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Abstract

We propose a valuation framework for pricing European call warrants on
the issuer’s own stock that allows for debt in the issuer firm. In contrast to
other works which also price warrants with dilution issued by levered firms,
ours uses only observable variables. Thus, we extend the models of both
Crouhy and Galai (1994) and Ukhov (2004). We provide numerical examples
to study some implementation issues and to compare the model with existing
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1 Introduction

Like European call options, European call warrants give the holder the right to
purchase a specified amount of an asset at an agreed price, on a fixed date. There
are two types of warrants: warrants on the company’s own stock, also known as
corporate or equity warrants, and warrants on other assets, usually called covered
warrants or bank-issued options. In the former case, the exercise of the warrant in
exchange for new shares results in a dilution of the firm’s own stock. Black and Scho-
les (1973), Merton (1973), Galai and Schneller (1978), Noreen and Wolfson (1981),
Galai (1989), and Lauterbach and Schultz (1990), among others, value warrants as
call options on shares of the equity of the firm and take into account this dilution
effect. However, there is no consensus in the literature regarding whether this dilu-
tion effect should or should not be taken into account when pricing the warrants.
There are authors who value warrants as options on the firm’s stock and claim that
the dilution effect should be fully reflected in the stock price and, as a consequence,
there is no need to correct for dilution; see, for example, Sidenius (1996), Handley
(2002), and Bajo and Barbi (2010). The explanation for this opposing view is that
the assumptions of the different models are not compatible. Equity-based models
assume that the value of equity (that is, the value of the firm, since there is no
debt) follows a lognormal process, while stock-based models assume that it is the
stock price that follows the lognormal process. Both these things cannot be true
at the same time. The assumption that the stock price follows a lognormal process
is particularly difficult to justify when the firm has warrants outstanding (see Bajo
and Barbi, 2010). Hence, it may be convenient to consider warrants as shares on
the equity of the firm, in which case correction for dilution will be needed. This is
consistent with the recent empirical findings of Chang and Liao (2010) and a recent
study by Yagi and Sawaki (2010), where dilution effects are considered when pricing
callable warrants.!

In the valuation formulas obtained by the equity-based models, firm market value
and its volatility need to be known, which is not possible. Moreover, when there

are warrants outstanding, firm value is itself a function of the warrant price. To

!Other empirical papers finding correction for dilution necessary are Schulz and Trautmann
(1994) and Darsinos and Satchell (2002).



overcome these problems, Schulz and Trautmann (1994) and Ukhov (2004) propose
a warrant-pricing procedure based on the price and volatility of the underlying stock.

The above studies value warrants issued by companies financed by shares and
warrants. The majority of firms, however, are also debt financed. To reflect this
fact, Crouhy and Galai (1994) develop a pricing model for the valuation of warrants
issued by levered companies. Later, Koziol (2006) extends the analysis of Crouhy
and Galai to explore optimal warrant exercise strategies in the case of American
warrants.

Both Crouhy-Galai’s formula and its extension in Koziol (2006) depend on the
value of a firm with the same investment policy as the one issuing the warrant but
financed entirely with shares of stock. Therefore, these pricing models again present
the drawback of dependence on unobservable variables. In this paper, we devise a
model for the valuation of warrants issued by levered companies, where only the
values of observable variables need to be known. Unlike Crouhy and Galai (1994)
and Koziol (2006), we place no restrictions on debt maturity.

The remainder of the paper is organized as follows. Section 2 briefly reviews the
valuation of warrants with dilution. Section 3 presents our suggested approach to
the valuation of warrants, which depends on the relationship between debt maturity
and warrant maturity. Section 4 examines the implementation of the model through

some numerical examples. Finally, section 5 contains the conclusions of our study.

2 Review of existing models

2.1 Classical warrant valuation with dilution

A recurring issue in the corporate warrant pricing literature is the fact that the
value of a warrant is a function of the issuer’s firm value, which in turn includes
the warrant value and is unobservable. Many authors? explicitly acknowledge this
problem and value warrants using an expression typically known as the “correct
warrant valuation formula” (see Veld, 2003). We next introduce a unifying notation

and briefly present the model.

2Such as Galai and Schneller (1978), Ingersoll (1987), Galai (1989), Schulz and Trautmann
(1989, 1994), and Crouhy and Galai (1991).



Let there be a firm financed by N shares of stock and M European call warrants.
Each warrant gives the holder the right to k shares® at time ¢t = 7' in exchange for
the payment of an amount X. Let V; be the asset value of the firm at time ¢, let .S,
and og be the price and volatility of the underlying stock, respectively, and let w;,
be the warrant price at time t.

