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Abstract

We propose a valuation framework for pricing European call warrants on

the issuer's own stock that allows for debt in the issuer �rm. In contrast to

other works which also price warrants with dilution issued by levered �rms,

ours uses only observable variables. Thus, we extend the models of both

Crouhy and Galai (1994) and Ukhov (2004). We provide numerical examples

to study some implementation issues and to compare the model with existing

ones.
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1 Introduction

Like European call options, European call warrants give the holder the right to

purchase a speci�ed amount of an asset at an agreed price, on a �xed date. There

are two types of warrants: warrants on the company's own stock, also known as

corporate or equity warrants, and warrants on other assets, usually called covered

warrants or bank-issued options. In the former case, the exercise of the warrant in

exchange for new shares results in a dilution of the �rm's own stock. Black and Scho-

les (1973), Merton (1973), Galai and Schneller (1978), Noreen and Wolfson (1981),

Galai (1989), and Lauterbach and Schultz (1990), among others, value warrants as

call options on shares of the equity of the �rm and take into account this dilution

e�ect. However, there is no consensus in the literature regarding whether this dilu-

tion e�ect should or should not be taken into account when pricing the warrants.

There are authors who value warrants as options on the �rm's stock and claim that

the dilution e�ect should be fully re�ected in the stock price and, as a consequence,

there is no need to correct for dilution; see, for example, Sidenius (1996), Handley

(2002), and Bajo and Barbi (2010). The explanation for this opposing view is that

the assumptions of the di�erent models are not compatible. Equity-based models

assume that the value of equity (that is, the value of the �rm, since there is no

debt) follows a lognormal process, while stock-based models assume that it is the

stock price that follows the lognormal process. Both these things cannot be true

at the same time. The assumption that the stock price follows a lognormal process

is particularly di�cult to justify when the �rm has warrants outstanding (see Bajo

and Barbi, 2010). Hence, it may be convenient to consider warrants as shares on

the equity of the �rm, in which case correction for dilution will be needed. This is

consistent with the recent empirical �ndings of Chang and Liao (2010) and a recent

study by Yagi and Sawaki (2010), where dilution e�ects are considered when pricing

callable warrants.1

In the valuation formulas obtained by the equity-based models, �rm market value

and its volatility need to be known, which is not possible. Moreover, when there

are warrants outstanding, �rm value is itself a function of the warrant price. To

1Other empirical papers �nding correction for dilution necessary are Schulz and Trautmann

(1994) and Darsinos and Satchell (2002).
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overcome these problems, Schulz and Trautmann (1994) and Ukhov (2004) propose

a warrant-pricing procedure based on the price and volatility of the underlying stock.

The above studies value warrants issued by companies �nanced by shares and

warrants. The majority of �rms, however, are also debt �nanced. To re�ect this

fact, Crouhy and Galai (1994) develop a pricing model for the valuation of warrants

issued by levered companies. Later, Koziol (2006) extends the analysis of Crouhy

and Galai to explore optimal warrant exercise strategies in the case of American

warrants.

Both Crouhy-Galai's formula and its extension in Koziol (2006) depend on the

value of a �rm with the same investment policy as the one issuing the warrant but

�nanced entirely with shares of stock. Therefore, these pricing models again present

the drawback of dependence on unobservable variables. In this paper, we devise a

model for the valuation of warrants issued by levered companies, where only the

values of observable variables need to be known. Unlike Crouhy and Galai (1994)

and Koziol (2006), we place no restrictions on debt maturity.

The remainder of the paper is organized as follows. Section 2 brie�y reviews the

valuation of warrants with dilution. Section 3 presents our suggested approach to

the valuation of warrants, which depends on the relationship between debt maturity

and warrant maturity. Section 4 examines the implementation of the model through

some numerical examples. Finally, section 5 contains the conclusions of our study.

2 Review of existing models

2.1 Classical warrant valuation with dilution

A recurring issue in the corporate warrant pricing literature is the fact that the

value of a warrant is a function of the issuer's �rm value, which in turn includes

the warrant value and is unobservable. Many authors2 explicitly acknowledge this

problem and value warrants using an expression typically known as the �correct

warrant valuation formula� (see Veld, 2003). We next introduce a unifying notation

and brie�y present the model.

2Such as Galai and Schneller (1978), Ingersoll (1987), Galai (1989), Schulz and Trautmann

(1989, 1994), and Crouhy and Galai (1991).
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Let there be a �rm �nanced by N shares of stock andM European call warrants.

Each warrant gives the holder the right to k shares3 at time t = T in exchange for

the payment of an amount X. Let Vt be the asset value of the �rm at time t, let St

and σS be the price and volatility of the underlying stock, respectively, and let wt

be the warrant price at time t.

If the M warrants are exercised at t = T , the �rm receives an amount of money

MX and issues Mk new shares of stock. Thus, immediately before the exercise of

the warrants, each warrant must be worth max{ k
N+kM

(VT +MX)−X, 0}. Warrant

holders will exercise their warrants only when this value is non-negative, that is,

when kVT ≥ NX. Thus, the warrant price at date of exercise can be expressed as

follows

wT =
1

N + kM
max (kVT −NX, 0) (1)

Supposing that the assumptions of Black and Scholes (1973) hold for Vt, the following

expression for the warrant price follows

wt =
1

N + kM

[
kVtΦ(d1)− e−r(T−t)NXΦ(d2)

]
(2)

with

d1 =
ln(kVt/NX) + (r + σ2

V /2)(T − t)
σV
√
T − t

(3)

d2 = d1 − σV
√
T − t (4)

where Φ(·) is the distribution function of a Normal random variable and σV is the

return volatility of Vt.

