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Abstract: 

In this paper we separate the total stock return into its continuous and jump component 

to test whether stock return predictability should be attributed to omitted risk factors or 

behavioral finance theories. We extend results from the US market to the Spanish stock 

market, which, despite being a developed market, presents several differences in terms 

of stock characteristics, financial system, investor typology and cultural dimensions. The 

results show that the jump component has significant explanatory power for the 

premium of three characteristics (size, book-to-market and illiquidity), which is at odds 

with risk-based explanations. Using the same testing strategy, we try to shed some light 

on an important controversy concerning the relationship between default risk and 

momentum. The results suggest that default risk is not the source of momentum 

returns. 
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Momentum and default risk. Some results using the jump component 

 

1. Introduction 

Stock return predictability has been related to various stock characteristics, such as size, 

Book-to-Market (btm), liquidity, and momentum, among others. These relationships 

have been explained from risk-based and behavioral perspectives. On the one hand, 

Fama and French (1992, 1996) claim that size and value premiums are risk factors 

omitted from models such as the CAPM, a view supported by other authors, such as 

Jagannathan and Wang (1996) and Zhang (2006). Meanwhile, from the behavioral 

finance point of view, characteristics such as small size, extreme btm or low liquidity can 

be interpreted as proxies for stocks with high information uncertainty (Jiang et al., 

2005), firms that are hard to value or to arbitrage (Baker and Wurgler, 2006), or stocks 

attracting limited attention (Abody et al., 2010).   

Jiang and Yao (2013) offer a new way to distinguish between these two competing 

explanations by separating total stock return into its continuous and jump components. 

These authors assert that, if investors form unbiased rational expectations, the 

unexpected component of stock return should not be correlated with ex ante firm 

characteristics. However, if they form biased expectations and this bias is related to 

stock characteristics, this component will be associated with lagged characteristics, due 

to price reversion to equilibrium. In this vein, it is widely accepted in financial literature 

that large discontinuous price changes (price jumps), due to news or liquidity shocks, are 

rare events that can proxy for significant information shocks. Hence “if the predictable 

component of stock returns is realized in the form of jumps that occur on average only 

twice a year, such predictability is likely driven by investors’ response to new 

information arrival and unlikely to be the effect of risk Premium” (Jiang and Yao, 2013, 

pp 1519-1521). The results obtained by these authors for the US market indicate that 

size and illiquidity effects, along with a significant part of the value premium, are 

realized in the form of jumps, thus bringing into question risk premium-based 

explanations for cross-sectional stock return predictability based on these variables. 

Furthermore, neither jump risk nor the “martingale restriction”1 on jumps can explain 

their results. 

                                                           
1 Since a martingale is a zero-drift stochastic process, the literature often imposes the martingale restriction 

on jumps. This means that, in a rational continuous- time asset-pricing model, the jump component in the 
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In this context, it is worth analyzing whether these results are stock market-dependent 

or can be generalized to other markets. For this purpose and following the same 

methodology as Jiang and Yao (2013), we perform the analysis for the Spanish stock 

market because, despite being a developed financial market, it presents major 

differences in key variables that drive stock prices. Firstly, in particular relation to stock 

characteristics, spreads are lower in the Spanish market than in the US market, and 

this probably causes a decrease in their premiums. Secondly, average firm size is bigger 

in the Spanish market2. This is an important issue, since stock characteristics have the 

potential to change or accentuate investors’ behavioral biases. Some behavioral finance 

models (see, among others, Daniel et al., 1998 and 2001 or Hirshleifer, 2001) have shown 

that investors’ behavioral biases are stronger among relatively hard-to-value stocks 

operating in informationally-sparse environments. The type of financial system can also 

affect stock price behavior due to the potential effect of the degree of shareholder 

dispersion and separation between ownership and control. In these terms, the US 

market is Anglo-Saxon, that is, it is characterized by shareholder dispersion and a wider 

separation between ownership and control. Spain, on the other hand, has a continental 

system, characterized by a more highly concentrated ownership structure. In addition to 

that and concerning the investor typology in Spain the majority of institutional investors 

are banks, which have a more stable relationship with firms, whereas, in the Anglo-

Saxon system, they are mainly mutual funds or pension plans (MF&PP) and, although 

institutional investors are sophisticated traders, and their presence contributes to 

efficient asset pricing due to their superior capacity to acquire and process information 

(see, among others, Bartov et al., 2000,  Jiambalvo et al., 2002 or Collins et al., 2003) 

they are not a homogeneous group. In fact, MF&PP can be defined as “transient” 

institutions because they may overweight short-term earnings potential and 

underweight long-term earnings potential due to their incentives and may pressure 

managers into a short-term focus (see Bushee, 2001), whereas banks generally have a 

long-term, stable relationship with firms. Finally, the US and Spain also display 

contrasting cultural profiles based on the dimensions coined by Hofstede (2001)3, and 

cultural dimensions have been found to play a major role in explaining the impact of 

investor behavior on market prices (see Schmeling, 2009 or Corredor et al., 2013).  

                                                                                                                                                                                     

drift term captures expected jumps and, consequently, the difference between realized jumps and the jump 

component forms a martingale with zero expectation (see Merton, 1976). 
2 According to Datastream data for 2011 the New York stock exchange lists both very small and very large 

firms. However, the average size of the firms listed in the Spanish stock market is approximately three 

times that of those listed in the NYSE. 
3 The US/Spanish scores on the five dimensions are Power Distance (40/57), Individualism (91/51), 

Masculinity (62/42), Uncertainty avoidance (46/86) and Long-term orientation (29/19).  
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In addition, using the same testing strategy as Jiang and Yao (2013), we aim to shed 

light on another key controversy not studied in the cited paper. In particular, we study 

the origin of momentum returns and its relation with default risk, which is the most 

innovative aspect of this paper. While Avramov et al. (2007) and Agarwal and Taffler 

(2008), using different default risk proxies, conclude that default risk is the key variable 

to explain the momentum effect, Abinzano et al. (2014) find no empirical support for this 

claim. They identify default risk as simply one more characteristic of the loser portfolio, 

which lacks sufficient explanatory power, on its own, to account for total return. 

Following the logic applied by Jiang and Yao (2013), if default risk is a key factor in the 

momentum effect, both these characteristics will necessarily show significant premiums 

on the same (jump or continuous) return component. Otherwise, it can hardly be argued 

that momentum and default risk are directly related or that one is the direct cause of the 

other.  

