AGRADECIMIENTOS

En primer lugar quería expresar mi más profundo agradecimiento a Silvia Díaz Lucas por hacer posible este proyecto. Además de agradecer su amabilidad, paciencia y tiempo durante estos meses. También quería agradecer a mis compañeros de laboratorio Noé y Joseba por ayudarme cuando lo he necesitado. También quería agradecer a mi familia por el esfuerzo realizado por ellos. El apoyo durante mis estudios y en la vida.

Trabajo Fin de Grado

Nombre y apellidos del autor: Rubén Fernández Balerdi

Nombre y apellidos del director/es: Silvia Díaz Lucas

Pamplona, 24 de mayo de 2016
AGRADECIMIENTOS

En primer lugar quería agradecer a Silvia Díaz Lucas por haberme brindado la oportunidad de realizar este trabajo de fin de grado, por su amabilidad y por su tiempo.

Así mismo quiero destacar la ayuda de las personas del laboratorio y a mis padres, que en todo momento me han ofrecido su apoyo y paciencia.
RESUMEN

El presente trabajo de fin de grado ha sido realizado por Rubén Fernández Balerdi, alumno de la tercera promoción del grado en Ingeniería en Tecnologías de la Telecomunicación.

Escogí este proyecto porque dentro de la especialización en tecnologías de la comunicación, las comunicaciones ópticas era el ámbito que más me interesaba.

Los objetivos durante estos meses de proyecto han sido estudiar la estabilidad en potencia y en tiempo de láseres de fibra óptica mediante el empleo de anillos ópticos. Para ello se han elaborado dos montajes para estudiar el comportamiento de dichos parámetros.

Durante la realización del trabajo de fin de grado se han obtenido una gran cantidad de medidas y de datos que posteriormente han sido analizados y presentados en el presente trabajo.
LISTA DE PALABRAS CLAVE

- **ASE**=Emisión de amplificación espontánea.
- **BASE**=Emisión de amplificación espontánea hacia atrás.
- **EDF**=Fibra dopada con erbio.
- **EDFA**=Amplificación de fibra dopada con erbio.
- **EDFL**=Láser de fibra dopada con erbio.
- **FASE**=Emisión de amplificación espontánea hacia delante.
- **FBG**=Red de difracción de Bragg.
- **OSA**=Analizador de espectros ópticos.
- **OSNR**=Relación señal ruido óptica.
- **SMF**=Fibra monomodo estándar.
- **TFG**=Trabajo de fin de grado.
- **VOA**=Atenuador óptico variable.
- **WDM**=Multiplexación por división en longitud de onda.
Índice

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRADECIMIENTOS</td>
<td>2</td>
</tr>
<tr>
<td>RESUMEN</td>
<td>3</td>
</tr>
<tr>
<td>1. ANTECEDENTES HISTÓRICOS, MOTIVACIÓN Y OBJETIVOS</td>
<td>7</td>
</tr>
<tr>
<td>2. FUNDAMENTOS TEÓRICOS</td>
<td>8</td>
</tr>
<tr>
<td>2.1 FIBRA ÓPTICA</td>
<td>8</td>
</tr>
<tr>
<td>2.1.1 Monomodo</td>
<td>8</td>
</tr>
<tr>
<td>2.1.2 Multimodo</td>
<td>9</td>
</tr>
<tr>
<td>2.1.3 Fibras dopadas con tierras raras</td>
<td>10</td>
</tr>
<tr>
<td>2.2 AMPLIFICACION ÓPTICA</td>
<td>10</td>
</tr>
<tr>
<td>2.2.1 Efecto</td>
<td>11</td>
</tr>
<tr>
<td>2.2.3 Amplificadores de fibra dopada con tierras raras</td>
<td>12</td>
</tr>
<tr>
<td>2.2.4 Amplificadores de fibra dopada con erbio</td>
<td>13</td>
</tr>
<tr>
<td>2.2.5 Tiempo de vida</td>
<td>14</td>
</tr>
<tr>
<td>2.2.5 Ganancia en los EDFA</td>
<td>15</td>
</tr>
<tr>
<td>2.2.6 Competencia por la ganancia</td>
<td>15</td>
</tr>
<tr>
<td>2.2.7 Ruido en receptores ópticos</td>
<td>16</td>
</tr>
<tr>
<td>2.3 DISPOSITIVOS ÓPTICOS</td>
<td>17</td>
</tr>
<tr>
<td>2.3.1 WDM</td>
<td>17</td>
</tr>
<tr>
<td>2.3.2 Atenuadores ópticos</td>
<td>17</td>
</tr>
<tr>
<td>2.3.3 Acopladores</td>
<td>18</td>
</tr>
<tr>
<td>2.3.4 Aisladores</td>
<td>19</td>
</tr>
<tr>
<td>2.3.5 Redes de difracción en fibra</td>
<td>20</td>
</tr>
<tr>
<td>2.3.6 Circulador óptico</td>
<td>21</td>
</tr>
<tr>
<td>2.4 EL LÁSER</td>
<td>23</td>
</tr>
<tr>
<td>2.4.1 Tipos de láser</td>
<td>24</td>
</tr>
<tr>
<td>2.4.2 Limitaciones y características de los láseres</td>
<td>27</td>
</tr>
<tr>
<td>2.5 SENSORES DE TEMPERATURA</td>
<td>32</td>
</tr>
<tr>
<td>2.5.1 Introducción</td>
<td>32</td>
</tr>
<tr>
<td>2.5.2 Redes de difracción de Bragg</td>
<td>33</td>
</tr>
<tr>
<td>2.5.3 Sensibilidad de los FBG</td>
<td>33</td>
</tr>
</tbody>
</table>
3. PROCESO EXPERIMENTAL ... 35

3.1 Estabilización de potencia y longitud de onda de tres redes de difracción Bragg empleando un bucle óptico lineal y diversas fibras ópticas. ... 35

3.2.1 Configuración empleada. .. 35

3.2.2 Estudio de estabilidad con el tiempo de la fibra dopada con erbio Er-80 de longitud 1m. ... 36

3.2.3 Empleo de fibra óptica dopada con erbio I-25 de longitud 2,5m. 39

3.2.4 Empleo de fibra óptica dopada con erbio Er-30 de longitud 5m. 42

3.2.5 Empleo de fibra óptica dopada con erbio I-25 de longitud 5m. 44

3.2.6 Comparación de los resultados obtenidos.. 47

3.2.7 Estudio del comportamiento lineal con respecto a la temperatura........ 48

3.3 Estabilidad de un láser con doble cavidad en anillo mediante el empleo de un lazo óptico estabilizador... 49

3.3.2 Estudio de estabilidad con el tiempo de la fibra dopada con erbio Er-30 más lazo estabilizador de longitud 1km.. 51

3.3.3 Estudio del comportamiento lineal con respecto a la temperatura........ 52

4. CONCLUSIONES .. 53

BIBLIOGRAFÍA ... 54

ANEXOS .. 56
1. ANTECEDENTES HISTÓRICOS, MOTIVACIÓN Y OBJETIVOS

Los láseres fueron inventados a inicios de 1960s, el primer láser inventado fue el ruby laser [1]. Desde entonces, se ha aumentado exponencialmente la variedad de láseres, tanto de gas como de fibra óptica. Todos ellos caracterizados por una ganancia media. En lo que se refiere al aspecto de la ganancia media, este parámetro es diferente dependiendo de la naturaleza del láser, la excitación y las técnicas de operación [2].

Los láseres formados por fibra óptica han sido objeto de investigación en los últimos años debido a su increíble potencial para transmitir en la ventana de 1550nm. La ventana de 1550nm permite una menor atenuación debida a las características de la sílice. Estos instrumentos son empleados para una gran variedad de aplicaciones como por ejemplo en la ciencia, en la ingeniería, procesamiento de datos, sensores medioambientales, defensa, energía, astronomía y metrología. En estos días no nos podríamos imaginar estos campos de estudio sin esta herramienta [3].

Con el erbio se requiere más potencia de bombeo, sin embargo, el erbio puede convertirse en un medio con ganancia muy potente una vez que se tiene en forma de fibra óptica. Esto tiene algunas ventajas sobre los medios de ganancia que no están en forma de fibra, tales como medio de ganancia compacto, potencia de bombeo alta en el medio de ganancia, buena disipación.

Los láseres sintonizables de fibra dopada con erbio son utilizados en sistemas de sensores basados en fibra óptica [4] y espectroscopía [5]. También pueden ser utilizados para caracterización de componentes multiplexores por división de longitud de onda de fibra óptica [6].

Este trabajo surge como motivación para descubrir el mundo de la fibra, debido a que en una sociedad que avanza a pasos agigantados hacia las nuevas tecnologías, la fibra óptica tendrá un papel importante en el presente y en el futuro que nos rodea.

En este trabajo de fin de grado se ha optado por el empleo de estructuras en forma de anillo para la elaboración de láseres de fibra óptica. Para poder conseguirlo ha sido necesario la presencia de redes de difracción de Bragg (Fiber Bragg Gratings, FBG). Empleando ambos elementos se han elaborado dos configuraciones para su estudio.

Objetivos:

- Láser multilínea en anillo de fibra óptica.
- Láser multilínea con dos cavidades en anillo de fibra óptica.
- Estudio de estabilidad con el tiempo.
- Estudio de estabilidad con la temperatura.
2. FUNDAMENTOS TEÓRICOS

En este apartado se describirán los fundamentos teóricos, el tipo de fibras empleado durante los experimentos y los dispositivos ópticos requeridos para la elaboración de las diferentes pruebas con láseres de fibra óptica multilinea.

2.1 FIBRA ÓPTICA

La fibra óptica es una guía de onda cilíndrica dieléctrica fabricada en sílice, plástico u otros materiales con baja atenuación a frecuencias ópticas. Principalmente es utilizada en redes de datos. Las fibras ópticas son guiaondas formadas normalmente por una zona central (núcleo) de mayor índice de refracción que la que le rodea (cubierta) y que guían uno o varios modos, dependiendo de las dimensiones del núcleo. La fuente de luz suele ser un diodo láser o un LED [7].

Dentro de las telecomunicaciones son el medio de transmisión por excelencia de las telecomunicaciones ya que son inmunes a las interferencias electromagnéticas.

Figura 2.1. Estructura básica de la fibra

En el interior de la fibra la luz se transporta sobre modos de propagación, diferenciaremos según este criterio dos tipos de fibra óptica.

2.1.1 Monomodo

Es aquella fibra óptica en la que sólo se propaga un modo de luz. Esto es posible debido a que el tamaño de su núcleo es menor de 9 µm. Debido al tamaño del núcleo es difícil el acoplamiento de la luz, pero permite alcanzar distancias mayores y tasas de transmisión más elevadas que la fibra multimodo.

La fibra monomodo o estándar, conocida por sus siglas en inglés SMF (Standard Single Mode Fiber), posee una atenuación de aproximadamente 0,2dB/km y una dispersión de 18 ps/km-nm en la longitud de onda de 1550nm. Sin embargo al operar en una longitud
de onda de 1330nm la atenuación asciende a 0.03dB/km y su dispersión es prácticamente nula [8].

![Refractive Index Profile (typical fiber)](image1)

![Spectral Attenuation (typical fiber)](image2)

Figura 2.2. Representación del índice de refracción y atenuación de la fibra.

2.1.2 Multimodo

A diferencia de las fibras monomodo, una fibra multimodo es aquella en la que se propaga más de un modo. Este tipo de fibras se emplean en aplicaciones de corta distancia.

El núcleo de una fibra óptica multimodo tiene un índice de refracción superior, pero del mismo orden de magnitud, que el revestimiento. Debido al gran tamaño del núcleo de
una fibra monomodo, es más fácil de conectar y tiene una mayor tolerancia a componentes de precisión [6].

Dependiendo del tipo de índice de refracción, hay dos tipos de fibra multimodo:

- Salto de índice: El núcleo tiene un índice de refracción constante.
- Índice gradual: El núcleo posee un índice de refracción que no es constante.

![Tipos de fibra óptica](image.png)

Figura 2.3. Tipos de fibra óptica.

2.1.3 Fibras dopadas con tierras raras

Este tipo de fibras se emplea como medio para obtener amplificación óptica. Para generar este tipo de amplificadores se requiere dopar el núcleo de la fibra, formado por vidrio, con iones de materiales pertenecientes al grupo de tierras raras (Er, Yb, Nd, Pr). Esto es necesario debido a que el medio activo es el propio núcleo de la fibra óptica y la inversión de población se consigue mediante un bombeo óptico de dichos iones a unas longitudes de onda concretas, provocando que los iones se muevan desde un estado fundamental a otro excitado, consiguiendo así la emisión estimulada. La ventaja de la amplificación usada con este tipo de fibras es que es compatible con la propia fibra que constituye el medio de transmisión en los sistemas de comunicación ópticos [9].

En caso de querer amplificar la ventana de 1280 a 1340 nm el dopante empleado sería el Prasedimio (Pr), para la ventana de 1450 a 1520 nm se usan iones de Tulio (Tm) y finalmente para el rango de 1500 a 1600nm el amplificador de fibra dopada con erbio es el más usado en este tipo de dispositivos debido a que el diagrama de niveles de energía del erbio permite amplificar señales ópticas en tercera ventana de comunicaciones ópticas, en el cual se sitúa este trabajo de fin de grado.

2.2 AMPLIFICACION ÓPTICA
Proceso por el cual se permite el incremento de la señal óptica sin alterar el resto de sus características y sin hacer uso de conversiones electrónicas.

Este tipo de amplificación no solamente es útil en comunicaciones ópticas, también es importante en procesos que requieren aumentar la potencia de las señales, como es el caso de redes de sensores.

Existen dos ventajas básicas en los amplificadores de fibra óptica, respecto a los amplificadores convencionales. La primera es que la potencia de bombeo necesaria es mucho menor, debido a que ésta se distribuye en una zona de unas pocas micras (µm) en el interior de la fibra, por lo que se consigue más fácilmente la intensidad de bombeo necesaria para la amplificación. Y en segundo lugar, que la fibra óptica puede enrollarse fácilmente, ocupando poco volumen, lo que permite utilizar amplificadores muy largos, para conseguir la máxima ganancia compatible con la potencia de bombeo utilizada cubriendo grandes distancias de cientos de kilómetros evitando el empleo de los clásicos repetidores [10].

En la actualidad existen tres tipos básicos de amplificadores de fibra óptica: los de núcleo dopado con tierras raras, los de dispersión de Brillouin estimulada y los de dispersión Raman estimulada.

2.2.1 Efecto

A continuación se hablará del efecto láser para tratar de comprender el principio de funcionamiento del amplificador óptico. La parte principal de un sistema láser es su medio activo o amplificador, ya que allí se llevan a cabo los tres fenómenos naturales que generan la radiación electromagnética que se obtiene de un láser, absorción, emisión espontánea y emisión estimulada.

El medio activo está compuesto de moléculas, átomos o iones en las cuales existen niveles de energía discretos, y cada uno de ellos puede interactuar con la radiación electromagnética que incida sobre el medio activo [3].

A continuación se considera un átomo con dos niveles de energía, E_1 y E_2. Nos interesan todas las posibles formas que permitan la iteración entre el átomo y los fotones de una radiación de frecuencia ν, tal que $h\nu=E_1-E_2$, es decir, cuya energía es igual a la diferencia de energía entre dos niveles del átomo.

Emisión espontánea

Si el átomo se encuentra inicialmente en el nivel de energía superior, puede pasar espontáneamente al nivel inferior liberando su energía en forma de fotón. El fotón producido por esta interacción tendrá una energía ($h\nu$).

