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SUMMARY 
 
Objectives  
1- To obtain a set of values of health states of the EQ-5D based on self-related health 
VAS using linear and non- linear models Bayesian techniques. 2 - To analyse “logical 
consistency” in different models and  to derive a model free from logical 
inconsistencies. 3 - To analyse and compare results of several models when using a 
priori sources of information. 
Methods 
We apply the usual models and transformations of these, in order to attain logical 
consistency of the value set. Models proposed are: linear model (1); linear with dummy 
variables (2) and two models with a logistic structure with different distributions of the 
coefficients to be estimated (3 and 4). For two of these models new dummies are added 
in order to obtain logical consistency (2B and 4B).  
Results  
We propose a modelling to guarantee consistency of values of the EQ-5D health states 
that may be applied to suitable samples at apparently low cost of fit. This model is non-
linear, has distribution Gamma in the coefficients and specific dummy variables.   
The introduction of priors may reduce the cost of forcing logical consistency.  
 
KEY WORDS – Bayesian analysis; EQ-5D; Logical inconsistency 
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INTRODUCTION 

Several models have been developed to obtain valuation sets for the health states of the 

EQ-5D. A common problem of these models is that of logical inconsistencies. Up to 

now, no model fully guarantees the consistency of the value set obtained for every 

possible sample.  

This paper uses regression models to build up a value set of health states of the EQ-5D 

using Bayesian methods. We aim a model that guarantees consistency in the values of 

the health states. It is important to distinguish between “primary” inconsistencies, 

caused by the intrinsic limitations of respondents and “secondary” inconsistencies 

caused by methodological aspects in the measurement procedure [1]. This study 

analyses the secondary inconsistencies. 

The EQ-5D is a generic instrument of health related quality of life. It is a two part 

instrument. Part 1 records self-reported problems on each of five domains: mobility, 

self-care, usual activities, pain/discomfort and anxiety/depression. Each domain is 

divided into three levels of severity corresponding to no problem, some problem, and 

extreme problem. The combination of these levels defines a total of 243 health states. 

Part 2 records the subject’s self-assessed health on a Visual Analogue Scale (VAS), it is 

a vertical 20 cm line on which the best and worst imaginable health states score 100 and 

0 respectively [2]. It has been validated in Spanish by Badía X. et al. [3]. 

Bayesian methods are widely used in health care economic evaluations. The Bayesian 

perspective allows for a natural interpretation of the results in terms of probability, as 

well as the incorporation of a priori information in the analysis [4]. To estimate the 

Bayesian models Markov Chain Monte Carlo (MCMC) is used [5,6]. 

 

Aims 

1.- To obtain a set of values of health states of the EQ-5D based on self- related health 

VAS from a random sample of the general population of Spanish region (Life 
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Conditions of Navarra Population 2001, N= 2477), using linear and non- linear models  

Bayesian techniques.  

2. - To analyse “logical consistency” in different models and  to derive a model free 

from logical inconsistencies. 

3. - To analyse and compare results of several models when using a priori sources of 

information. 

 

METHODS 

Modelling 

We explore different models to obtain an evaluation set for EQ-5D health states. We 

apply the usual models and transformations of these, in order to attain logical 

consistency of the value set. Models proposed are: linear model (1); linear with dummy 

variables (2); and two models with a logistic structure with different distributions of the 

coefficients to be estimated (3 and 4). For models 2 and 4 new dummies are added in 

order to obtain logical consistency (2B and 4B). 

 

Linear Model with N3 (Model 1) 

Badía et al. [3] produced a social value set for Spain. They justified the model used 

using three criteria: goodness of fit, parsimony, and the logical consistency of the values 

obtained. The last two criteria are the ones used by Devlin et al. [7] to select this model 

among the nine possibilities proposed by them. The model is expressed through the 

following equation:  

VASscore i = ß0 + MOiß1 + SCiß2 + UAiß3 + PDiß4 + ADiß5 + N3iß6 + ei     

          Model 1 

VASscore, ßj ~ N(0, Oµ),  j=0,…,5       ei ~ N(0, s 2
e )    s 2

e  ~ Ga (ae ,be) 

 

Variables MOi, SCi, UAi, PDi, ADi represent the five dimensions of the EQ-5D. In 

addition, a dummy variable (N3) takes the value “1” if one of the dimensions is at level 