Clearly, the classical warrant pricing formula depends on Vt and σV , which are

unobservable variables.

2.2 Schulz and Trautmann (1994) and Ukhov (2004) model

To obtain a warrant-pricing formula where only the values of observable variables

are needed, Schulz and Trautmann (1994) relate Vt and σV to the underlying share

3k is usually referred to as the warrant ratio.
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price, St, and its return volatility,4 σS, as follows

σS = σV ∆S
Vt
St

(5)

where ∆S = ∂St/∂Vt. Given that Vt = NSt + Mwt, the following expression is

satis�ed

N∆S +M∆w = ∆V = 1 (6)

where ∆w = ∂w(Vt; ·)/∂Vt. Furthermore, using (2) we have that

∆w =
k

N + kM
Φ(d1) (7)

Substituting the above into (6), the analytic expression for ∆S is obtained

∆S =
1−M∆w

N
=
N + kM − kMΦ(d1)

N(N + kM)
(8)

Finally, substituting the expression (8) into (5), we obtain the relationship between

the unobservable variables, Vt and σV , and the observable variables St and σS.

Using this relationship, the warrant price is obtained with the following algorithm

(as explained by Ukhov, 2004):

1. Solve (numerically) the following system of non-linear equations for (V ∗t , σ
∗
V ){

NSt = Vt − M
N+kM

[
kVtΦ(d1)− e−r(T−t)NXΦ(d2)

]
σS = Vt

St
∆SσV

(9)

with

∆S =
N + kM − kMΦ(d1)

N(N + kM)
(10)

and where

d1 =
ln(kVt/NX) + (r + σ2

V /2)(T − t)
σV
√
T − t

(11)

d2 = d1 − σV
√
T − t (12)

4Obviously, despite stock returns being an observable variable, the volatility of stock returns is

non-observable; thus, we use the term �observable variables� as in Ukhov (2004).
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2. The warrant price, wt, is computed as

wt =
V ∗t −NSt

M
(13)

A proof that a solution (V ∗t , σ
∗
V ) of the system of non-linear equations (9)-(12)

exists is contained in Ukhov (2004). Note that the formula provided by Schulz and

Trautmann (1994) and Ukhov (2004) does not require knowledge of the �rm's value

nor of its volatility.

2.3 Crouhy and Galai (1994) model

Despite the advantage of using only the values of observable variables, the above

model has the limitation of assuming that the issuer of the warrant is a pure-equity

�rm.

Crouhy and Galai (1994) develop a more realistic model that allows for debt,

although it is not based on observable variables. Speci�cally, they consider a �rm

�nanced by N shares of stock, M European call warrants and debt D. The debt

consists of a zero-coupon bond with face value F and maturity TD. For every warrant

held, the holder has the right to purchase k shares of stock at T , in exchange for

the payment of an amount X.

Following Ingersoll (1987) and other authors, Crouhy and Galai assume that the

proceeds from exercising the warrants are reinvested in the company. They also

assume no economies of scale and a stationary return distribution for one unit of

investment, independent of �rm size. The remaining assumptions of Crouhy and

Galai (1994) are that the risk-free interest rate, r, is known and constant, and that

there are perfect market conditions.

Crouhy and Galai study only the case in which the warrant issuer is �nanced

with a zero-coupon bond with a maturity longer than that of the warrants, that is,

T < TD. To derive their formula, they consider a �rm with the same investment

policy as the �rm issuing the warrant, but �nanced entirely by common stock. Under

the assumption of perfect capital markets, Modigliani and Miller (1958) show that

the value of any �rm is independent of its capital structure.5 Hence, the initial value

of the reference �rm is the same as that of the levered �rm. At t = 0, the reference

5This is the well-known Proposition I of MM.
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�rm issues N ′ shares of stock at a price V ′0/N
′ = S ′0, while the warrant-issuing

�rm issues N shares of stock, M warrants and a zero-coupon bond with maturity

TD > T . Hence, we can write for 0 ≤ t < T that

Vt = NSt +Mwt +Dt, with Vt = V ′t (14)

where St, wt and Dt are, respectively, the values of a share, a warrant and the debt

of the levered �rm at time t. Thus, the warrant value at any time prior to the

exercise date is given by the following expression

wt =
V ′t −NSt −Dt

M
, with t < T (15)

If the warrants are exercised at t = T , an amount MX is reinvested in the

company, thus, the value of the levered company as of the date of exercise may

di�er from the reference �rm value. If the warrants have not been exercised at

t = T , the value of the levered company at t = TD will be equal to the reference

asset value, V ′TD .

The exercise of the warrants at t = T depends on whether the value of the

shares received by the warrant-holders is greater than the exercise price. Although

the traditional analysis6 considers that warrants should be exercised if the value of

the shares immediately prior to the exercise date is greater than X, Crouhy and

Galai (1994) show that this condition may lead to erroneous decisions and argue

that warrants should be exercised if the value of the shares of stock is greater than

X immediately after expiration.

