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1. Introduction 

 
 

Prof. Ing. Alfredo Grieco professor in the Politecnico di Bari, has presented an offer of thesis 

related to the development on Internet of Things. 

 

Asier Jordana Urriza, as an engineering student in Universidad Pública de Navarra, staying 

in Bari, Italy as an ERASMUS student, in the Politecnico di Bari, has taken this project related 

to this subject. 

 

1.1 Problem 
 

This project is oriented in the development of the Internet of Things. Nowadays, the 

Internet of Things is a very innovative field with many opportunities. The boom in this 

subject is thanks to the fast improvement of technology and development of the 

internet in the last decades that has made possible to connect to the internet almost 

any device, leading to many applications from smart houses that make our everyday life 

easier to many industry related applications such as Wireless Sensor Networks. 

Due to all the applications it can have, a lot of research communities have joined the 

development of many tools in this field, such us motes (hardware) and operating 

systems (software) oriented for the Internet of Things. 

Among all the available platforms, in this thesis there are characterized two of these 

motes running the same OS. The results obtained will be comparable. 

The parameters that will be obtained are: 

- Packet Lost Rate (PLR): percentual value of the number of packets lost during 

the transmission; 

- latency: the amount of time a packet needs to reach the destination, once it 

has been sent. 

 

Thanks to the results obtained, it is expected to help the development of these platforms 

expanding the available information about them. As this field is quite new, the amount 

of information is minimal and hard to find, and this information may help other 

researches to continue developing, showing strong and weak points of the studied tools. 
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1.2 Tools 
 

 The hardware that will be tested are the TelosB [13] mote by Memsic and the Z1 

[14] by Zolertia. The software they will run for this thesis is OpenWSN. 

6 motes of each type will be used, further details are given in chapter 3. 

Other required tools: 

 -   laptop: that will collect all the data received by the root mote, using 

 OpenUSB on application layer. The computer runs on Ubuntu 14.04.4due to the 

 amount of support and tools available in this OS. 

 -    nickel-cadmium AA batteries: to power the motes. This batteries work at 1.2 

 V and capacity may vary from 600 mAh to 1000 mAh. Each mote needs 2 

 batteries except the one connected to the computer that will be powered via 

 USB. In total 10 batteries will be used. 

 

1.3 Reach of the thesis 
 

This research field is very studied nowadays by many universities and companies due to 

its potential and the resources available. 

Its applications go from our every-day life (intelligent houses for example) to industrial 

environments (process monitoring, real-time control, information management, etc.). 

 These tests, will help to add a little step in this field, giving some performance 

data about two platforms (TelosB [13] and Zolertia Z1 [14], running OpenWSN [10]) 

working under some different conditions. 

With the data obtained it is expected to see which are to strong points of this scenario 

and which points need further development and research. 
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Chapter 2: Communication Protocol 
 

 In this chapter it is shown an introduction on the standards used for the Lower 

layers of the communication protocol (Physical and MAC layers) [1]. 

To make a Wireless Sensor Network (WSN), it is necessary to define a protocol that 

adapts to the needs of this network. Nowadays, there is a high number of wireless 

protocols for many different applications, so it is interesting to take a look to the 

different offers available. 

 

 

Image 1 Standard communication wireless protocols [2] 

 

The main reasons to set up a wireless network instead of a wired one, are: 

 -    no connectors; 

 -    major mobility; 

 -    ease of installation; 

 -    more flexibility; 

 -    improved share of resources; 

 -    lower cost and infrastructure. 

 

 



7 
 

In many cases, the requirements for a WSN are: 

 

 -    power consumption: low power consumption that will ensure the plant 

 working for long time periods; 

 -    low cost: a company won’t pay for features that won’t use and will always 

 priorize a simple-functional solution that lowers the costs of the inversion; 

 -    robustness and stability; 

 -    integration with the production plant. 

 

Among all the wireless communication protocol standards available, each one focuses 

some applications and optimizes some features over others, for that reason, it is 

necessary to find the standard that focuses in the previous requirements. 

 

2.1 IEEE 802.15.4 
 

 Among all the standards available, the IEEE 802.15.4 standard [1][2][3][4] is very 

suitable for a WSN. Image 2 compares IEEE 802.15.4 with Bluetooth and Wi-Fi, which 

are two of the most known standards. 

 Bluetooth and Wi-Fi are superior regarding to range and data throughput but 

usually there is no need of a high data transmission in this kind of applications, and the 

range is covered using several nodes and multihop techniques [3] that allow covering 

wide areas and lowering power consumption at the same time. The 802.15.4 standard 

is designed to get a small power consumption that grants long working time periods, a 

small size that makes possible a complete integration with the plant and low 

manufacturing costs due to the low characteristics.  

 

 

Image 2 IEEE802.15.4, Bluetooth and Wi-Fi comparison 
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 IEEE 802.15.4 is a standard that specifies the physical layer and media access 

control for low-rate wireless personal area networks (LR-WPAN) [2][3]. Upper layers are 

not defined in this standard, and will depend on the application it is being implemented. 