3, and “0” otherwise. VAS is the value of the Visual Analogue Scale.  
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Linear Model with dummy variables N2 and N3 (Model 2) 

Dummy variables are included to value the move between levels 1 and 2 as different 

from the move between levels 2 and 3. Two dummy variables are used for each 

dimension. In addition, a new variable N2 is included. This model was used by Greiner 

et al.  [8] 

VASscore i = ß0 + MO2iß1 + SC2iß2 + UA2iß3 + PD2iß4 + AD2iß5 + MO3iß6 +  

SC3iß7 + UA3iß8 + PD3iß9 + AD3iß10 + N2iß11 + N3iß12 + ei     

          Model 2 

VASscore ,ßj ~ N(0, Oµ),  j=0,…,12    ei ~ N(0, s 2
e )    s 2

e  ~ Ga (ae ,be) 

 

The variables used in this model take the following values:  

MO2, SC2, UA2, PD2, AD2 = 1 if the score is 2; 0 otherwise. 

MO3, SC3, UA3, PD3, AD3 = 1 if the score is 3; 0 otherwise. 

N2=1 if the score is either 2 or 3 in one of the dimensions; 0 otherwise.  

N3=1 if the score is 3 in one of the dimensions; 0 otherwise.  

 

Non-Linear Model with dummy variables N2, N3 and normally distributed coefficients 

(Model 3) 

Here we are suggesting a change in the structure of the model. The possibility of non-

linearity is justified on the big variances generally observed in the parameter 

estimations. Moreover, if we take into account the differences between the estimated 

and observed VAS mean in the work by Greiner et al. [8], we can see that nearly all 

negative values are concentrated in a place where VAS has values higher than 50, and 

positive values where VAS has lower values. This could support the use of a non- linear 

structure in order to diminish that variance. 

The structural form comes from logit models [9,10]. We are using only the functional 

form and not the estimation of the logit model because the interpretation of the results 

of the dependent variable in the logit model is done in terms of probability of success, 
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and this would not be adequate in this case. For example, an estimated of the dependent  

variable of 0,7 in a logit model would mean a probability of  70% of being in the upper 

bound of 100, whereas in our model this 0,7 would be the VASscore expected value in 

the sample.   

We transform VASscore into a Beta distribution, dividing by 100 to bounding the value of 

VASscore between zero and one. 

The model is as follows:  

VASscore i = 1/ (1+ EXP - (ß0 - MO2iß1 - SC2iß2 - UA2iß3 - PD2iß4 - AD2iß5 - MO3iß6 -  

SC3iß7 - UA3iß8 - PD3iß9 - AD3iß10 - N2iß11  - N3iß12))+ ei 

Model 3 
 

VASscore ~ Be (Yi ,1-Yi)   ßj ~ N(0, Oµ),  j=0,…,12    ei ~ N(0, s 2
e )    s 2

e  ~ Ga (ae ,be) 
 

Non-Linear Model with dummy variables N2, N3 and Gamma distributed coefficients 

(Model 4) 

While maintaining the structural function of the previous model, a new one is developed 

where the dependent variable follows a Beta distribution. The coefficients – that in 

Bayesian Theory are random variables – follow a Gamma distribution (1,1). This means 

that are bounded to 0, therefore its value is always positive. Hence, the move from level 

1 to 2 and from level 2 to 3 in any of the five dimensions of the EQ-5D will always 

have a diminishing effect upon the index value. 

 

VASscore i = 1/ (1+ EXP - (ß0 - MO2iß1 - SC2iß2 - UA2iß3 - PD2iß4 - AD2iß5 - MO3iß6 -  

SC3iß7 - UA3iß8 - PD3iß9 - AD3iß10 - N2iß11  - N3iß12))+ ei 

          Model 4 
 
VASscore ~ Be (Yi ,1-Yi)   ßj ~ Ga(1 , 1),  j=0,…,12    ei ~ N(0, s 2

e )    s 2
e  ~ Ga (ae ,be) 

 

Logical Consistency 
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One of the problems to face when calculating a value set for a small population is the 

non-completion of the logical consistency in the health states values. Logical 

consistency seems to be a desirable characteristic in the value data set modelling. 

There are different definitions of inconsistency [1,11]. To our purpose, logical 

inconsistency exits when to a health state less severe a lower value is assigned.  