We can write the post-expiration value of a share of stock at t = T , ST , as follows

ST =

{
V ′T−D

NW
T

N
≡ SNWT if warrants are not exercised at t = T

V ′T +MX−DW
T

N+kM
≡ SWT if warrants are exercised at t = T

(16)

where V ′T is the reference �rm value at t = T , and DW
T , DNW

T , SWT and SNWT

denote the debt value and the price of a share of stock in the company immediately

after T , when the warrants are exercised and when the warrants are not exercised,

respectively. Given that SWT is an increasing function of V ′T , there exists a unique

value of V ′T , V̄
′
T , for which the warrant-holders are indi�erent as to whether to exercise

6See for example Ingersoll (1987), Schulz and Trautmann (1994) and Ukhov (2004).
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their warrants or let them expire, that is, kSWT (V̄ ′T ) ≡ X. Thus, for reference asset

values above (below) V̄ ′T , the warrants will (will not) be exercised at t = T .

Alternatively, we can write the above expression as follows

ST =

{
c(V ′T ,F,TD−T )

N
≡ SNWT if V ′T ≤ V̄ ′T

c(V ′T +MX,F,TD−T )

N+kM
≡ SWT if V ′T > V̄ ′T

(17)

where c(x,K, T ) denotes the value of a European call option on x, with strike K and

time to maturity T , and where V̄ ′T is the reference �rm value at which the warrants

may be exercised. Under the assumptions that the reference asset value V ′t follows

a lognormal process and that there are no arbitrage opportunities, there exists a

risk-neutral probability measure under which e−rtV ′t is a martingale, therefore we

can write

dV ′t = rV ′t dt+ σV ′V
′
t dZ

′
t (18)

where σV ′ is the return volatility of V ′t , and Z
′
t is a standard Brownian motion. A

consequence of this assumption is that for any time t, with t < T , we can value the

�rm's shares discounting their expected value at T at the risk-free discount rate, r

St = e−r(T−t)E∗
[
c(V ′T , F, TD − T )

N
IV ′T≤V̄ ′T +

c(V ′T +MX,F, TD − T )

N + kM
IV ′T>V̄ ′T |Ft

]
(19)

where E∗ denotes the expected value under the risk-free probability measure, Ft is
the available information set at time t, and I[condition] is an indicator that takes a

value of 1 when the condition is satis�ed and 0 otherwise.

Furthermore, we know that the solution of the process given by (18) is

V ′T = V ′t exp
(
(r − 1/2σ2

V ′)(T − t) + σV ′(Z
′
T − Z ′t)

)
(20)

Thus, V ′T follows a lognormal distribution, that is, [lnV ′T ]|V ′t ∼ Φ
(

lnV ′t + (r −
0.5σ2

V ′)(T − t), σ2
V ′(T − t)

)
.

Using the properties of the lognormal distribution, Crouhy and Galai �nally

compute the stock price as follows

St =
e−r(T−t)√
2π(T − t)

(∫ ȳ

−∞

c(V ′T , F, TD − T )

N
e−

y2

2 dy

+

∫ ∞
ȳ

c(V ′T +MX,F, TD − T )

N + kM
e−

y2

2 dy

)
(21)
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where y(V ′T ) =
ln

V ′T
V ′t

+(r− 1
2
σ2
V ′ )(T−t)

σV ′
√
T−t .

Analogously, the value of debt at time t, with t < T , is given by

Dt = Fe−r(TD−t) − e−r(T−t)√
2π(T − t)

(∫ ȳ

−∞
p(V ′T , F, TD − T )e−

y2

2 dy

+

∫ ∞
ȳ

p(V ′T +MX,F, TD − T )e−
y2

2 dy

)
(22)

The expressions for St and Dt are substituted into equation (15) to obtain the

warrant price wt, as a function of the reference asset value V ′t , and its volatility σV ′ .

3 New warrant-pricing models

In this section, we allow for debt in the �rm and we develop a model based on the

issuer's stock price and its volatility. Depending on the exercise date, we value the

warrants in three cases: a) when they have the same maturity as the debt (T = TD),

b) when they expire before the debt (T < TD), and c) when they expire after the

debt (T > TD). Thus, we extend the works of Ukhov (2004) and Crouhy and Galai

(1994), and we deal with the case of long-term warrants for the �rst time in the

literature (to the best of our knowledge).

3.1 Warrants with the same maturity as debt

Like Crouhy and Galai, we suppose a �rm �nanced by N shares of stock, M Euro-

pean call warrants and debt D. The debt is a pure discount bond with face value

F and maturity TD. Every warrant o�ers the right to purchase k shares of stock

at time T = TD, with exercise price X. The remaining assumptions of Crouhy and

Galai (1994) hold.

The owner of the warrant has the right to pay X at T and receive k shares of

stock with individual value 1
N+kM

(ET +MX), where ET is the value of equity at T ,

just after the maturity of debt and immediately prior the exercise of the warrants.

Thus, we can express the value of the warrant at t = T as

wT = max(0, kλ(ET +MX)−X) (23)
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where λ = 1
N+kM

. Furthermore, we know that ET = max(VT − F, 0), because if the

value of the company at T is greater than the face value of debt, F , debtholders

get F while shareholders get VT −F , and in case of default, the debtholders receive

what is left of the company, VT , while the shareholders get 0. Thus, we can write

wT = max
(

0, max
(
kλ(VT − F +MX)−X,−λNX

))
(24)

Additionally, since the values of λ, N and X are non-negative, we can express wT

as follows

wT = λmax(0, kVT − kF −NX) (25)

Thus, at time t = T the holder of a warrant receives the same payo� as the

owner of λ European call options on kVt, with strike kF + NX and maturity T .