If the M warrants are exercised at t = T, the firm receives an amount of money
MX and issues Mk new shares of stock. Thus, immediately before the exercise of
the warrants, each warrant must be worth max{]w%(VT + MX)—X,0}. Warrant
holders will exercise their warrants only when this value is non-negative, that is,
when kVy > NX. Thus, the warrant price at date of exercise can be expressed as

follows

wr max (kVy — NX,0) (1)

1
- N+kM
Supposing that the assumptions of Black and Scholes (1973) hold for V;, the following

expression for the warrant price follows

1

W= T [kV,®(dy) — e " TINXD(dy)] (2)
with
i = In(kV;/NX) + (r+ 0% /2)(T —t) )
ovVT —t
dy = dy — oy VT —t (4)

where ®(-) is the distribution function of a Normal random variable and oy is the
return volatility of V.
Clearly, the classical warrant pricing formula depends on V; and oy, which are

unobservable variables.

2.2 Schulz and Trautmann (1994) and Ukhov (2004) model

To obtain a warrant-pricing formula where only the values of observable variables

are needed, Schulz and Trautmann (1994) relate V; and oy to the underlying share

3k is usually referred to as the warrant ratio.



price, S;, and its return volatility,* og, as follows
[ Uvﬁs— (5)

where Ag = 0S5;/0V;. Given that V;, = NS, + Mw;,, the following expression is
satisfied

NAg+ MA, =Ay =1 (6)

where A, = 0w(V;;-)/0V;. Furthermore, using (2) we have that

k

A= sy ) (7)

Substituting the above into (6), the analytic expression for Ag is obtained

1-MA, N+ kM —kM®(d,)

As N — N(N+kM) (8)

Finally, substituting the expression (8) into (5), we obtain the relationship between
the unobservable variables, V; and oy, and the observable variables S; and og.

Using this relationship, the warrant price is obtained with the following algorithm
(as explained by Ukhov, 2004):

1. Solve (numerically) the following system of non-linear equations for (V,*, o7)

{ NS, =V, — w2 [k (dy) — e 7T INXB(dy)] o)
o5 = g—:ASO‘V
with
_ N+kM —kEM®(d;)

As = N(N + kM) (10)
and where

g In(kV,/NX) + (r + o /2)(T — 1) (11)

b O'VvT —t

dQZdl—O'V T—t (12)

4Obviously, despite stock returns being an observable variable, the volatility of stock returns is

non-observable; thus, we use the term “observable variables” as in Ukhov (2004).



2. The warrant price, wy, is computed as

Vs — NS,

= (13)

Wt =

A proof that a solution (V;*,07,) of the system of non-linear equations (9)-(12)
exists is contained in Ukhov (2004). Note that the formula provided by Schulz and
Trautmann (1994) and Ukhov (2004) does not require knowledge of the firm’s value

nor of its volatility.

2.3 Crouhy and Galai (1994) model

Despite the advantage of using only the values of observable variables, the above
model has the limitation of assuming that the issuer of the warrant is a pure-equity
firm.

Crouhy and Galai (1994) develop a more realistic model that allows for debt,
although it is not based on observable variables. Specifically, they consider a firm
financed by N shares of stock, M European call warrants and debt D. The debt
consists of a zero-coupon bond with face value F' and maturity Tp. For every warrant
held, the holder has the right to purchase k shares of stock at 7', in exchange for
the payment of an amount X.

Following Ingersoll (1987) and other authors, Crouhy and Galai assume that the
proceeds from exercising the warrants are reinvested in the company. They also
assume no economies of scale and a stationary return distribution for one unit of
investment, independent of firm size. The remaining assumptions of Crouhy and
Galai (1994) are that the risk-free interest rate, r, is known and constant, and that
there are perfect market conditions.

Crouhy and Galai study only the case in which the warrant issuer is financed
with a zero-coupon bond with a maturity longer than that of the warrants, that is,
T < Tp. To derive their formula, they consider a firm with the same investment
policy as the firm issuing the warrant, but financed entirely by common stock. Under
the assumption of perfect capital markets, Modigliani and Miller (1958) show that
the value of any firm is independent of its capital structure.® Hence, the initial value

of the reference firm is the same as that of the levered firm. At ¢ = 0, the reference

5This is the well-known Proposition I of MM.



firm issues N’ shares of stock at a price Vj/N' = S, while the warrant-issuing

firm issues N shares of stock, M warrants and a zero-coupon bond with maturity

Tp > T. Hence, we can write for 0 <t < T that

where S;, w; and D, are, respectively, the values of a share, a warrant and the debt
of the levered firm at time t. Thus, the warrant value at any time prior to the
exercise date is given by the following expression

V/ — NS, — D,
M )

with t < T (15)

Wt =

If the warrants are exercised at ¢ = T, an amount MX is reinvested in the
company, thus, the value of the levered company as of the date of exercise may
differ from the reference firm value. If the warrants have not been exercised at
t = T, the value of the levered company at ¢t = T will be equal to the reference
asset value, V7 .