We define logical consistency as:  

Be two health states A and B described by 5 dimensions (a1, a2, a3, a4, a5) and 

(b1, b2, b3, b4, b5) where ai, bj are {1,2,3} for i,j =1,...,5: 

If when i=j, dimensions either are in the same level or in different levels such 

that bj = ai +1 or bj = ai +2,  

then the value set should give a higher value to health state A. 

A necessary, although not sufficient, condition to satisfy this propriety is that the 

coefficients should have a diminishing effect on the index value, as happens in model 4. 

To guarantee sufficiency we introduce an additional restriction by changing dummy 

variables. 

The new dummy variables are: 

MO2, SC2, UA2, PD2, AD2 = 1 if the score is 2 or 3; else=0 

MO3, SC3, UA3, PD3, AD3 = 1 if the score is 3; else=0 

The new dummies guarantee that the coefficients associated with level 3 will always be 

higher in absolute terms than those associated with level 2, because level 3 adds the 

coefficient associated to variables MO3, SC3, UA3, PD3, AD3, to that of the variables 

MO2, SC2, UA2, PD2, AD2, respectively. 

Both models 2 and 4 have been adapted to these new dummy variables. Results are 

presented as Model 2B that does not require negativity on the coefficients, and therefore 

does not comply with the propriety of consistency, and Model 4B that complies with it. 

Rescaling 
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Using VAS as a dependent variable, regression models do not generate a bounded scale 

between 0 and 100. So the values of the value set are rescaled. To each value a rescaled 

value is assigned using the following equation: 

X resc  = 100 · (X – X33333)/ (X11111 – X33333) 

X resc  Rescaled VAS value for the health state X. X is the value of a health state when 

estimated coefficients are applied. 

Bayesian estimation 

Bayesian estimation is done using simulation techniques MCMC [5]. Browne et al. [12] 

show how this method gives more efficient and robust estimations than the more classic 

Maximum Likelihood methods as Iterative Generalized Least Square (IGLS), or its 

restricted version (RIGSL), and they converge quicker. For the simulation, the statistical 

program WinBUGS 1.4 [13] has been used. 

Informative prior 

Except in the cases that will be specified later, models have been estimated with a 

relatively uninformative priors [14]. Where prior information has been included, we 

have used the estimated parameters of another random sample, the Navarra Health 

Survey 2000 (ENS2000, N=1495). When the parameters of Gamma distributions are 

needed (models 4 and 4B), then the transformation used is [15]:  Ga(a,b), being x, y 

mean and standard deviation, respectively, x = a/b, and y = a/b2. 

Data 

General Househo ld Survey 2001 (ECV2001, N=2477) of Navarra (Northern developed 

Spanish region, 560.000 habitants) [16]. It is a random age and sex quota sampling, 

stratified by county and municipality of residence, of the adult population (over 15) of 

Navarra. The interviews took place during May and June 2001.  

In addition, the Navarra Health Survey 2000 (ENS2000, N=1495) is used to see whether 

the models that best fit our initial sample (ECV2001) are the ones that best fit the other 

one.  
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RESULTS 

Demographic characteristics of the sample 

Table 1 shows the demographic characteristics of the sample studied (ECV2001) by age 

and sex, as well as the mean VAS.  

Table 1 about here  

In table 2 the number of observations included in the analysis (2389) and the reasons of 

the non-valid answers (88) is shown  

Table 2 about here  

 

Models 

Table 3 shows the results of the models discussed, with coefficient estimates, means, 

standard deviations and 95% probability bayesian intervals. It can be seen that models 

1, 2 have positive estimate coefficients while in model 3 are negative, which produce 

values higher than that of 11111 for some health states in the three models. Moreover, it 

can be seen that in models 1 and 2 the probability intervals are very high. 

Table 3 about here  

Our estimates in models 1, 2, and 3 do not guarantee logical consistency. There is, at 

least, an example of non-fulfilment of logical consistency in models 1 and 2 (21111 vs. 

22111), and model 3 (21111 vs. 23111). This also happens in other models described in 

the literature whose aim is to estimate a tariff for the 243 health states but do not take 

into account the fulfilment of this propriety. As an example, in Dolan and Roberts’s 

value set there is higher value for 33233 than for 33133 [17].   