Thus, this paper makes two main contributions to the literature. First, we test whether 

Jiang and Yao’s (2013) findings for US are stock-market-dependent, analysing the 

Spanish market, which presents significant differences in aspects such as the firm 

characteristics, financial system, investor typology and cultural dimensions. Our results 

show that these differences have major repercussions on the frequency and intensity of 

jumps, both of which are lower in the Spanish stock market. However, the main 

conclusions hold and thus, our findings strengthen the robustness and generalizability of 

those of Jiang and Yao (2013). Second, and more importantly, we use the same testing 

strategy in order to see whether default risk is a potential explanation for the 

momentum effect. Our results shed some light on this controversy by confirming the 

conclusions reached by Abinzano et al. (2014) and enabling us to conclude that default 

risk is not the source of momentum returns, given that the predictable component of 

returns manifests itself differently in each case: as jumps in the case of default risk and 

as continuous returns in that of momentum.  

The remainder of the paper is organized as follows: Section 2 describes the statistical 

procedures used to identify jumps and break down stock returns into their continuous 

and jump components. Section 3 presents the database and preliminary data analysis. 

Section 4 summarizes the empirical findings from the analysis of stock characteristics 

and return predictability, and reports on various robustness checks based on a re-

estimation controlling for liquidity shocks, jump risk and the “martingale restriction” on 

jumps. Section 5 analyzes the continuous and jump components of total stock returns to 
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explore the relationship between the momentum effect and default risk. Finally, section 

6 presents the paper’s main conclusions. 

 

2. Jump Measure 

From all the statistical jump detection options4 proposed in literature, we select the one 

developed by Jiang and Oomen (2008). Our reasons for this choice are basically 

threefold. Firstly, it is a powerful method for identifying large, infrequent jumps in 

returns and provides reliable estimates of jump returns. Secondly, it is more sensitive to 

jumps than other tests because it uses both second and higher-order moments. Jiang and 

Oomen (2008) provide simulations which show their statistic to perform comparatively 

well. Thirdly, the approach is model free, as it does not impose functional specifications 

on the drift, diffusion or jump dynamics. Moreover, its implementation requires only 

asset prices. Hence, its implementation on a large cross-section of stocks over a long time 

period is straightforward. 

This test is inspired by the variance swap, a contract whose payoff depends on the 

realized variance. Intuitively, it reflects the cumulative gain of a variance swap 

replication strategy, which is minimal (substantial) in the absence (presence) of jumps. 

Specifically, when there is no jump, the difference between simple returns and log 

returns equals one half of the instantaneous return variance (see Jiang and Oomen, 

2008 for a detailed, technical explanation). Based on this result, the variance swap 

replication strategy is perfect. However, when jumps occur, the difference is also a 

function of realized jumps and the aforementioned replication strategy fails. The method 

is based on precisely this insight. 

Let �� 	be the price of a stock at day t, where �� = ��� − ���	
 ���	⁄  is the simple return 

and �� = ln��� ���	⁄ 
 denotes the continuously compounded or log return. The variance 

swap measure is computed as 

 ��� = 2∑ ��� − ��
���	         (1) 

where T denotes the sample size, whereas the realized variance is defined as 

                                                           
4 For instance, Barndorff-Nielsen and Shephard (2006) develop a test based on bipower variation. A modified 

version of this test is used by Huang and Tauchen (2005) and Andersen et al. (2007). Lee and Mykland 

(2008) also use bipower variation but in a different way, developing a nonparametric statistical test of 

jumps. Aït-Sahalia and Jacod (2009) and Tauchen and Zhou (2011) propose nonparametric tests for presence 

of jump. 
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 ��� = ∑ ������	          (2) 

which is known to converge to the total variation of the process. Thus, by construction, 

the difference between the ��� and ��� values can be used to detect the presence of 

jumps. As Jiang and Oomen (2008) prove, since the price process is modeled as discrete 

time observations, the difference between the two values can be used to test statistically 

whether or not jumps have occurred. More precisely, when jumps are absent, their ratio 

will be indistinguishable from one, but when they are present it will reflect the 

replication error of the variance swap. Under the null hypothesis of no jumps over the 

period �0, ��, Jiang and Oomen (2008) proposed the following ratio test: 

 �� = � ���,�

�� !

"1 − $��
%��

& '→)�0,1
      (3) 

where ��*,�
 = + ��,-�
*  where �� is the diffusive variance when there is no random jump, 

and Ω%� = 	
/ 01 + ��2,-�

*  with 03 = 23/� Γ��6 + 1
 2⁄ 
 √9⁄   for 6 > 0 where Γ�∙
 denotes the 

gamma function. Consistent estimates of ��*,�
 and Ω%� are given by bi-power variation  

 �<�*,�
 = =>�� = 	
?@A

�
��	∑ |����C	|��	��	       (4) 

and multi-power variation 

 ΩD%�
�3
 = ?E

/
�F?E G⁄

HG

��3C	∑ ∏ |��CJ|1 3⁄3
J�	

��3
��*      (5) 

respectively, where p is equal to six5.  

After identifying jump days6, jump and continuous return components are disentangled 

from total stock returns each year. Let �� be the total annual stock return and K�JLMJ�	
N

 

the log of identified jump returns during the year. The jump (JR) and continuous (CR) 

returns are computed as 

 �� = expR∑ �JLN
J�	 S − 1;  T� = �� − ��     (6) 

Following Jiang and Yao (2013), we also construct a so-called liquidity-adjusted jump 

return, U��, where each jump day’s return is now calculated by aggregating returns from 

                                                           
5 p must be 4 or 6 for the robust estimation of Ω%� (Jiang and Oomen, 2008). We perform the analysis for 

both values and the results are consistent. Therefore, we show only those corresponding to p equal to six (the 

rest are available upon request). 
6 The sequential approach used by Jiang and Yao (2013) is adopted to identify days with stock price jumps. 

See Appendix A for further details about this procedure.  
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k to k+47. This measure should mitigate the effect of liquidity shocks, taking into account 

that this kind of jumps will revert over subsequent trading days. Likewise, the liquidity-

adjusted continuous return is computed as  

 UT� = �� − U��        (7) 

Finally, the total jump risk of stock returns is constructed annually by 

 ��VWX = �� − =>�        (8) 

a measure that captures jump return variance. Barndorff-Nielsen and Shephard (2004) 

develop this measure after decomposing the return variance into the continuous 

component of log-prices and the impact of jumps. This decomposition is crucial when 

measuring the risk associated with an asset, since it allows us to distinguish between 

diffusion risk and jump risk. The latter is the one used in equation (8).  

 

3. Data and Preliminary Analysis 

Given that behavioral finance theories have emphasized the role of variables such as 

type of financial system, investor typology, stock characteristics, and cultural dimensions 

on stock prices, the key question is whether the results of Jiang and Yao (2013) for US 

data are market-dependent or can be generalized to other markets. To explore this issue, 

we have chosen the Spanish stock market because, although it is a developed financial 

market, it displays major differences in all of the above variables.  