Under the Black-Scholes-Merton assumptions, the value of the warrant is given by

w(Vt, σV , X) = λ
[
kVtΦ(f1)− e−r(T−t)(kF +NX)Φ(f2)

]
(26)

with

f1 =
ln
(

kVt
kF+NX

)
+
(
r + 1

2
σ2
V

)
(T − t)

σV
√
T − t

(27)

f2 = f1 − σV
√
T − t (28)

Hence, we have expressed the value of the warrant as a function of the �rm value,

Vt, and its volatility, σV . Since these variables cannot be observed, on the basis of

Ukhov (2004), we look for a relationship linking Vt and σV with St and σS. As we

have seen before, we can use the following expression

σS =
Vt
St

∆SσV (29)

where ∆S = ∂St

∂Vt
. To compute ∆S in the presence of debt we now see that Vt =

NSt +Mwt +Dt, so we have that

∆V = 1 = N∆S +M∆w + ∆D (30)

Using (26) we obtain the following

∆w =
∂wt
∂Vt

= kλΦ(f1) (31)
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On the other hand, to obtain the expression for ∆D we must �rst determine the

expression for Dt. We know that the payo� received by debtholders at maturity

can be written as: DT = min(F, VT ) = F − max(0, F − VT ). Hence, Dt can be

expressed as

Dt = Fe−r(T−t) − p(Vt, F, T − t) (32)

where p(x,K, T ) is the value of a European put option on x with strike price K and

time to maturity T . Thus, ∆D is given by this expression

∆D =
∂Dt

∂Vt
= 1− Φ(h1) (33)

where

h1 =
ln Vt

F
+
(
r + 1

2
σ2
V

)
(T − t)

σV
√
T − t

(34)

As a consequence, we have established the link between the unobservable and

the observable variables, relating Vt to St, σs, and σV .

We can summarize our warrant-pricing algorithm as follows

1. Solve (numerically) the following system of nonlinear equations for (V ∗t , σ
∗)

N St =

VtΦ(h1)− e−r(T−t)FΦ(h2)−Mλ
[
kVtΦ(f1)− e−r(T−t)(kF +NX)Φ(f2)

]
σS = Vt

St
∆SσV

(35)

with

∆S =
Φ(h1)− kM

N+kM
Φ(f1)

N
(36)

f1 =
ln
(

kVt
kF+NX

)
+
(
r + 1

2
σ2
V

)
(T − t)

σV
√
T − t

(37)

f2 = f1 − σV
√
T − t (38)

h1 =
ln
(
Vt
F

)
+
(
r + 1

2
σ2
V

)
(T − t)

σ
√
T − t

(39)

h2 = h1 − σV
√
T − t (40)

and where λ = 1
N+kM

.
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2. Finally, the warrant price at t is obtained as

wt = λ
[
kV ∗t Φ(f1)− e−r(T−t)(kF +NX)Φ(f2)

]
(41)

It is easy to show that when the �rm has no debt, this procedure coincides with

Ukhov's. Additionally, when the e�ect of dilution is negligible, that is, M
N
→ 0, the

pricing expression collapses to the Black-Scholes-Merton formula.

3.2 Warrants with shorter maturity than debt

We now suppose that the warrant issuer is �nanced with a zero-coupon bond with

longer maturity than the warrants, that is, T < TD.

As in the previous case, we �rst use the Crouhy and Galai (1994) model to

obtain an expression for warrants' value that depends on unobservable variables (the

reference �rm value and its volatility, V ′t and σV ′). We then follow Ukhov (2004)

and establish a relationship between these variables and the �rm's stock price, St,

and its return volatility, σS.

To relate these variables, we use equation (21), which relates the variables V ′t

and σV ′ with the stock price, St, and the following expression to relate V ′t , σV ′ and

St with σS given by

σS = σV ′
∂St
∂V ′t

V ′t
St

(42)

where St is given by (21).

Thus, the warrant pricing algorithm now appears as follows

1. Solve (numerically) the following system of non-linear equations for (V ′∗t , σ
∗
V ′) St = e−r(T−t)√

2π(T−t)

( ∫ ȳ
−∞

c(V ′T ,F,TD−T )
N e−

y2

2 dy +
∫∞
ȳ

c(V ′T +MX,F,TD−T )
N+kM e−

y2

2 dy
)

σS = σV ′
∂St
∂V ′t

V ′t
St

(43)

where c(x,K, T ) denotes the value of a European call option on x, with strike

K and time to maturity T , whereas V̄ ′T denotes the value of V ′T that satis�es

k
c(V ′T +MX,F,TD−T )

N+kM
= X, ȳ = y(V̄ ′T ), and y(V ′T ) =

ln
V ′T
V ′t

+(r− 1
2
σ2
V ′ )(T−t)

σV ′
√
T−t . Recall

that V ′T = V ′t exp
(
(r − 1/2σ2

V ′)(T − t) + σV ′(Z
′
T − Z ′t)

)
.
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2. The warrant price at time t, with t < T , is obtained as

wt =
V ′∗t −NSt −Dt

M
(44)

with Dt given by

Dt = Fe−r(TD−t) − e−r(T−t)√
2π(T − t)

(∫ ȳ

−∞
p(V ′∗T , F, TD − T )e−

y2

2 dy

+

∫ ∞
ȳ

p(V ′∗T +MX,F, TD − T )e−
y2

2 dy

)
(45)

where p(x,K, T ) is the value of a European put option on x, with strike price

K and time to maturity T .

It is worth mentioning that we have no closed-form expression for ∂St

∂V ′t
, so we

need to compute it numerically.