In table 4 models 2B and 4B are shown. Model 2B, despite including new dummy 

variables, does not fulfil with the rule of logical consistency due to the positive value of 

some of the estimated coefficients (21111 vs. 22111). On the other hand, it has to be 

noted that model 4B fulfils the rule due to its design. 
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Table 4 about here  

 

Health States Values 

The following equation has to be used to obtain the values for the health states for 

models 3, 4 and 4B 

X = (1/ (1+ EXP - ( Z))) · 100 

where Z is a linear function of the estimated coefficients and dummy variables for each 

state.  

As an example, in model 4B the estimated VAS value for the state 21231 is:  

Z = 1. 054 – 0.208 –0.183 – (0.197 + 0.173) –0.206 –0.110 = –0.024 

X21231 = (1/ (1+ EXP - (Z))) · 100 = 49.39 (0.4939 in the 0,1 scale) 

An the rescaled value: 

Xresc-21231 = 100 · (X – X33333)/ (X11111 – X33333) = 55.70 (0.557 in the 0,1 scale) 

Once obtained the valuation set, the best adjusted model will be the one showing the 

lowest differences between the estimated and observed means for the 63 known health 

states. In table 5, the 63 health states observed in our sample are shown, with 

frequencies, VAS observed means, estimated values with model 4B, and the differences 

between estimated and observed values. Figure 1 shows the mean of the absolute 

differences between estimated and observed values for the 63 health states observed in 

the sample (ECV2001), through the estimated models without and with rescaling.  

Tables 5 and Figure 1 about here  

It can be seen that the sum of the absolute differences is bigger when health states are 

rescaled. If we take into account rescaled values, the logistic transformation seems to fit 

better than the linear one. When including restrictions, models increase absolute 

differences.  
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The models with the least differences are the linear one with new dummies (model 2B) 

without rescaling, and the logistic transformation where coefficients show a normal 

distribution for the rescaled VAS (model 3).  

Figure 2 shows, in two graphs, the differences between estimated and observed values. 

The first one compares model 2 (linear with dummies) versus model 3 (logistic 

transformation with normally distributed coefficients). The second one shows model 2 

versus model 4. In both cases, it can be seen how the linear regression with dummies 

(model 2) overestimates higher values and underestimates lower values. This is slightly 

amended when a different functional form is used to allow for more flexibility (models 

3 and 4). 

Figure 2 about here  

In order to choose a model to estimate the best value set, the one which values are the 

more representative of the population analysed, another sample of the same population 

is used. In table 6 the observed 56 health sates (ESN2000), frequency, VAS observed 

mean, estimated values with model 4B, and the differences between estimated and 

observed values are shown. Figure 3 shows the mean of the absolute differences of the 

observed values in the second sample (ESN2000) trough the estimated models. 

Tables 6 and Figure 3 about here  

As it can be seen in figure 3, the linear model fits better over the non-rescaled values but 

do not guarantee consistency. Absolute differences with rescaled values seem to be 

lower when models do not have a linear structure. In spite of model 4B assuming the 

cost of introducing some restrictions to guarantee consistency, absolute differences are 

lower compared to model 1 and model 2B, with and without rescaling, and model 2 

with rescaling.  

Priors 

Table 7 shows the results from models 2, 2B, 4 and 4B: coefficient estimates, mean, 

standard deviation and 95%, bayesian probability intervals, using ESN2000 coefficient 

estimates and standard deviation as priors. Figure 4 shows the means of the absolute 
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differences between estimated and observed VAS values, in models 2, 2B, 4 and 4B 

using ESN2000 estimates as prior information. 

Tables 7 and Figure 4 about here  

For models 2 and 2B, we introduce as priors the mean and standard deviation of the 

estimated coefficients in models 2 and 2B for ESN2000 sample. For models 4 and 4B, the  

priors used are the parameters of the Gamma distributions obtained through the mean and 

standard deviation of the estimated coefficients in models 4 and 4B for ESN2000 sample. 

As it can be seen in figure 4, the restrictions imposed by models 4 and 4B have a cost in 

terms of wider means of the sum of absolute differences, as compared with models 2 and 

2B. But the introduction of priors may reduce this cost, as shown in model 4B in figure 1 

and figure 4.  

 

DISCUSSION 

We have developed several models to obtain a set of values of the 243 health states of 

the EQ-5D looking for consistency. As we have seen, linearity do not guarantee the 

fulfilment of consistency, even when using our proposed new dummies. This is shown  

in model 2B, where coefficient estimates can be negative and can lead to logical 

inconsistencies.  