It implements the fundamental lower network layers, focusing on low-cost, low-speed 

communications between devices with little infrastructure, intending to minimize the 

power consumption.  

The basic framework conceives: 

- range: 10 m; 

- transfer rate: Up to 250 kbps; 

- real-time suitability; 

- medium access: CSMA/CA collision avoidance; 

- secure communication support; 

- frequency bands: 868/915/2450 MHz. 

 

The interaction among devices is conceived to be over a conceptually simple wireless 

network. 

 The network layers are based on the OSI model [1][3] but only the lower layers 

are defined. Interaction with upper layers is intended, accessing the MAC through a 

convergence sublayer, see Image 3. This implementations may rely on external devices 

or be embedded self-functioning devices as it is in this case. 

 

 

Image 3 IEEE802.15.4 protocol stack [2] 
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The physical layer manages the RF transceiver, performing channel selection and energy 

and signal management functions. 

It can operate in three different frequency bands: 868.0-868.6 MHz, 902-928 MHz and 

2400-2483.5 MHz. The last band is the one used in this thesis because it is the band that 

the radio chips in these motes use. See Image 4. 

 

 

Image 4 IEEE802.15.4 radio bands [2] 

 

As for the frames, the IEEE 802.15 standard does not exchange standard Ethernet 

frames, because most IEEE 802.15 PHYs only support frames up to 128 bytes. The 

physical frame-format is specified in IEEE 802.15.4. 

This is how an IEEE 802.15.4 packet is structured when it reaches the Physical layer: 

 

- Preamble: 4 bytes, used for synchronization; 

- Start of Packet Delimiter: 1 byte; 

- PHY Header: 1 byte, contains the length of the following data; 

- PHY Service Data Unit (PSDU): from 0 to 127 bytes, data field. 
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Image 5 shows how an IEEE 802.15.4 packet is structured: 

 

Image 5 IEEE 802.15.4 Packet Structure 

 

The PSDU is created in the MAC layer and there are four different types of PSDU or MAC 

frames: 

- data frame; 

- beacon frame; 

- acknowledgment frame: confirms the reception of a correct packet, this feature 

is optional; 

- MAC command frame. 

 

The MAC frame is structured as follows (Image 6): 

- MAC header: contains information about source and destination addresses, 

sequence number and frame control. Its length is variable but always lower than 

23 bytes; 

- MAC Service Data Unit (MSDU): contains the payload, variable length (the whole 

frame never exceeds 128 bytes); 

- MAC footer: frame check sequence, 2 bytes. 

 

 

 

Image 6 IEEE 802.15.4 MAC frame 
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 IEEE 802.15.4 allows also the use of a superframe structure [4]. Thanks to this 

structure, the coordinator can bound its channel time. A superframe is bounded by 

beacons and can have active and inactive portions. The coordinator will only 

communicate during the active period. During the inactive portion, it will enter in a low 

power mode, in order to save battery. This is how a superframe structure is built: 

 

Image 7 Superframe structure [4] 

 

- Beacons: synchronize the attached devices and identify the network and the 

superframe structure; 

- Contention period: access by any node. Every node trying to communicate 

during the contention period will compete with other devices, due to the slotted 

CSMA/CA mechanism; 

- Guaranteed Time Slots (GTS): for low latency applications or applications 

requiring specific data bandwidth the coordinator can dedicate portions of the 

active superframe to that application. This portions are called Guaranteed Time 

Slots (GTSs) and appear in the end of the active portion of the superframe. 

  

All transactions have to be completed before the time of next network beacon. 

As a little summary, this standard allows to use cheap infrastructure, low energy 

consumption and small sized hardware, which are the main requirements for WSNs, in 

exchange of more limited characteristics, comparing to other wireless standards. 
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However, IEEE 802.15.4 has some limitations that can make the network not to work 

properly under some circumstances: 

 -    MAC unreliability and unbounded latency: this effects are increased by the 

 amount of nodes or traffic in the network. A higher traffic will result in higher 

 latencies. This limitation is related to CSMA/CA access method that generates 

 long waiting periods when the channel has a high demand [4]; 

 -    no built-in frequency hopping technique: that makes the communication 

 more sensible to noise and multipath-fading. 

With this limitations in mind, Task group 4e, working for IEEE 802.15, developed from 

January 2008 to October 2011 a new version for this standard, called IEEE 802.15.4e 

that solved this issues. 

  

2.2 IEEE 802.15.4e 
 

 IEEE 802.15.4e is the result given to improve the support for industrial markets. 

The major changes are: MAC behavior modes [5] and general functional improvements 

such as Low Energy (LE), Information Elements (IE), Enhanced Beacons (EB), 

Multipurpose Frame, MAC Performance Metrics and Fast Association (FastA) [5]. 