3.3 Warrants with longer maturity than debt

Let us now consider the case of long-term warrants, with T > TD. Although this

situation is unlikely in reality, we study it for completeness.

If there has been no default at time TD, at t = T the owner of a warrant can pay

X and receive k shares of stock with individual value 1
N+kM

(ET +MX), where ET

is the value of equity immediately prior to the exercise of the warrants. Thus, as in

equation (23), we can write

wT = max(0, kλ(ET +MX)−X) (46)

Since at time T there is no debt, and assuming no previous default, we have that

ET = V ′T − F , so this expression can be written as

wT = λmax(0, kV ′T − kF −NX) (47)

Thus, we can write the value of a warrant at t = T as

wT =

{
0 if V ′TD < F (default at TD)

λmax(0, kV ′T − kF −NX) if V ′TD ≥ F (no default at TD)
(48)
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Consequently, we have that at t = TD, just after debt maturity, the warrant

value is

wTD =

{
0 if V ′TD < F

λc(kV ′TD , kF +NX,T − TD) if V ′TD ≥ F
(49)

where c(x,K, T ) denotes the value of a European call option on x, with strike K

and time to maturity T .

Assuming, as before, that the value of the reference �rm follows a lognormal

process and that there are no arbitrage opportunities, then relative asset prices are

martingales, so we can write

wt = e−r(TD−t)E∗[wTD ] =

= e−r(TD−t)E∗
[
λc(kV ′TD , kF +NX,T − TD)IV ′TD≥F

|Ft
]

=
e−r(TD−t)√
2π(TD − t)

∫ ∞
ȳ

λc(kV ′TD , kF +NX,T − TD)e−
y2

2 dy (50)

where y(·) and σV ′ have been de�ned before, and where ȳ =
ln F

V ′t
+(r− 1

2
σ2
V ′ )(TD−t)

σV ′
√
TD−t

.

Up to this point, we have a relationship between the value of the warrant and

the unobservable variables V ′t
7 and σV ′ . The next step is to provide a relation-

ship between these variables and the price of the underlying stock and its return

volatility. To this end, we use the fact that, before debt maturity, shareholders

and warrantholders jointly own a European call option on the value of the com-

pany, with strike equal to the face value of debt, and with exercise date TD; that is,

NSt + Mwt = c(V ′t , F, TD − t), where wt is given by (50). Additionally, we use the

expression σS = σV ′∆SV
′
t /St.

Finally, the warrant-pricing algorithm now takes the following form

1. Solve (numerically) the following system of non-linear equations for (V ′∗t , σ
∗
V ′): NSt +M e−r(TD−t)√

2π(TD−t)

∫∞
ȳ
λc(V ′TD , F, T − TD)e−

y2

2 dy = c(V ′t , F, TD − t)

σS = σV ′
∂St

∂V ′t

V ′t
St

(51)

where c(x,K, T ) denotes the value of a European call option on x, with strike

K and time to maturity T , and with λ = 1
N+kM

, y(V ′TD) =
ln

V ′TD
V ′t

+(r− 1
2
σ2
V ′ )(TD−t)

σV ′
√
TD−t

7Note that we can easily express V ′t in terms of V ′T .
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and ȳ =
ln F

V ′t
+(r− 1

2
σ2
V ′ )(TD−t)

σV ′
√
TD−t

. Recall that V ′T = V ′t exp
(
(r − 1/2σ2

V ′)(T − t) +

σV ′(Z
′
T − Z ′t)

)
.

2. The warrant price at time t, with t < TD, is obtained as

wt(V
′∗
t , σ

∗
V ′) =

e−r(TD−t)√
2π(TD − t)

( ∫ ȳ

−∞
λc(V ′TD , F, T − TD)e−

y2

2 dy. (52)

4 Numerical examples

In this section we provide some examples to illustrate the behavior of warrant-pricing

models. Following Ukhov, we consider a �rm with N = 100 shares outstanding. The

current stock price and the volatility of stock returns are given. We contemplate

three levels of stock prices, S, (75, 100, and 110) and two of volatilities, σS, (25% and

40%). The �rm is also �nanced with debt and warrants. The debt consists of zero-

coupon risky bonds with face value F = 1, 000 and maturity TD. To study di�erent

degrees of dilution due to the issuance of warrants, we assume that the number of

warrants, M , takes the values 10, 50, and 100. Every warrant o�ers the right to

buy one share of the stock (i.e. k = 1) after paying the exercise price X = 100 at

maturity (time T ). The value of the �rm at time t is given by NSt + MWt + Dt,

whereWt and Dt denote the market values of warrants and debt. The instantaneous

risk-free interest rate is r = 0.0488.