In this analysis, logit models cannot be used because our dependent variable has to be 

interpreted as a probability of success of the occurrence of an event. Nevertheless, as it 

has been shown in this study, its functional form can be applied to our dependent 

variable.  

On the usability of variables N2 and N3, it is suggested that maybe are not needed, 

because dummy variables and structural changes of the model should reflect the true 

variations in the levels of different dimensions. Once models 2 and 3 are examined 

without those variables, no true gains are obtained on the differences between VAS 

estimated and observed values in the sample.  
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The use of another randomised sample of the same population allows us to check 

whether the models estimates are representative of the population. When comparing 

figure 1 versus figure 3, our inconsistency free model (model 4B)  fits even better when 

its coefficients are applied to another sample of the same population. But we should be 

cautious, since we cannot tell that the model chosen is the one that fits the best for that 

population.  

Nevertheless, to apply the local estimations is a better option than to import coefficients 

from other populations (see table 8). 

As we have seen, the introduction of priors may reduce the cost of forcing logical 

consistency, as shown in model 4B in figure 4 as compared with the same model in  figure 

1. This may be due to the fact that more information from the same population gives more 

accurate fit by reducing the sample error. 

One advantage of our proposed model 4B is that, even if we had first order 

inconsistencies, the model does not allow any inconsistencies in the set of values, and 

could use all the existing information, even that from inconsistent respondents.  

This is an exploratory study. We have used a sample of self-assessed VAS. However, to 

get a value set of the EQ-5D health states useful for CUA, a sample of valuations 

obtained from general population from hypothetical health states, using accepted scaling 

techniques, should be used.  

However, in this paper, we propose a modelling to guarantee consistency of values of 

the EQ-5D health states that may be applied to suitable samples at apparently low cost 

of fit. This model is non- linear, has distribution Gamma in the coefficients and specific 

dummy variables.   
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Table 1. Demographic characteristics and VAS means of the sample studied 

(ECV2001) (N = 2477) 

Variables  % VAS means 

Age  15-34 34.7 80.8 

 35-44 16.9 76.9 

 45-64 26.0 74.4 

 65 + 22.4 69.7 

Sex  Male 47.1 77.0 

 Female 52.9 75.4 

 

 

 

Table 2. Data used for modelling (ECV2001) 

Non valid answers  88 (3.56%) 

        No VAS data  81 

        No data on the 5 dimensions 2 

        No data on 2 dimensions 1 

        No data on 1 dimension 4 

Valid answers  2389 (96,44 %) 

TOTAL 2477 
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Table 3. Results from the model regression on the VAS values. Estimated 
coefficients, mean, standard deviation and 95% bayesian probability interval in 
models 1,2,3 and 4.  

Model 1 Model 2 Model 3 Model 4 

 mean (sd) I.B. 95% mean (sd) I.B. 95% mean (sd) I.B. 95% mean (sd) I.B. 95% 

Constant 80.49(23.6) (33,126) 80.85(24.29) (33,128) 1.055(0.03) (0.98,1.12) 1.054(0.03) (0.98,1.12) 

MO2 -9.14(94.0) (-195,177) -9.35(94.15) (-194,179) 0.282(0.14) (-0.01,0.57) 0.226(0.12) (0.02,0.47) 

SC2 3.02(130.2) (-249,257) 2.20(160.6) (-309,311) -0.191(0.25) (-0.69,0.30) 0.127(0.10) (0.00,0.40) 

UA2 -5.84(106) (-212,198) -5.79(115.4) (-228,219) 0.249(0.18) (-0.11,0.61) 0.204(0.12) (0.01,0.49) 

PD2 -5.38(91.4) (-186,173) -6.05(89.72) (-182,170) 0.204(0.14) (-0.07,0.48) 0.212(0.10) (0.02,0.43) 

AD2 -8.30(52.8) (-110,97) -6.41(87.72) (-174,164) 0.249(0.14) (-0.02,0.52) 0.245(0.11) (0.03,0.48) 

MO3   -4.92(421.8) (-836,810) 0.516(4.44) (-1.77,2.47) 0.398(0.34) (0.01,1.25) 

SC3   -0.10(383) (-752,738) -0.072(2.05) (-1.87,1.64) 0.325(0.28) (0.00,1.06) 