As for the MAC behavior, there are 5 new modes: 

- Radio Frequency Identification Blink (BLINK): used for item or people 

identification, location and tracking; 

- Asynchronous Multi-Channel Adaptation (AMCA): applications where large 

deployments are required; 

- Deterministic and Synchronous Multi-Channel Extension (DSME): applications 

with strict timeliness and reliability requirements; 

- Low Latency Deterministic Network (LLDN): for applications requiring very low 

latencies; 

- Time Slotted Channel Hoping (TSCH): applications in industrial domains such as 

process automation. 

The experiments in this thesis run with TSCH mode enabled. This mode combines time 

slotted access, multi-channel communication and channel hopping. To understand how 

TSCH mode works, it is necessary to understand how it uses time slotted access, how it 

executes the schedule and how channel hoping is implemented. 
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Time slotted Access: 

 

Time slotted access makes latencies predictable and bounded and guarantees a 

bandwidth for each application. Time is divided into time slots, and each time slot have 

to be long enough for a MAC frame of maximum length to be sent and the 

acknowledgment (ACK) to be received. The duration of a time slot is not defined in the 

standard but for radios operating in the 2.4 GHz frequency band, takes about 4 ms to 

send a maximum length (128 bytes) and 1 ms for the ACK. Using a 10 ms frame slot 

which is a common value, there is a 5 ms period for packet processing and other 

operations. 

This time slots are grouped into slot frames, which are continuously repeating. The slot 

frame length may vary, resulting in more available bandwidth and higher power 

consumption with shorter slot frames. This will be adjusted depending on the 

requirements of the application. 

 

TSCH schedule: 

 

 The schedule tells each node what to do in each time slot: transmit, receive or 

sleep. The schedule indicates, for each scheduled cell (A cell in a TSCH schedule is an 

atomic "unit" of resource) [6], a ChannelOffset and the address of the neighbor with 

which to communicate. 

 As for the TSCH scheduling, the standard explains how the MAC layer executes a 

schedule but it doesn’t specify how it is built. It can ben centralized or distributed 

scheduling [6]. 

In centralized scheduling, a manager node is responsible for building and maintaining 

the network schedule. Every node has to update the manager with the list of nodes it 

hears and the amount of data it generates. The manager will draw the connectivity 

graph and will assign slots to different links based on data generation demands. 

In distributed scheduling, there is no central entity and each node will decide 

autonomously on which links to schedule with which neighbors. This scheduling method 

is suitable for highly dynamic networks. For static networks, centralized schedules are 

known to be superior to distributed ones. 

When the cell is of transmission type, the node checks the buffer and if there is a packet 

that matches the address of the neighbor written in the schedule information for that 

time slot, the packet will be transmitted (an ACK may be asked if the option is enabled, 

and the sending node will have to wait to receive it). 

For receive cells, the node listens for possible incoming packets.  If there is not packet 

received after a certain period, the node will shut down its radio. 
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If the schedule is well built, both the sending node and the receiving node, will transmit 

and hear in the same time (time slot) and to the same frequency (channel). 

It is possible to increase the bandwidth dedicated to a certain link between two nodes 

scheduling multiple cells to it. The union of all this cells is called a bundle and it will 

repeat over time along with the slotframe. 

Each transmit cell within the TSCH schedule is dedicated by default. In a dedicated cell, 

only a certain node can send packets to another. This standard, has the option to create 

shared cells that allow multiple nodes to communicate at the same time, on the same 

frequency. A backoff algorithm is defined to avoid contention in this cells. 

Taking into account that a node can only transmit, receive or sleep (each operation has 

a power consumption value associated that will depend on the hardware), given the 

schedule for a certain node, it is easy to calculate the expected average power 

consumption. 

 

Channel hoping: 

Channel hoping mitigates the effects of interference and multipath fading. With channel 

hoping enabled, every transmission is done in a different frequency and may help 

avoiding noises generated by other machines (electric engines for example), especially 

in industrial environments, that may affect only some channels. This way, changing to 

another frequency increases the chances to avoid these affected channels. 

 To explain how channel hoping is done, first, it is necessary to introduce the 

Absolut Slot Number (ASN) [5]. The ASN initializes at 0 when a new network is created 

and increases by one each time slot. All synchronized nodes in a network have the same 

ASN. 

 In a scheduled cell, there is specified a SlotOffset value (used in the computation 

of the ASN) [5] and a ChannelOffset value [5]. There are as many ChannelOffset values 

as there are frequencies available (16 when using radios that are compliant with IEEE 

802.15.4 at 2.4 GHz when all channels are used). 

To calculate the frequency, the ASN and ChannelOffset values are used in a function that 

looks up on a table with all the available frequencies. The ASN and the ChanelOffset will 

be the same for both nodes in the scheduled cell, so the same frequency will be 

computed. 

In the next slotframe, even with a static schedule (every scheduled cell repeats over time 

with constant SlotOffset and ChannelOffset values), the ASN value will change, giving as 

a result a different frequency for the same scheduled cell. 

Channel hopping is a technique known to efficiently combat multi-path fading and 

external interferences. 
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2.3 RPL 
 

 RPL [7][8] stands for IPv6 Routing Protocol for Low powered and Lossy Networks. 