![Figura 2.4. Emisión espontánea.](image)
Absorción

Si el átomo se encuentra inicialmente en el nivel de energía superior e incide sobre él un fotón, éste puede ser absorbido por el material promocionando al átomo al nivel superior de energía. La absorción es una transición inducida por el fotón y que solamente puede producirse debida a éste.

![Figura 2.5: Proceso de absorción](image)

Emisión estimulada

Si el átomo se encuentra inicialmente en el nivel de energía superior y sobre él incide un fotón, el átomo puede ser estimulado por dicho fotón y emitir otro fotón con la misma dirección y sentido que el primero. El nuevo fotón presentará la misma frecuencia y fase que el original. El proceso inverso es el de la absorción, como se ha visto anteriormente.

![Figura 2.6. Emisión estimulada](image)

Los foto-receptores ópticos como pueden ser el PIN (fotodiodo de semiconductor formado por la unión P-N) o el APD (fotodiodo de avalancha) funcionan por el proceso de absorción. La emisión espontánea es la causante del ruido generado de los amplificadores ópticos.

Este proyecto se centra en los amplificadores ópticos de núcleo dopada con tierras raras, donde la acción del láser se obtiene por emisión estimulada, correspondiente a la transición entre dos niveles de ion tierra rara, y las longitudes de onda de bombeo y de amplificación quedan fijadas por la estructura de niveles de dichos iones [9].

2.2.3 Amplificadores de fibra dopada con tierras raras

Como se ha mencionado anteriormente, para generar este tipo de amplificadores se requiere dopar el núcleo de la fibra óptica, formado por vidrio, con iones de materiales pertenecientes al grupo de tierras raras (Er,Yb,Nd,Pr). Esto es necesario debido a que el medio activo es el propio núcleo de la fibra óptica y la inversión de población se consigue mediante un bombeo óptico de dichos iones a unas longitudes de onda concretas,
provocando que los iones se muevan desde un estado fundamental a otro excitado, consiguiendo así la emisión estimulada. La ventaja de la amplificación usada con este tipo de fibras es que es compatible con la propia fibra que constituye el medio de transmisión en los sistemas de comunicación ópticos [9].

En caso de querer amplificar la ventana de 1280 a 1340 nm el dopante empleado sería el Prasedimio (Pr), para la ventana de 1450 a 1520 nm iones de Tulio (Tm) y finalmente para el rango de 1500 a 1600 nm, el amplificador de fibra dopada con erbio es el más usado en este tipo de dispositivos debido a que el diagrama de niveles de energía del erbio permite amplificar señales ópticas en tercera ventana de comunicaciones ópticas, donde se centra este trabajo de fin de grado.

2.2.4 Amplificadores de fibra dopada con erbio

Los EDFAs son los preferidos para utilizarlos en redes por su gran versatilidad, anchos de banda de ganancia útiles, gran eficiencia de bombeo, ruido intrínseco bajo y escasa dependencia de su ganancia con la polarización de la luz. Son amplificadores ópticos que consisten en una fibra monomodo cuyo núcleo se ha dopado con erbio [6].

En la siguiente figura se muestra el diagrama de los niveles de energía del erbio y las longitudes de onda de bombeo necesarias para alcanzarlos.

![Diagrama de niveles de energía del erbio](image)

Figura 2.7. Niveles de energía del erbio.

En la figura anterior, la transición relevante en comunicaciones ópticas es la que se origina en el nivel de energía $^4I_{13/2}$ y finaliza en el nivel $^4I_{15/2}$, que corresponde a una longitud de onda aproximadamente 1550 nm.

Para provocar la inversión de población necesaria para producir la amplificación óptica se pueden bombear los iones de erbio empleando diferentes longitudes de onda.
situadas en el visible y en el infrarrojo cercano. Las longitudes más utilizadas y más eficientes son: 980 nm y 1480 nm. Para conseguir estabilidad de potencia y longitud de onda emitidas, es necesario controlar la corriente de alimentación y la temperatura de los láseres emisores. Esto último se lleva a cabo mediante refrigeradores que operan por efecto Peltier y para ayudar en la estabilización de la longitud de onda, suele usarse también redes de difracción Bragg de fibra óptica [10].

El esquema de bombeo puede ser unidireccional o bidireccional, en caso de que el bombeo sea unidireccional, hay dos opciones: co-propagación o contra-propagación. El primer caso es menos ruidoso y el segundo es más eficiente en cuanto a ganancia se refiere, por lo tanto la elección dependerá de la situación concreta en la que se utilice. A continuación se presenta un esquema de bombeo bidireccional, los aisladores permiten garantizar que la señal a amplificar sólo circule en una dirección, evitando reflexiones indeseadas. Para multiplexar la señal de bombeo con la señal de entrada se emplea un multiplexador en longitud de onda (WDM) que permite separar o unir las dos longitudes de onda. En el centro se encuentra la fibra dopada con erbio encargada de amplificar la señal.

![Esquema de un amplificador de fibra dopada con erbio bidireccional](image)

Figura 2.8. Esquema de un amplificador de fibra dopada con erbio bidireccional [3].

2.2.5 Tiempo de vida

El tiempo de vida de un nivel es inversamente proporcional a la probabilidad de tiempo de la salida de un ion de ese nivel excitado. El decaimiento de población de un nivel dado, de un grupo de iones excitados, cae exponencialmente con una constante de tiempo igual al tiempo de vida. Cuando existen diferentes caminos para el decaimiento de la población, la probabilidad total es igual a la suma de las probabilidades individuales para cada camino. A estos caminos de decaimiento se les asigna un tiempo de vida individual. Usualmente, el tiempo de vida de un nivel dado de tierras raras toma en consideración dos principales caminos de decaimiento, radiativo y no radiativo.

\[
\frac{1}{\tau} = \frac{1}{\tau_r} + \frac{1}{\tau_{nr}},
\]
donde τ es el tiempo de vida total, τ_r es el tiempo de vida no radiativo [11]. El tiempo de vida radiativo se desarrolla de la fluorescencia del nivel excitado hacia todos los niveles inferiores. Los tiempos de vida no radiativos dependen principalmente de la naturaleza del material anfitrión y del acoplamiento entre las vibraciones del ion de erbio y de los iones que lo encierran. En el proceso no radiativo, la des-excitación del ion del erbio es acompañada de la emisión de uno o varios fotones [3].

2.2.5 Ganancia en los EDFA

Hay que tener en cuenta que la optimización de la ganancia depende de la longitud óptima de la fibra y de la dependencia de ésta con los parámetros como: la longitud de onda, la potencia del bombeo y la señal.

Al aumentar la potencia del bombeo se consigue invertir la población de un tramo de fibra más larga, aumentando de esta manera la longitud óptima de ésta. Si se trabaja en longitudes de onda donde el bombeo es más eficiente y es absorbido más rápidamente a lo largo de la fibra, la longitud óptima es menor. Y por último, si aumenta la potencia de la señal, se provocan más emisiones estimuladas, lo que implica la inversión de población y, por tanto, se acorta la longitud óptima (menos ganancia, pero más potencia de salida).

Como la longitud de onda varía, también la probabilidad de emisión estimulada y como consecuencia la ganancia, de forma que la inversión de población se reduce y a su vez lo hace la longitud óptima de la fibra [10].

![Figura 2.9. Espectro de ganancia de un EDFA, con bombeo a 980nm.](image)

2.2.6 Competencia por la ganancia
La ganancia proporcionada por un determinado segmento de fibra amplificadora con una potencia de bombeo constante tiene que repartirse entre las longitudes de onda presentes a su entrada. Esto se debe a que los átomos de la capa superior, conseguidos por la inversión de población mediante la potencia de bombeo, han de ser compartidos por todas las señales incidentes.

Este efecto es importante en sistemas de múltiples canales y debe considerarse a la hora de introducir nuevos canales o de eliminar algunos ya existentes. El añadir nuevos canales implica la disminución de la ganancia de los ya existentes, lo que puede originar problemas en el balance de potencia del sistema y en la calidad de la señal resultante tras la detección. Al eliminar canales aumentamos la potencia de los restantes, lo que puede causar problemas de saturación del sistema de detección o de no linealidad de la fibra [9].

2.2.7 Ruido en receptores ópticos

El ruido de un EDFA viene producido principalmente por el proceso de emisión espontánea (Amplified Spontaneous Emission-ASE). Durante el bombeo se producen emisiones espontáneas de fotones, que al propagarse por el propio EDFA son amplificados en la banda de la tercera ventana (1550nm).

Existen dos tipos de ASE dependiendo del sentido de propagación con respecto al de la señal de entrada. Si es el mismo se conoce como ASE+ o FASE (Forward Amplified Spontaneous Emission) y sí es en sentido contrario se tendrá ASE- o BASE (Backward Amplified Spontaneous Emission). En la figura se puede ver una comparación de ambos para un sistema en el que el bombeo se realiza en el mismo sentido al de la señal a amplificar. La forma del ASE se aproxima a la de la curva de la ganancia del EDFA.
2.3 DISPOSITIVOS ÓPTICOS

2.3.1 WDM

La multiplexación por longitud de onda (Wavelength Division Multiplexing) es una técnica que permite multiplexar n canales o señales sobre un sólo medio óptico (fibra óptica). A dichas señales se les asigna un cierto ancho de banda, mediante portadoras ópticas de diferente longitud. Estos dispositivos son dispositivos bidireccionales, en el cual en uno de sus sentidos se combinan las longitudes de onda de sus entradas uniéndolas en una sola salida. En el otro lado, realiza el proceso inverso, es decir, separa las longitudes de onda entre sus salidas.

En este proyecto se ha empleado un solo WDM por configuración, a una entrada le corresponde la longitud de onda de 980nm y a la otra entrada la de 1550nm. La salida es la común de ambas.

2.3.2 Atenuadores ópticos

El empleo de estos instrumentos ópticos, permite mejorar la estabilización y ecualización a los sistemas, aparato imprescindible en nuestro estudio.

El atenuador es un elemento de suma importancia en el montaje. En esencia, es un mecanismo que introduce unas pérdidas a la cavidad (mediante un tornillo micrométrico se controlan dichas pérdidas) y con ello se cambia la condición de ganancia del anillo, lo que cobra especial relevancia a la hora de conseguir emisión multilínea.
Los atenuadores ópticos son un tipo de filtro óptico que afecta a todas las longitudes de onda por igual. Éstos reducen el nivel de señal óptica, transmitiendo solo una fracción de la luz de entrada. [10]

![Atenuador variable óptico](image)

Figura 2.11. Atenuador variable [10].

Generalmente este tipo de dispositivos lo que hacen es absorber la potencia extra, ya que si la reflejasen la luz indeseada generaría ruido en nuestro sistema.

![Atenuadores variables](image)

Figura 2.12. Atenuadores variables [10].

2.3.3 Acopladores

Surgen debido a la necesidad de distribución de múltiples señales ópticas. Dispone de M entradas (típicamente 1 ó 2) y N salidas (2, 4, 8, 16, 32, 64). Están diseñados para introducir pérdidas de inserción (P.I) aproximadamente iguales para cada una de sus ramas, también se caracterizan con las pérdidas de retorno (P.R).
Las características principales de los mismos son:

- Relación de acoplo.
- Pérdidas de inserción.
- Número de puertos de entrada y salida.
- Direccionalidad.
- Selectividad de la longitud de onda.
- Tipo de transmisión: monomodo o multimodo.
- Sensibilidad a la polarización.

![Acoplador comercial](image)

Figura 2.13. Acoplador comercial [10].

También existe un parámetro que caracteriza las pérdidas, llamado pérdidas en exceso:

\[
Excess \ Loss \ (dB) = -10 \log \left(\frac{P_1 + P_2 + \cdots + P_n}{P_{input}} \right)
\]

La división de la señal no tiene por qué ser idéntica para cada una de las ramas, como veremos en los experimentos realizados, empleando acopladore con relaciones de acoplo de 90:10 y 70:30. Los acopladore son sensibles a la dirección de propagación de la luz, aunque la mayoría son dispositivos bidireccionales [12], [13].

2.3.4 Aisladores

Los aisladores ópticos son dispositivos que transmiten la luz en una única dirección. Su importancia en los sistemas de fibra óptica se debe a que detienen la reflexión y la dispersión de la luz, evitando que alcancen a elementos sensibles.

Su operación depende generalmente de materiales llamados rotadores de Faraday, los cuales provocan una rotación en la polarización de la luz debido al efecto Faraday, donde el ángulo de rotación \(\beta \) es siempre el mismo y viene determinado por: \(\beta = \nu Bd \); en donde \(\nu \) es la constante de Verdet del material y \(d \) la longitud del rotador.

En el siguiente ejemplo gráfico se puede apreciar cómo esta característica es capaz de permitir el paso de la luz en una única dirección.

Figura 2.15. Gráfico del funcionamiento de un aislador [10].

Este diseño tiene el problema de que la mitad de luz (ya sea horizontal o vertical) es desechada, lo que supone 3dB de pérdidas. Existen otros diseños más complicados y refinados que logran evitar dicho problema.

En el montaje elaborado los aisladores han sido colocados de tal manera que la luz circule en un solo sentido dentro del anillo óptico.

2.3.5 Redes de difracción en fibra

Una red de difracción clásica de óptica de volumen es una superficie reflexiva con una serie de líneas, o surcos, paralelas, las cuales provocan que la luz incidente se refleje con diferentes ángulos de salida en función de la longitud de onda.

Se puede desarrollar una red de difracción en el núcleo de una fibra óptica (FBG) provocando una variación periódica de su índice de refracción. Estas variaciones en el índice
de refracción de la fibra provocan la refracción de la luz, el llamado efecto Bragg. La dispersión de Bragg no es exactamente igual al fenómeno de la difracción en una red de difracción. Un FBG tiene la propiedad de reflejar selectivamente una banda de frecuencias estrecha centrada en la longitud de onda de Bragg, λ_B. Esta longitud de onda es proporcional al periodo de variación del índice de refracción, Λ, y al índice de refracción efectivo de la guía de onda, η_{eff}.

$$\lambda = 2 \eta_{\text{eff}} \Lambda$$

Cada vez que la luz atraviesa una zona con un índice de refracción más grande, parte se refleja hacia atrás. Si la longitud de onda incide con la separación de las regiones de la fibra con un índice de refracción mayor, la onda reflejada en cada una de estas zonas forma una interferencia constructiva, como se muestra a continuación [14].

2.3.6 Circulador óptico

El circulador es un dispositivo con varios puertos cuya funcionalidad es permitir el paso de toda la luz que entra por uno de sus puertos hacia el siguiente puerto. Como se muestra en el siguiente esquema la luz que entra por el puerto 1 se dirige al puerto 2, entra por el puerto 2 y se dirige al 3.
En la siguiente figura se muestra el esquema de un circulador de cuatro puertos, 3 de ellos de entrada/salida y el cuarto sólo de salida. El funcionamiento de este esquema se basa en el visto en el aislador óptico, que es independiente de la polarización de la señal de entrada. Éste está formado por rotadores de Faraday, láminas en λ/2 y SWP Spatial Walk-off Polarizator. Como puede observarse la señal que entra por el puerto 1 se dirige únicamente al puerto 2, la señal que entra por el puerto 2 se dirige al 3 y así sucesivamente [10].
2.4 EL LÁSER

El término Laser es el acrónimo de “Light Amplification by the Stimulated Emission of Radiation”, aunque el significado original denota un principio de funcionamiento, el término ahora se utiliza para los dispositivos que generan luz, basado en el principio del láser.