The exercise of the warrants at ¢t = T depends on whether the value of the
shares received by the warrant-holders is greater than the exercise price. Although
the traditional analysis® considers that warrants should be exercised if the value of
the shares immediately prior to the exercise date is greater than X, Crouhy and
Galai (1994) show that this condition may lead to erroneous decisions and argue
that warrants should be exercised if the value of the shares of stock is greater than
X immediately after expiration.

We can write the post-expiration value of a share of stock at t = T, S, as follows

(16)

Vi4+MX—DY

V/ 7DNW . .

Lot = SAWif warrants are not exercised at t =T
Sp =

NTEM

= SW if warrants are exercised at t =T

where V7 is the reference firm value at ¢ = T, and DY, DY  S¥ and S¥W
denote the debt value and the price of a share of stock in the company immediately
after T', when the warrants are exercised and when the warrants are not exercised,
respectively. Given that S}V is an increasing function of V., there exists a unique

value of V., V7., for which the warrant-holders are indifferent as to whether to exercise

6See for example Ingersoll (1987), Schulz and Trautmann (1994) and Ukhov (2004).



their warrants or let them expire, that is, kS)Y (V}) = X. Thus, for reference asset
values above (below) V7., the warrants will (will not) be exercised at t = T

Alternatively, we can write the above expression as follows

WpLLp=T) — GNW i VI < T
ST:{ T 1 T =VvVT (17)

N
c(Vj’q—i-MX,F,TD—T) oW s ’ =
=SV V> Vi

N+kM

where ¢(z, K, T) denotes the value of a European call option on x, with strike K and
time to maturity T, and where V. is the reference firm value at which the warrants
may be exercised. Under the assumptions that the reference asset value V; follows
a lognormal process and that there are no arbitrage opportunities, there exists a
risk-neutral probability measure under which e "*V/ is a martingale, therefore we

can write
dV;’ = 7"Vt’dt + UV/Vt’ng (18)

where oy is the return volatility of V/, and Z] is a standard Brownian motion. A
consequence of this assumption is that for any time ¢, with t < T', we can value the
firm’s shares discounting their expected value at T" at the risk-free discount rate, r

c(Vy, F\Tp = T) (Vi + MX,F,Tp —T)

Sy = e TTD N Ty <oy + N+ kM Lygsvz | Fo

(19)

where E* denotes the expected value under the risk-free probability measure, F; is
the available information set at time ¢, and Ijcondition) is an indicator that takes a
value of 1 when the condition is satisfied and 0 otherwise.

Furthermore, we know that the solution of the process given by (18) is
Vi =V exp ((r — 1/202)(T — ) + ovi(Z - Z))) (20)

Thus, Vj follows a lognormal distribution, that is, In V]|V ~ ®(InV} + (r —
0.503)(T —t),08.(T —t)).
Using the properties of the lognormal distribution, Crouhy and Galai finally

compute the stock price as follows

—r(T-b Vo e(Vi, F\Tp—T) _
St _ € (/ C( T 454D )677dy
2m(T —t) \ /- N
X e(Vi+MX,F,Tp—T) _.2
21
/y N+ kM ey (21)



V/
In V—Z;+(r—%a%/,)(T—t)

oyrVIT—t
Analogously, the value of debt at time ¢, with ¢t < T, is given by

where y(V}) =

D, = F —r(Tp—t) __ e v VA FETH—T _%d
t = € m P( 'y 4D )6 Y

o0 2
+ / p(Vi+MX, F Tp —T)e_yZ‘dy) (22)
Y

The expressions for S; and D, are substituted into equation (15) to obtain the

warrant price wy, as a function of the reference asset value V/, and its volatility oy

3 New warrant-pricing models

In this section, we allow for debt in the firm and we develop a model based on the
issuer’s stock price and its volatility. Depending on the exercise date, we value the
warrants in three cases: a) when they have the same maturity as the debt (7' = Tp),
b) when they expire before the debt (7" < Tp), and ¢) when they expire after the
debt (T' > Tp). Thus, we extend the works of Ukhov (2004) and Crouhy and Galai
(1994), and we deal with the case of long-term warrants for the first time in the

literature (to the best of our knowledge).

3.1 Warrants with the same maturity as debt

Like Crouhy and Galai, we suppose a firm financed by N shares of stock, M Euro-
pean call warrants and debt D. The debt is a pure discount bond with face value
F' and maturity Tp. Every warrant offers the right to purchase k& shares of stock
at time T = Tp, with exercise price X. The remaining assumptions of Crouhy and
Galai (1994) hold.