We construct three tables based on the relationship between the maturities of

warrants and debt. Each has six panels, which re�ect two volatility levels and three

degrees of dilution. The structure of the tables is based on Ukhov's paper. Warrant

prices are obtained in seven di�erent ways (�ve models in each table). The �rst

column in each table shows the underlying stock price, S. The second uses the Black-

Scholes-Merton (BSM) formula to calculate warrant values when the warrants are

priced as simple stock options, wBSM . The third column reports the prices obtained

with the classical warrant-pricing model (CWM), which assumes that the �rm has

no debt. Since most �rms have debt, this assumption is too strong. This model is

based on the �rm value, V , and its volatility, σV , as given by expression (2). The

CWM assumes that the value of the �rm is equal to the value of equity. In our

calculations, we approximate the value of equity of the �rm by Ẽ = NS +MwBSM .
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We also approximate the volatility of �rm returns, σV , by the volatility of stock

returns, σS. The fourth column (STU) provides warrant prices obtained with the

model developed by Schulz and Trautman (1994) and Uhkov (2004) by solving the

system of equations (9). This model is consistent with the current stock price and

its volatility but still ignores the debt of the �rm. In the �fth column, we value

the warrants with the classical valuation model again this time assuming that the

�rm value is estimated as V = Ẽ + Fe−rTD , where Fe−rTD is the value of debt

under the assumption of risk-free debt. Thus, we assume that the investor ignores

debt when pricing the warrants but is able to obtain a good approximation to the

market value of the �rm. Notice that this valuation will be wrong. As before, the

volatility of �rm returns is approximated by σS. In column 6 of the tables, we

incorporate debt correctly into models that are still based on the �rm value and its

volatility. In columns 7-9 we value the warrants taking debt into account and using

only observable variables. We report the total �rm value (column 7), the volatility

of �rm returns (column 8) and the warrant price (column 9) that are consistent with

market data (the stock price and its volatility). Finally, in columns 10-12 we change

the face value of the debt to F = 10, 000 and keep the remaining variables as before.

We again indicate the �rm value, the volatility of �rm returns and the warrant price.

We must interpret the last of these values with care because, contrary to what might

appear at �rst sight, it does not allow us to study the e�ect of leverage on warrant

prices. Analysis of this e�ect requires a di�erent setting, where �rm value and its

volatility are invariant with leverage and where the volatility of stock returns and

the number of shares change with the amount of debt. Such an analysis is well

beyond the scope of this paper.

We start by comparing the models with no debt (BSM, CWM, and STU in

columns 2-4) across the tables, and �nd the di�erences to be small. For example,

in Table I, Panel B1 (high volatility, low dilution), we have that the prices of ATM

warrants are 32.5992, 31.7675, and 32.5671, respectively. We also see that warrant

prices are a�ected by dilution:8 CWM prices decrease clearly with dilution, while

STU prices decrease more slowly and may even increase slightly (for OTM warrants

of short maturity and low volatility, as shown in Table II). CWM prices are always

8Except for the BSM model, where dilution is not considered.
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lower than BSM prices, especially for high dilution. CWM prices are also always

lower than STU prices, particularly for high dilution. Moreover, the di�erence in

prices is greater for high dilution, re�ecting the fact that, with dilution, CWM prices

fall faster than STU prices. Finally, comparing STU and BSM prices, we have that,

in general, the former are lower than the latter. However, there are cases where the

opposite is true (ATM or OTM warrants with low volatility and low dilution).

As explained before, we introduce debt into the models for the �rst time in co-

lumn 5, model CWMD. The assumption is that the investor is able to correctly

assess the market value of the �rm but is unable to develop a pricing model incor-

porating debt. He, therefore, uses the classical warrant pricing model to value the

warrants. Obviously, �rm value now increases and drives up warrant prices. The

e�ect is stronger for low dilution and low volatility. For the case mentioned in the

previous paragraph, ATM warrants in Panel B1 of Table I, the warrant value is

37.6269.

We next take debt properly into account in the remaining columns (6-12) of the

tables. We distinguish three cases, based on three di�erent debt maturity periods.

In Table I we study the valuation of warrants when they mature at the same time

as the debt. We assume that time to maturity is 3 years (T = TD = 3). Warrant

values are computed with the models mentioned before (BSM, CWM, STU, and

CWMD), with the classical model properly extended with debt �we call it LWM1V

(column 6), which stands for our �rst �levered warrant model� based on the �rm

value (see expression (26)), and with this levered warrant model based on the stock

price, LWM1SA (column 9), as given by expressions (35) - (41). Note that we also

give the �rm values and the corresponding volatilities that satisfy this system of

equations (columns 7 and 8). In columns 10-12 we value the warrants as in columns

7-9 but assuming that the initial amount of debt in the �rm has a face value of

F = 10, 000. We refer to this calculation as LWM1SB.

Comparing columns 6 and 9 in Table I, we see that LWM1V values can be greater

or smaller than LWM1SA ones, but the di�erences are not very great. In Panel A2,

for example, we have that the value of an OTM warrant is 30.0140 for LWM1V and

31.3195 for LWM1SA. In the latter case, the �rm value and �rm value volatility

consistent with market data are 13,429.78 and 28.30%, respectively. As mentioned
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before, in columns 10-12 we consider the case where the initial amount of debt is

higher (F = 10, 000). The �rm value consistent with this situation is 21,248.19 (very

di�erent from before), while the value of the warrant is similar: 32.2393.

Comparison of LWM1SA with the other levered warrant pricing models in Ta-

ble I yields a series of di�erences. We obtain generally lower ITM warrant prices

and higher ATM and OTM warrant prices (especially for low volatility) with the

LWM1SA than with the BSM model; we always obtain higher prices with LWM1SA

than with CWM. In comparison with the STU model, we see that when the model

includes debt with the same maturity as the warrant, the values of ITM warrants

show a small reduction, while the values of ATM and OTM warrants show a small

increase. The results hold for di�erent levels of dilution and volatility.

Finally, warrant prices clearly decrease with dilution for LWM1V but can increase

slightly for LWM1SA (ATM and OTM warrants, low volatility and high debt levels).