Existen diferentes tipos de láseres en el mundo y los dos más comunes son los de onda continua (CW) y los láseres pulsados. Ambos dispositivos poseen una amplia gama de potencias de salida que van desde los pocos nanómetros hasta pocos kilovatios. La diferencia de los dos tipos es la forma en la cual se emite la luz. Un láser de onda continua emite un haz de forma continua y un láser de impulsos emite luz en forma de haz de pulsos [15].

![Figura 2.19. Cavidad del láser](image)

El primer elemento es la fuente de bombeo. El bombeo emite un haz de luz en el medio activo. La luz emitida por el bombeo es absorbida por la ganancia del medio. La ganancia del medio es el segundo elemento necesario para implementar un láser básico. Esta luz absorbida en la ganancia del medio es emitida como luz, pero con una longitud de onda diferente en comparación con la longitud de onda proveniente del bombeo. La emisión de luz desde el medio de ganancia se produce debido a los procesos de emisión espontánea y estimulada. El tercer elemento es la cavidad del láser. Existen diferentes tipos de cavidades láser: la cavidad del láser lineal y la cavidad en forma de anillo. En nuestro caso, emplearemos la cavidad en forma de anillo.

El proceso de emisión espontánea o estimulada tendrá lugar en la cavidad del láser, donde al final se produce el haz de salida de éste.

La diferencia entre los diseños del láser es el medio de ganancia, por ejemplo la ganancia del medio en un láser de fibra, es normalmente la sustancia dopante, en nuestro caso el Erbio (Er).
2.4.1 Tipos de láser

En la actualidad existen un gran número de láseres. Éstos se clasifican por su longitud de onda de emisión, desde las microondas hasta los rayos X; su potencia, desde los milivatios hasta petavatios; por su régimen de emisión, pulsados o continuos; por las características de su medio activo, sólidos, líquidos o gaseosos; o por otras características; y cada uno de estos tienen unas utilidades muy diversas [14].

<table>
<thead>
<tr>
<th>Láser</th>
<th>Medio Activo</th>
<th>Régimen de emisión</th>
<th>Rango de frecuencia de emisión</th>
<th>Potencia de pico máxima</th>
<th>Utilidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helio-Neón</td>
<td>Gas</td>
<td>Continuo</td>
<td>Rojo</td>
<td>10 mW</td>
<td>Metrología, Lector códigos de barras</td>
</tr>
<tr>
<td>Ion de Ar</td>
<td>Gas</td>
<td>Continuo</td>
<td>Verde-Azul</td>
<td>10W</td>
<td>Bombeo, Espectáculos</td>
</tr>
<tr>
<td>CO2</td>
<td>Gas</td>
<td>Continuo o pulsado</td>
<td>Infrarrojo</td>
<td>1kW</td>
<td>Corte, Soldadura, Cirugía</td>
</tr>
<tr>
<td>Excímero</td>
<td>Gas</td>
<td>Pulsado</td>
<td>Ultravioleta</td>
<td>1mW</td>
<td>Microprocesado, Cirugía</td>
</tr>
<tr>
<td>Químicos</td>
<td>Gas</td>
<td>Continuo</td>
<td>Infrarrojo</td>
<td>1mW</td>
<td>Escudos antimisiles</td>
</tr>
<tr>
<td>Colorante</td>
<td>Líquido o sólido</td>
<td>Continuo o pulsado</td>
<td>IR-Visible-UV</td>
<td>1W</td>
<td>Espectroscopia</td>
</tr>
<tr>
<td>Rubí</td>
<td>Sólido</td>
<td>Pulsado</td>
<td>Rojo</td>
<td>1kW</td>
<td>Investigación</td>
</tr>
<tr>
<td>Neodimio: YAG</td>
<td>Sólido</td>
<td>Continuo o pulsado</td>
<td>Infrarrojo</td>
<td>1GW</td>
<td>Bombeo, Procesado de materiales</td>
</tr>
<tr>
<td>Titanio: Zafiro</td>
<td>Sólido</td>
<td>Continuo o pulsado</td>
<td>Infrarrojo</td>
<td>1PW</td>
<td>Investigación, Pulso ultracortos</td>
</tr>
<tr>
<td>Semiconductor</td>
<td>Sólido</td>
<td>Continuo</td>
<td>Infrarrojo-Visible</td>
<td>1mW-1kW</td>
<td>Comunicaciones, CD, DVD, Bombeo</td>
</tr>
<tr>
<td>Fibra</td>
<td>Sólido</td>
<td>Continuo o pulsado</td>
<td>Infrarrojo-Visible</td>
<td>1W-1kW</td>
<td>Procesado materiales, Comunicaciones, Espectroscopia</td>
</tr>
</tbody>
</table>

Figura 2.20. Láser según el tipo de característica [14].

2.4.1.1 Láser de fibra

Los láseres de fibra se comportan como estructuras de guía onda que pueden tener altas densidades de potencia en el núcleo. Al estar basados en fibra óptica tienen todas las ventajas que la tecnología permite: bajas pérdidas por dispersión, bajas absorciones no deseadas, pocas imperfecciones del material.

Los diferentes diseños de láseres de fibra permiten obtener anchuras de línea muy estrechas y longitudes de onda sintonizables, operando con una potencia umbral de bombeo baja. La longitud de onda de emisión del láser viene determinada por el dopante, como ya hemos mencionado anteriormente, y su característica espectral, por lo que variando tanto la composición como la densidad de dopaje se podrá modificar el espectro de emisión del láser [9].
2.4.1.2 Láser de Fabry-Perot

Básicamente una cavidad resonante consta de un par de espejos parcialmente transmisores situados en ambos extremos de un medio activo. Cuando se lanza un haz de luz a través del dispositivo las interferencias entre las múltiples reflexiones dan lugar a respuestas en frecuencias periódicas. La potencia de salida del dispositivo será alta cuando se cumpla la condición de resonancia y baja en resto de situaciones.

La condición de resonancia se da cuando la longitud de la cavidad es la mitad de un número entero de longitudes de onda. Se puede definir el rango espectral libre o FSR como el espacio frecuencial entre resonancia y viene dado por:

\[
FSR = \frac{C}{2nL}
\]

2.4.1.3 Láseres de fibra dopada con erbio con configuración en anillo

La generación de luz láser se consigue introduciendo un medio amplificador en una cavidad. Dicha cavidad cumple dos funciones, por un lado confina la potencia debido a la emisión estimulada de modo que la señal atraviese múltiples veces el medio amplificador y, por otro, determina las frecuencias ópticas de emisión del láser. Hay que tener en cuenta que el origen de la emisión de luz láser se encuentra en la emisión espontánea que produce el medio activo, la cual se amplifica por emisión estimulada en los sucesivos pasos por dicho medio.

El uso de configuraciones en anillo permite la operación de un láser sin espejos. Los sucesivos pasos por el medio amplificador se consiguen por recirculación a lo largo del anillo. Si el láser es anillo de fibra, todos sus componentes (medio activo, elementos selectores de longitud de onda, etc.) quedan integrados en la cavidad. La salida del láser se realiza a través de un acoplador.

En la fibra de sílice dopada con erbio la amplificación se produce en una banda ancha de frecuencias ópticas dentro de la tercera ventana de comunicaciones. Por ello, puede conseguirse emisión láser en un intervalo amplio de longitudes de onda (desde 1520nm hasta 1580nm).
Los EDFLs (Erbium-doped fiber lasers) precisan de un bombeo externo a 980nm o bien a 1480nm. Para esta función existen diversos láseres de semiconductor orientados únicamente al bombeo de fibras dopadas con Erbio.

En el presente TFG se ha utilizado un controlador de temperatura e intensidad para el bombeo a 980nm. Con este dispositivo se pretende mantener el bombeo estable con una intensidad de potencia (mA) controlable desde la pantalla del controlador (variará dependiendo de cuánta potencia se desee introducir) y una temperatura constante (de unos 25ºC).

Como ya se ha mencionado anteriormente existen dos esquemas de bombeo, uno a 980 nm y otro a 1480 nm. Éste último fue preferido en un inicio ya que los de 980nm estaban en una fase de desarrollo y mejora.
En la figura siguiente se mostrará la diferencia de ambos bombeos.

Figura 2.23. Comparación del bombeo a 980nm y 1480nm [14].

Actualmente, en la práctica se emplean ambos bombeos consiguiendo excelentes prestaciones. Bombeando a la longitud de onda de 980nm se obtendrá una mayor eficiencia. En el caso que se bombee a la longitud de onda de 1480nm se conseguirán láseres de alta potencia.

2.4.2 Limitaciones y características de los láseres

2.4.2.1 Forma de la ganancia

El comportamiento de la ganancia del medio amplificador resulta un parámetro muy relevante en cuanto a las limitaciones finales del láser. Dentro de este campo podemos hacer dos diferenciaciones básicas entre medio homogéneo e inhomogéneo.

Figura 2.24. Curva de ganancia sin saturar (línea delgada) y saturada (línea gruesa) para un medio homogéneo (a) y un medio inhomogéneo (b) [10].
Como se puede ver en el caso de un medio homogéneo, la saturación de la señal amplificada provoca que la curva de ganancia varíe en todo el espectro, mientras que en el caso inhomogéneo, sólo se satura la longitud de onda introducida manteniendo sin variación el resto del espectro.

Los EDFA tienen un comportamiento homogéneo a temperatura ambiente, la principal causa de este fenómeno es el tiempo de vida del estado excitado, al saturarse a una longitud de onda la energía de los estados excitados se reduce provocando una reducción de la emisión espontánea. Esto es un problema para la generación de EDFLs con múltiples longitudes de onda, ya que las variaciones de amplitud de una de ellas modificarán la curva de ganancia del amplificador y por lo tanto estará afectando directamente a la amplitud del resto de longitudes de onda provocando inestabilidades. Sin embargo, es posible conseguir que un EDFA se comporte de forma inhomogénea enfriando la fibra a temperaturas de 77ºK [16].

2.4.2.2 Spatial hole burning

El spatial hole burning (SHB) es un proceso que se da en los láseres de fibra en configuración en anillo. Es una distorsión o deformación de la forma de la ganancia (o pérdidas en el espectro de un medio absorbente saturable), causado por los efectos de una onda estacionaria que se genera.

Si se superponen dos señales ópticas de ancho de banda estrecho, que viajan en ambos sentidos dentro del anillo, éstas formarán un patrón denominado interferencia de onda estacionaria, cuyo periodo es la mitad de la longitud de onda. Y en un medio de ganancia láser, tendrá dos efectos importantes:

- La ganancia está saturada preferentemente por los antinodos.
- La amplificación resultante está dominada por la densidad de excitación en dichos antinodos, los nodos no son "vistos" por la señal óptica [10].

Para solucionar estas inestabilidades en las estructuras de láseres bastaría con impedir la circulación de las señales en ambos sentidos, mediante aisladores o circuladores ópticos.

2.4.2.3 Láseres multilinea (multi wavelength)

Los láseres de emisión multilinea tienen un gran interés en diversos campos, como en sistemas de comunicación con mecanismos multiplexores (WDM), sensores de fibra, procesado de señales, calibrado de instrumentos ópticos o espectroscopía. Por ello, es deseable conseguir un alto número de longitudes de onda, y que además sean sintonizables. También es importante que el láser opere en un gran espacio de longitudes de onda. Por el contrario, es imposible modular independientemente cada línea de emisión. Se ha conseguido emisión multilinea con láseres de semiconductor y también con láseres de fibra, normalmente en configuración de anillo.
Los requisitos para este tipo de fuentes ópticas son: elevado número de canales, moderada potencia de salida con buena señal relación ruido y espectro plano, funcionamiento SLM (Single Longitudinal Mode), capacidad de ajuste y colocación exacta de la frecuencia.

Los láseres de fibra ofrecen grandes posibilidades como fuentes de múltiples longitudes de onda. El principal reto en la producción de una salida multilínea con un láser de fibra dopado con erbio (EDFL) es el hecho de que el ion de erbio se satura homogéneamente a temperatura ambiente, evitando el funcionamiento estable de múltiples longitudes de onda.

Existen dos limitaciones principales, la ecualización de las amplitudes de cada longitud de onda y la estabilidad del sistema. Ambas limitaciones están asociadas a la amplificación. En el primer caso dependerá de cómo se reparta la ganancia disponible en el momento de ajustar el láser, mientras que en el segundo caso dependerá del comportamiento del sistema ante fluctuaciones de amplitud [14].

Figura 2.25. (a) Configuración experimental para la topología paralela de acopladores. (b) Configuración experimental para la nueva tecnología con circuladores [14].

2.4.2.4 Ecualización

En este TFG la ecualización de los láseres multilínea se ha llevado a cabo mediante atenuadores variables para cada longitud de onda (VOA). Esto nos permite controlar la
ganancia para cada canal. Pero a cambio desperdiciamos parte de la potencia de las señales, con lo que se reduce la eficiencia de la estructura.

2.4.2.5 Estabilidad

Definimos la estabilidad del sistema con la diferencia entre el valor máximo y el mínimo de la amplitud para una longitud de onda durante un intervalo de tiempo concreto. Los EDFAs se comportan como un medio homogéneo a temperatura ambiente, lo que provoca variaciones importantes de estabilidad en los sistemas multilínea.

Un método para mejorarla que se mencionó anteriormente consiste en enfriar la fibra dopada. Además también se pueden conseguir aumentar el número de longitudes de onda simultáneas con la condición láser, ya que la ganancia se conserva en todo el espectro y no hay competencia.

2.4.2.6 Modos y estabilidad

Los láseres de fibra óptica con configuración en anillo tienen una función de transferencia propia, por lo que se generará resonancia a determinadas longitudes de onda o modos longitudinales. Éste es un factor importante en el diseño de láseres de fibra, ya que la presencia de varios modos provoca inestabilidades al existir competencia entre ellos. Lo ideal es conseguir que el sistema sea monomodo, consiguiendo así mejores condiciones de estabilidad.

El número de modos longitudinales \(N \), viene definido por la siguiente expresión, donde \(n \) es el índice de refracción de la fibra, \(L \) la longitud total del anillo y \(\lambda \) la longitud de onda de operación del láser.

\[
N = \frac{nL}{\lambda}
\]
2.4.2.7 Doble cavidad

Uno de los métodos para la reducción del número de modos de un láser de fibra es la configuración con doble anillo mediante acopladores. Con esta configuración, la función de transferencia total de la cavidad será la multiplicación de las funciones de transferencia de cada uno de los anillos. De esta manera, si se configura de forma que sólo pueda existir un único modo de resonancia, tendremos un láser monomodo.

2.4.2.8 Absorbente saturable

Es un método utilizado en algunos casos para lograr la estabilidad. Se basa en introducir un tramo de una determinada longitud de fibra dopada con Erbium (EDF) sin bombeo. De esta forma se comportará como un medio absorbente.

A mayor concentración de dopante, mayor será el efecto de absorción del medio, evitando con esto que algunos modos naturales de la cavidad de nuestro sistema no alcancen la condición láser, favoreciendo así la estabilidad del mismo. [10]

2.4.2.9 Efecto de la supresión inducida de modos longitudinales

Este efecto se consigue mediante la ecualización del sistema a través de los atenuadores variables (VA) en cada rama del mismo, de manera que ambas longitudes de onda tengan el mismo nivel de potencia óptica de salida.
2.5 SENSORES DE TEMPERATURA

2.5.1 Introducción

En los años noventa el campo de las telecomunicaciones se vio potenciado por el descubrimiento de las propiedades de la fibra óptica monomodo y de los amplificadores de fibra dopada con erbio (EDFA).

A partir de estos descubrimientos y con el objetivo de obtener cada vez mejores velocidades de transmisión la investigación en la utilización y creación de dispositivos basados en fibra óptica ha aumentado considerablemente.