The owner of the warrant has the right to pay X at 7" and receive k shares of
stock with individual value m(ET + M X), where Er is the value of equity at T,
just after the maturity of debt and immediately prior the exercise of the warrants.

Thus, we can express the value of the warrant at ¢t =T as

wyp = max(0, kA(Er + MX) — X) (23)



where \ = m Furthermore, we know that Ep = max(Vy — F,0), because if the
value of the company at T is greater than the face value of debt, F', debtholders
get I while shareholders get Vi — F, and in case of default, the debtholders receive

what is left of the company, V., while the shareholders get 0. Thus, we can write

wy = max (0, max (RA(Vy — F + MX) = X, ~ANX) ) (24)
Additionally, since the values of A\, N and X are non-negative, we can express wr
as follows

wr = Amax(0, kVy — kF — NX) (25)

Thus, at time t = T the holder of a warrant receives the same payoff as the
owner of A European call options on kV;, with strike kF + NX and maturity 7.

Under the Black-Scholes-Merton assumptions, the value of the warrant is given by

w(Vi, oy, X) = ANEVi®(f1) — e " T (KF + NX)®(f2)] (26)
with
_In (kF]j-‘;tVX) + (7" + %‘712/)<T — 1)
fi= VT (27)
fo=fi—ovVT -t (28)

Hence, we have expressed the value of the warrant as a function of the firm value,
Vi, and its volatility, oy. Since these variables cannot be observed, on the basis of
Ukhov (2004), we look for a relationship linking V; and oy with S; and og. As we

have seen before, we can use the following expression

V
os = —tAsgv (29)
St
where Ag = g—*‘g/:. To compute Ag in the presence of debt we now see that V, =

NS; + Mw; + Dy, so we have that
Ay =1=NAg+ MA,+ Ap (30)

Using (26) we obtain the following

owy
A, = 3= EAD(f1) (31)

10



On the other hand, to obtain the expression for Ap we must first determine the
expression for ;. We know that the payoff received by debtholders at maturity
can be written as: Dp = min(F, Vy) = F — max(0, F — Vr). Hence, D, can be

expressed as
D= Fe "0 _p(V,, F,T —t) (32)

where p(z, K, T) is the value of a European put option on z with strike price K and

time to maturity 7. Thus, Ap is given by this expression

oD,
Ap = v 1—®() (33)

where
B — In% + (r+ 302)(T —1) (34)
oyV T—t

As a consequence, we have established the link between the unobservable and

the observable variables, relating V; to S, o, and oy.

We can summarize our warrant-pricing algorithm as follows
1. Solve (numerically) the following system of nonlinear equations for (V;*, ")

N S =
Vi®@(hy) — e "TOF®(hy) — MA[KV,®(f1) — e "T=O(kF + NX)®(f2)] (35)

o5 =g Vi Agoy

with
D(hy) — 1
() + (r+ doR) (T ) .
fi= /T (37)
fao=fi—ovVT —t (38)
In(%)+ (r+io2)(T—t
b — <F> (T 2 V)( ) (39)

oV —t
hg = hl — O'VvT —1 (40)

1
and where \ = NiriE -

11



2. Finally, the warrant price at t is obtained as

= AEVO(f1) — e " T (kF + NX)®(fo)] (41)

It is easy to show that when the firm has no debt, this procedure coincides with
Ukhov’s. Additionally, when the effect of dilution is negligible, that is, % — 0, the

pricing expression collapses to the Black-Scholes-Merton formula.

3.2 Warrants with shorter maturity than debt

We now suppose that the warrant issuer is financed with a zero-coupon bond with
longer maturity than the warrants, that is, 7' < T)p.

As in the previous case, we first use the Crouhy and Galai (1994) model to
obtain an expression for warrants’ value that depends on unobservable variables (the
reference firm value and its volatility, V; and o). We then follow Ukhov (2004)
and establish a relationship between these variables and the firm’s stock price, S;,
and its return volatility, og.

To relate these variables, we use equation (21), which relates the variables V}
and oy, with the stock price, S, and the following expression to relate V/, oy and
S; with og given by

oS, V/

42
S, (42)

0s =0V~

where S; is given by (21).

Thus, the warrant pricing algorithm now appears as follows

1. Solve (numerically) the following system of non-linear equations for (V;*, o7)

(Tt 1 rg (Vi ,FTD )% oo c(VA+MX,FTp-T) _¥°
{ S = V2 (T— t)(f . dy—i—f N e” 2 dy) (13)

v/
g5 =oav 35’ 5
where ¢(z, K, T) denotes the value of a European call option on z, with strike

K and time to maturity 7', whereas VJ. denotes the Value of V. that satisfies

T
(VH+MX,FTp-T) _ — B +(r—fav,)( —t)
k== NtkM =X,y = y(‘/:;)a and y(VT’) = VTt . Recall

that V= V/exp ((r — 1/202)(T — t) + ov/(Z}, — Z})).