Thus, we can conclude from Table I that when the warrants have the same

maturity as the debt: 1) warrant prices decrease with dilution, and 2) when debt is

incorporated into the model, the values of ITM warrants decrease slightly and the

values of ATM and OTM warrants increase.

In Table II, we value warrants when their maturity is smaller than the maturity

of the debt (T = 1, TD = 3). Since the maturity period of the warrants is shorter,

warrant prices will obviously be smaller than in Table I. As before, seven valuations

are studied: BSM, CWM, STU, CWMD, the Crouhy and Galai (1994) model (CG),

and our second valuation model (LWM2SA and LWM2SB). It is important to point

out that, to the best of our knowledge, this is a novel implementation of the CG

model in the literature. Although Crouhy and Galai (1994) calculate warrant prices

with their model, as given by expression (15), they do so only near the exercise date

of the warrants and not at the current time t. When implementing the CG model,

we take V ′t = Ẽt +Fe−rTD as initial value of the reference �rm, and σV ′ = σS as the

volatility of �rm returns. >From these, we �nd the reference asset value, V̄ ′T , above

which the warrants are exercised. That is, we �nd the value of V ′T that satis�es
c(V ′T +100M,1000,2)

N+M
= 100, where c(·) is given by the Black and Scholes (1973) option

pricing formula. Using the value of V̄ ′T thus obtained, we simulate by Monte Carlo

the value of V ′t from t = 0 to t = T . In each run, the �rm value is determined

18



as a function of whether the value of V ′T given by the simulation is above or below

V̄ ′T , for which we use the expression of St given by (17). If the warrants are not

exercised, the debt value at t = T is DNW
T = V ′T − NSNWT and the warrant value

is wT = 0, whereas if the warrants are exercised, we calculate the debt value as

DW
T = V ′T +MX − (N + kM)SWT and the warrant value as wT = kSWT −X. Finally,

after running 1.000.000 simulations, we obtain the values of St, Dt and wt. Thus,

in Panel A (low volatility), we see that the CG model overprices LWM2SA when

dilution is low. LWM2SA prices are computed solving the system of equations

(43)-(45). For the remaining cases, the CG model tends to underprice our model.

Note that this did not happen in Table I. The price di�erences are larger for OTM

warrants and high dilution.

We also note in Table II that BSM overprices LWM2SA for OTM warrants and

underprices it for other warrants (as in Table I). The price di�erences increase with

dilution, and can be as great as 32.46% (ITM warrants and high dilution, 1.9052

versus 1.4382). We �nally observe that warrant prices decrease with dilution in

the CG model and can increase in our model (for ATM and ITM warrants). We

always obtain higher prices with LWM2SA than with CWM, as shown in Table I

Finally, comparing STU and LWM2SA, we see that when we incorporate debt with

longer maturity than the maturity of the warrants into the model, the prices of

ITM warrants decrease slightly and the prices of ATM and OTM warrants show a

small increase. This result holds for di�erent levels of dilution ( as in Table I). With

respect to LWM2SB, we note that for higher debt levels, warrant prices increase in

general, except for ITM and ATM warrants with low and medium dilution, where

the opposite is true. For the high volatility case (Panel B), warrant prices increase

substantially, and the di�erences between models are smaller. Now, warrant prices

always decrease with dilution for both LWM2SA and CG.

Thus, we can conclude from Table II that when the maturity of the warrants is

shorter than that of the debt: 1) warrant prices can increase with dilution and 2)

when debt is taken into account, warrant prices decrease slightly for ITM warrants

and increase for ATM and OTM warrants (as in Table I).

Finally, in Table III, we value long-term warrants, which expire after the debt

(T = 3, TD = 1). This situation, as already mentioned, will be quite uncommon. In

19



the table, we value the warrants with: 1) BSM, 2) CWM, 3) STU, 4) CWMD, 5) our

third valuation model based on �rm value (LWM3V, as given by expression (50)),

6) our third valuation model based on the stock price (LWM3SA, which solves the

system (51)-(52)), and 7) our third valuation model based on the stock price with

a di�erent amount of debt (LWM3SB). Since the maturity of the warrants is the

same as in Table I, the models not incorporating debt produce the same warrant

values as in Table I (that is, columns 2, 3, and 4 of tables 1 and 3 are identical).

Since the maturity of the debt is shorter than in Table I, both debt and �rm values

are now higher, which helps to explain why the models incorporating debt produce

higher warrant prices in Table III than in Table I. The data in Panel A of Table

III (low volatility case) show that LWM3V warrant prices decrease with dilution

and are always greater than CWM prices. Also, the LWM3V model overprices the

LWM3SA model when dilution is low and underprices it when dilution is medium or

high. The underpricing is greater for ITM warrants and high dilution. In LWM3SA,

warrant prices can increase slightly with dilution (for ATM and OTM warrants and

low dilution levels).

We also see from Table III that the BSM model slightly underprices LWM3SA

in almost all cases. The price di�erences decrease somewhat with dilution. Finally,

warrant prices clearly decline with dilution in LWM3V and tend to decrease in

LWM3SA. Relative to the STU model, we see that, if dilution is not low, the incor-

poration of debt with shorter maturity than that of the warrants decrease warrant

prices; if dilution is low, the warrant prices increase with the debt (for any given

moneyness). With respect to the LWM3SB model, we can say that with high debt

levels, we obtain greater warrant prices for any degree of moneyness, dilution, or

volatility. The results for Panel 2 (high volatility) are similar. Warrant prices are

higher and, generally, decrease with dilution.