Which is a routing protocol that has been conceived to overcome routing issues in Low 

Power and Lossy Networks (LLN) as Wireless Sensor Networks (WSN). 

 The objective of an RPL is to create a topology that minimizes the power 

consumption of the nodes, avoiding cyclic paths, and finding the most power efficient 

path. For this objective, a Destination-Oriented Direct Acyclic Graph (DODAG) [8] is built. 

A DODAG is a directed graph, in which all edges are oriented in a way that no cycles 

exist, and end in a sink called DODAG root (In a DAG, there can be more than one sink 

but in a DODAG there is only one). 

In a DODAG, there are two opposite “directions”: 

- “Up”: direction in which information goes from edge nodes to the root; 

- “Down”: direction from the root to the edge nodes. 

 

 The RPL assigns ranks [8] to the nodes in the DODAG. The rank of a node is its 

position relative to other nodes with respect to the root. The rank will always decrease 

in the Down direction and increase in the Up direction. The way of calculate the Rank 

may vary. It may just consider a simple topological distance, may be calculated as a 

function of link metrics or may consider other properties such as constraints. 

We can define 3 types of traffic in the network: 

- Multipoint to point traffic (MP2P): usually the dominant traffic flow in LLNs. The 

information goes in up direction. It is used to collect data from the network into 

a sink, the DODAG root commonly; 

- Point to multipoint traffic (P2MP): flows in down direction, mostly used when 

the DODAG root has to inform the rest of the nodes some parameters about the 

network or needs to ask all the nodes for some data; 

- Point to point (P2P): this traffic can be in both directions, it is used when 

specifically two nodes need to interact (for example, a controller and an 

actuator). If the node has not routing tables stored, the packet will flow upwards, 

until it reaches a node that is able to route the packet. As final instance, it will 

reach the DODAG root. 
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With this rank methodology a message sent from an edge node to the root, will go 

always to a lower rank node until it reaches its destination. The route will not have cycles 

and the power consumption will be minimized, due to the rank gradient created towards 

the DODAG root. 

 

 

Image 8: RPL network diagram [7] 

 

The RPL defines four types of messages for information exchange and topology 

maintenance: 

- DODAG information exchange (DIO): contains information about the current 

rank of a node, the current RPL instance, IPv6 address of a node, etc; 

- Destination advertisement object (DAO): enables support for down traffic to 

propagate destination information upwards along the DODAG; 

-  DODAG information solicitation (DIS): is used to require DIO messages from a 

reachable neighbor; 

- DAO-ACK: is sent by DAO recipient in response to a DAO message. 

 

In order to save battery in LLNs, the RPL, adapts the sending rate of DIO messages 

according to the stability of the network. In a network with stable links, the control 

messages will be rare.  
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2.4 UDP 
 

 User Datagram Protocol (UDP) [9] is a transport level protocol, based on 

exchange of datagrams in the environment of an interconnected set of computer 

networks. This protocol assumes that the Internet Protocol (IP) [9] is used as the 

underlying protocol. Allows to send packets in a network, without requiring a previously 

stablished connection, because the header has the necessary addressing information. 

Image 9 shows how a UDP header is built: 

 

Image 9 User datagram protocol header format 

 

The header has the following fields: 

- Source Port: optional field that indicates the port of the sending process. It is the 

port where a reply will be addressed in the absence of other information. If the 

field is not used a 0 is inserted; 

- Destination Port: it references the port of a particular internet destination 

address; 

- Length: the length in bytes of the user datagram, including the header and the 

data; 

- Checksum: is the 16 bit one’s complement of the sum of pseudo header of 

information from the IP header, the UDP header and the data. This information 

is used to protect against misrouted datagrams. 

 

The UDP does not have confirmation or flow control and there is no guarantee of 

delivery, ordering or duplicate protection. 

 UDP is used when error checking is not necessary or is done by the application, 

avoiding the load of that processing at the network interface level. Usually, it is used in 

time-sensitive applications because dropping packets is preferable to waiting to delayed 

packets. Applications requiring ordered reliable delivery of streams of data should use 

the Transmission Control Protocol (TCP) [9]. 
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Chapter 3: Tools 
 

In this chapter, a deeper description of the tools presented in the introduction is given. 

On one hand, there is an introduction to the basics of the software and later, the motes 

that will be tested are described. 

 

3.1 Software: OpenWSN 
 

 OpenWSN [10] is an open-source implementation of a standards-based protocol 

stack rooted in IEEE 802.15.4e Time Slotted Channel Hoping (TSCH) standard. 

It enables ultra-low power and reliable networks that are fully integrated into the 

internet. 

Image 10 shows the protocol stack implemented in OpenWSN. This protocol stack is 

based entirely on Internet of Things standards. 

 

 

Image 10 The OpenWSN protocol stack [10] 

 

The OpenWSN stack utilizes abstraction at two levels. The Berkeley Socket Abstraction 

considers that the communication of two applications on two different hosts is through 

a socket, identified by the IP addresses of the hosts and the two ports corresponding to 

each application. 