UA3   -21.26(370.5) (-752,706) 0.397(0.81) (-1.19,2.03) 0.332(0.27) (0.01,1.00) 

PD3   -10.3(259.5) (-521,502) 0.342(0.53) (-0.67,1.44) 0.243(0.17) (0.00,0.64) 

AD3   -11.92(266) (-534,517) 0.508(0.54) (-0.54,1.61) 0.322(0.20) (0.01,0.76) 

N2   -4.32(98.0) (-198,191) 0.203(0.15) (-0.10,0.50) 0.193(0.10) (0.01,0.41) 

N3 -2.98(108.9) (-217,209) 0.32(271.3) (-538,541) -0.007(0.57) (-1.16,1.08) 0.170(0.13) (0.00,0.49) 

Sigma 1.28(0.70) (0.5,3.2) 1.33(0.8243) (0.53,3.45) 0.183(0.01) (0.16,0.20) 0.182(0.01) (0.16,0.20) 

Table 4. Results from the model regression on the VAS values. Estimated 
coefficients, mean, standard deviation and 95% bayesian probability interval in 
models 2B and 4B. 

Model 2B Model 4B 

 mean (sd) I.B. 95% mean (sd) I.B. 95% 

Constant 80.85(24.27) (33.7,129) 1.054(0.03) (0.98,1.12) 

MO2 -8.42(95.07) (-195,178) 0.208(0.11) (0.01,0.46) 

SC2 2.31(159.9) (-304,313) 0.108(0.09) (0.00,0.35) 

UA2 -9.90(114.8) (-234,213) 0.183(0.12) (0.00,0.45) 

PD2 -5.8(89.61) (-181,171) 0.196(0.10) (0.01,0.41) 

AD2 -6.68(87.97) (-177,163) 0.224(0.11) (0.02,0.45) 

MO3 -1.78(411.2) (-794,795) 0.355(0.32) (0.01,1.19) 

SC3 -1.34(393.1) (-773,757) 0.290(0.26) (0.00,0.97) 

UA3 -1.63(371.8) (-734,726) 0.279(0.24) (0.00,0.91) 

PD3 -3.73(259.6) (-514,510) 0.173(0.13) (0.00,0.50) 

AD3 -6.40(270.8) (-537,532) 0.218(0.16) (0.00,0.59) 

N2 -3.97(98.5) (-197,184) 0.206(0.11) (0.01,0.43) 

N3 0.047(270.6) (-530,533) 0.110(0.09) (0.00,0.34) 

Sigma 1.33(0.8244) (0.53,3.45) 0.183(0.00) (0.16,0.20) 
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Table 5. 

The health 
states (63) 
observed in 
the sample 
(ECV2001), 
frequencies, 
VAS 
observed 
means, 
estimated 
values with 
model 4B, 
and the 
differences 
between 
estimated and 
observed 
values. 

 

 

 

 

 

 

 

Health States Frequency 
Observed 
VAS [1] 

Estimated 
VAS [2] 

Difference 

[2] –[1] 
11111 1699 80.87 74.15 -6.72 
11112 116 69.97 65.10 -4.87 
11113 23 66.52 57.31 -9.21 
11121 196 70.60 65.74 -4.87 
11122 62 62.54 60.52 -2.03 
11123 10 52 52.46 0.46 
11131 16 73.68 59.08 -14.61 
11132 1 50 53.56 3.56 
11133 1 20 48.12 28.12 
11211 7 69.85 66.04 -3.82 
11212 1 50 60.84 10.84 
11221 12 63.33 61.51 -1.83 
11222 7 65 56.07 -8.93 
11223 1 50 47.88 -2.12 
11233 2 52.5 43.58 -8.92 
12111 2 90 67.70 -22.30 
12112 1 70 62.61 -7.39 
12211 1 70 63.58 -6.42 
12213 1 10 50.09 40.09 
12221 2 92.5 58.92 -33.58 
13322 1 40 36.72 -3.28 
21111 41 68.02 65.46 -2.57 
21112 5 57 60.22 3.22 
21121 45 61.08 60.89 -0.20 
21122 10 46.5 55.43 8.93 
21123 1 50 47.24 -2.76 
21131 8 56.25 53.95 -2.30 
21132 1 50 48.35 -1.65 
21133 1 60 42.94 -17.06 
21211 10 62 61.21 -0.79 
21221 20 52 56.46 4.46 
21222 19 60.26 50.88 -9.38 
21231 1 50 49.39 -0.61 
21232 5 41 43.80 2.80 
21233 1 25 38.53 13.53 
21311 1 80 51.65 -28.35 
21312 1 75 46.04 -28.96 
21321 1 20 46.74 26.74 
21332 1 15 37.08 22.08 
22111 4 81.25 62.98 -18.27 
22121 4 72.5 58.29 -14.21 
22123 1 70 44.56 -25.44 
22133 1 60 40.32 -19.68 
22211 3 56.66 58.62 1.95 
22212 1 70 53.09 -16.91 
22221 12 53.75 53.79 0.04 
22222 7 47.14 48.18 1.04 
22223 3 50 40.10 -9.90 
22231 4 40 46.69 6.69 
22232 2 50 41.16 -8.84 
22233 1 40 36.00 -4.00 
23221 1 50 43.81 -6.19 
23233 1 30 29.62 -0.38 
23311 1 80 41.77 -38.23 
23321 1 70 37.08 -32.92 
23333 1 30 24.14 -5.86 
31122 1 75 43.84 -31.16 
31311 1 47 42.82 -4.18 
32221 1 55 42.21 -12.79 
32321 1 40 35.58 -4.42 
33212 1 50 34.70 -15.30 
33311 1 40 33.46 -6.54 
33332 1 50 21.72 -28.28 