12



2. The warrant price at time ¢, with ¢ < T', is obtained as

V*— NS, — D
w = Y= N5 =D, (14
with D, given by
D~ pe-rmo-n €Y v —
y = Fe _\/ﬁ(/_o@p(VT7ﬂTD—T>€ 2 dy
+ /Oop(Vqlw*—i-MX,F,TD—T)e_fdy) (45)
Y

where p(z, K, T) is the value of a European put option on z, with strike price

K and time to maturity 7.

0S¢t

It is worth mentioning that we have no closed-form expression for 2%, so we
t

need to compute it numerically.

3.3 Warrants with longer maturity than debt

Let us now consider the case of long-term warrants, with 7" > Tp. Although this
situation is unlikely in reality, we study it for completeness.

If there has been no default at time T, at t = T the owner of a warrant can pay
X and receive k shares of stock with individual value m<ET + M X), where Er
is the value of equity immediately prior to the exercise of the warrants. Thus, as in

equation (23), we can write
wr = max(0, kA(Er + MX) — X) (46)

Since at time 7" there is no debt, and assuming no previous default, we have that

Er =V} — F, so this expression can be written as
wr = Amax(0,kV} — kF — NX) (47)

Thus, we can write the value of a warrant at t =T as

0 if V. < F (default at T
wT:{ if Vi, (default at Tp) (18)

Amax(0,kVy —kF — NX) it Vi > F (no default at Tp)

13



Consequently, we have that at ¢ = Tp, just after debt maturity, the warrant

value is
0 ifV, <F
Wy, = L (49)
)\c(kVT’D, kF+ NX, T —Tp) if VT’D >F

where c(x, K,T) denotes the value of a European call option on z, with strike K
and time to maturity 7'

Assuming, as before, that the value of the reference firm follows a lognormal
process and that there are no arbitrage opportunities, then relative asset prices are

martingales, so we can write

w, = e "I E wp, ] =

= e "I B (Ae(kVy, , kF + NX, T — TD)[V%DZFLE]

efT‘(Tth) o0 /UQ
— e(kVi,  kF + NX,T — Tp)e™ = dy (50)

\/27T(TD —t) y

3 In %—l—(r—%a‘%,)(TD—t)
where y(-) and oy have been defined before, and where g = —

UV/\/Tth
Up to this point, we have a relationship between the value of the warrant and

the unobservable variables V" and oy.. The next step is to provide a relation-
ship between these variables and the price of the underlying stock and its return
volatility. To this end, we use the fact that, before debt maturity, shareholders
and warrantholders jointly own a FKuropean call option on the value of the com-
pany, with strike equal to the face value of debt, and with exercise date Tp; that is,
NS, + Mwy = c(V/, F,Tp — t), where w; is given by (50). Additionally, we use the
expression og = oy AgV}//S;.

Finally, the warrant-pricing algorithm now takes the following form
1. Solve (numerically) the following system of non-linear equations for (V/*, o{,):

e—m(Tp—1) (oo _¥2
NS;+ M\/ﬁ J; Ae(Vy,, F,T = Tple” =dy = c(V}, F,Tp — t) (51)

where c(x, K,T) denotes the value of a European call option on z, with strike
P (r—40%,) (To—1)

In v
O'V/\/TD—t

K and time to maturity 7', and with A = 547, y(Vz,) =

"Note that we can easily express V/ in terms of V7.

14



In Vit,—&—(r—%af/,)(TD—t)
O'V/\/Tth
/ !

and § = . Recall that V. = V/exp ((r — 1/20%,)(T — t) +

2. The warrant price at time t, with t < Tp, is obtained as

Ix % e_T(TD_t) v / v
wt(V; ,O'V/) = m(/ )\C(VTD,F,T—TD)677dy. (52)
D — —0o0

4 Numerical examples

In this section we provide some examples to illustrate the behavior of warrant-pricing
models. Following Ukhov, we consider a firm with N = 100 shares outstanding. The
current stock price and the volatility of stock returns are given. We contemplate
three levels of stock prices, S, (75, 100, and 110) and two of volatilities, og, (25% and
40%). The firm is also financed with debt and warrants. The debt consists of zero-
coupon risky bonds with face value F' = 1,000 and maturity Tp. To study different
degrees of dilution due to the issuance of warrants, we assume that the number of
warrants, M, takes the values 10, 50, and 100. Every warrant offers the right to
buy one share of the stock (i.e. k = 1) after paying the exercise price X = 100 at
maturity (time 7'). The value of the firm at time ¢ is given by NS, + MW, + D,
where W, and D, denote the market values of warrants and debt. The instantaneous
risk-free interest rate is r = 0.0488.