The OpenWSN stack respects this abstraction, and developing and application on it is 

comparable to developing an application on a regular internet host. 
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The Hardware Abstraction groups all functions concerning the hardware into a group of 

files called the ‘board support package’ (BSP). Thanks to this, a great part of the code 

can be shared among all supported platforms. 

This code portability made possible the use of a similar application written for this 

experiment for two different platforms, TelosB and Zolertia Z1 that are introduced in 

the next section of this chapter. 

 

3.1.1 OpenWSN Stack 

 

 Protocol layers are wired together to form a stack. Send functions are used to 

push packets down the stack; Receive functions to pull them up. The bytes of a packet 

live in the OpenQueue [11] component. A packet is a variable of type OpenQueueEntry_t 

[11] and is defined in openwsn.h; components pass a pointer to an OpenQueueEntry_t 

variables in the Send and Receive functions (See “8.10 Stack organization diagram of the 

OpenWSN protocol stack” on the appendix for a more detailed diagram). 

An OpenQueueEntry_t is the actual packet that is going to be sent, along with some 

metadata created by some upper layers that lower layers will need to send the packet 

down the stack. For example, the MAC layer sets a parameter that informs the driver 

abut which channel it need to transmit the packet, or RPL layer specifies to MAC layer 

about which neighbor the packet is headed. 

To see how it works, here is an example of what each layer does and how the packet 

flows from one layer to other: 

- the application has to get a free OpenQueueEntry_t and creates the packet with 

the payload that is going to be sent. As for the metadata, it will take ownership 

and creatorship of the packet, it will include source and destination port that will 

be used by layer 4 (TCP or UDP) and destination address that will be used in layer 

3 by RPL. Finally it sends the packet to layer 4; 

- layer 4 (UDP in this thesis), will take the ownership of the packet and it will write 

where the payload starts and how long it is. Then it will add UDP header with the 

source and destination addresses written by the application layer. Finally, sends 

the packet to RPL; 

- RPL in layer 3, takes ownership of the packet and fills the metadata with data for 

the next hop. It forwards the packet to IPHC; 

- IPHC (Internet Protocol Header Compression) [11] belongs to the adaptation 

layer needed to compress the internet header into a smaller header that IEEE 

802.15.4 standard can handle (6LoWPAN header). After adding this header, it 

sends the packet to layer 2; 

- in layer 2, the MAC protocol (IEEE 802.15.4e) takes ownership of the packet. It 

fills the metadata with the amount of retries left, the power for the radio 

antenna and the channel (obtained from schedule.c [11]). It will add the MAC 

https://openwsn.atlassian.net/wiki/display/OW/Stack
https://openwsn.atlassian.net/wiki/display/OW/Stack
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header with the next hop information and frame type information and the 

packet is sent to the drivers; 

- the drivers or physical layer will configure the radio power and the channel. It 

won’t take ownership of the packet, so if something goes wrong, MAC will be 

able to retransmit the packet. 

 

3.1.2 Open Visualizer 

 

 OpenVisualizer [12] is the primary tool for plugging OpenWSN network into the 

Internet. 

These are the main features: 

- connects OpenWSN network to the Internet over a virtual interface (both 

Windows and Linux); 

- portable across popular operating systems; 

- shows the internal state (neighbor table, scheduling table, queue, etc.) of each 

node physically connected to the OpenVisualizer; 

- displays errors reported by motes; 

- can run with either physical motes, or emulated motes. 

The software is based on publish-subscribe messaging between components in a Python 

process. The diagram in Image 11 provides a high-level view. The Event Bus provides the 

messaging framework. Specific components implement services like connection of 

wireless motes via serial connection, and external or internal Python based applications 

can be used (The application used for this thesis, UDPlatency is an internal Python 

process). Also, notice that several motes may be connected simultaneously. 

 

Image 11 Diagram of OpenVIsualizer's architecture [12] 
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This is how OpenVisualizer has worked in the tests: 

- the root of the network received the packets and they were captured by the 

component moteConnector [12] via USB;  

- moteConnector extracts the data from the received packet and it is published in 

the event bus; 

- the UDPlatency script captures this data and updates the parameters with the 

new values (new latencies, sequence number, PLR, etc.) and saves them in a text 

file. 

 

After the text file is created the process ends and from this point the user can use the 

data generated freely. 

 

3.1.3 UDPlatency 

 

 UDPlatency is an application [Code A1] written by students of Politecnico di Bari. 

UDPlatency is an application that consists of two parts. The first one, an application 

written in the firmware that will run the mote, and the other part that will run with 

OpenVisualizer in the computer and collects the data that receives the root mote. 

The firmware part has to create the 128 byte long packets that will be sent by every 

mote (On the following section is defined how packets are filled) to the network 

coordinator. The software application will collect the data via USB serial 

communication, then it will obtain certain parameters and finally creates a text file that 

saves this parameters. 