The study data were obtained from the Thomson Financial8 database, where from all the 

stocks listed on the Spanish continuous market (SIBE), we were able to collect daily 

return data for 208 stocks listed on the Spanish stock exchange between January 1990 

and July 2011. Using a significance level of 1%9, we performed the above econometric 

jump test on daily stock returns over each calendar quarter10. This requires a minimum 

                                                           
7 Although period k to k+4 is used for consistency with Jiang and Yao (2013), the conclusions also hold for k 

to k+3 and k to k+5. These results are not shown but are available upon request. 
8 Various filters suggested by Ince and Porter (2006) were applied to avoid bias from the naive use of the 

Thomson Datastream database. In particular, we have removed padded zero-return records at the end of 

delisted firms, all nonlocal firms, all listings other than those on the primary exchange and all listings with 

Type not equal to Equity. We include only those firms that checked YES in the “Primary quote” field. 
9 Results (available upon request) are robust if we focus mainly on the large jumps by changing the critical 

value of the jump test to 3 or 4 (e.g. Andersen et al., 2007 and Huang and Tauchen, 2005). 
10 Although the literature seems to focus on very high frequency data in calculating statistical measures of 

jumps, following Jiang and Yao (2013) we focus on daily data for several reasons. Availability of intra-day 

data is limited. Besides, daily frequency helps mitigate market microstructure noise and avoids the need for 

the corresponding modified Jiang and Oomen (2008)’s test for high frequency data. In fact, Christensen et al. 
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of 44 daily return observations during the quarter, thus, 176 observations to calculate 

the total jump risk given by (8). If the test is unfeasible, a zero jump return is recorded. 

To avoid the misinterpretation of no trading activity, any observations for which the 

previous three days’ return data are not available are not classed as jumps.  

A brief summary statistics of jumps is shown in Table 1. The jump frequency for each 

stock is computed in annual terms (from July of year - to June of year	- + 1) as the ratio 

of the total number of jumps to the number of years the stock is in the sample. Jump size 

is the average in absolute value of all realized jumps. We also compute the jump size for 

positive and negative jumps. The mean and median jump frequencies are 1.11 and 1.00, 

which is clearly lower than those obtained by Jiang and Yao (2013) for the US market 

(2.02 and 2.00, respectively for the most recent sample period 1962-2009). The mean and 

the median of the absolute jump sizes are 9.87% and 8.82%, respectively. Once again, 

these figures are lower than those obtained for the US market (14.24% and 11.84%). The 

jumps estimated at 5th and 95th percentiles in the Spanish stock market (4.55% and 

19.32%) are both clearly lower than in the US market (5.49% and 30.76%). 

The statistics for positive and negative jumps reveal that the positive jumps are notably 

more frequent (0.84) than the negative ones (0.26), which is in line with the findings 

reported by Jiang and Yao (2013) and consistent with the average positive skewness in 

daily stock returns documented in the literature (see Campbell et al., 1997). However, it 

is important to note that the average size of negative jumps (-11.21%) is greater than 

that of positive ones (9.52%)11. 

These results show that the differences between the two markets have a not negligible 

impact on the jump distribution and intensity. In particular, the lower frequency and 

smaller size of jumps in the Spanish stock market could be due to various reasons. These 

include differences in firm size, because the smallest firms in the Spanish stock market 

are not listed; differences in ownership concentration, because in Spain ownership is 

clearly more highly concentrated; and differences in investor typology, because, in 

contrast to the US market, where they are MF&PP, the main institutional investors in 

                                                                                                                                                                                     

(2011) show that many intra-day jumps often quickly revert, since they are caused by market microstructure 

noise or liquidity. Daily data is also useful for picking out infrequent and large jumps over a holding period 

of one year. Daily frequency seems indeed acceptable since the majority of investors do not rebalance 

continually, or even daily. Finally, the jump test is performed quarterly to take into account time-varying 

volatility of stock returns (see Jiang and Yao, 2013, for more details). 
11 As a robustness check, we define as a jump any return which is smaller (bigger) than the mean minus 

(plus) k standard deviations and this pattern holds: positive jumps are more frequent but smaller than the 

negative ones. This result holds for k =1.5, 2, 2.5 and 3. Furthermore, both patterns become clearer with 

increases in the value of k. 
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Spain are banks, which have more a stable relationship with firms. The major 

differences observed in the jump distribution further fuel our aforementioned interest in 

testing whether they might significantly influence our conclusions as to whether or not 

jumps, as a proxy for the unexpected return component, are correlated with ex-ante firm 

characteristics and whether this might alter the explanatory power of risk-based and 

behavioral explanations of stock return predictability. 

The size and btm variables are based on monthly data drawn from the Thomson 

Financial database. Size is computed as the logarithm of market capitalization and btm 

is the ratio between the book value and the market value. Liquidity is proxied by the 

illiquidity measure developed by Amihud (2002), which is the average ratio of the 

absolute daily return to the (monetary unit) trading volume on that day: 

∑=
=

tD

d ti

ti

ti
ti V

R

D
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1 ,

,

,
,

1
 (9) 

where Di,t is the number of  days for which data are available for stock i in month t, and 

Ri,t and Vi,t denote the daily return and daily  trading volume (in euros), respectively, at 

day t. 

Table 2 reports the descriptive statistics of jumps in portfolios sorted by size, btm, 

illiquidity ratio and momentum12. Most of the jumps found in the size-sorted portfolios 

are in the smallest firm quintile and the data show a decreasing monotonic pattern 

overall, except in the second quintile and average jump size is significantly greater for 

small firms than for big ones. 

In the btm-sorted portfolios, the number of jumps follows a u-shaped curve and average 

jump size an inverted u-shaped curve. However, there are no differences between the 

extreme quintiles either in the number or the average size of jumps. The only significant 

difference is the larger number of negative jumps in the low btm ratio quintile.  

With the exception of quintile 4, the illiquidity ratio quintiles show an increasing 

monotonic pattern both in the number and average size of jumps, with the highest 

                                                           
12 In their seminal paper, Jegadeesh and Titman (1993) use combinations of formation periods (J = 3, 6, 9 

and 12 months) and holding periods (K = 3, 6, 9 and 12 months) making a possible total of 16 different 

momentum strategies. Later literature takes as reference the J = 6, K = 6 strategy. For examples, see 

Rouwenhorst (1998) or Griffin et al. (2003). We too have computed this 6X6 momentum strategy. Thus, in 

the case of the momentum characteristic, stocks are sorted by the past 6 months’ cumulative return. 
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values appearing in the more illiquid stocks. The difference between the extreme 

quintiles is significant at conventional levels except in the case of negative jumps.  

