗
(t, C), it is straightforward that they are equal. For the rest of the

cases, consider all problems (N,C, r, r) such that r ∈ [t, s). Then, by

LR we have that xj
j(N,C, r, r) = cj − cj−1 · r. Given that r − t <

t
∗
(t, C)−r, we have by MIT that

∑
i<j

xj
i (N,C, r, r) ≤

∑
i<j

xj
i (N,C, t, t)

and then, by definition, xj
j(N,C, r, r) ≥ xj

j(N,C, t, t). Therefore,

xj
j(N,C, t, t) ≤ cj − cj−1 · (s − ε) for all ε ≥ 0. Similarly, we can

deduce that xj
j(N,C, u, u) ≤ xj

j(N,C, t, t) for all u ∈ (s, t
∗
(t, C)] and,

then, xj
j(N,C, t, t) ≥ cj − cj−1 · (s + ε) for all ε ≥ 0. Then, the

unique possibility is that xj
j(N,C, t, t) = xj

j(N,C, s, s). Therefore,

xj
j(N,C, t, t) = cj − cj−1 · s.

If s = 0, we have that xj
j(N,C, t, t) = cj and the proof of step j is

finished. Then, go to step j + 1.

If, however, s > 0, let us concentrate first in the case of j = 2. Then,

we have by definition that x2
1(N,C, t, t) = c1 · s and the proof of step

2 is finished. Now, go to step 3.

If s > 0 and j ≥ 3, we have that
j−1∑
i=1

xj
i (N,C, t, t) = cj−1 · s. By CR,

xj
i (N,C, t, t) · xj−1

k (N,C, t, t) = xj
k(N,C, t, t) · xj−1

i (N,C, t, t) for all

i, k ∈ {1, . . . , j−1}. Or, equivalently, xj
i (N,C, t, t)·

j−1∑
i=1

xj−1
i (N,C, t, t) =

xj−1
i (N,C, t, t) ·

j−1∑
i=1

xj
i (N,C, t, t) for all i ∈ {1, . . . , j − 1}.
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Given that
j−1∑
i=1

xj−1
i (N,C, t, t) = cj−1 and that we also know from

step j−1 that xj−1
i (N,C, t, t) = ci · sj−1−i− ci−1 · sj−i, we have that

for all i ∈ {1, . . . , j − 1},

xj
i (N,C, t, t) =

ci · sj−1−i − ci−1 · sj−i

cj−1
· cj−1 · s.

Therefore, for all i ∈ {1, . . . , j − 1},

xj
i (N,C, t, t) = ci · sj−i − ci−1 · sj+1−i.

Now, go to step j + 1.

– If n = j, we have by LR that xn
n(N,C, s, s) = cn − cn−1·s

1−s . We are

going to prove that xn
n(N,C, s, s) = xn

n(N,C, t, t). If t = s = t
∗
(t, C),

it is straightforward that they are equal. For the rest of the cases,

consider all problems (N,C, r, r) such that r ∈ [t, s). Then, by LR we

have that xn
n(N,C, r, r) = cn− cn−1·r

1−r . Given that r− t < t
∗
(t, C)−r,

we have by MIT that
∑
i<n

xn
i (N,C, r, r) ≤

∑
i<n

xn
i (N,C, t, t) and then,

by definition, xn
n(N,C, r, r) ≥ xn

n(N,C, t, t). Therefore, xn
n(N,C, t, t) ≤

cn− cn−1·(s−ε)
1−(s−ε) for all ε ≥ 0. Similarly, we can deduce that xn

n(N,C, u, u) ≤
xn
n(N,C, t, t) for all u ∈ (s, t

∗
(t, C)] and, then, xn

n(N,C, t, t) ≥ cn −
cn−1·(s+ε)
1−(s+ε) for all ε ≥ 0. Then, the unique possibility is that xn