This is the data that shows the text file: 

 -    address of the sender mote; 
 -    minimum latency; 
 -    maximum latency; 
 -    number of packets received; 
 -    number of packets sent; 
 -    average latency; 
 -    latest latency: latency of the last received packet; 
 -    temperature value; 
 -    sequence number: the sequence number increases each time a new packet 
 is sent, it is used to calculate the amount of duplicated packets; 
 -    number of duplicated packets; 
 -    packet lost rate (PLR): PLR without taking into account the duplicated packets. 
 An after-work is necessary to calculate the real PLR; 
 -    received time: Data and time when the packet was received. 
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In the Image 12 there is an example of the data generated. 

 

 

Image 12 Data obtained from the script 

3.1.4 Packets 

 

To get this data, the packets were filled as follows (Code A1): 

 -    Absolut Slot Number (ASN): it is used to calculate the latency, 5 bytes; 
 -    ID of the mote: 64 bit address of the mote, 8 bytes; 
 -    temperature value: 1 byte; 
 -    7 dummy bytes: they were originally used to send the address of the preferred 
 parent, along with the byte used for the temperature; 
 -    Sequence Number: it is used to calculate the amount of lost packets, 2 bytes; 
 -    17 dummy bytes: they are used to complete the 128 byte payload. 
 

The rest of the data in the packet is occupied by the header and metadata added by 

other components in other layers: 

 - Creator: 1 byte; 
 - Owner: 1 byte; 
 - Sequence Number: 2 bytes; 
 - layer 4, protocol: 1 byte; 
 - layer 4, source port: 2 bytes; 
 - layer 4, destination port: 2 bytes; 
 - layer 4, payload: 1 byte; 
 - layer 4, length: 1 byte; 
 - layer 3, destination address: 16 bytes; 
 - layer 3, source address: 16 bytes; 
 - layer 2, next hop: 8 bytes; 
 - layer 2, previous hop: 8 bytes; 
 - layer 2, frame type: 1 byte; 
 - layer 2, dsn [11]: 1 byte; 
 - layer 2, retries left: 1 byte; 
 - layer 2, number of tx attempts: 1 byte; 
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 - layer 2, ASN: 5 bytes; 
 - layer 2, cell objects: 1 byte; 
 - layer 2, number of cells: 1 byte; 
 - layer 2, frame ID: 1 byte; 
 - layer 2, join priority: 1 byte; 
 - layer 2, security: 1 byte; 
 - layer 2, security level: 1 byte; 
 - layer 2, key ID mode: 1 byte; 
 - layer 2, key source: 8 bytes; 
 - layer 1, tx power [11]: 1 byte; 
 - layer 1, rssi [11]: 1 byte; 
 - layer 1, lqi [11]: 1 byte; 
 - layer 1, crc [11]: 1 byte; 
 - layer 1, rx time stamp [11]: 1 byte. 
 

3.1.5 Configuration 

 

OpenWSN gives the opportunity to modify some parameters in order to adapt the 

communications to the desired situation. In this thesis it was used the following 

configuration (Codes B1 and C1): 

 -    super-frame length: 101 slots. It is done to get a low duty cycle (<1%) that will 
 ensure a low power consumption; 
 -    Channel Hoping: enabled; 
 -    synchronization channel: 23, it was changed from the default (channel 20) in 
 order to avoid interferences with other motes in the laboratory; 
 -    power of the radio: 0 db; 
 -    ADV timeout: ADV sent every 5 seconds; 
 -    maximum keep-alive period: 7,5 seconds. 
 
Other parameters as number of retries and the number of shared channels are going to 

be modified during the tests. 

As a summary, it would be interesting to see that OpenWSN is a very suitable OS for this 

tests. It is a software designed for WSNs that has adopted IEEE 802.15.4e in its core. This 

standard suits perfectly for LLNs more specially in industrial and noisy environments. An 

interesting application could be monitoring a production process in an industrial plant. 

Besides, it is created to favor portability between different platforms, which makes the 

OS very interesting to test different motes as it is in this case. It allows to implement 

different applications in a simple way and many communication parameters are easy to 

modify, giving a huge freedom that allows to make tests for many purposes and 

applications, making OpenWSN a very useful tool for researchers. 
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3.2 Hardware 
 

In this project 2 different motes are characterized. The TelosB by Memsic and the Z1 by 

Zolertia. 

 

3.2.1 TelosB 

 

 MEMSIC’s TelosB Mote [13] is an open-source platform designed to enable 

cutting-edge experimentation for the research community. 

The TelosB bundles all the essentials for lab studies into a single platform including: USB 

programming capability, an IEEE 802.15.4 radio with integrated antenna, a low-power 

MCU with extended memory and an optional sensor suite. TelosB offers many features, 

including: 

 

 -    RF transceiver: IEEE 802.15.4 compilant; 
 -    ISM band: 2.4 to 2.4835 GHz; 
 -    data rate: 250 kbps; 
 -    antenna: integrated onboard; 
 -    microcontroller: 8 MHz TI MSP430; 
 -    RAM: 10 kB; 
 -    low current consumption; 
 -    external flash: 1 MB; 
 -    programming and data collection via USB; 
 -    sensor suite: including integrated light, temperature and humidity sensors.  
 