While there is no clear pattern in the number of jumps in the momentum portfolio, the 

average size follows a u-shaped curve. However, neither in the number nor in the 

average size of jumps is there a significant difference between the two extreme quintiles, 

winners minus losers. These results suggest that the variables most strongly related to 

jumps are size and liquidity. They also clearly illustrate that, irrespective of the 

portfolio-sorting variable, positive jumps are more frequent but smaller in average 

absolute value than negative ones. 

Finally, following Vassalou and Xing (2004) and Abinzano et al. (2014), we use the 

Black-Scholes-Merton (BSM) measure as a proxy for default risk. We use this measure 

instead of the credit rating because there is no available credit rating for several stocks 

in the Spanish stock market and a firm’s credit worthiness can vary substantially before 

its credit rating is readjusted. We use a market-based measure because accounting-

based measures have certain disadvantages, particularly stemming from the failure to 

consider asset volatility, as a result of which firms with the same ratios are attributed 

with exactly the same likelihood of going bankrupt. This measure of default risk is given 

by the following expression: 


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where tAV ,  is the value of firm assets at time t, tµ  is the expected immediate rate of 

return on tAV , , tA,σ  is asset return volatility, tD  is the debt face value, T is the maturity 

period and N(·) is the cumulative probability of the normal distribution. To find the 

values of tAV ,  and tA,σ , we use an iterative process starting from the market price of the 

firm’s shares (See Vassalou and Xing, 2004 for further details)13. We use debt data for 

                                                           
13 However, the value of the firm’s assets is not directly observable and nor, therefore, are the volatility or 

the average rate of return. The one observable variable is the market value of equity, which can be used to 

estimate the volatility of its return. By solving the equation  tAtEtAtE dNVV ,1,,, )(/ σσ =  iteratively, starting 

with the market value of equity, it is possible to calculate the value of the firm’s assets, volatility and mean 

return. We use a tolerance level of 0.001 and adopt the usual forecasting horizon of 1 year (T = 1).  
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the last three quarters of the current year and the first quarter of the past year and 

calculate the book value of debt as the sum of short-term debt and 50% of long-term debt. 

Shares in banks and finance and insurance companies were excluded from the 

construction of the default measure, because the difference in their capital structure 

could skew the resulting default risk estimates. This reduced the sample to 124 shares 

for this part of the analysis, causing a degree of sample bias. This has little consequence, 

in the case in hand, however, because, as shown by Muga and Santamaría (2007), the 

estimates of momentum returns from finance sector stocks in this market are not 

statistically significant.  

 

4. Empirical results 

4.1. Cross-sectional return predictability 

In this section, we analyze return predictability based on the four characteristics named 

above (size, btm, momentum, and illiquidity ratio). In June of year - stocks are sorted by 

a specific characteristic and the return for the holding period from July of year - to June 

of year - + 1 is then computed. Then returns are aggregated in equal-weighted quintile 

portfolios. In the case of the momentum portfolios, both the formation period (from 

January to June of year	-) and the holding period (from July to December of year	-) are 6 

months long. 

Table 3 shows the return of the four characteristic-based portfolio quintiles and the 

return spread between their top and bottom quintiles. All of these spreads show the 

expected sign but, in contrast to the results obtained by Jiang and Yao (2013) for the US 

stock market, this spread is significant at conventional levels only for the btm and 

momentum portfolios. The lack of significance of the premium for the size and illiquidity 

ratio is not exceptional in the market analyzed, due to the high average firm size of SIBE 

listed companies, as small and medium firms are not listed in this market. 

However, the lack of significant premiums associated with size and illiquidity does not 

rule out the possibility of the jump component having a significant premium offset by the 

continuous return component (or vice versa), thus resulting in the lack of significance 

found for the total returns. We clarify this issue with the data displayed in Table 4, 

which shows the premiums obtained for the 4 characteristics of interest after separating 

the continuous component (CR) from the jump component (JR) in total returns. This 
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enables us to find significant jump premiums in the size-sorted portfolio returns (6.67% 

per year) and the illiquidity-sorted portfolio returns (9.92% per year). The fact that these 

premiums are partially offset by the CR in both these portfolios is the reason for the lack 

of significance of the premiums observed in Table 3. 

The behaviour of the btm premium differs from that of the two variables discussed 

above, in that both the jump return (3.86% per year) and the continuous return (8.33% 

per year) are statistically significant.  

Thus, the results enable us to sustain the claim that the return predictability of stocks 

with the characteristics of interest in the Spanish stock market cannot be attributed 

solely to risk-based explanations, given that, if investors form unbiased rational 

expectations, the unexpected component of stock return should not be correlated with ex 

ante firm characteristics. These results are consistent with those obtained by Jiang and 

Yao (2013) for the US stock market. 

Finally, the momentum premium behaves differently from the rest of the study 

variables, in that the continuous return component shows a six-month premium of 

10.48%, while the jump return component is negative with a value of -1.87%. This 

separation between JR and CR components is very similar to that in the US stock 

market. 

These results show that, although the literature has repeatedly associated the 

momentum effect with liquidity, size and btm, momentum returns arise from the CR 

component, while liquidity and size returns come mainly from the JR component. Thus, 

momentum definitely behaves differently from size and liquidity, since the former is 

related to the effect of the risk premium (the continuous component) and the latter to the 

unexpected component of stock returns and is therefore unlikely to be related to the risk 

premium. The btm is the only characteristic to show a significant premium in the CR 

component (as well as in the JR component) which would suggest that momentum and 

btm could be related, as claimed by Daniel and Titman (1997). 

A final point worth noting is that these results show that jump frequency and average 

jump size are both lower in the Spanish market, probably because of characteristic 

differences with other markets (specifically, larger average firm size, higher ownership 

concentration, and a stronger presence of institutional investors  from the banking sector 

whose relationships with the business world are more stable), the main conclusions 
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largely coincide with those of Jiang and Yao (2013) for the US stock market, thereby 

strengthening the robustness and generalizability of their findings. 

4.2. Robustness checks 

This section describes the various robustness checks performed in this study. First, 

returns are calculated for firms with jumps and firms without jumps. For every year	-, 
the “firms with jumps” sample includes all firms presenting at least one jump over the 

formation period July - − 1 to June -. The returns are then calculated for the holding 

period from July - to June -+114. The remaining firms make up the “firms without 

jumps” sample. The results are in line with those obtained in the previous section (see 

Table 5). In particular, the yearly size premium of -12.46% and the yearly liquidity 

premium of 13.25% are significant only in the “firms with jumps” sample, while the six-

month momentum premium of 7.61% is significant only in the “firms without jumps” 

sample. In both samples, the yearly book-to-market premium is significantly positive: 

13.76% in the “with jumps” sample and 10.61% in the “without jumps” sample. 