We construct three tables based on the relationship between the maturities of
warrants and debt. Each has six panels, which reflect two volatility levels and three
degrees of dilution. The structure of the tables is based on Ukhov’s paper. Warrant
prices are obtained in seven different ways (five models in each table). The first
column in each table shows the underlying stock price, S. The second uses the Black-
Scholes-Merton (BSM) formula to calculate warrant values when the warrants are
priced as simple stock options, wggy,. The third column reports the prices obtained
with the classical warrant-pricing model (CWM), which assumes that the firm has
no debt. Since most firms have debt, this assumption is too strong. This model is
based on the firm value, V| and its volatility, oy, as given by expression (2). The
CWM assumes that the value of the firm is equal to the value of equity. In our

calculations, we approximate the value of equity of the firm by E=NS+M WRBSM-

15



We also approximate the volatility of firm returns, oy , by the volatility of stock
returns, og. The fourth column (STU) provides warrant prices obtained with the
model developed by Schulz and Trautman (1994) and Uhkov (2004) by solving the
system of equations (9). This model is consistent with the current stock price and
its volatility but still ignores the debt of the firm. In the fifth column, we value
the warrants with the classical valuation model again this time assuming that the
firm value is estimated as V = E + Fe "0, where Fe "I is the value of debt
under the assumption of risk-free debt. Thus, we assume that the investor ignores
debt when pricing the warrants but is able to obtain a good approximation to the
market value of the firm. Notice that this valuation will be wrong. As before, the
volatility of firm returns is approximated by og. In column 6 of the tables, we
incorporate debt correctly into models that are still based on the firm value and its
volatility. In columns 7-9 we value the warrants taking debt into account and using
only observable variables. We report the total firm value (column 7), the volatility
of firm returns (column 8) and the warrant price (column 9) that are consistent with
market data (the stock price and its volatility). Finally, in columns 10-12 we change
the face value of the debt to F' = 10,000 and keep the remaining variables as before.
We again indicate the firm value, the volatility of firm returns and the warrant price.
We must interpret the last of these values with care because, contrary to what might
appear at first sight, it does not allow us to study the effect of leverage on warrant
prices. Analysis of this effect requires a different setting, where firm value and its
volatility are invariant with leverage and where the volatility of stock returns and
the number of shares change with the amount of debt. Such an analysis is well
beyond the scope of this paper.

We start by comparing the models with no debt (BSM, CWM, and STU in
columns 2-4) across the tables, and find the differences to be small. For example,
in Table I, Panel B1 (high volatility, low dilution), we have that the prices of ATM
warrants are 32.5992, 31.7675, and 32.5671, respectively. We also see that warrant
prices are affected by dilution:®* CWM prices decrease clearly with dilution, while
STU prices decrease more slowly and may even increase slightly (for OTM warrants

of short maturity and low volatility, as shown in Table IT). CWM prices are always

8Except for the BSM model, where dilution is not considered.
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lower than BSM prices, especially for high dilution. CWM prices are also always
lower than STU prices, particularly for high dilution. Moreover, the difference in
prices is greater for high dilution, reflecting the fact that, with dilution, CWM prices
fall faster than STU prices. Finally, comparing STU and BSM prices, we have that,
in general, the former are lower than the latter. However, there are cases where the
opposite is true (ATM or OTM warrants with low volatility and low dilution).

As explained before, we introduce debt into the models for the first time in co-
lumn 5, model CWMD. The assumption is that the investor is able to correctly
assess the market value of the firm but is unable to develop a pricing model incor-
porating debt. He, therefore, uses the classical warrant pricing model to value the
warrants. Obviously, firm value now increases and drives up warrant prices. The
effect is stronger for low dilution and low volatility. For the case mentioned in the
previous paragraph, ATM warrants in Panel Bl of Table I, the warrant value is
37.6269.

We next take debt properly into account in the remaining columns (6-12) of the
tables. We distinguish three cases, based on three different debt maturity periods.
In Table I we study the valuation of warrants when they mature at the same time
as the debt. We assume that time to maturity is 3 years (' = Tp = 3). Warrant
values are computed with the models mentioned before (BSM, CWM, STU, and
CWMD), with the classical model properly extended with debt —we call it LWM1V
(column 6), which stands for our first “levered warrant model” based on the firm
value (see expression (26)), and with this levered warrant model based on the stock
price, LWM1SA (column 9), as given by expressions (35) - (41). Note that we also
give the firm values and the corresponding volatilities that satisfy this system of
equations (columns 7 and 8). In columns 10-12 we value the warrants as in columns
7-9 but assuming that the initial amount of debt in the firm has a face value of
F =10,000. We refer to this calculation as LWM1SB.