Dentro de esta serie de investigaciones se dio lugar a la creación de dispositivos conocidos como redes de difracción de Bragg (FBGs por sus siglas en inglés) que tuvieron como función inicial el filtrado de determinadas frecuencias en la transmisión de datos. En el año 1993 se consolida la fabricación en masa de estos dispositivos debido a dos hallazgos cruciales: el método de fabricación de redes de difracción de Bragg por máscara de fase y las fibras ópticas cargadas con hidrógeno, que permiten, en primer lugar, estandarizar y optimizar el proceso de fabricación de las redes de difracción, y segundo, incrementar la fotosensibilidad de la fibra óptica a la luz, lo que permite reducir el costo de fabricación.

Las redes de difracción de Bragg no sólo se han estudiado para las aplicaciones en telecomunicaciones. Desde su creación se ha tenido interés en aprovechar las propiedades de estos dispositivos para la medición de diferentes variables físicas, dadas las múltiples ventajas que supone la utilización de la fibra óptica como instrumento de medición.

Los sensores basados en FBGs son una fibra óptica a la que se ha introducido una perturbación periódica en el índice de refracción de su núcleo. Esta perturbación es usualmente inducida por la exposición de la fibra a un patrón de luz ultravioleta generado por una máscara de fase. Debido a la periodicidad de esta perturbación, una longitud de onda específica se verá filtrada cuando es transmitida a través de la fibra óptica. Este hecho...
convierte automáticamente a la fibra óptica en un elemento sensor dado que las variables externas que afectan el entorno de la fibra óptica tienen un efecto en la periodicidad de la perturbación [17].

2.5.2 Redes de difracción de Bragg

Las redes de difracción de Bragg son dispositivos construidos dentro del núcleo de la fibra óptica a partir de perturbaciones en su índice de refracción. Cuando la distancia entre éstas cumple la condición de Bragg, el dispositivo actúa como un filtro rechaza banda en transmisión y una longitud de onda específica se ve reflejada a lo largo de la fibra óptica.

![Esquema de funcionamiento de las redes de difracción de Bragg](image)

Figura 2.28. Esquema de funcionamiento de las redes de difracción de Bragg. Cada rejilla o red de difracción actúa como un filtro estrecho alrededor de una longitud de onda.

2.5.3 Sensibilidad de los FBG

La longitud de onda reflejada por una FBG está directamente relacionada con los cambios en tensión mecánica o temperatura que se ejercen directamente sobre el área de la fibra óptica en la cual se encuentra inscrita la FBG.
Figura 2.29 Relación teórica para una red de difracción de Bragg inscrita en 1544nm entre la longitud de onda reflejada y la temperatura (a) de 14,1pm [17].
3. PROCESO EXPERIMENTAL

A continuación se presentará el proceso experimental que se ha llevado a cabo con los resultados obtenidos en este trabajo de fin de grado. Se dividirá en tres bloques generales con sus correspondientes sub-apartados.

Uno de los principales problemas en los anillos de fibra en láseres multilínea es la oscilación del umbral de la potencia óptica para cada longitud de onda, siendo ésta diferente. Esto es debido al perfil de ganancia no uniforme de las diferentes fibras dopadas con erbio que probaremos experimentalmente. Consecuentemente se utilizan los atenuadores ópticos variables, conectados delante de cada FBG (siempre que sea necesario) para ajustar pérdidas de dentro de la cavidad del anillo para cada longitud de onda y lograr la oscilación deseada.

Como se verá a continuación, hay una gran competitividad en los sistemas de láseres multilínea por la ganancia, ya que esas variaciones en amplitud provocan inestabilidad en el sistema, lo que se trata de un problema a la hora de diseñar un láser de fibra óptica. Además, nos interesa que las longitudes de onda que buscamos estén ecualizadas para presentar una potencia óptica similar.

3.1 Estabilización de potencia y longitud de onda de tres redes de difracción Bragg empleando un bucle óptico lineal y diversas fibras ópticas.

En este apartado se presentará una nueva configuración para la estabilización de potencia y longitud de onda empleando diversos tipos de fibras dopadas con erbio. Se han realizado numerosos experimentos en los últimos años sobre estabilización de potencia y longitud de onda, [18], [19].

3.2.1 Configuración empleada.

Este láser en anillo estará formado por un controlador de intensidad y temperatura (400mA y 25º), el cual controlará un bombeo óptico a 980nm. A continuación, se colocará un multiplexor en longitud de onda (WDM) para poder unir o separar las señales ópticas. En este montaje se dispone de la fibra dopada con erbio para conseguir amplificación óptica. Una vez obtenida la amplificación óptica deseada la señal discurrirá por un acoplador. Dicha configuración estará compuesta por un bombeo a 980nm con una alimentación de 400mA seguida por un acoplador óptico con relación de acopló 70:30 para conseguir una mejor estabilización del sistema. La longitud empleada ha sido de 1km. A continuación, introduciremos un circulador para hacer circular la luz y evitar reflexiones de sentido
contrario. A diferencia del montaje descrito en el primer bloque, emplearemos un acoplador 2x4 para poder controlar los FBG's y ecualizar las cuatro longitudes de onda mediante un atenuador óptico variable (VOA) por cada FBG. Los FBG’s empleados para la realización de esta configuración son de 1547nm, 1550nm y 1555nm.

Cada FBG posee una reflexión del 98% por lo cual dicha reflexión volverá al circulador saliendo por la tercera salida de este dispositivo. Para evitar reflexiones indeseadas se hará el uso de un aislador en torno a la frecuencia de 1550nm. Para obtener un análisis de los resultados, el instrumento empleado ha sido el analizador de espectros ópticos (OSA) que ha sido conectado mediante un acoplador 90:10. Finalmente este aislador estará conectado con el multiplexador en longitud de onda (WDM) produciendo la recirculación.

3.2.2 Estudio de estabilidad con el tiempo de la fibra dopada con erbio Er-80 de longitud 1m.

En primer lugar se mostrara la configuración mediante una fibra dopada con erbio, Er-80, cuya longitud es de 1 m.

Figura 3.1. Estructura con configuración en anillo empleando la fibra Er-80 de longitud 1 m.

En la anterior figura se muestra el montaje descrito, en este caso emplearemos la fibra dopada con erbio Er-80. Las características de los componentes empleados se encuentran en el Anexo.

Una vez diseñada la configuración, se dispone a montarlo. Para montarlo se ha soldado el bombeo de 980 nm al WDM para evitar colocar un conector, ya que la introducción de estos instrumentos produce una atenuación en la señal, siendo la salida del bombeo la parte más crítica del montaje. Además, al soldar evitamos cualquier reflexión que pudiera dañar el bombeo.
También se ha soldado la salida común del WDM con la fibra dopada con erbio, en este caso la Er-80. Así no introducimos atenuación adicional. La soldadura de fibra monomodo a fibra dopada con erbio es bastante más compleja que soldar dos fibras monomodo estándar debido a que ambos núcleos difieren en el diámetro del núcleo. Una vez obtenida la amplificación óptica deseada, la señal discurrirá por un acoplador 70:30. Para conseguir una mejor estabilización del sistema se añade un lazo de fibra monomodo con longitud de 1 km [18].

A continuación se procederá a la realización de las siguientes medidas. Se han obtenido datos a lo largo de 60 minutos para comprobar cómo se comporta el sistema respecto al tiempo.

![Diagrama de potencias de pico](image)

Figura 3.2. Potencias de pico de 1547 nm, 1550 nm, 1555 nm.

En la imagen anterior se presenta una gráfica en la cual se muestran los valores en un determinado instante de tiempo. En ese determinado instante de tiempo el valor de los picos correspondientes a las tres longitudes de onda han sido de -26,34 dBm para 1547 nm, -26,51 dBm para 1550 nm y de -24,78 dBm para 1555 nm. La relación señal a ruido óptica (OSNR) que presentan está en torno a 45 dB.
Para la longitud de onda de 1550nm obtenemos un comportamiento mejor respecto a las demás longitudes de onda en lo que se refiere a la varianza.

En lo que se refiere a potencias medias los datos obtenidos son los siguientes:
- 25,518dBm para la longitud de 1547nm,
- 26,591dBm para la longitud de 1550nm y
- 25,986dBm para la longitud de onda de 1555nm.

A continuación analizaremos las variaciones en potencia de las tres longitudes de onda. Para 1547nm la máxima variación en longitud de onda es de 4,61 dB, para 1550 nm 5,48 dB y para 1555nm 3,910 dB.

Una vez observada la máxima variación, se procederá a obtener la mínima variación en potencia entre dichas longitudes de onda. En 1547 nm la mínima variación obtenida es de 0.07 dB, en 1550 nm es de 0.530 dB y finalmente para 1555nm obtenemos una mínima variación de 0.23 dB.

Resumiendo, según los datos obtenidos el mejor comportamiento en cuanto a la varianza se produce para la longitud de onda de 1550nm. Sin embargo la máxima variación en potencia ocurre a la longitud de onda de 1550 nm y la mínima variación en potencia le corresponde a la longitud de onda de 1547 nm. Por lo tanto visto estos parámetros, las tres redes FBG son muy parecidas en cuanto a comportamiento.
3.2.3 Empleo de fibra óptica dopada con erbio I-25 de longitud 2,5m.

Para la realización de las siguientes medidas de estabilidad que se mostrarán a continuación el tiempo empleado ha sido de sesenta minutos.

![Diagrama de la configuración de fibra óptica dopada con erbio I-25](image_url)

Figura 3.4. Estructura con configuración en anillo empleando la fibra I-25 de longitud 2,5 m.

En la imagen anterior se muestra la configuración empleada, en este caso empleamos una fibra de erbio I-25 de una longitud de 2,5 m. Los demás componentes, exceptuando la fibra son los mismos que en la configuración anterior.

Una vez diseñada la nueva configuración, se dispone a montarlo. Para montarlo se ha aprovechado la unión del bombeo de 980 nm al WDM para aprovechar el montaje anterior. Sin embargo se ha vuelto a soldar la salida común del WDM con la nueva fibra de longitud 2,5 m. Se decidió soldarlo otra vez por los motivos expuestos en el anterior montaje.

A continuación se procederá a la realización de las siguientes medidas. Se han obtenido datos a lo largo de 60 minutos para comprobar cómo se comporta el sistema respecto al tiempo.
En la imagen anterior se muestra una gráfica en la cual se muestran los valores en un determinado instante de tiempo. En ese determinado instante de tiempo el valor de los picos correspondientes a las tres longitudes de onda han sido de -24,75 dBm para 1547 nm, -23,18 dBm para 1550 nm y de -25,67 dBm para 1555 nm. El valor de OSNR que presentan está en torno a 47 dB.

Para la longitud de onda de 1555 nm obtenemos un comportamiento mejor respecto a las demás longitudes de onda en lo que se refiere a la varianza.

En lo que se refiere a potencias medias los valores obtenidos son los siguientes:
-26,923dBm para la longitud de 1547nm, -23,925dBm para la longitud de 1550nm y -27,01 dBm para la longitud de onda de 1555nm.

A continuación analizaremos las variaciones en potencia de las tres longitudes de onda. Para 1547nm la máxima variación en longitud de onda es de 4,2 dB, para 1550 nm 2,680 dB y para 1555nm 2,58 dB.

Una vez observada la máxima variación, se procederá a obtener la mínima variación entre dichas longitudes de onda. En 1547 nm la mínima variación en potencia obtenida es de 2,4 dB, en 1550 nm es de 0 dB y finalmente para 1555nm obtenemos una mínima variación de 0 dB.

Resumiendo, según los datos obtenidos el mejor comportamiento en cuanto a la estabilidad en tiempo y en potencia es de la FBG centrada en la longitud de onda de 1555nm.

En comparación con la anterior configuración, la longitud de onda de 1555nm tiene un mejor comportamiento en cuanto a estabilidad. Posee una menor varianza, su máxima y mínima en potencia tienen unos resultados más óptimos que el resto de longitudes de onda. Por el contrario, su potencia media se encuentra por debajo con respecto a las otras longitudes de onda tanto de este setup como del anterior.

En lo que se refiere a la ecualización de los picos de potencia, en el montaje que posee la fibra de 1 m, los picos no difieren tanto unos de otros en cuanto a potencia media a lo largo de los 60 minutos de medición.
3.2.4 Empleo de fibra óptica dopada con erbio Er-30 de longitud 5m.

Para la realización de las siguientes medidas de estabilidad que se mostrarán a continuación el tiempo empleado ha sido de sesenta minutos.

En la imagen anterior se muestra la configuración empleada, en este caso empleamos una fibra de erbio Er-30 de una longitud de 5 m. Los demás componentes, exceptuando la fibra son los mismos que en la configuración anterior.

Una vez diseñada la nueva configuración, se dispone a montarlo. Para montarlo se ha aprovechado la unión del bombeo de 980 nm al WDM para aprovechar el montaje anterior. Sin embargo se ha vuelto a soldar la salida común del WDM con la nueva fibra de longitud 5 m. Se decidió soldarlo otra vez por los motivos expuestos en los anteriores montajes.

A continuación se procederá a la realización de las siguientes medidas. Se han obtenido datos a lo largo de 60 minutos para ver cómo se comporta el sistema respecto al tiempo.
En la imagen anterior se muestra una gráfica con los valores en un determinado instante de tiempo. En ese instante de tiempo el valor de los picos correspondientes a las tres longitudes de onda han sido de -25,96 dBm para 1547 nm, -26,27 dBm para 1550 nm y de -24,32 dBm para 1555 nm. El valor de OSNR que presentan está en torno a 46 dB.

Para la longitud de onda de 1547nm obtenemos un comportamiento mejor respecto a las demás longitudes de onda en lo que se refiere a la varianza.

En lo que se refiere a potencias medias: es de -26,539dBm para la longitud de 1547nm, -27,022dBm para la longitud de 1550nm y de -24,158dBm para la longitud de onda de 1555nm.
A continuación analizaremos las variaciones en potencia de las tres longitudes de onda. Para 1547 nm la máxima variación en longitud de onda es de 3 dB, para 1550 nm 2,27 dB y para 1555 nm 3,04 dB.

Una vez observada la máxima variación, se procederá a obtener la mínima variación entre dichas longitudes de onda. En 1547 nm la mínima variación en potencia obtenida es de 0,14 dB, en 1550 nm es de 0,01 dB y finalmente para 1555 nm obtenemos una mínima variación de 0,21 dB.

En conclusión, en cuanto a la varianza el comportamiento de la red FBG centrada en la longitud de onda de 1547 nm es mejor respecto a las demás. Sin embargo, la red FBG centrada en la longitud de onda 1550 nm presenta unas diferencias tanto máximas como mínimas mejores a la anterior.

Comparado con las anteriores configuraciones, este montaje presenta una menor varianza y una máxima variación en potencia menor que los anteriores montajes. En cuanto a las potencias medias de los picos de potencia tiene unos valores similares a la anterior configuración. Por lo tanto se podría decir que esta configuración presenta cierta mejoría en cuanto a estabilidad en tiempo con respecto a los anteriores.

3.2.5 Empleo de fibra óptica dopada con erbio I-25 de longitud 5m.

Para la realización de las siguientes medidas de estabilidad, al igual que en las anteriores configuraciones, el tiempo empleado ha sido de sesenta minutos.

![Figura 3.10. Estructura con configuración en anillo empleando la fibra I-25 de longitud 5 m.](image)

En la imagen anterior se muestra la configuración empleada, en este caso empleamos una fibra de erbio I-25 de una longitud de 5 m. Los demás componentes, exceptuando la fibra son los mismos que en la configuración anterior.
Una vez diseñada la nueva configuración, se dispone a montarla. Para montarlo se ha aprovechado la unión del bombeo de 980 nm al WDM para aprovechar el montaje anterior. Sin embargo se ha vuelto a soldar la salida común del WDM con la nueva fibra de longitud 5 m. Se decidió soldarlo otra vez por los motivos expuestos en los anteriores montajes. Para obtener la fibra de erbio I-25 se ha realizado una soldadura de dos fibras de erbio I-25 de 2,5 metros de longitud.