The TelosB platform was developed and published to the research community by UC 

Berkeley. This platform delivers low power consumption allowing for long battery life 

as well as fast wakeup from sleep state. 

It is powered by two AA batteries in serial configuration that supply the mote with 3 V. 

If the TelosB is plugged into the USB port for programming or communication, power is 

provided from the host computer. 
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In Image 13, there is a block diagram that shows the main modules integrated in TelosB. 

 

 

Image 13 TelosB block diagram 

 

Characteristics of the TelosB: 

Specifications  

Processor Performance 16 bit RISC 
Processor clock 8 MHz 
Program Flash Memory 48 kB 
External Flash 1024 kB 
RAM 10 kB 
Configuration EEPROM 16 kB 
Serial Communications UART 
Analog to Digital Converter 12 bit ADC 
Digital to Analog Converter 12 bit DAC 
Expansion connector 16 Pins 
Processor current draw  1.8 mA (Active) 
 5.1 µA (Sleep) 
Frequency band 2400 MHz to 2483.5 MHz 
Transmit (TX) data rate 250 kbps 
RF power -24 dBm to 0 dBm 
Transceiver current draw 23 mA (active) 
 1 µA (Sleep) 
Temperature sensor range -40 ºC to 123.8 ºC 
Resolution 0.01 ºC 
Accuracy ± 0.5 ºC 
  
Battery  2x AA batteries 
User interface USB 
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Processor and memory specifications are very low compared with other applications 

nowadays such us smartphones. However, as mentioned in previous sections, this WSNs 

don’t seek high performance but low power consumption and cheap hardware. 

Besides, TelosB works in the 2.4 GHz frequency band which is one of the bands that uses 

the IEEE 802.15 standard. It has an industrial temperature range compatible 

temperature sensor from Texas Instruments and very low current consumptions that 

are the features we are looking for. 

Finally, its USB interface makes TelosB easy to program and extract the data from the 

tests, which makes it really interesting for research purposes. 

 

3.2.2 Zolertia Z1 

 

 Z1 by Zolertia [14] (Image 14) is a low-power wireless sensor network (WSN) 

module that serves as a general purpose development platform for WSN developers and 

researchers. 

 

 

Image 14 Zolertia Z1 [14] 

 

The Z1 is a low power wireless module compliant with IEEE 802.15.4 and Zigbee 

protocols intended to help WSN developers to test and deploy their own applications 

and prototypes with the best tradeoff between time of development and hardware 

flexibility. 
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Its core architecture is based upon the MSP430+CC2420 family of microcontrollers and 

radio transceivers by Texas Instruments, which makes it compatible with motes based 

on this same architecture. These are the main features: 

 

 -    expansion connector: 52 pin; 
 -    microcontroller: 16 MHz 2nd generation MSP430™; 
 -    ISM band: 2.4 GHz; 
 -  temperature sensor: TI ZIG001 industrial range digital temperature and 
 humidity sensor; 
 -    optional external antenna: U.FL connector; 
 -    Micro-USB connector: for power and debugging. 
 

The Z1 WSN Module is specified to be used in the industrial range of temperatures. 

Nominally, it should be powered at 3V, although it may work partially or totally since 1.8 

V (without radio) or 2.1 V (with radio). 

Image 15 shows a block diagram with the main modules of the Z1. 

 

Image 15 Zolertia Z1 block diagram 
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Zolertia Z1 characteristics: 

 

Specifications  

Processor Performance  16 bit MCU 
Processor clock  16 MHz 
Program Flash Memory 92 kB 
External Flash 2048 kB 
RAM 10 kB 
Serial Communications UART 
Analog to Digital Converter  8 bit ADC 
Digital to Analog Converter  2 bit DAC 
Expansion connector  52 Pins 
Processor current draw   <1 mA (Active) 
  0.5 µA (Sleep) 
Frequency band 2400 MHz to 2483.5 MHz 
Transmit (TX) data rate  250 kbps 
RF power -24 dBm to 0 dBm 
Transceiver current draw  18.8 mA (active) 
  1 µA (Sleep) 
Temperature sensor range  -25 ºC to 85 ºC 
Resolution  0.1 ºC 
Accuracy ± 0.5 ºC 
  
Battery  2x AA batteries 
User interface Micro USB 

 

As for the Zolertia Z1, it has similar characteristics that the TelosB, with some 

differences: 

- 16 MHz clock speed (vs 8 MHz); 

- built-in clock factory calibration; 

- 92 kB flash (vs 48 kB); 

- lower power consumption (Half); 

- 10 kB RAM (vs 8 kB); 

- 2 MB external flash memory (vs 1 MB); 

- most of the MSP ports are visible (all the ADC and DAC); 

- USB pins are visible to be able to use another kind of USB connector; 

- calibration tables are not deleted during programming. 

 

Zolertia Z1, with improved characteristics that the TelosB, is a very interesting choice for 

this tests in order to compare a more powerful board using the same OS, so it is visible 

how a better hardware affects to the overall performance. 
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Chapter 4: Tests 
 

In this chapter, all the tests done for the thesis are given, explaining how the 

experiments have been conducted and giving the results in tables and graphics with a 

commentary of the obtained results. 