Next, we adjust for liquidity shocks in asset prices by constructing the “liquidity-

adjusted” jump return LJR and the corresponding “liquidity-adjusted” continuous return 

LCR described in Section 2. LJR is the originally identified jump return compounded 

with the stock returns over the subsequent four trading days to overcome potential stock 

price reversion, and LCR is the difference between total return and LJR. This enables us 

to mitigate the effect of temporary liquidity shocks on our empirical results. The results 

(see Table 6) remain the same as those reported in Table 4 for the size, liquidity, and 

momentum premiums. Jumps fully account for the size and liquidity effects, but they do 

not drive momentum. The difference emerges in the btm variable. After adjusting for 

liquidity, the jump premium ceases to be significant, and only the continuous component 

has a significantly positive premium. This result suggests that liquidity jumps do, in 

fact, account for a significant part of the value premium. 

We then repeat the exercise while controlling for jump risk using a double-sorting 

procedure. Stocks are first sorted into tertiles15 based on the jump risk measure JRisk. 

Then, within each tertile, stocks are further sorted into tertiles based on one of the four 

characteristics (size, btm, momentum, and illiquidity ratio). The new tertile portfolios 

are obtained by combining all the stocks with the same characteristic tertile rank across 

                                                           
14 As in the previous section, six-month formation and holding periods are used for the momentum portfolios. 
15

 Because the total number of stocks in the Spanish stock market is not large enough to use quintiles, we 

use tertiles instead to allow some degree of diversification in the final portfolios. 
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three jump risk tertiles, and computing equal-weighted portfolios. This procedure allows 

each tertile portfolio to capture a different stock characteristic but the same jump risk. 

The results obtained are very similar to those obtained without controlling for jump risk 

(see Table 7). In this case, although the total premiums maintain the expected sign, they 

lack significance for all the variables. Size shows a premium in the continuous 

component. This premium is also shown for the momentum effect. The results for the JR 

follow the same pattern as before with significant premiums for size (-7.00% per year), 

BTM (3.43% per year) and liquidity (8.69% per year). The results after controlling for 

liquidity are basically the same. In summary, after controlling for jump risk, the 

predictive pattern of size and liquidity premiums realized by jumps remains unaltered.   

Finally, we also take into account the implications of the “martingale restriction” on 

jumps. In continuous-time models with random jumps the literature often imposes a 

restrictive form for the instantaneous drift, in order to form a martingale with zero 

conditional expectation (see, e.g., Merton, 1976; Andersen et al., 2002, and Pan, 2002). 

This martingale restriction on jumps under the rational asset-pricing models implies 

that, even after controlling for jumps, the predictability of firm characteristics is 

expected to be maintained. To test this implication, we use another double-sorting 

procedure to control for jumps. First, in June of year -, stocks are sorted into tertiles 

based on realized jump returns during the holding period from July of year - to June of 

year - + 1. Stocks without jumps are assigned to a separate group. Then, within each of 

the four jump-sorted groups, stocks are further sorted into tertiles based on each of the 

four characteristics. The new tertile portfolios are computed by combining into a single 

equal-weighted portfolio the stocks with the same characteristic ranking across all four 

different jump groups. Table 8 reports the results. Once again, they are similar to those 

obtained before controlling for this variable. Size and liquidity, the two characteristics 

that have been fully realized in the form of jumps in previous results, continue to do so 

after controlling for jumps. They lack any significant predictive power after controlling 

for the jump effect. 

 

To sum up findings thus far, the results obtained have shown that jumps have 

significant power to explain the premium on three of the four characteristics analyzed 

(size, btm and illiquidity). More importantly, in the case of size and illiquidity, which the 

preliminary analysis identified as the variables most strongly related to the presence of 

jumps (see Table 2), the continuous component prevents significant premiums from 

developing in total returns. The results obtained for the jump component in the Spanish 
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market are therefore similar to those obtained for the US market, suggesting that the 

reaction to information captured by the jump component is more homogeneous across 

different markets than that captured by the continuous component, which may be more 

strongly tied to market-specific characteristics. While lying beyond the scope of this 

paper, cross-sectional and time-series analysis of the jump component in overall return 

patterns across markets might provide useful implications for portfolio management. 

 

5. Jumps, momentum and default risk 

The momentum results differ from those of the other characteristics by showing no 

significant premiums in the jump component while showing a significantly positive 

premium in the continuous component. Despite this widespread evidence, there is 

ongoing disagreement as to the source of momentum, with some scholars supporting 

risk-based explanations and others finding the most satisfactory explanation in 

behavioral finance theories. 

The literature has linked the momentum effect to size (see Hong et al., 2000), due to the 

greater difficulty of small stocks and those commanding less attention from market 

analysts to fully incorporate information, and also to the btm ratio, (see Daniel and 

Titman, 1997) low btm ratios having been linked to asset pricing problems. Other 

characteristics with which the momentum effect has been related are the firm’s industry 

(see Moskowitz and Grinblatt, 1999) and firm valuation problems (see Muga and 

Santamaría, 2007). More recently, Avramov et al. (2007) used  US stock market data to 

show that momentum strategies will only achieve significant profits if strategies are 

constructed from low credit rating stocks, while Agarwal and Taffler (2008), using UK 

stock market data, concluded that the momentum effect is a direct consequence of 

market under-reaction to distress risk. However, Abinzano et al. (2014)), using a market-

based measure of default risk based on the Black-Scholes-Merton option-pricing model in 

four key European stock markets (France, Germany, Spain and the UK) find that default 

risk is not necessarily a characteristic of momentum strategies and cannot therefore 

explain momentum returns.  

In this context, analysis of the components of total returns (JR and CR) can be very 

useful to test whether default risk is the source of the momentum effect, and thereby 

shed some light on this controversy. 
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In order to compute the JR and CR components based on the default risk characteristic, 

in June of every year -, we sort the stocks using the BSM measure given by (10) and 

then compute the return for the holding period from July of year - to June of year - + 1. 

The stocks are then grouped into equal-weighted quintile portfolios. As a robustness 

check, we also compute LJR and LCR, and JR and CR controlling for jump risk and for 

realized jumps returns.  