A continuación se procederá a la realización de las siguientes medidas. Se han obtenido datos a lo largo de 60 minutos para comprobar cómo se comporta el sistema respecto al tiempo.

Figura 3.11. Potencias de pico de 1547 nm, 1550 nm, 1555 nm.

En la imagen anterior se muestra una gráfica en la cual se representan los valores de potencia obtenidos en un determinado instante de tiempo. En ese instante de tiempo el valor de los picos correspondientes a las tres longitudes de onda de los FBGs han sido de -23,32 dBm para 1547 nm, -25,64 dBm para 1550 nm y de -25,68 dBm para 1555 nm. El valor de OSNR que presentan está en torno a 46 dB.

Para la longitud de onda de 1550nm obtenemos un comportamiento mejor respecto a las demás longitudes de onda en lo que se refiere a la varianza.

En lo que se refiere a potencias medias se obtienen los siguientes valores:

-23,62dBm para la longitud de 1547nm, -24,931dBm para la longitud de 1550nm y -26,570dBm para la longitud de onda de 1555nm.

A continuación analizaremos las variaciones en potencia de las tres longitudes de onda. Para 1547nm la máxima variación en potencia es de 1,66 dB, para 1550 nm 4,99 dB y para 1555nm 3,94 dB.

Una vez observada la máxima variación, se procederá a obtener la mínima variación entre dichas longitudes de onda. En 1547 nm la mínima variación en potencia obtenida es de 0,11 dB, en 1550 nm es de 0 dBm y finalmente para 1555nm obtenemos una mínima variación de 0,01 dB.

En conclusión, en cuanto a la varianza el comportamiento de la red de difracción Bragg centrada en la longitud de onda de 1550 es mejor respecto a las demás. Sin embargo, la FBG centrada en la longitud de onda de 1555 nm presenta unas diferencias mínimas mejor y la FBG centrada en la longitud de onda de 1547 nm presenta una mejor máxima variación de potencia.

Comparando con las anteriores configuraciones, esta topología presenta una peor varianza que la anterior si nos centramos en una longitud de onda, pero sin embargo si comparamos la varianza de las tres longitudes de onda con respecto al anterior setup presenta mejores valores.

En términos de potencia los valores medios de esta estructura tienen una potencia de pico mayor.
3.2.6 Comparación de los resultados obtenidos.

En primer lugar nos centraremos en las potencias medias de las fibras. La configuración que emplea la fibra de erbio I-25 de longitud 5 m presenta unos valores de potencia media superiores a los demás montajes, en torno a 1 dB. En lo que se refiere a la ecualización de los picos, es decir que los picos difieran en pocos dBs su amplitud, este montaje es el óptimo de los cuatro.

Con respecto a la varianza para cada longitud de onda, el montaje que emplea la fibra dopada con erbio Er-80 presenta la menor de ellas en las longitudes de onda 1547nm y 1550nm. Sin embargo, en la longitud de onda de 1555nm la fibra dopada con erbio I-25 de longitud 5 m es la mejor ya que dicho parámetro es menor.

En cuanto a la potencia media de pico de las longitudes de onda a analizar, el pico con mayor potencia en la longitud de onda de 1547nm es el que se obtiene al utilizar la fibra I-25 de 5 m de longitud. En 1550nm el pico de mayor potencia procede de la fibra I-25 de 2,5 m de longitud. Por último, el tercer pico centrado en 1555 nm se obtiene con el montaje que utiliza fibra Er-80 de 5km de longitud.

Finalmente, después de un largo y duro proceso de montaje y análisis de los resultados obtenidos, se puede afirmar que la fibra menos óptima en lo que se refiere a la estabilización tanto de potencia como temporal de una configuración con un anillo óptico de 1 km, es la fibra dopada con erbio Er-80 de longitud 1m.

Las mejores medidas obtenidas han sido procedentes de la fibra dopada con erbio I-25 de longitud 5m, por lo tanto esta fibra es la más adecuada a utilizar en el caso de emplear esta estructura.
3.2.7 Estudio del comportamiento lineal con respecto a la temperatura.

Para el siguiente estudio se ha empleado la fibra Er-80 de 1 km.

A continuación, para observar si el láser de fibra óptica presenta comportamiento lineal con las variaciones de temperatura, se ha procedido a calentar los FBG’s desde 25ºC hasta 65ºC en una cámara climática. Como se puede comprobar en la imagen 3.13, la longitud de onda se incrementa aproximadamente en 9.6pm/ºC para el FBG de 1547nm y con un error de $R^2 = 0.9788$.

![Figura 3.13. Variación de la longitud de onda con respecto a la temperatura en el FBG centrado en 1547 nm.](image)

Como podemos observar tiene un comportamiento lineal con la temperatura. Para realizar las medidas nos hemos centrado en la longitud de onda de 1547nm, pero las otras dos longitudes de onda presentes en el montaje tendrán un comportamiento similar. Como resultado de los datos obtenidos, la estructura presentada responde correctamente a las variaciones de temperatura como se esperaba en el análisis realizado previamente.
3.3 Estabilidad de un láser con doble cavidad en anillo mediante el empleo de un lazo óptico estabilizador.

En este segundo bloque se planteará una nueva configuración mediante el empleo de dos cavidades ópticas. El láser en anillo estará formado por un controlador de intensidad y temperatura (450mA y 25º), el cual controlará un bombeo óptico a 980nm. Este bombeo será distinto al empleado en la configuración anterior. A continuación se colocará un multiplexor en longitud de onda (WDM) para poder unir o separar las señales ópticas. En este montaje se dispone de fibra dopada con erbio para conseguir amplificación óptica, en concreto se ha empleado la fibra dopada con erbio Er-30 de longitud 5m. Una vez obtenida la amplificación óptica deseada, la señal discurrirá por un acoplador 70:30. Para conseguir una mejor estabilización del sistema se añade un lazo de fibra monomodo con longitud de 1km [19].

A continuación se introduce un circulador para hacer circular la luz y evitar reflexiones en sentido contrario. Al igual que en el sistema mencionado en el segundo bloque, se empleará un acoplador 2x4 para poder controlar los FBG’s y ecualizar las dos longitudes de onda mediante un atenuador óptico variable (VOA) incorporado a cada FBG. Los FBG’s empleados para la realización de esta configuración son de 1550nm y 1555nm.

Cada FBG posee una reflexión del 98% por lo cual dicha reflexión volverá al circulador saliendo por la tercera salida de este dispositivo. El segundo anillo exterior, estará compuesto por un aislador, que se introducirá para evitar reflexiones indeseadas en torno a la frecuencia de 1550nm.

La luz viajará por ambos anillos hasta llegar a un acoplador 90:10, en el cual se unirán las dos señales ópticas. Para obtener los valores esperados, el instrumento de medida empleado ha sido el analizador de espectros ópticos (OSA) que ha sido conectado mediante un acoplador 90:10. Finalmente a la salida del acoplador 90:10 estará conectado el multiplexor en longitud de onda (WDM) produciendo la recirculación.

A continuación se mostrarán unas gráficas en las cuales se presentan diversos espectros ópticos con diferentes lazos ópticos. El primer gráfico de la figura 3.15(a) representa el espectro óptico sin aplicar un lazo óptico, en el segundo gráfico de la figura 3.15(b) se visualiza el comportamiento de las dos longitudes de onda con un lazo óptico de 5km y finalmente el tercer gráfico de la figura 3.15(c) emplea un lazo óptico de 1km de longitud.

La longitud empleada para este proyecto ha sido de 1km debido a que según los datos obtenidos representan una mejora en cuanto a estabilidad y potencia óptica de salida respecto a los otros dos montajes.

Figura 3.15 (a). Espectro óptico sin lazo óptico. (b) Con 5km (c) con 1km de lazo óptico.
3.3.2 Estudio de estabilidad con el tiempo de la fibra dopada con erbio Er-30 más lazo estabilizador de longitud 1km.

Como se pueden ver en las imágenes correspondientes a los espectros ópticos, la longitud óptima para esta configuración de doble anillo es el empleo de un lazo óptico de fibra monomodo de longitud 1km.

Para comprobar su estabilidad se ha procedido a calcular la varianza de los resultados obtenidos, dando una varianza óptima para la red FBG centrada en la longitud de onda de 1550nm.

En términos de potencia, la potencia obtenida para la FBG centrada en la longitud de 1550nm es de -33,5725dBm y para FBG centrada en la longitud de onda de 1555nm, la potencia de pico obtenida es de -32,5733dBm.
3.3.3 Estudio del comportamiento lineal con respecto a la temperatura.

Para comprobar si se obtiene un comportamiento lineal del láser de fibra óptica frente a variaciones de temperatura, se ha procedido a calentar los FBG’s desde 25 ºC hasta 65 ºC en una cámara climática. Como se puede comprobar en la figura 3.17, la longitud de onda se incrementa linealmente para el FBG de 1555nm y con un error de $R^2 = 0.9906$. Como resultado del experimento, esta estructura responde correctamente a las variaciones de temperatura como se esperaba. Por lo tanto, el análisis es conforme a lo previamente planteado.

![Figura 3.17. Variación de la temperatura del FBG de 1550nm.](image-url)
4. CONCLUSIONES

En este trabajo de fin de grado se ha realizado un estudio del comportamiento de estabilidad respecto al tiempo y potencia de diferentes montajes. Además se ha analizado el comportamiento de las distintas topologías con respecto a la temperatura para comprobar su linealidad. Para ello se han empleado diferentes estructuras, así como distintas fibras dopadas con erbio.

En el primer montaje se ha empleado una estructura más sencilla compuesta por un anillo óptico con un lazo óptico estabilizador de longitud 1 km, en el cual se ha analizado el comportamiento de tres longitudes de onda utilizando cuatro fibras dopadas con erbio diferentes. Para este tipo de configuración se ha determinado que el mejor comportamiento es el de la fibra dopada con erbio I-25 de longitud 5m.

En el segundo montaje se ha optado por una estructura más complicada empleando una estructura de doble anillo, uniendo ambos anillos mediante acopladores.

Una vez obtenidos los resultados de los dos montajes, se puede comprobar que el montaje correspondiente al doble anillo obtiene una mayor estabilidad, tanto en potencia media como en varianza.

Sin embargo, cabe mencionar que la potencia del primer montaje con la fibra dopada con erbio I-25 presenta una mayor ganancia, en torno a 8dB con respecto al último montaje.

Como conclusión, la mayor parte del tiempo empleado en la realización de este trabajo de fin de grado se ha invertido en el estudio experimental en el laboratorio, pensando estructuras, montando dichas estructuras y midiendo los resultados. El resto del tiempo se ha dedicado a buscar diferentes artículos científicos y la redacción de esta memoria.
BIBLIOGRAFÍA

[7]. Veronica de Miguel "Desarrollo de láser Random de fibra óptica multi-longitud de onda conmutable y reconfigurable en el tiempo real para interrogación remota de sensores". Proyecto fin de carrera, 2014.
[17]. Cristian Andrés Triana-Infante, Margarita Varón-Durán y Daniel Pastor-Abellán, “Validación de sensores basados en redes de difracción de Bragg (FBGs) para deformación y temperatura”.
ANEXOS
Atenuadores variables

Para aplicaciones en entornos de fibra óptica, donde es necesario reducir el nivel de potencia óptica en la fibra de forma gradual. Los atenuadores ópticos variables son componentes de muy fácil utilización e instalación y que permiten ajustar la potencia óptica gracias a un rango muy amplio de atenuación disponible.

Construcción

El proceso de fabricación de estos atenuadores permite ofrecer altas pérdidas de retorno y un excelente rango de atenuación controlado por los giros de un tornillo accionador. Los atenuadores utilizan tecnología optomecánica para crear el nivel de atenuación deseado.

Aplicaciones

- Telecomunicaciones.
- Sensores de fibra óptica.
- Equipos de medida.
- Test de equipamiento.
- Sistemas de distribución de video.
- En enlaces cortos para evitar la saturación en el receptor.

Características

- Altas pérdidas de retorno.
- Mínimas pérdidas de inserción.
- Estable con las condiciones climáticas.
- Fácil de manejar.
- Amplio rango de atenuación.
- Resolución de ajuste de atenuación ultrafina.

Especificaciones

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud de onda de operación</td>
<td>1.310 nm / 1.550 nm</td>
</tr>
<tr>
<td>Rango de atenuación</td>
<td>> 35 dB</td>
</tr>
<tr>
<td>Resolución</td>
<td>0.01dB < x < 0.25 dB</td>
</tr>
<tr>
<td>Pérdidas de retorno</td>
<td>< -70 dB o según conectorización</td>
</tr>
<tr>
<td>Pérdidas de inserción</td>
<td>< 0.75 dB (sin conectorizar)</td>
</tr>
<tr>
<td>Temperatura de operación</td>
<td>-40 ºC a -80 ºC</td>
</tr>
<tr>
<td>Terminación (consultar otros)</td>
<td>FC/PC, FC/APC, SC/PC, SC/APC, ST</td>
</tr>
</tbody>
</table>
Description

The PL980P330J consists of a field-proven, 975 nm quantum-well laser chip in a 14-pin butterfly package. The compact design includes an integrated thermoelectric cooler, a monitor photodiode, and a wavelength-stabilizing fiber Bragg grating (FBG), which ensures very little drift in the output wavelength as the temperature and current are varied. The laser is coupled into a single mode fiber pigtail (SMF: HI1060 fiber) with a Ø1.5 mm Teflon loose tube jacket and an FC/APC connector. This laser diode’s patented device structure (F000038US01) is Telecordia GR-468-CORE qualified.

Specifications

<table>
<thead>
<tr>
<th>Absolute Maximum Ratings</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature</td>
<td>Ts</td>
<td>-40°C</td>
<td>85°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>TCASE</td>
<td>-20°C</td>
<td>75°C</td>
</tr>
<tr>
<td>Soldering Temperature*</td>
<td>-</td>
<td>-</td>
<td>250°C</td>
</tr>
<tr>
<td>LD Forward Current</td>
<td>IF</td>
<td>-</td>
<td>800 mA</td>
</tr>
<tr>
<td>LD Reverse Current</td>
<td>VR</td>
<td>-</td>
<td>2 V</td>
</tr>
<tr>
<td>TEC Current</td>
<td>ITEC</td>
<td>-</td>
<td>2.5 A</td>
</tr>
<tr>
<td>TEC Voltage</td>
<td>VTEC</td>
<td>-</td>
<td>3.2 V</td>
</tr>
<tr>
<td>Monitor Reverse Voltage</td>
<td>VPD</td>
<td>-</td>
<td>10 V</td>
</tr>
<tr>
<td>ESD Damage</td>
<td>VESD</td>
<td>-</td>
<td>500 V</td>
</tr>
<tr>
<td>Fiber Pigtail Bend Radius</td>
<td>-</td>
<td>25 mm</td>
<td>-</td>
</tr>
</tbody>
</table>

*Max 10 Seconds

<table>
<thead>
<tr>
<th>Characteristics (T_C = 25°C, P = 330 mW)</th>
<th>Symbol</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center Wavelength</td>
<td>λ_C</td>
<td>974 nm</td>
<td>975 nm</td>
<td>976 nm</td>
</tr>
<tr>
<td>Operating Current</td>
<td>IOP</td>
<td>-</td>
<td>600 mA</td>
<td>720 mA</td>
</tr>
<tr>
<td>Output Power</td>
<td>P_OUT</td>
<td>330 mW</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Spectral Bandwidth (FWHM)</td>
<td>Δλ</td>
<td>-</td>
<td>0.5 nm</td>
<td>1.0 nm</td>
</tr>
<tr>
<td>Spectral Bandwidth (at 95% Power)</td>
<td>Δλ</td>
<td>-</td>
<td>-</td>
<td>2.0 nm</td>
</tr>
<tr>
<td>Threshold Current</td>
<td>I_TH</td>
<td>-</td>
<td>75 mA</td>
<td>90 mA</td>
</tr>
<tr>
<td>Forward Voltage at IOP</td>
<td>V_F</td>
<td>-</td>
<td>1.7 V</td>
<td>1.9 V</td>
</tr>
<tr>
<td>Kink-Free Power</td>
<td>PKink</td>
<td>363 mW</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Spectral Shift with Temperature</td>
<td>Δλ/ΔT</td>
<td>-</td>
<td>-</td>
<td>0.02 nm/°C</td>
</tr>
<tr>
<td>Side Mode Suppression</td>
<td>-</td>
<td>-13 dB</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Monitor Responsivity</td>
<td>RPD</td>
<td>1 μA/mW</td>
<td>-</td>
<td>10 μA/mW</td>
</tr>
</tbody>
</table>
Specifications (Cont.)