Thus, we can conclude from Table III that when the maturity of the warrants is

larger than that of the debt: 1) warrant prices decrease with dilution and 2) when

debt is incorporated into the model, warrant prices decrease for medium or high

dilution and increase for low dilution.

To summarize our results, although many di�erent comparisons between models

are possible, we have focused on comparing models incorporating debt. To this end,
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we have implemented our three algorithms, an extension of the classical warrant

pricing model, the Crouhy and Galai (1994) model, and versions of our models

based on �rm value. We have also used the BSM formula, the classical warrant

pricing model and the Schulz-Trautman-Ukhov model as references. We �nd that,

although in many cases theoretical warrant prices are similar, substantial di�erences

between models are also possible. As an example, investors using the BSM model

could overprice warrants by more than 30% relative to our model (see Table II).

We also �nd that models based on �rm value are not consistent, in general, with

the observed market data. This happens because when we compute the stock price

and the volatility of stock returns implicit in the valuation process, we obtain values

that are di�erent from the initial ones. Thus, the incorporation of debt and the use

of observable variables appear to be important when pricing corporate warrants.

5 Conclusions

We present a warrant valuation model that extends previous ones. Our model prices

European call warrants on the issuer's own stock taking debt into account. It is based

on the issuer's stock price and the volatility of stock returns, thus avoiding the need

to estimate �rm value and its volatility, and allowing consistency with market data.

We consider three cases depending on the exercise date of the warrants: warrants

with the same maturity as the debt, warrants expiring before the debt, and warrants

with longer maturity than the debt.

To derive a valuation formula for each situation, we �rst draw on the works of

Ingersoll (1987) and Crouhy and Galai (1994) to express the value of the warrant as a

function of unobservable variables. We then relate these variables to the underlying

stock price and its return volatility.

To study the implementation of our valuation framework, we provide some nu-

merical examples. We study warrant prices given by the models for di�erent dilution

levels, underlying stock prices, and stock return volatilities.

We contribute to the literature in various ways. First, we extend the work of

Ukhov (2004) allowing the issuing �rm to have debt. Second, we extend the model

of Crouhy and Galai (1994) to the case of observable variables. We note, as an
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aside, our novel implementation of the actual Crouhy and Galai model, where the

maturity of the warrants is shorter than that of the debt. When warrants mature

at the same time as the debt, the Crouhy and Galai (1994) cannot be used. Thus,

our third contribution is to extend the classical warrant valuation model to include

debt with the same maturity as the warrants. This is one of the models used in

our comparisons. Finally, the fourth contribution of the paper is the valuation of

long-term levered warrants. We provide pricing formulas for this case based on the

stock price as well as on the �rm value.

The overall conclusion of the paper is that allowing for debt in the issuing �rm

seems to be important for warrant pricing purposes, and that it is possible to do so

with a model that is consistent with market data.
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Ẽ

S
V

=
Ẽ
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Ẽ

=
N
S

+
M
w

B
S
M
,
w
h
er
e
N

is
th
e

n
u
m
b
er

o
f
sh
a
re
s
a
n
d
M

is
th
e
n
u
m
b
er

o
f
w
a
rr
a
n
ts
;
2
)
C
W
M

is
th
e
cl
a
ss
ic
a
l
w
a
rr
a
n
t
p
ri
ci
n
g
m
o
d
el
,
ta
k
in
g
V

=
Ẽ
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a
b
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o
n
t.
).

W
a
rr
a
n
t
p
ri
ce
s
w
h
en

th
e
m
a
tu
ri
ty

o
f
th
e
w
a
rr
a
n
ts

is
g
re
a
te
r
th
a
n
th
e
m
a
tu
ri
ty

o
f
th
e
d
eb
t,
T
>
T
D
.
T
h
e
ta
b
le

in
d
ic
a
te
s
w
h
et
h
er

th
e
cu
rr
en
t
st
o
ck

p
ri
ce
S
o
r
th
e
�
rm

va
lu
e
V

is
u
se
d
in

th
e
ca
lc
u
la
ti
o
n
.
In

a
ll
ca
se
s,
th
e
v
o
la
ti
li
ty

o
f
st
o
ck

re
tu
rn
s,
σ
S
,
is
ta
k
en

a
s
a
n
in
p
u
t.

S
ev
en

va
lu
a
ti
o
n
s
a
re

p
ro
v
id
ed
:
1
)
B
S
M
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th
e

B
la
ck
-S
ch
o
le
s-
M
er
to
n
st
o
ck

o
p
ti
o
n
m
o
d
el
;
th
e
th
eo
re
ti
ca
l
w
a
rr
a
n
t
p
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ce
,
w

B
S
M
,
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u
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d
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m
p
u
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th
e
a
p
p
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x
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a
te

�
rm

eq
u
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y
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lu
e
Ẽ

=
N
S

+
M
w

B
S
M
,
w
h
er
e
N
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th
e

n
u
m
b
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o
f
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a
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s
a
n
d
M
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e
n
u
m
b
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o
f
w
a
rr
a
n
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;
2
)
C
W
M
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e
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a
l
w
a
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a
n
t
p
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n
g
m
o
d
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,
ta
k
in
g
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=
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S
T
U
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e
m
o
d
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d
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o
p
ed

b
y
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u
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n
d
T
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u
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9
9
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d
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k
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0
0
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p
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d
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p
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d
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M
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e
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e
m
o
d
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b
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p
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v
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y
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L
W
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0
0
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a
ra
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1
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1
0
0
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W
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p
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p
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