Tables 9 and 10 report the results. Although we find a default-risk premium of 6.54% per 

year16, it is largely attributable to the JR component, which accounts for 6.17%, the 

contribution of the CR component being virtually null (0.37%) and non-significant. These 

results differ completely from those reported for the momentum premium, where the JR 

component was negative and non-significant (-1.86%) and the CR component positive 

and significant (10.47%). Thus, the default risk and momentum premiums arise from 

different origins, the continuous return component in the case of momentum and the 

jump component in that of default risk17. Thus, momentum and default are unlikely to 

share the same source when one is consistent with explanations based on exposure to 

risk factors and the other with explanations based on investor behaviour. Thus, 

momentum and default risk are unlikely to share the same source when one is consistent 

with explanations based on exposure to risk factors and the other with explanations 

based on investor behaviour. These results appear to corroborate the conclusions reached 

by Abinzano et al. (2014) rather than those of Avramov et al. (2007) or Agarwal and 

Taffler (2008) and enable us to assert that default risk is not the source of momentum 

effect. 

It is worth noting that, apart from momentum, the only characteristic of those analyzed 

in this paper that consistently displays a CR-related premium is btm, thereby 

corroborating the arguments put forward by Daniel and Titman (1997). Thus, insofar as 

btm is related with size, illiquidity and default risk, we can observe that momentum 

returns are also related to these three variables, but that the source of the returns is 

                                                           
16 This variable does not produce a significant quintile return spread because of the high variance of the 

quintile spread series. The jump component is nevertheless clearly significant. 
17 Despite the drawbacks of accounting measures mentioned in section 3, the robustness of the analysis was 

tested using Altman’s Z Score. In line with other studies using accounting measures (see Agarwal and 

Taffler 2008), the default premium is negative, although, in our case, it lacks significance. However, as far as 

the main focus of the paper is concerned, since neither the jump component nor the continuous component is 

found to be significant, we are unable to conclude that the predictable component associated with default 

risk is realized in the same form (as price jumps or as continuous returns) as that associated with 

momentum. Thus, despite the change in the sign of the default premium, the main conclusion remains the 

same: default risk is unlikely to drive the momentum effect. These results are not shown but are available 

upon request from the authors.  
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different. Nevertheless, when total returns are broken down into their components (JR 

and CR), only btm appears to share the same origin as the momentum effect. These 

results are highly revealing and suggest that the search for the origin of the momentum 

effect should be oriented towards btm-related variables, enabling us to cast aside 

numerous other explanations based on size, illiquidity or default risk. 

In addition, the results obtained using the liquidity-adjusted measures (see Table 9) are 

similar to those provided by the unadjusted measures, notably in that the default risk 

premium is shown to be almost entirely due to the jump component. Furthermore, the 

analysis controlling for jump risk and for realized jump returns (see Table10) again 

reveals no significant positive premium attached to the CR component, in contrast to the 

findings for the momentum strategies. Thus, there is no difference between these and 

the results reported above. 

 

6. Conclusions 

The relationship between stock return predictability and various stock characteristics 

has been widely treated in the literature, which has offered risk-based as well as 

behavioural finance explanations. Jiang and Yao (2013) present a new way to unravel 

this controversy by separating the total stock return into its continuous and jump 

components. Their results for the US market indicate that stock return predictability is 

unlikely to be driven by a risk-based explanation. 

In this paper, we analyze the Spanish stock market in order to test whether Jiang and 

Yao’s (2013) findings are stock market-dependent. The Spanish stock market presents 

key differences in aspects such as the financial system, investor typology, stock 

characteristics and cultural dimensions. Our results show that these differences have 

major repercussions on the frequency and intensity of jumps, both of which are lower in 

the Spanish stock market. This finding is probably due to factors such as the larger 

average size of Spanish listed companies, their higher ownership concentration, and the 

stronger presence of institutional investors from the banking sector who have more 

stable relationships with firms. In spite of these differences, however, the main 

conclusions hold.  Thus, our findings strengthen the robustness and generalizability of 

those of Jiang and Yao (2013), ours having been obtained in a setting that contrasts 

markedly with theirs in certain key market characteristics. Particularly, the jump 

component displays significant premiums in 3 of the 4 characteristics (size, btm and the 
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illiquidity ratio), showing that the unexpected component of stock returns is related to 

lagged stock characteristics and is therefore difficult to reconcile with risk-based 

explanations.  

In addition, analysis of the JR and CR components of total return has proven very useful 

for testing the default risk explanation for momentum, and thereby shedding some light 

on this controversy. Our results have shown that default risk premium is basically 

attributable to the jump component and the premium for the continuous component is 

virtually null. In the momentum premium, meanwhile, the role attributable to the jump 

component is non-significant, while that of the continuous component is positive and 

significant. This confirms the conclusions reached by Abinzano et al. (2014) and enables 

us to assert, in contradiction to the claims put forward by Avramov et al. (2007) and 

Agarwal and Taffler (2008), that default risk is not the source of momentum returns. In 

fact, the only other characteristic of those considered in this study which, like 

momentum, shows a significant premium attached to the continuous component is the 

btm ratio.  

These very revealing findings suggest that we should direct the search for the source of 

momentum  profits towards btm-related variables, in line with arguments presented by 

Daniel and Titman (1997), thereby ruling out numerous explanations based on size, 

illiquidity, or default risk. 
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Appendix A. The jump-day identification procedure. 

Following detection of a jump, we adopt the sequential approach used by Jiang and Yao 

(2013) to identify days with jumps. The specific sequence is as follows: 

- Step 1: If the statistical jump test detects a jump during the testing period, we 

record the value of the jump statistic �� and continue to Step 2. 

- Step 2: We replace each log return �Y , V = 1,… , ) in  the testing period with the 

sample median , denoted by �[ and perform the statistical jump test on each of the 

new log return series \�	, … , �Y�	, �[, �YC	… , �]^. In this way, a series of jump statistics 

��Y , V = 1,… ,) are recorded. We use the median because it is robust to jumps. 

Furthermore, by replacing each return with the median instead of removing it from 

the sample, we are able to keep the sample size fixed and thereby maintain the 

power of the test.  

- Step 3: We calculate the differences between the jump statistic in Step 1 and those 

in Step 2, thus obtaining a series of ��-��Y, = 1,… ,) . The highest of all these values, 

�� − ��_, identifies jump day j , and consequently the return on day j, �_, is identified 

as the jump return. This is because replacement of return �_ with the median causes 

the greatest reduction in the jump test statistic. This criterion is similar to the 

likelihood ratio test, since �_ is the return in the testing period that contributes most 

to the rejection of the null hypothesis in the jump test in Step 1(i.e. the detection of 

jumps in the sample). 

- Step 4: We substitute the jump return �_ identified in the testing period with the 

median, thus obtaining a new sample of returns K�	, … , �_�	, �[, �_C	… , �]M. We then 

repeat the process from Step 1 until no more jumps are detected by the �� statistic. 