Sum of absolute differences 2389   713.57 
Mean    11.33 
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 Figure 1. Mean of absolute differences between estimated and observed values in 
the sample (ECV2001) through the estimated models without and with rescaling. 
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Figure 2 

Differences between estimated and observed values for 63 health states ranked by 
observed mean. Comparison of model 2 (linear with dummies) versus model 3 
(logistic transformation with normally distributed coefficients)  

Differences between estimated and observed values for 63 health states ranked by 
observed mean. Comparison of model 2 versus model 4  
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Table 6.  

Health states 
(56) observed 
in the sample 
(ESN2000), 
frequencies, 
VAS observed 
means, 
estimated 
values with 
model 4B, 
and the 
differences 
between 
estimated and 
observed 
values. 

 

 

 

 

Health States Frequency 
Observed 
VAS [1] 

Estimated 
VAS [2] 

Difference 

[2] –[1] 

11111 1035 84.50 74.15 -10.34 
11112 57 71.95 65.10 -6.85 
11113 2 50 57.31 7.31 
11121 141 71.30 65.74 -5.56 
11122 22 64.09 60.52 -3.58 
11123 1 70 52.46 -17.54 
11131 14 60.57 59.08 -1.49 
11132 4 72.50 53.56 -18.94 
11211 10 69.50 66.04 -3.46 
11212 2 45 60.84 15.84 
11221 12 62.08 61.51 -0.58 
11222 4 42.50 56.07 13.57 
11231 3 53.33 54.59 1.26 
11322 1 40 46.35 6.35 
12111 1 50 67.70 17.70 
12211 1 60 63.58 3.58 
12212 1 78 58.23 -19.77 
12213 1 50 50.09 0.09 
12221 1 50 58.92 8.92 
12222 2 65 53.39 -11.61 
12231 1 30 51.90 21.90 
13232 1 25 39.21 14.21 
21111 23 71.52 65.46 -6.06 
21112 9 58.89 60.22 1.33 
21121 34 64.56 60.89 -3.67 
21122 11 58.64 55.43 -3.20 
21123 2 55 47.24 -7.76 
21131 7 53.86 53.95 0.09 
21132 1 50 48.35 -1.65 
21133 1 50 42.94 -7.06 
21211 9 65.56 61.21 -4.34 
21221 23 53.48 56.46 2.98 
21222 9 57.22 50.88 -6.34 
21231 8 53.75 49.39 -4.36 
21232 3 51.67 43.80 -7.86 
21332 1 30 37.08 7.08 
22121 1 75 58.29 -16.71 
22211 6 56.67 58.62 1.95 
22212 1 50 53.09 3.09 
22221 6 48.33 53.79 5.45 
22222 4 42.50 48.18 5.68 
22223 1 60 40.10 -19.90 
22231 1 60 46.69 -13.31 
22232 3 43.33 41.16 -2.17 
22233 1 40 36.00 -4.00 
22323 1 25 33.60 8.60 
22332 1 70 34.60 -35.40 
22333 1 20 29.84 9.84 
23222 1 60 38.38 -21.62 
23321 2 40 37.08 -2.92 
23322 1 40 32.01 -7.99 
23331 1 10 33.13 23.13 
31111 2 82.50 54.32 -28.18 
31232 1 20 35.34 15.34 
32311 1 50 40.20 -9.80 
33322 1 40 24.82 -15.18 