n(N,C, t, t) =

xn
n(N,C, s, s). Therefore, xn

n(N,C, t, t) = cn − cn−1·s
1−s and, by defini-

tion,
n−1∑
i=1

xn
i (N,C, t, t) = cn−1·s

1−s . If j = 2, this implies that x2
1(N,C, t, t) =

c1·s
1−s . If j ≥ 3 and s = 0, we have that xj

j(N,C, t, t) = cj . If j ≥ 3

and s > 0, we have by CR that xn
i (N,C, t, t) · xn−1

k (N,C, t, t) =

xn
k (N,C, t, t) ·xn−1

i (N,C, t, t) for all i, k ∈ {1, . . . , n−1}. Or, equiva-

lently, we have that xn
i (N,C, t, t)·

n−1∑
i=1

xn−1
i (N,C, t, t) = xn−1

i (N,C, t, t)·
n−1∑
i=1

xn
i (N,C, t, t) for all i ∈ {1, . . . , n− 1}.

Given that
n−1∑
i=1

xn−1
i (N,C, t, t) = cn−1 and that we also know from

step j − 1 that xn−1
i (N,C, t, t) = ci · sn−1−i − ci−1 · sn−i, we have
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that for all i ∈ {1, . . . , n− 1},

xn
i (N,C, t, t) =

ci · sn−i−1 − ci−1 · sn−i

cn−1
· cn−1 · s

1− s
.

Therefore, for all i ∈ {1, . . . , n− 1},

xn
i (N,C, t, t) =

ci · sn−i − ci−1 · sn−i+1

1− s
.

Proof of Proposition 6

The following examples prove that the axioms are independent.

Limits of Responsibility: The UES rule, β satisfies NDR, CR and MIT. However,

it does not satisfy LR as we have shown in Example 2.

No Downstream Responsibility: Let ω be the following rule:

ωj
i (N,C, t, t) =



ci − ci−1 · s if i = j < n,

ci − ci−1·s
1−s if i = j = n,

ci−2 · s if i = j + 1,

ci·s
1−s if i+ 1 = j = n,

0 otherwise,

where s = t+t
∗
(t,C)
2 and c0 is set to 0.

It is easy to see that this rule ω satisfies MIT, LR and CR. However, the following

example shows that it does not satisfy NDR. Let N = {1, 2, 3}, C = {10, 10, 10},
t = 0 and t = 1 be a cost allocation problem. We have that ω2

3(N,C, t, t) = 5
2 ,

while NDR states that ω2
3(N,C, t, t) = 0.

Consistent Responsibility: Let φ be the following rule:
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φj
i (N,C, t, t) =



0 if i > j,

ci − ci−1 · s if i = j < n,

ci − ci−1·s
1−s if i = j = n,

cj−1·s
j−1 if i < j < n,

cj−1

j−1 · s
1−s if i < j = n,

where s = t+t
∗
(t,C)
2 and c0 is set to 0.

It is easy to see that φ satisfies LR, NDR and MIT. However, the following

example shows that it does not satisfy CR. Let N = {1, 2, 3}, C = {10, 10, 5},
t = 0 and t = 1 be a cost allocation problem. We have that φ2

2(·) = 25
3 ,

φ3
1(·) = 1, φ3

2(·) = 1 and φ2
1(·) = 5

3 . Then, φ
2
2(·) · φ3

1(·) = 25
3 ̸= 5

3 = φ2
1(·) · φ3

2(·),
while CR would imply that φ2

2(·) · φ3
1(·) = φ2

1(·) · φ3
2(·).

Monotonicity with respect to Information on the transfer rate: Let ρ be the

following rule:

ρji (N,C, t, t) =



0 if i > j,

ci · tj−i − ci−1 · tj+1−i if i ≤ j < n,

ci − ci−1·t
1−t if i = j = n,

ci·tj−i−ci−1·tj−i+1

1−t if i < j = n,

where c0 is set to 0 and the indeterminate form 00 is set to 1.

It is easy to see that ρ satisfies LR, NDR and CR. However, the following

example shows that it does not satisfy MIT. Let (N,C, t, t) and (N,C, u, u) be

two cost allocation problems, with N = {1, 2}, C = {10, 20}, t = 0, t = 1 and

u = u = 1
4 . We have that ρ21(N,C, t, t) = 0 and ρ21(N,C, u, u) = 10

3 , although

MIT would imply that ρ21(N,C, u, u) ≤ ρ21(N,C, t, t).
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