Note that each time a jump day is detected, all the returns for identified jump days 

are set to the median over the sample period.       
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Table 1 Descriptive Statistics of stock price jumps 

  5% 25% mean median 75% 95% st. dev. 

J / year 
0.00 0.57 1.11 1.00 1.44 2.31 0.98 

(+) J /year 
0.00 0.41 0.84 0.75 1.09 1.77 0.81 

(-) J / year 
0.00 0.05 0.26 0.19 0.37 0.80 0.30 

J size % 
4.55 6.90 9.87 8.82 11.64 19.32 4.65 

(+) J size % 
4.55 6.88 9.52 8.62 11.60 18.62 4.44 

(-) J size % 
-31.55 -12.85 -11.21 -9.45 -7.03 -4.84 7.70 

 

This table reports the descriptive statistics (5th percentile, 1st quartile, mean, median, 3rd quartile, 95th 

percentile, and standard deviation) of jumps of individual stock prices. J / year ; (+) J /year ; (-) J / year is 

calculated in annual terms (from July of year - to June of year - + 1) as the ratio of total number of jumps / 

positive jumps/ negative jumps to the number of years the stock is in the sample. J size % is the average in 

absolute value of all realized jumps.  (+)J size %/ (-) J size % is the average of all positive /negative jumps.  
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Table 2: Descriptive statistics of stock price jumps for portfolios sorted by stock 

characteristics 

Size BTM Illiq Mom Size BTM Illiq Mom 

J / year J size % 

Q1 1.24 1.06 0.76 1.17 0.12 0.10 0.08 0.11 

Q2 1.32 1.18 1.12 1.07 0.10 0.08 0.09 0.08 

Q3 1.12 1.18 1.28 1.11 0.09 0.09 0.11 0.09 

Q4 1.03 1.05 1.43 1.12 0.08 0.09 0.10 0.09 

Q5 0.92 1.07 1.28 1.12 0.07 0.11 0.12 0.11 

Q5-Q1 -0.32 0.02 0.52 -0.05 -0.05 0.01 0.04 0.00 

p-val 0.05 0.93 0.01 0.79 0.00 0.26 0.00 0.73 

(+) J /year (+) J size % 

Q1 1.04 0.77 0.50 0.94 0.12 0.09 0.07 0.11 

Q2 1.03 0.94 0.88 0.85 0.10 0.08 0.08 0.08 

Q3 0.92 0.91 0.98 0.82 0.09 0.08 0.10 0.08 

Q4 0.77 0.81 1.18 0.90 0.07 0.09 0.11 0.08 

Q5 0.68 0.93 1.05 0.87 0.07 0.11 0.12 0.10 

Q5-Q1 -0.37 0.15 0.54 -0.07 -0.05 0.02 0.05 -0.01 

p-val 0.03 0.38 0.00 0.66 0.00 0.18 0.00 0.34 

(-) J /year (-) J size % 

Q1 0.21 0.28 0.25 0.23 -0.16 -0.11 -0.09 -0.10 

Q2 0.27 0.24 0.25 0.22 -0.09 -0.09 -0.12 -0.10 

Q3 0.32 0.27 0.30 0.29 -0.09 -0.09 -0.12 -0.10 

Q4 0.24 0.23 0.25 0.22 -0.12 -0.08 -0.10 -0.10 

Q5 0.28 0.15 0.24 0.25 -0.08 -0.12 -0.11 -0.11 

Q5-Q1 0.06 -0.14 -0.02 0.03 0.08 0.00 -0.01 -0.01 

p-val 0.40 0.04 0.81 0.57 0.01 0.88 0.44 0.46 

 

This table reports the descriptive statistics (number of jumps in annual terms and the average jump size) for 

portfolios sorted on size, btm, illiquidity and momentum. P-val is the p-value associated with the two-sample 

t-tests for a difference in mean between the extreme quintiles. 
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Table 3. Descriptive statistics for portfolios sorted on stock characteristics 

  SIZE BTM ILLIQUIDITY MOMENTUM 

  TR TR TR TR 

Q1 0.1649 0.0758 0.0694 0.0885 

Q2 0.1207 0.0863 0.1362 0.0869 

Q3 0.1067 0.1101 0.0643 0.0713 

Q4 0.0882 0.1207 0.1495 0.0838 

Q5 0.0912 0.1976 0.1305 0.1746 

Q5-Q1 -0.0737 0.1218 0.0611 0.0861 

p-val 0.2213 0.0131 0.2751 0.0246 

 

This table reports the average returns across stock characteristic quintiles. In June of each year t, stocks are 

sorted based on each stock characteristic to form equal-weighted portfolios. These portfolios are held from 

July t to June t+1. The table also shows the spread between the top and bottom quintiles and the p-value 

associated with the time series t-statistic for the return spreads. 

 

 

 

 

 

 

Table 4. Jump returns and continuous returns across stock quintiles 

  SIZE BTM ILLIQUIDITY MOMENTUM 

  JR CR JR CR JR CR JR CR 

Q1 0.0931 0.0719 0.0391 0.0366 0.0118 0.0576 0.0793 0.0093 

Q2 0.0615 0.0592 0.0509 0.0355 0.0383 0.0979 0.0420 0.0449 

Q3 0.0648 0.0419 0.0447 0.0655 0.0637 0.0007 0.0434 0.0280 

Q4 0.0226 0.0657 0.0514 0.0694 0.0945 0.0550 0.0396 0.0442 

Q5 0.0264 0.0648 0.0777 0.1199 0.1110 0.0196 0.0606 0.1141 

Q5-Q1 -0.0667 -0.0071 0.0386 0.0833 0.0992 -0.0380 -0.0187 0.1048 

p-val 0.0006 0.8829 0.0079 0.0504 0.0011 0.4504 0.2563 0.0012 

 

This table reports the time series averages of jump returns (JR) and continuous returns (CR) for each 

characteristic-sorted quintile. Q5-Q1 is the spread between the top and bottom quintiles. P-val is the p-value 

associated with the time series t-statistic for the return spreads. 
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Table 5. Jump returns and continuous returns across stock quintiles. Firms with jumps 

and without jumps 

  Total sample Firms without jumps Firms with jumps 

  return p-value return p-value return p-value 

TR Size -0.0737 0.2213 -0.0423 0.4892 -0.1246 0.0936 

TR btm 0.1218 0.0131 0.1061 0.0557 0.1376 0.0150 

TR Illiquidity 0.0611 0.2751 -0.0149 0.7567 0.1325 0.1004 

TR Momentum 0.0861 0.0246 0.0761 0.0828 0.0505 0.3766 

 