Comparing columns 6 and 9 in Table I, we see that LWM1V values can be greater
or smaller than LWM1SA ones, but the differences are not very great. In Panel A2,
for example, we have that the value of an OTM warrant is 30.0140 for LWM1V and
31.3195 for LWMI1SA. In the latter case, the firm value and firm value volatility
consistent with market data are 13,429.78 and 28.30%, respectively. As mentioned
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before, in columns 10-12 we consider the case where the initial amount of debt is
higher (£ = 10,000). The firm value consistent with this situation is 21,248.19 (very
different from before), while the value of the warrant is similar: 32.2393.

Comparison of LWM1SA with the other levered warrant pricing models in Ta-
ble I yields a series of differences. We obtain generally lower ITM warrant prices
and higher ATM and OTM warrant prices (especially for low volatility) with the
LWM1SA than with the BSM model; we always obtain higher prices with LWM1SA
than with CWM. In comparison with the STU model, we see that when the model
includes debt with the same maturity as the warrant, the values of ITM warrants
show a small reduction, while the values of ATM and OTM warrants show a small
increase. The results hold for different levels of dilution and volatility.

Finally, warrant prices clearly decrease with dilution for LWM1V but can increase
slightly for LIWM1SA (ATM and OTM warrants, low volatility and high debt levels).

Thus, we can conclude from Table I that when the warrants have the same
maturity as the debt: 1) warrant prices decrease with dilution, and 2) when debt is
incorporated into the model, the values of ITM warrants decrease slightly and the
values of ATM and OTM warrants increase.

In Table II, we value warrants when their maturity is smaller than the maturity
of the debt ("= 1,Tp = 3). Since the maturity period of the warrants is shorter,
warrant prices will obviously be smaller than in Table I. As before, seven valuations
are studied: BSM, CWM, STU, CWMD, the Crouhy and Galai (1994) model (CG),
and our second valuation model (LWM2SA and LWM2SB). It is important to point
out that, to the best of our knowledge, this is a novel implementation of the CG
model in the literature. Although Crouhy and Galai (1994) calculate warrant prices
with their model, as given by expression (15), they do so only near the exercise date
of the warrants and not at the current time t. When implementing the CG model,
we take V] = E, + Fe™"™0 ag initial value of the reference firm, and oy = og as the
volatility of firm returns. >From these, we find the reference asset value, V., above
which the warrants are exercised. That is, we find the value of VJ that satisfies

C(V%H]S(l%mom) = 100, where ¢(-) is given by the Black and Scholes (1973) option

pricing formula. Using the value of V. thus obtained, we simulate by Monte Carlo

the value of V) from t = 0 to ¢ = T. In each run, the firm value is determined

18



as a function of whether the value of V. given by the simulation is above or below
V.}., for which we use the expression of S; given by (17). If the warrants are not
exercised, the debt value at ¢t = T is DXV = V], — NS¥W and the warrant value
is wr = 0, whereas if the warrants are exercised, we calculate the debt value as
DY =V]/+MX — (N +kM)S}) and the warrant value as wr = kSY — X. Finally,
after running 1.000.000 simulations, we obtain the values of S;, D; and w;. Thus,
in Panel A (low volatility), we see that the CG model overprices LWM2SA when
dilution is low. LWM2SA prices are computed solving the system of equations
(43)-(45). For the remaining cases, the CG model tends to underprice our model.
Note that this did not happen in Table I. The price differences are larger for OTM
warrants and high dilution.

We also note in Table II that BSM overprices LWM2SA for OTM warrants and
underprices it for other warrants (as in Table I). The price differences increase with
dilution, and can be as great as 32.46% (I'TM warrants and high dilution, 1.9052
versus 1.4382). We finally observe that warrant prices decrease with dilution in
the CG model and can increase in our model (for ATM and ITM warrants). We
always obtain higher prices with LWM2SA than with CWM, as shown in Table I
Finally, comparing STU and LWM2SA, we see that when we incorporate debt with
longer maturity than the maturity of the warrants into the model, the prices of
ITM warrants decrease slightly and the prices of ATM and OTM warrants show a
small increase. This result holds for different levels of dilution ( as in Table I). With
respect to LWM2SB, we note that for higher debt levels, warrant prices increase in
general, except for ITM and ATM warrants with low and medium dilution, where
the opposite is true. For the high volatility case (Panel B), warrant prices increase
substantially, and the differences between models are smaller. Now, warrant prices
always decrease with dilution for both LWM2SA and CG.

Thus, we can conclude from Table 1T that when the maturity of the warrants is
shorter than that of the debt: 1) warrant prices can increase with dilution and 2)
when debt is taken into account, warrant prices decrease slightly for ITM warrants
and increase for ATM and OTM warrants (as in Table I).