<table>
<thead>
<tr>
<th>Characteristics (T_c = 25 °C, P = 330 mW), TEC Operation</th>
<th>Symbol</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEC Current</td>
<td>I_{TEC}</td>
<td>-</td>
<td>1.2 A</td>
<td>1.8 A</td>
</tr>
<tr>
<td>TEC Voltage</td>
<td>V_{TEC}</td>
<td>-</td>
<td>2.0 V</td>
<td>3.0 V</td>
</tr>
<tr>
<td>Thermistor Resistance</td>
<td>R_{TH}</td>
<td>9.5 kΩ</td>
<td>10 kΩ</td>
<td>10.5 kΩ</td>
</tr>
<tr>
<td>Thermistor Constant</td>
<td>B</td>
<td>3600 K</td>
<td>3920 K</td>
<td>4200 K</td>
</tr>
</tbody>
</table>

Drawings
Cámara climática
MARCA: BINDER
MODELO: FD-23
ESPECIFICACIONES
Rango de temperatura: 300°C
Variación de temperatura: a 70°C 0.8°C
 a 150°C 2.2°C
 a 300°C 4.3°C
Fluctuación de la temperatura: ±0.3°C
Tiempo de calentamiento: hasta 70°C 7min
 hasta 150°C 22min
 hasta 300°C 45min
Multiplexor en longitud de onda 980/1550 (WDM)
MARCA: OPNETI
MODELO: FWDM-95-2-1-FA

ESPECIFICACIONES
- Longitud de onda (canal 1550): 1520-1600 nm
- Longitud de onda (canal 980): 965-1000 nm
- Pérdidas de inserción (canal 1550): 0.45 dB
- Pérdidas de inserción (canal 980): 0.6 dB
- PDL: <0.02 dB
- Pérdidas de retorno: > 60 dB
WDM Coupler 980/1550nm

PN: WDMC-915-P-1-FA
SN: A130065821
Date: 7 May 2013

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Test Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Wavelength (nm)</td>
<td>980/1550</td>
</tr>
<tr>
<td>Insertion Loss (dB) at 980nm</td>
<td>0.40</td>
</tr>
<tr>
<td>Isolation (dB) at 980nm</td>
<td>24.6</td>
</tr>
<tr>
<td>Insertion Loss (dB) at 1550nm</td>
<td>0.34</td>
</tr>
<tr>
<td>Isolation (dB) at 1550nm</td>
<td>27.8</td>
</tr>
<tr>
<td>Directivity (dB)</td>
<td>>55</td>
</tr>
<tr>
<td>PDL (dB)</td>
<td>0.03</td>
</tr>
<tr>
<td>Fiber Type / Length (m)</td>
<td>OFS 980 Fiber / 1.0</td>
</tr>
<tr>
<td>Connector Type</td>
<td>None</td>
</tr>
<tr>
<td>Operating Temperature (°C)</td>
<td>-20--+70</td>
</tr>
</tbody>
</table>

Diagram

- **980nm Black**
- **1550nm Yellow**
- **Common Red**
<table>
<thead>
<tr>
<th>Especificación</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusionadora de fibra óptica</td>
<td></td>
</tr>
<tr>
<td>Marca</td>
<td>$175v2000</td>
</tr>
<tr>
<td>Modelo</td>
<td>SM/MM/DSF/EDF</td>
</tr>
<tr>
<td>Diámetro de cubierta y núcleo</td>
<td>0.15 - 0.9mm/0.1 - 0.15mm</td>
</tr>
<tr>
<td>Longitud de agarre</td>
<td>16mm</td>
</tr>
<tr>
<td>Perdidas medias</td>
<td>0.02dB(SM) 0.01dB(MM) 0.04dB(DS)</td>
</tr>
<tr>
<td>Reflexión</td>
<td>-60dB</td>
</tr>
<tr>
<td>Estimación de precisión</td>
<td>+/- 0.05dB</td>
</tr>
<tr>
<td>Tiempo de operación típico</td>
<td>20s (Fusión) 90s (Calentar)</td>
</tr>
<tr>
<td>Test de tensión</td>
<td>299g</td>
</tr>
</tbody>
</table>
Appendix

6.1 Technical Data

<table>
<thead>
<tr>
<th>Specification CLD1015</th>
<th>Front Panel*</th>
<th>Remote Control*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Control (Constant Current Mode); AG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Range</td>
<td>0 to 1.5 A</td>
<td></td>
</tr>
<tr>
<td>Compliance Voltage</td>
<td>>4 V</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>100 µA</td>
<td>50 µA</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±(0.1% + 500 µA)</td>
<td></td>
</tr>
<tr>
<td>Noise and Ripple (10 Hz to 10 MHz, rms, typ.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w/o Filter</td>
<td>10 µA</td>
<td>5 µA</td>
</tr>
<tr>
<td>with Filter</td>
<td>(Load 3.3 Ω, current < 1.2 A)</td>
<td></td>
</tr>
<tr>
<td>Drift, 24 hours (0-10 Hz, typ., at Constant Ambient Temperature)</td>
<td><50 µA</td>
<td></td>
</tr>
<tr>
<td>Temperature Coefficient</td>
<td><50 ppm/°C</td>
<td></td>
</tr>
<tr>
<td>Current Limit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setting Range</td>
<td>1 mA to 1.5 A</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>100 µA</td>
<td>50 µA</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±(0.12% + 800 µA)</td>
<td></td>
</tr>
<tr>
<td>Photodiode Input (CG)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photo Current Measurement Ranges</td>
<td>2 mA / 20 mA</td>
<td></td>
</tr>
<tr>
<td>Photo Current Resolution</td>
<td>100 nA / 1 µA</td>
<td>70 nA / 700 nA</td>
</tr>
<tr>
<td>Photo Current Accuracy</td>
<td>±(0.08% +0.5 µA) / ±(0.08% +5 µA)</td>
<td></td>
</tr>
<tr>
<td>Photodiode Reverse Bias Voltage</td>
<td>0.1 to 6 V</td>
<td></td>
</tr>
<tr>
<td>Photodiode Input Impedance</td>
<td>~0 Ω (Virtual Ground)</td>
<td></td>
</tr>
<tr>
<td>Power Control (Constant Power Mode)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photo Current Control Ranges</td>
<td>0 to 2 mA / 0 to 20 mA</td>
<td></td>
</tr>
<tr>
<td>Laser Voltage Measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>1 mV</td>
<td>200 µV</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±(1% + 40 mV)</td>
<td></td>
</tr>
<tr>
<td>Laser Overvoltage Protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip Voltage (typ.)</td>
<td>4.2 V</td>
<td></td>
</tr>
<tr>
<td>Modulation Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Impedance</td>
<td>10 kΩ</td>
<td></td>
</tr>
<tr>
<td>Small Signal 3dB Bandwidth, CC Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w/o filter</td>
<td>DC to 250 kHz</td>
<td></td>
</tr>
<tr>
<td>with filter</td>
<td>DC to 7.5 kHz</td>
<td></td>
</tr>
<tr>
<td>Modulation Coefficient, CC Mode</td>
<td>150 mA/V ±5%</td>
<td></td>
</tr>
<tr>
<td>Modulation Coefficient, CP Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photo Current Range Low</td>
<td>200 µA/V ±5%</td>
<td></td>
</tr>
<tr>
<td>Photo Current Range High</td>
<td>2 mA/V ±5%</td>
<td></td>
</tr>
</tbody>
</table>

*) Via front panel the resolution is limited by the display. Via Remote Control a higher resolution is offered.

**) Control range and thermal stability depend on thermistor parameters and operating point.
Specification CLD1010LP

<table>
<thead>
<tr>
<th>Specification</th>
<th>Front Panel*</th>
<th>Remote Control*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Control (Constant Current Mode); AG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Range</td>
<td>0 to 1.0 A</td>
<td></td>
</tr>
<tr>
<td>Compliance Voltage</td>
<td>>7 V</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>100 µA</td>
<td>50 µA</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±(0.1% + 500 µA)</td>
<td></td>
</tr>
<tr>
<td>Noise and Ripple (10 Hz to 10 MHz, rms, typ.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w/o Filter</td>
<td>10 µA</td>
<td></td>
</tr>
<tr>
<td>with Filter</td>
<td>5 µA</td>
<td>(Load 4.7 Ω)</td>
</tr>
<tr>
<td>Drift, 24 hours (0-10 Hz, typ., at Constant Ambient Temperature)</td>
<td><50 µA</td>
<td></td>
</tr>
<tr>
<td>Temperature Coefficient</td>
<td><50 ppm/°C</td>
<td></td>
</tr>
<tr>
<td>Current Limit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setting Range</td>
<td>1 mA to 1.0 A</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>100 µA</td>
<td>50 µA</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±(0.12% + 800 µA)</td>
<td></td>
</tr>
<tr>
<td>Photodiode Input (CG)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photo Current Measurement Ranges</td>
<td>2 mA / 20 mA</td>
<td></td>
</tr>
<tr>
<td>Photo Current Resolution</td>
<td>100 nA / 1 µA</td>
<td>70 nA / 700 nA</td>
</tr>
<tr>
<td>Photo Current Accuracy</td>
<td>±(0.08% +0.5 µA) / ±(0.08% +5 µA)</td>
<td></td>
</tr>
<tr>
<td>Photodiode Reverse Bias Voltage</td>
<td>0.1 to 6 V</td>
<td></td>
</tr>
<tr>
<td>Photodiode Input Impedance</td>
<td>~0 Ω (Virtual Ground)</td>
<td></td>
</tr>
<tr>
<td>Power Control (Constant Power Mode)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photo Current Control Ranges</td>
<td>0 to 2 mA / 0 to 20 mA</td>
<td></td>
</tr>
<tr>
<td>Laser Voltage Measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>1 mV</td>
<td>400 µV</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±(1% + 80 mV)</td>
<td></td>
</tr>
<tr>
<td>Laser Overvoltage Protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip Voltage (typ.)</td>
<td>7.3 V</td>
<td></td>
</tr>
<tr>
<td>Modulation Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Impedance</td>
<td>10 kΩ</td>
<td></td>
</tr>
<tr>
<td>Small Signal 3dB Bandwidth, CC Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w/o filter</td>
<td>DC to 300 kHz</td>
<td></td>
</tr>
<tr>
<td>with filter</td>
<td>DC to 9.0 kHz</td>
<td></td>
</tr>
<tr>
<td>Modulation Coefficient, CC Mode</td>
<td>150 mAV/V ±5%</td>
<td></td>
</tr>
<tr>
<td>Modulation Coefficient, CP Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photo Current Range Low</td>
<td>200 µAV/V ±5%</td>
<td></td>
</tr>
<tr>
<td>Photo Current Range High</td>
<td>2 mA/V ±5%</td>
<td></td>
</tr>
<tr>
<td>RF Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF Input Impedance</td>
<td>50 Ω</td>
<td></td>
</tr>
<tr>
<td>Small Signal 3 dB Bandwidth</td>
<td>200 kHz to > 1 GHz</td>
<td></td>
</tr>
<tr>
<td>Maximum RF Power</td>
<td>500 mW</td>
<td></td>
</tr>
</tbody>
</table>

*) Via front panel the resolution is limited by the display. Via Remote Control a higher resolution is offered.

**) Control range and thermal stability depend on thermistor parameters and operating point.
<table>
<thead>
<tr>
<th>Specification CLD1011LP</th>
<th>Front Panel*</th>
<th>Remote Control*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Control (Constant Current Mode); CG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Range</td>
<td>0 to 1.0 A</td>
<td></td>
</tr>
<tr>
<td>Compliance Voltage</td>
<td>>8 V</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>100 µA</td>
<td>50 µA</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±(0.1% + 500 µA)</td>
<td></td>
</tr>
<tr>
<td>Noise and Ripple (10 Hz to 10 MHz, rms, typ.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w/o Filter</td>
<td>10 µA</td>
<td>5 µA</td>
</tr>
<tr>
<td>with Filter</td>
<td>(Load 4.7 Ω)</td>
<td></td>
</tr>
<tr>
<td>Drift, 24 hours (0-10 Hz, typ., at Constant Ambient Temperature)</td>
<td><50 µA</td>
<td></td>
</tr>
<tr>
<td>Temperature Coefficient</td>
<td><50 ppm/°C</td>
<td></td>
</tr>
<tr>
<td>Current Limit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setting Range</td>
<td>1 mA to 1.0 A</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>100 µA</td>
<td>50 µA</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±(0.12% + 800 µA)</td>
<td></td>
</tr>
<tr>
<td>Photodiode Input (CG or AG, switchable)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photo Current Measurement Ranges</td>
<td>2 mA / 20 mA</td>
<td></td>
</tr>
<tr>
<td>Photo Current Resolution</td>
<td>100 nA / 1 µA</td>
<td>70 nA / 700 nA</td>
</tr>
<tr>
<td>Photo Current Accuracy</td>
<td>±(0.08% +0.5 µA) / ±(0.08% +5 µA)</td>
<td></td>
</tr>
<tr>
<td>Photodiode Reverse Bias Voltage</td>
<td>0.1 to 6 V</td>
<td></td>
</tr>
<tr>
<td>Photodiode Input Impedance</td>
<td>~0 Ω (Virtual Ground)</td>
<td></td>
</tr>
<tr>
<td>Power Control (Constant Power Mode)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photo Current Control Ranges</td>
<td>0 to 2 mA / 0 to 20 mA</td>
<td></td>
</tr>
<tr>
<td>Laser Voltage Measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>1 mV</td>
<td>400 µV</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±(1% + 80 mV)</td>
<td></td>
</tr>
<tr>
<td>Laser Overvoltage Protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip Voltage (typ.)</td>
<td>8.2 V</td>
<td></td>
</tr>
<tr>
<td>Modulation Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Impedance</td>
<td>10 kΩ</td>
<td></td>
</tr>
<tr>
<td>Small Signal 3dB Bandwidth, CC Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w/o filter</td>
<td>DC to 300 kHz</td>
<td></td>
</tr>
<tr>
<td>with filter</td>
<td>DC to 9.0 kHz</td>
<td></td>
</tr>
<tr>
<td>Modulation Coefficient, CC Mode</td>
<td>150 mA/V ±5%</td>
<td></td>
</tr>
<tr>
<td>Modulation Coefficient, CP Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photo Current Range Low</td>
<td>200 µA/V ±5%</td>
<td></td>
</tr>
<tr>
<td>Photo Current Range High</td>
<td>2 mA/V ±5%</td>
<td></td>
</tr>
<tr>
<td>RF Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF Input Impedance</td>
<td>50 Ω</td>
<td></td>
</tr>
<tr>
<td>Small Signal 3 dB Bandwidth</td>
<td>200 kHz to > 1 GHz</td>
<td></td>
</tr>
<tr>
<td>Maximum RF Power</td>
<td>500 mW</td>
<td></td>
</tr>
</tbody>
</table>

*) Via front panel the resolution is limited by the display. Via Remote Control a higher resolution is offered.