This table reports the average returns across stock characteristics quintiles. In June of each year t, stocks 

are sorted based on each stock characteristic to form equal-weighted portfolios. These portfolios are held 

from July t to June t+1. The table shows the spread between the top and bottom quintiles and the p-value 

associated with the time series t-statistic for the total return spreads 

 

 

 

Table 6. “liquidity-adjusted” Jump returns and “liquidity-adjusted” continuous returns 

across stock quintiles 

 

 SIZE BTM ILLIQUIDITY MOMENTUM 

 LJR LCR LJR LCR LJR LCR LJR LCR 

Q1 0.1069 0.0581 0.0558 0.0200 0.0178 0.0516 0.1101 0.0049 

Q2 0.0621 0.0586 0.0556 0.0307 0.0496 0.0866 0.0440 0.0423 

Q3 0.0765 0.0302 0.0534 0.0568 0.0688 -0.0045 0.0500 0.0191 

Q4 0.0315 0.0567 0.0536 0.0672 0.1009 0.0486 0.0500 0.0348 

Q5 0.0349 0.0563 0.0946 0.1030 0.1403 -0.0097 0.0669 0.1066 

Q5-Q1 -0.0720 -0.0018 0.0389 0.0830 0.1225 -0.0613 -0.0209 0.1070 

p-val 0.0048 0.9666 0.1248 0.0438 0.0070 0.2251 0.3610 0.0006 

 

 

This table reports the time series averages of “liquidity-adjusted” jump returns (LJR) and “liquidity-

adjusted” continuous returns (LCR) for each characteristic-sorted quintile. LJR is the originally identified 

jump return compounded with the stock returns over the subsequent four trading days to compensate for the 

potential reversion of stock prices, and LCR is the difference between total return and LJR. Q5-Q1 is the 

spread between the top and bottom quintiles. P-val is the p-value associated with the time series t-statistic 

for the return spreads. 
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Table 7. Return spreads across stock quintiles: controlling for Jump risk 

  SIZE BTM ILLIQUIDITY MOMENTUM 

  return p-value return p-value return p-value return p-value 

TR -0.0066 0.8795 0.0498 0.1761 0.0293 0.4989 0.0389 0.1810 

JR -0.0700 0.0005 0.0343 0.0121 0.0869 0.0000 -0.0105 0.3845 

CR 0.0634 0.0876 0.0155 0.5844 -0.0576 0.1265 0.0495 0.0715 

LJR -0.0757 0.0029 0.0359 0.0598 0.0998 0.0009 -0.0095 0.5729 

LCR 0.0691 0.0526 0.0139 0.6115 -0.0705 0.0734 0.0485 0.0982 

 

Results controlled for jump risk using a double-sorting procedure. First, stocks are sorted into tertiles based 

on the jump risk measure JRisk. Then, within each tertile, stocks are further sorted into tertiles based on 

one of the four characteristics (size, btm, illiquidity ratio and momentum,). The new tertile portfolios are 

obtained by combining all the stocks with the same characteristic tertile ranking across three jump risk 

tertiles, and computing equal-weighted portfolios. This table shows the spread between the top and bottom 

quintiles and the p-value associated with the time series t-statistic for the return (TR, JR, CR, LJR and 

LCR) spreads. 

 

 

 

 

Table 8. Return spreads across stock quintiles: controlling for Jump effects 

  SIZE BTM ILLIQUIDITY MOMENTUM 

  return p-value return p-value return p-value return p-value 

TR -0.0597 0.2595 0.1115 0.0109 0.0034 0.9372 0.0534 0.0536 

CR 0.0131 0.7643 0.0795 0.0130 -0.0685 0.1174 0.0553 0.0452 

LCR 0.0234 0.5517 0.0700 0.0179 -0.0746 0.1067 0.0487 0.0683 

 

Results controlled by jump effect using a double-sorting procedure. In June of year -, stocks are sorted into 

tertiles based on realized jump returns during the holding period from July of year - to June of year - + 1. 

Stocks without jumps are assigned to a separate group. Then, within each of the four jump-sorted groups, 

stocks are further sorted into tertiles based on each of the four characteristics. The new tertile portfolios are 

computed by grouping into a single equal-weighted portfolio the stocks with the same characteristic ranking 

across the four different jump groups. This table shows the spread between the top and bottom quintiles and 

the p-value associated with the time series t-statistic for the return (TR, CR and LCR) spreads.  
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Table 9. Jump returns and continuous returns across default risk quintiles 

            

  TR JR CR LJR LCR 

Q1 0.1313 0.0428 0.0886 0.0630 0.0684 

Q2 0.0891 0.0371 0.0520 0.0491 0.0400 

Q3 0.1186 0.0587 0.0599 0.0690 0.0496 

Q4 0.0908 0.0540 0.0369 0.0553 0.0356 

Q5 0.1968 0.1044 0.0923 0.1151 0.0817 

Q5-Q1 0.0654 0.0616 0.0037 0.0521 0.0133 

p-val 0.4606 0.0234 0.9655 0.0999 0.8816 

 

This table reports the time series averages of Total returns (TR), jump returns (JR), continuous returns 

(CR), “liquidity-adjusted” jump returns (LJR) and “liquidity-adjusted” continuous returns (LCR) for each 

quintile sorted on default risk. Q5-Q1 is the spread between the top and bottom quintiles. P-val is the p-

value associated with the time series t-statistic for the return spreads. 

 

 

 

 

Table 10.  Return spreads across default risk quintiles: controlling for Jump risk and 

jump effects 

 

  
JUMP RISK JUMP REALIZED 

  return p-value return p-value 

TR 0.0291 0.6413 0.0392 0.5848 

JR 0.0422 0.0460 - - 

CR -0.0403 0.4903 -0.0115 0.8628 

LJR 0.0455 0.0262 - - 

LCR -0.0163 0.7919 -0.0081 0.8966 

 

Results controlled for jump risk and jump effects using a double-sorting procedure. First, stocks are sorted 

into tertiles based on the jump risk measure JRisk. Then, within each tertile, stocks are further sorted into 

tertiles based on default risk. The new tertile portfolios are obtained by combining all the stocks with the 

same characteristic tertile ranking across three jump risk tertiles, and computing equal-weighted portfolios. 

Then, in June of year - stocks are sorted into tertiles based on realized jump returns during the holding 

period from July of year - to June of year - + 1. Stocks without jumps are assigned to a separate group. 

Then, within each of the four jump-sorted groups, stocks are further sorted into tertiles based on default 

risk. The new tertile portfolios are computed by grouping into a single equal-weighted portfolio the stocks 

with the same characteristic ranking across the four different jump groups. This table shows the spread 

between the top and bottom quintiles and the p-value associated with the time series t-statistic for the 

return (TR, JR, CR, LJR and LCR) spreads. 

 