Finally, in Table III, we value long-term warrants, which expire after the debt

(T = 3,Tp = 1). This situation, as already mentioned, will be quite uncommon. In
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the table, we value the warrants with: 1) BSM, 2) CWM, 3) STU, 4) CWMD, 5) our
third valuation model based on firm value (LWM3V, as given by expression (50)),
6) our third valuation model based on the stock price (LWM3SA, which solves the
system (51)-(52)), and 7) our third valuation model based on the stock price with
a different amount of debt (LWM3SB). Since the maturity of the warrants is the
same as in Table I, the models not incorporating debt produce the same warrant
values as in Table T (that is, columns 2, 3, and 4 of tables 1 and 3 are identical).
Since the maturity of the debt is shorter than in Table I, both debt and firm values
are now higher, which helps to explain why the models incorporating debt produce
higher warrant prices in Table III than in Table I. The data in Panel A of Table
IIT (low volatility case) show that LWM3V warrant prices decrease with dilution
and are always greater than CWM prices. Also, the LWM3V model overprices the
LWM3SA model when dilution is low and underprices it when dilution is medium or
high. The underpricing is greater for ITM warrants and high dilution. In LWM3SA,
warrant prices can increase slightly with dilution (for ATM and OTM warrants and
low dilution levels).

We also see from Table III that the BSM model slightly underprices LWM3SA
in almost all cases. The price differences decrease somewhat with dilution. Finally,
warrant prices clearly decline with dilution in LWM3V and tend to decrease in
LWM3SA. Relative to the STU model, we see that, if dilution is not low, the incor-
poration of debt with shorter maturity than that of the warrants decrease warrant
prices; if dilution is low, the warrant prices increase with the debt (for any given
moneyness). With respect to the LWM3SB model, we can say that with high debt
levels, we obtain greater warrant prices for any degree of moneyness, dilution, or
volatility. The results for Panel 2 (high volatility) are similar. Warrant prices are
higher and, generally, decrease with dilution.

Thus, we can conclude from Table IIT that when the maturity of the warrants is
larger than that of the debt: 1) warrant prices decrease with dilution and 2) when
debt is incorporated into the model, warrant prices decrease for medium or high
dilution and increase for low dilution.

To summarize our results, although many different comparisons between models

are possible, we have focused on comparing models incorporating debt. To this end,
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we have implemented our three algorithms, an extension of the classical warrant
pricing model, the Crouhy and Galai (1994) model, and versions of our models
based on firm value. We have also used the BSM formula, the classical warrant
pricing model and the Schulz-Trautman-Ukhov model as references. We find that,
although in many cases theoretical warrant prices are similar, substantial differences
between models are also possible. As an example, investors using the BSM model
could overprice warrants by more than 30% relative to our model (see Table II).
We also find that models based on firm value are not consistent, in general, with
the observed market data. This happens because when we compute the stock price
and the volatility of stock returns implicit in the valuation process, we obtain values
that are different from the initial ones. Thus, the incorporation of debt and the use

of observable variables appear to be important when pricing corporate warrants.

5 Conclusions

We present a warrant valuation model that extends previous ones. Our model prices
European call warrants on the issuer’s own stock taking debt into account. It is based
on the issuer’s stock price and the volatility of stock returns, thus avoiding the need
to estimate firm value and its volatility, and allowing consistency with market data.

We consider three cases depending on the exercise date of the warrants: warrants
with the same maturity as the debt, warrants expiring before the debt, and warrants
with longer maturity than the debt.

To derive a valuation formula for each situation, we first draw on the works of
Ingersoll (1987) and Crouhy and Galai (1994) to express the value of the warrant as a
function of unobservable variables. We then relate these variables to the underlying
stock price and its return volatility.

To study the implementation of our valuation framework, we provide some nu-
merical examples. We study warrant prices given by the models for different dilution
levels, underlying stock prices, and stock return volatilities.

We contribute to the literature in various ways. First, we extend the work of
Ukhov (2004) allowing the issuing firm to have debt. Second, we extend the model
of Crouhy and Galai (1994) to the case of observable variables. We note, as an
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aside, our novel implementation of the actual Crouhy and Galai model, where the
maturity of the warrants is shorter than that of the debt. When warrants mature
at the same time as the debt, the Crouhy and Galai (1994) cannot be used. Thus,
our third contribution is to extend the classical warrant valuation model to include
debt with the same maturity as the warrants. This is one of the models used in
our comparisons. Finally, the fourth contribution of the paper is the valuation of
long-term levered warrants. We provide pricing formulas for this case based on the
stock price as well as on the firm value.

The overall conclusion of the paper is that allowing for debt in the issuing firm
seems to be important for warrant pricing purposes, and that it is possible to do so

with a model that is consistent with market data.
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