**) Control range and thermal stability depend on thermistor parameters and operating point.
Specification CLD1015 / CLD1010LP / CLD1011LP

<table>
<thead>
<tr>
<th></th>
<th>Front Panel*</th>
<th>Remote Control*</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEC Current Output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Range</td>
<td>-3.0 to 3.0 A</td>
<td></td>
</tr>
<tr>
<td>Compliance Voltage</td>
<td>> 4.7 V</td>
<td></td>
</tr>
<tr>
<td>Maximum Output Power</td>
<td>> 14.1 W</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>1 mA</td>
<td>100 µA</td>
</tr>
<tr>
<td>Accuracy</td>
<td>± (0.2% + 20 mA)</td>
<td></td>
</tr>
<tr>
<td>TEC Current Limit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setting Range</td>
<td>5 mA to 3.0 A</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>1 mA</td>
<td>100 µA</td>
</tr>
<tr>
<td>Accuracy</td>
<td>± (0.2% + 20 mA)</td>
<td></td>
</tr>
<tr>
<td>NTC Thermistor Sensors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance Measurement Range</td>
<td>300 Ω to 150 kΩ</td>
<td></td>
</tr>
<tr>
<td>Control Range Max.**</td>
<td>-55 °C to +150 °C</td>
<td></td>
</tr>
<tr>
<td>Temperature Resolution</td>
<td>0.01 °C</td>
<td></td>
</tr>
<tr>
<td>Resistance Resolution</td>
<td>1 Ω</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>± (0.1% + 1 Ω)</td>
<td></td>
</tr>
<tr>
<td>Temperature Stability (24 Hours typ.)**</td>
<td><0.005 °C</td>
<td></td>
</tr>
<tr>
<td>Temperature Coefficient</td>
<td><5 mK/°C</td>
<td></td>
</tr>
<tr>
<td>Temperature Window Protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setting Range T_{win}</td>
<td>0.01 °C to 100.0 °C</td>
<td></td>
</tr>
<tr>
<td>Protection Reset Delay</td>
<td>0 to 600 s</td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USB 2.0</td>
<td>According to USBTMC/USBTMC-USB488 Specification Rev. 1.0</td>
<td></td>
</tr>
<tr>
<td>Protocol</td>
<td>SCPI Compliant Command Set</td>
<td></td>
</tr>
<tr>
<td>Drivers</td>
<td>VISA VXipnp™, MS Visual Studio™, MS Visual Studio.net™, LabView™, LabWindows/CVI™</td>
<td></td>
</tr>
</tbody>
</table>

*) Via front panel the resolution is limited by the display. Via Remote Control a higher resolution is offered.

**) Control range and thermal stability depend on thermistor parameters and operating point.
General data CLD1015 / CLD1010LP / CLD1011LP

<table>
<thead>
<tr>
<th>Safety Features</th>
<th>Display</th>
<th>LCD TFT 480 x 272 Pixel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interlock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keylock Switch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser Current Limit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft Start</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Circuit when Laser off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser Overvoltage Protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over Temperature Protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Window Protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connectors for Interlock & Laser On Signal</td>
<td>2.5 mm Mono Phono Jack</td>
<td></td>
</tr>
<tr>
<td>Connectors for DC Power Input</td>
<td>2.0 mm center pin connected to +</td>
<td></td>
</tr>
<tr>
<td>Connectors for Modulation Input</td>
<td>SMA</td>
<td></td>
</tr>
<tr>
<td>Connectors for USB-Interface</td>
<td>USB Type Mini-B</td>
<td></td>
</tr>
<tr>
<td>Chassis Ground Connector</td>
<td>4 mm Banana Jack</td>
<td></td>
</tr>
<tr>
<td>Dimensions without Operating Elements (W x H x D)</td>
<td>111 x 73.5 x 153.3 mm³ (4.37 x 2.9 x 6.04 in³)</td>
<td></td>
</tr>
<tr>
<td>Dimensions with Operating Elements (W x H x D)</td>
<td>111 x 73.5 x 169.9 mm³ (4.37 x 2.9 x 6.69 in³)</td>
<td></td>
</tr>
</tbody>
</table>

1) non-condensing

All technical data are valid at 23 ± 5°C and 45 ± 15% rel. humidity (non condensing)
6.2 Dimensions CLD101x
6.3 Standard Laser Diode Pinouts

BFY (Butterfly Style) Laser Diodes

There are two standard pin-outs for 14 pin "butterfly" (BFY) housing laser diodes:

Type 1 - Pump Laser Diodes

<table>
<thead>
<tr>
<th>1</th>
<th>TEC +</th>
<th>14</th>
<th>TEC -</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Thermistor</td>
<td>13</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>Photo Diode Anode ¹</td>
<td>12</td>
<td>N.C.</td>
</tr>
<tr>
<td>4</td>
<td>Photo Diode Cathode ¹</td>
<td>11</td>
<td>Laser Diode Cathode ²</td>
</tr>
<tr>
<td>5</td>
<td>Thermistor</td>
<td>10</td>
<td>Laser Diode Anode</td>
</tr>
<tr>
<td>6</td>
<td>N.C.</td>
<td>9</td>
<td>Laser Diode Cathode ²</td>
</tr>
<tr>
<td>7</td>
<td>Photo Diode Cathode ¹</td>
<td>8</td>
<td>Photo Diode Anode ¹</td>
</tr>
</tbody>
</table>

¹) Alternative connection for photodiode
²) Alternative connection for laser cathode
Type 2 - DFB Laser Diodes

Supported TO Can Pin Styles
Thorlabs TO can laser diodes are categorized in 8 pin styles, called A to H.
The CLD1010LP supports all pin styles with laser diode anode grounded or floating, these are the pin styles A, D, E and G:

![Diagrams of pin styles A, D, E, and G]

The CLD1011LP supports all pin styles with laser diode cathode grounded, these are the pin styles B, C, and H:

![Diagrams of pin styles B, C, and H]

Note
Above presentation is the bottom view to the laser. The pin style for each individual laser diode is stated on the web site and in the individual Product Data Sheet, coming with the laser diode.
<table>
<thead>
<tr>
<th>No.</th>
<th>10</th>
<th>04</th>
<th>02</th>
<th>00</th>
<th>09</th>
<th>89</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>16.5</td>
<td>13.7</td>
<td>0.086</td>
<td>0.083</td>
<td>0.079</td>
<td>0.075</td>
<td>0.071</td>
</tr>
<tr>
<td>1.2</td>
<td>16.4</td>
<td>13.7</td>
<td>0.086</td>
<td>0.083</td>
<td>0.079</td>
<td>0.075</td>
<td>0.071</td>
</tr>
<tr>
<td>1.2</td>
<td>16.6</td>
<td>13.7</td>
<td>0.086</td>
<td>0.083</td>
<td>0.079</td>
<td>0.075</td>
<td>0.071</td>
</tr>
<tr>
<td>1.2</td>
<td>16.5</td>
<td>13.7</td>
<td>0.086</td>
<td>0.083</td>
<td>0.079</td>
<td>0.075</td>
<td>0.071</td>
</tr>
<tr>
<td>1.2</td>
<td>16.2</td>
<td>13.7</td>
<td>0.086</td>
<td>0.083</td>
<td>0.079</td>
<td>0.075</td>
<td>0.071</td>
</tr>
<tr>
<td>1.2</td>
<td>16.5</td>
<td>13.7</td>
<td>0.086</td>
<td>0.083</td>
<td>0.079</td>
<td>0.075</td>
<td>0.071</td>
</tr>
<tr>
<td>1.2</td>
<td>16.2</td>
<td>13.7</td>
<td>0.086</td>
<td>0.083</td>
<td>0.079</td>
<td>0.075</td>
<td>0.071</td>
</tr>
<tr>
<td>1.2</td>
<td>16.5</td>
<td>13.7</td>
<td>0.086</td>
<td>0.083</td>
<td>0.079</td>
<td>0.075</td>
<td>0.071</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(%) Level</th>
<th>1550nm</th>
<th>1550nm</th>
<th>(mm)</th>
<th>(mm)</th>
<th>(mm)</th>
<th>(mm)</th>
<th>(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1%</td>
<td>0.97</td>
<td>0.97</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
</tr>
<tr>
<td>0.2%</td>
<td>0.97</td>
<td>0.97</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
</tr>
<tr>
<td>0.4%</td>
<td>0.97</td>
<td>0.97</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
</tr>
<tr>
<td>0.6%</td>
<td>0.97</td>
<td>0.97</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
</tr>
<tr>
<td>1.0%</td>
<td>0.97</td>
<td>0.97</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
</tr>
<tr>
<td>1.2%</td>
<td>0.97</td>
<td>0.97</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
</tr>
</tbody>
</table>

Quantity: 2005/8/08/06
Date: 2005/8/08/06

Product Name: SF (NATURAL)
FBG Data Sheet

Company: Advanced Optics Solutions (AOS) GmbH
Address: Ammonstr. 35
01067 Dresden, Germany
Phone: +49 (0)351 4960 193
Fax: +49 (0)351 4960 194
E-mail: info@aos-fiber.com
Web: www.aos-fiber.com
Date: 01.11.2010
Time: 13:52:11
SerNo: 22080305
Customer: 428
Order-No: Uni Navara P2-4047
Operator: L.Fuhr

OSA traces:

Measured Parameters:

<table>
<thead>
<tr>
<th>Reflection Bandwidth</th>
<th>[nm]</th>
<th>[GHz]</th>
<th>Center Wavelength [nm]: 1547.027</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1.0 dB</td>
<td>0.145</td>
<td>Center Freq [THz]: 193.8</td>
</tr>
<tr>
<td></td>
<td>-3.0 dB</td>
<td>0.190</td>
<td>Transmission Loss [dB]: 20.2</td>
</tr>
<tr>
<td></td>
<td>-20 dB</td>
<td>0.375</td>
<td>Reflectivity [%]: 99.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SNR @+/-1nm [dB]: 33.0</td>
</tr>
</tbody>
</table>

Configuration:

0.8 m
60 mm
0.8 m

Fiber type:
Corning SMF28

Notes:
FBG Data Sheet

Company: Advanced Optics Solutions (AOS) GmbH
Address: Ammonstr. 35
 01067 Dresden, Germany
Phone: +49 (0)351 4960 193
Fax: +49 (0)351 4960 194
E-mail: info@aos-fiber.com
Web: www.aos-fiber.com

Date: 01.11.2010
Time: 13:47:50
SerNo: 1303094A
Customr: 428
Order-No: Uni Navara P2-4047
Operator: L. Fuhr

OSA traces:

Measured Parameters:

<table>
<thead>
<tr>
<th>Reflection Bandwidth</th>
<th>[nm]</th>
<th>[GHz]</th>
<th>Center Wavelength [nm]: 1549.955</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Center Freq [THz]: 193.4</td>
</tr>
<tr>
<td>-1.0 dB</td>
<td>0.125</td>
<td>15.6</td>
<td>Transmission Loss [dB]: 17.8</td>
</tr>
<tr>
<td>-3.0 dB</td>
<td>0.165</td>
<td>20.6</td>
<td>Reflectivity [%]: 98.3</td>
</tr>
<tr>
<td>-20 dB</td>
<td>0.300</td>
<td>37.4</td>
<td>SNR @+/-1nm [dB]: 35.3</td>
</tr>
</tbody>
</table>

Configuration:

0.8 m

Fiber type: Corning SMF28

Notes:
FBG Data Sheet

Company: Advanced Optics Solutions (AOS) GmbH
Address: Ammonstr. 35
 01067 Dresden, Germany
Phone: +49 (0)351 4960 193
Fax: +49 (0)351 4960 194
E-mail: info@aos-fiber.com
Web: www.aos-fiber.com

Date: 04.11.2010
Time: 13:56:06
SerNo: 04111049
Customer: 428
Order-No: Uni Navara P2-4047
Operator: Feur

OSA traces:

Measured Parameters:

<table>
<thead>
<tr>
<th>Reflection Bandwidth</th>
<th>[nm]</th>
<th>[GHz]</th>
<th>Center Wavelength [nm]: 1555.310</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Center Freq [THz]: 192.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Transmission Loss [dB]: 19.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reflectivity [%]: 98.9</td>
</tr>
<tr>
<td>-1.0 dB</td>
<td>0.155</td>
<td>19.2</td>
<td>SNR Δ±/-1nm [dB]: 30.9</td>
</tr>
<tr>
<td>-3.0 dB</td>
<td>0.195</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td>-20 dB</td>
<td>0.370</td>
<td>45.8</td>
<td></td>
</tr>
</tbody>
</table>

Configuration:

Fiber type:
Corning SMF28

Notes:
Erbium Doped Fiber IsoGain™

Fibercore's IsoGain™ range of Erbium Doped Fibers (EDFs) offer a wide selection of absorption and cut-off wavelengths to allow the best choice of fiber for each type of Erbium Doped Fiber Amplifier (EDFA) design.

Fibercore's low absorption fibers offer best-in-class efficiency for C-band amplifiers whilst higher absorption fibers are optimized for L-band EDFAs.

High cut-off wavelength (HC) fibers have larger core diameters, reducing non-linear effects and increasing efficiency at higher pump powers.

The core composition of Fibercore's IsoGain™ has been engineered to generate a substantially flattened wavelength response that closely matches that of other leading fiber types.