Sum of absolute differences 1495   524.51 
Mean    9.37 
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 Figure 3. The mean of the absolute differences between estimated and observed 
values in the sample (ESN2000, n=1495) through the estimated models without and 
with rescaling.  
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Table 7. Results from the model regression on the VAS values. Models 2, 2B, 4 and 
4B. Coefficient estimates, mean, standard deviation and 95%, bayesian probability 
intervals, using ESN2000 coefficient estimates and standard deviation as priors.  

Model 2 Model 4 Model 2B Model 4B 

 mean (sd) I.B. 95% mean (sd) I.B. 95% mean (sd) I.B. 95% mean (sd) I.B. 95% 

Constant 82.16(18.9) (45.01,119) 1.067(0.03) (0.99,1.13) 82.15(18.9) (45,119) 1.068(0.03) (0.99,1.14) 

MO2 -6.49(67.0) (-136,127) 0.141(0.12) (0.00,0.42) -7.16(67.3) (-139,127) 0.134(0.12) (0.00,0.42) 
SC2 1.09(122.2) (-236,237) 0.052(0.08) (0.00,0.29) 0.83(121.6) (-232,237) 0.041(0.06) (0.00,0.25) 
UA2 -7.76(82.0) (-167,153) 0.188(0.14) (0.00,0.51) -9.43(81.7) (-170,148) 0.170(0.14) (0.00,0.49) 

PD2 -4.42(64.3) (-129,119) 0.112(0.09) (0.00,0.33) -4.13(64.4) (-129,120) 0.104(0.09) (0.00,0.33) 
AD2 -5.04(64.1) (-127,120) 0.109(0.11) (0.00,0.37) -4.57(63.9) (-128,119) 0.103(0.10) (0.00,0.36) 

MO3 -4.11(318.6) (-634,613) 0.252(0.28) (0.00,1.04) -2.71(312.9) (-601,606) 0.213(0.27) (0.00,0.95) 
SC3 -5.17(296.4) (-587,566) 0.221(0.25) (0.00,0.914) -4.68(302) (-597,577) 0.173(0.22) (0.00,0.79) 

UA3 -22.39(261.8) (-538,488) 0.211(0.24) (0.00,0.89) -3.64(262) (-523,512) 0.137(0.19) (0.00,0.69) 
PD3 -11.61(188.7) (-382,365) 0.141(0.16) (0.00,0.56) -6.78(187.8) (-375,370) 0.069(0.11) (0.00,0.40) 
AD3 -13.24(194.7) (-394,372) 0.232(0.19) (0.00,0.69) -9.32(197.4) (-395,381) 0.173(0.17) (0.00,0.60) 

N2 -7.97(65.2) (-135,122) 0.371(0.11) (0.14,0.57) -7.87(65.4) (-135,118) 0.389(0.11) (0.15,0.59) 
N3 3.28(185.3) (-360,364) 0.087(0.12) (0.00,0.43) 3.15(184.9) (-360,365) 0.041(0.08) (0.00,0.29) 

Sigma 1.33(0.82) (0.533,3.45) 0.182(0.01) (0.16,0.20) 1.33(0.824) (0.53,3.45) 0.182(0.00) (0.16,0.20) 
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Figure 4. Means of the absolute differences between estimated and observed VAS 
values, in models 2, 2B, 4 and 4B using ESN2000 estimates as prior information.  
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Table 8. Means of the absolute differences between estimated and observed VAS 
values obtained by Model 2 in the sample ECV2001 and Greiner et al (2003)  

 ECV2001 
ECV2001 

Reescaled 
ESN2000 

ESN2000 

Reescaled 

Sum of absolute 
difference 

613.22 862.41 507.52 800.21 Model 2  
in the sample 

ECV2001 Mean 
9.73 13.69 9.06 14.29 

Sum of absolute 
difference 

1018.04 1075.14 787.85 833.07 Estimated by 
Greiner et al. 

(Model 2) Mean 
16.16 17.07 14.07 14.88 

 

 

 