Supported by Fibercore's GainMaster™ simulation software

Advantages:
- High efficiency core composition
- ’HC’ variants optimized for high pump power EDFAs
- High absorption fibers for L-band amplifiers and mini/micro C-band EDFAs
- Wide range of absorption values for EDFA design optimization

Typical applications:
- EDFAs / Telecoms
- ASE Light Sources
 - Gyros
 - Current Sensors
 - Distributed Sensor Systems
- Fiber Lasers
- Biomedical Illumination
- Optical Coherence Tomography (OCT)

Related Products:
- Erbium Doped Fiber MetroGain™
- Dual-Clad Erbium/Ytterbium Doped Fiber (CP1500Y)
- GainMaster™ Simulation Tool

Product Variants:
- I-4 (980/125)
- I-4 (980/125)HC
- I-6 (980/125)
- I-12(980/125)
- I-12(980/125)HC
- I-15(980/125)HC
- I-25 (980/125)
- I-25H(1480/80)

For high efficiency C-band EDFAs
For high efficiency, high power C-band EDFAs
Increased absorption for high efficiency C-band EDFAs
Mid level absorption fiber for short length C-band and L-band EDFAs
High cut off wavelength, mid level absorption fiber for higher power short length C-band and L-band EDFAs
High cut off wavelength, mid/high level absorption fiber for higher power short length C-band and L-band EDFAs
Very high absorption fiber for short length L-band EDFAs
80µm cladding diameter, high cut off wavelength, high absorption fiber for small coil diameter mini and micro EDFAs

T: +44 (0)23 8076 9893
E: info@fibercore.com
www.fibercore.com
High Efficiency C-Band Erbium Doped Fibers

<table>
<thead>
<tr>
<th></th>
<th>I-4(980/125)</th>
<th>I-4(980/125)HC</th>
<th>I-6 (980/125)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut-Off Wavelength (nm)</td>
<td>870 – 970</td>
<td>1000 – 1320</td>
<td>870 – 970</td>
</tr>
<tr>
<td>Numerical Aperture</td>
<td></td>
<td>0.22 – 0.24</td>
<td></td>
</tr>
<tr>
<td>Mode Field Diameter (µm)</td>
<td>5.4 – 6.6 @1550nm</td>
<td>5.2 – 5.8 @1550nm</td>
<td>5.5 – 6.3 @1550nm</td>
</tr>
<tr>
<td>Absorption (dB/m)</td>
<td>5.0 – 6.7 @1531nm</td>
<td>7.7 – 9.4 @1531nm</td>
<td>7.2 – 8.4 @1531nm</td>
</tr>
<tr>
<td>Proof Test (%)</td>
<td></td>
<td>1 (100 kpsi)</td>
<td></td>
</tr>
<tr>
<td>Attenuation (dB/km)</td>
<td></td>
<td>≤10 @1200nm</td>
<td></td>
</tr>
<tr>
<td>Polarization Mode Dispersion (ps/m)</td>
<td></td>
<td>≤0.005</td>
<td></td>
</tr>
<tr>
<td>Cladding Diameter (µm)</td>
<td></td>
<td>125 ± 1</td>
<td></td>
</tr>
<tr>
<td>Core Concentricity (µm)</td>
<td></td>
<td>≤0.3</td>
<td></td>
</tr>
<tr>
<td>Coating Diameter (µm)</td>
<td></td>
<td>245 ± 15</td>
<td></td>
</tr>
<tr>
<td>Coating Type</td>
<td></td>
<td></td>
<td>Dual Acrylate</td>
</tr>
</tbody>
</table>

L-Band and C-Band Erbium Doped Fibers

<table>
<thead>
<tr>
<th></th>
<th>I-12(980/125)</th>
<th>I-12(980/125)HC</th>
<th>I-15(980/125)HC</th>
<th>I-25(980/125)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut-Off Wavelength (nm)</td>
<td>900 – 970</td>
<td>1200 – 1320</td>
<td>1200 – 1320</td>
<td>900 – 970</td>
</tr>
<tr>
<td>Numerical Aperture</td>
<td>0.21 – 0.23</td>
<td>0.23 – 0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode Field Diameter (µm)</td>
<td>5.7 – 6.6 @1550nm</td>
<td>5.0 – 5.5 @1550nm</td>
<td>4.8 – 5.4 @1550nm</td>
<td>5.2 – 6.3 @1550nm</td>
</tr>
<tr>
<td>Absorption (dB/m)</td>
<td>14 – 21 @1531nm</td>
<td>17 – 21 @1531nm</td>
<td>27 – 33 @1531nm</td>
<td>35 – 45 @1531nm</td>
</tr>
<tr>
<td>Proof Test (%)</td>
<td></td>
<td>1 (100kpsi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attenuation (dB/km)</td>
<td></td>
<td>≤10 @1200nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polarization Mode Dispersion (ps/m)</td>
<td></td>
<td>≤0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladding Diameter (µm)</td>
<td></td>
<td>125 ± 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Concentricity (µm)</td>
<td></td>
<td>≤0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coating Diameter (µm)</td>
<td></td>
<td>245 ± 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coating Type</td>
<td></td>
<td></td>
<td>Dual Acrylate</td>
<td></td>
</tr>
</tbody>
</table>

Reduced Cladding Erbium Doped Fiber For Mini and Micro EDFAs

<table>
<thead>
<tr>
<th></th>
<th>I-25H(1480/80)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut-Off Wavelength (nm)</td>
<td>900 - 1025</td>
</tr>
<tr>
<td>Numerical Aperture</td>
<td>≥0.30</td>
</tr>
<tr>
<td>Mode Field Diameter (µm)</td>
<td>3.8 – 4.7 @1550nm</td>
</tr>
<tr>
<td>Absorption (dB/m)</td>
<td>23 – 27 @1531nm</td>
</tr>
<tr>
<td>Proof Test (%)</td>
<td>1 (100 kpsi)</td>
</tr>
<tr>
<td>Attenuation (dB/km)</td>
<td>≤30 @1200nm</td>
</tr>
<tr>
<td>Polarization Mode Dispersion (ps/m)</td>
<td>≤0.005</td>
</tr>
<tr>
<td>Cladding Diameter (µm)</td>
<td>80 ± 1</td>
</tr>
<tr>
<td>Core Concentricity (µm)</td>
<td>≤0.5</td>
</tr>
<tr>
<td>Coating Diameter (µm)</td>
<td>160 ± 10</td>
</tr>
<tr>
<td>Coating Type</td>
<td>Dual Acrylate</td>
</tr>
</tbody>
</table>

Visit fibercore.com/fiberpaedia for our encyclopedia of industry terms/knowledge base.
Optical Coupler Test Report - oeMarket.com

<table>
<thead>
<tr>
<th>P/N: SWB-1550-2x2-P-30/70-1-FA</th>
<th>S/N: A130045753</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operate Wavelength: 1550±40nm</td>
<td></td>
</tr>
<tr>
<td>Fiber Type: SMF-28e fiber with 900um loose tube</td>
<td></td>
</tr>
<tr>
<td>Splitting Ratio: 30:70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Spec</td>
<td>IL (dB) @1550nm</td>
</tr>
<tr>
<td>Port1(color red) → Port3(color black)</td>
<td>1.98</td>
</tr>
<tr>
<td>Port1(color red) → Port4(color blue)</td>
<td>5.53</td>
</tr>
<tr>
<td>Port2(color white) → Port3(color black)</td>
<td>5.63</td>
</tr>
<tr>
<td>Port2(color white) → Port4(color blue)</td>
<td>1.76</td>
</tr>
<tr>
<td>Connector Type</td>
<td>FC/APC</td>
</tr>
<tr>
<td>Fiber Length</td>
<td>1m</td>
</tr>
<tr>
<td>Directivity (dB)</td>
<td>>60</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-20°C to +70°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-40°C to +85°C</td>
</tr>
</tbody>
</table>

*All data measured at central wavelength. RoHS compliant.

Date: 2 May 2013
Inspection Sheet

Product Name: Single Mode Two Window Coupler

Connectors: 2FC/APC-2FC/APC

Coupler Type: 2x2, 10/90

Test Date: 17/11/2004

Serial Number: 04A027614

Operating Wavelength (nm): 1310±20/1350±20 nm

Insertion Loss (dB):

<table>
<thead>
<tr>
<th>PORT</th>
<th>1310 nm.</th>
<th>1550 nm.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I.L. (max.)</td>
<td>I.L. (max.)</td>
</tr>
<tr>
<td>1</td>
<td>PA(10%)</td>
<td>10.81</td>
</tr>
<tr>
<td></td>
<td>PB(90%)</td>
<td>0.65</td>
</tr>
<tr>
<td>2</td>
<td>PA(90%)</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>PB(10%)</td>
<td>10.82</td>
</tr>
</tbody>
</table>

Uniformity (dB): < 0.8

Polarization Stability (dB): < 0.2

Directivity (dB): > 55

Operation Temperature (°C): -40 ~ +70

Nota: Por cada conector se consideran 0.30 dB de pérdidas de inserción.

Medido por:

Fecha: 17 NOV. 2004

Aprobado por:
Inspection Sheet

Product Name: Single Mode Two Window Coupler
Connectors: 2FC/APC-2FC/APC
Coupler Type: 2x2, 10/90
Test Date: 11/11/2004
Serial Number: 04A003514
Operating Wavelength (nm): 1310±20/1350±20 nm
Insertion Loss (dB):

<table>
<thead>
<tr>
<th>PORT</th>
<th>1310 nm.</th>
<th>1550 nm.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I.L. (max.)</td>
<td>I.L. (max.)</td>
</tr>
<tr>
<td>A</td>
<td>PA(10%)</td>
<td>10.87</td>
</tr>
<tr>
<td></td>
<td>PB(90%)</td>
<td>0.55</td>
</tr>
<tr>
<td>B</td>
<td>P1(10%)</td>
<td>10.92</td>
</tr>
<tr>
<td></td>
<td>P2(90%)</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Uniformity (dB): < 0.8
Polarization Stability (dB): < 0.2
Directivity (dB): > 55
Operation Temperature (°C): -40 ~ +70

Nota: Por cada conector se consideran 0.30 dB de pérdidas de inserción.

Medido por:
Fecha: 11 NOV. 2004

Aprobado por:
Inspection Sheet

Product Name: Single Mode Two Window Coupler

Connectors: 2FC/APC-2FC/APC

Coupler Type: 2x2, 10/90

Test Date: 11/11/2004

Serial Number: 04A003516

Operating Wavelength (nm): 1310±20/1350±20 nm

Insertion Loss (dB):

<table>
<thead>
<tr>
<th>PORT</th>
<th>1310 nm.</th>
<th>1550 nm.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I.L. (max.)</td>
<td>I.L. (max.)</td>
</tr>
<tr>
<td>A</td>
<td>PA(10%)</td>
<td>10.65</td>
</tr>
<tr>
<td></td>
<td>PB(90%)</td>
<td>0.54</td>
</tr>
<tr>
<td>B</td>
<td>P1(10%)</td>
<td>10.82</td>
</tr>
<tr>
<td></td>
<td>P2(90%)</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Uniformity (dB): < 0.8

Polarization Stability (dB): < 0.2

Directivity (dB): > 55

Operation Temperature (°C): -40 ~ +70

Nota: Por cada conector se consideran 0.30 dB de pérdidas de inserción.

Medido por: [Signature]

Fecha: 11 Nov. 2004

Aprobado por: [Signature]
Inspection Sheet

Product Name: Single Mode Two Window Coupler
Connectors: 2FC/APC-2FC/APC
Coupler Type: 2x2, 10/90
Test Date: 11/11/2004
Serial Number: 04A003515
Operating Wavelength (nm): 1310±20/1350±20 nm

Insertion Loss (dB):

<table>
<thead>
<tr>
<th>PORT</th>
<th>1310 nm.</th>
<th>1550 nm.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I.L. (max.)</td>
<td>I.L. (max.)</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA(10%)</td>
<td>10.63</td>
<td>10.55</td>
</tr>
<tr>
<td>PB(90%)</td>
<td>0.52</td>
<td>0.54</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1(10%)</td>
<td>10.55</td>
<td>10.56</td>
</tr>
<tr>
<td>P2(90%)</td>
<td>0.53</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Uniformity (dB): < 0.8
Polarization Stability (dB): < 0.2
Directivity (dB): > 55
Operation Temperature (°C): -40 ~ +70

Nota: Por cada conector se consideran 0.30 dB de pérdidas de inserción.

Medido por:

[Signature]
Fecha: 11 NOV. 2004

Aprobado por:

[Signature]
Inspection Sheet

Product Name: Single Mode Two Window Coupler

Connectors: 2FC/APC-2FC/APC

Coupler Type: 2x2, 10/90

Test Date: 11/11/2004

Serial Number: 04A003517

Operating Wavelength (nm): 1310±20/1350±20 nm

Insertion Loss (dB):

<table>
<thead>
<tr>
<th>PORT</th>
<th>1310 nm.</th>
<th>1550 nm.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I.L. (max.)</td>
<td>I.L. (max.)</td>
</tr>
<tr>
<td>A</td>
<td>10.35</td>
<td>10.40</td>
</tr>
<tr>
<td></td>
<td>0.51</td>
<td>0.53</td>
</tr>
<tr>
<td>B</td>
<td>10.81</td>
<td>10.82</td>
</tr>
<tr>
<td></td>
<td>0.49</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Uniformity (dB): < 0.8

Polarization Stability (dB): < 0.2

Directivity (dB): > 55

Operation Temperature (°C): -40 ~ +70

Nota: Por cada conector se consideran 0.30 dB de pérdidas de inserción.

Medido por: [Signature]

Fecha: 11 NOV. 2004

Aprobado por: [Signature]
Inspection Sheet

Product Name: Single Mode Two Window Coupler
Connectors: 2FC/APC-2FC/APC
Coupler Type: 2x2, 10/90
Test Date: 17/11/2004
Serial Number: 04A027617
Operating Wavelength (nm): 1310±20/1350±20 nm
Insertion Loss (dB):

<table>
<thead>
<tr>
<th>PORT</th>
<th>1310 nm.</th>
<th>1550 nm.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I.L. (max.)</td>
<td>I.L. (max.)</td>
</tr>
<tr>
<td>1</td>
<td>PA(10%)</td>
<td>10.65</td>
</tr>
<tr>
<td></td>
<td>PB(90%)</td>
<td>0.63</td>
</tr>
<tr>
<td>2</td>
<td>PA(90%)</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>PB(10%)</td>
<td>10.59</td>
</tr>
</tbody>
</table>

Uniformity (dB): < 0.8
Polarization Stability (dB): < 0.2
Directivity (dB): > 55
Operation Temperature (°C): -40 ~ +70

Nota: Por cada conector se consideran 0.30 dB de pérdidas de inserción.

Medido por:
[Signature]
Fecha: 17 NOV. 2004
M.10.01.07 Rev.: 0/Diciembre 98

Aprobado por:
[Signature]
Inspection Sheet

Product Name: Single Mode Two Window Coupler
Connectors: 2FC/APC-2FC/APC
Coupler Type: 2x2, 10/90
Test Date: 17/11/2004
Serial Number: 04A027616
Operating Wavelength (nm): 1310±20/1350±20 nm
Insertion Loss (dB):

<table>
<thead>
<tr>
<th>PORT</th>
<th>1310 nm.</th>
<th>1550 nm.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I.L. (max.)</td>
<td>I.L. (max.)</td>
</tr>
<tr>
<td>1</td>
<td>PA(10%)</td>
<td>10.63</td>
</tr>
<tr>
<td></td>
<td>PB(90%)</td>
<td>0.50</td>
</tr>
<tr>
<td>2</td>
<td>PA(90%)</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>PB(10%)</td>
<td>10.63</td>
</tr>
</tbody>
</table>

Uniformity (dB): < 0.8
Polarization Stability (dB): < 0.2
Directivity (dB): > 55
Operation Temperature (°C): -40 ~ +70

Nota: Por cada conector se consideran 0.30 dB de pérdidas de inserción.

Medido por: [Signature]
Fecha: 17 Nov. 2004

Aprobado por: [Signature]
Inspection Sheet

Product Name: Single Mode Two Window Coupler
Connectors: 2FC/APC-2FC/APC
Coupler Type: 2x2, 10/90
Test Date: 17/11/2004
Serial Number: 04A027615
Operating Wavelength (nm): 1310±20/1350±20 nm
Insertion Loss (dB):

<table>
<thead>
<tr>
<th>PORT</th>
<th>1310 nm.</th>
<th>1550 nm.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I.L. (max.)</td>
<td>I.L. (max.)</td>
</tr>
<tr>
<td>1</td>
<td>PA(10%)</td>
<td>10.45</td>
</tr>
<tr>
<td></td>
<td>PB(90%)</td>
<td>0.58</td>
</tr>
<tr>
<td>2</td>
<td>PA(90%)</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>PB(10%)</td>
<td>10.37</td>
</tr>
</tbody>
</table>

Uniformity (dB): < 0.8
Polarization Stability (dB): < 0.2
Directivity (dB): > 55
Operation Temperature (°C): -40 ~ +70

Nota: Por cada conector se consideran 0.30 dB de pérdidas de inserción.

Medido por:
Aprobado por:

Fecha: 17 Nov. 2004