 

4.1 Aim of the tests 
 

The main objective of the thesis is to characterize the two motes running OpenWSN. 

Focused on the latency and the packet lost rate (PLR). 

All the results are given for each mote, and the average values for the network, making 

possible to cross-compare both platforms. 

For the latencies, it is given the maximum, minimum and average latency. 

To calculate the PLR, the amount of packets sent, received and duplicated is needed, 

using the following expression: 

 

𝑃𝐿𝑅 (%) =  
𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡 − 𝑈𝑛𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡
 𝑥 100 =  

𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑙𝑜𝑠𝑡

𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡
 𝑥 100 

Equation 1: PLR 

 

 

It is also necessary to take into account the number and duration of desynchronizations, 

because when one mote desynchronizes, the amount of traffic in the network will 

change and the results won’t be comparable. 

Both, latency and PLR are obtained at application layer. The latencies are calculated as 

it follows: from the moment a message is sent from application layer, until it reaches 

the application layer of the receiving mote. Due to this condition, retransmission on 

MAC layer are not taken into account, so very high latencies may appear if a packet is 

retransmitted many times. 

Retransmissions on MAC layer, are not taken into account for the calculation of the PLR, 

and only those sent from the application layer of the sending mote and received by the 

application layer of the receiving mote are considered. 

Finally, it is shown the impact that the firmware has in the memory of the motes, to see 

how each change affects to the mote. 
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4.2 Realization of the tests 
 

To make this results comparable, all tests must be done under the same conditions. 

The tests consist in: 

 -number of motes: 5 motes plus one as the DAG root of the network; 

 -duration: 30 minutes, divided in 10 minutes of warm up, and 20 minutes of test; 

 -topology: star topology. 

 

Apart from these common aspects, there are some configurations that may vary from 

one test to another, in order to obtain the desired results. These are the parameters 

that will be modified: 

 -number of retransmissions; 

 -amount of shared channels; 

 -period of transmission of the messages; 

 -the payload. 

 

All the tests where done twice, one for the TelosB and the other for the Z1. 
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4.3 Test 1 
 

The aim of the first test is to obtain some comparable latencies and PLR values for both 

motes. 

Codes used in this tests are shown in the appendix A1, B1 and C1. For the Z1 see also 

code A2. 

Some initial conditions are chosen: 

 

Number of retransmissions: 3 
Amount of shared channels: 6 
Period of transmission (s): 4 
Payload (bytes): 127 

Table 1: test 1, configuration 

TelosB: 

Memory impact: 

ROM (bytes) 44184 
RAM (bytes) 6902 

Table 2: test 1, memory impact for TelosB 

Data obtained from test 1 for TelosB: 

 

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%) 

1 1d 256 140 15 125 51,17 

2 a2 287 91 10 81 71,78 

3 7 297 137 15 122 58,92 

4 14 293 83 4 79 73,04 

5 b7 292 112 14 98 66,44 

Network  1425 563 58 505 64,56 

 

N Desynch. Time 
desynch. (s) 

Avg latency 
(ms) 

Max latency 
(ms) 

Min latency 
(ms) 

1 0 0 10582,71 137085 285 

2 2 85 6507,86 58890 390 

3 0 0 9538,91 262065 315 

4 2 95 5390,42 71895 285 

5 1 45 11097,59 240585 315 

Network   8927,75 262065 285 
Table 3: test 1, obtained data for TelosB 
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Z1: 

Memory impact: 

ROM (bytes) 37926 
RAM (bytes) 6966 

Table 4: test 1, memory impact for Z1 

Data obtained from test 1 for Z1: 

 

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%) 

1 10 297 127 15 112 62,29 

2 20 295 124 8 116 60,68 

3 30 295 73 5 68 76,95 

4 40 298 122 10 112 62,42 

5 50 290 70 4 66 77,24 

Network  1475 516 42 474 67,86 

 

N Desynch. Time 
desynch. (s) 

Avg latency 
(ms) 

Max latency 
(ms) 

Min latency 
(ms) 

1 0 0 7881,05 118575 45 

2 0 0 13028,59 436155 45 

3 1 60 5314,73 91425 105 

4 0 0 10784,88 284190 30 

5 1 70 7838,36 81600 135 

Network   9357,5 436155 30 
Table 5: test 1, obtained data for Z1 

 

These results show very high latencies and inadmissible PLR values, more than 60 % of 

the packets sent never reach their destination.  

The PLR increments linearly along with the time desynchronized, resulting in a higher 

amount of packets lost when a mote loses synchronization. 

On the other hand, many desynchronizations happened in different moments during the 

test, so is not possible to compare the results among both platforms, because the 

amount of motes transmitting data varies.  

To solve this problem, it is shown a time window without desynchronizations. 
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This are the results obtained in the 4 minute window of the test 1: 

TelosB: 

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%) 

1 1d 40 22 4 18 55,00 

2 a2 40 13 1 12 70,00 

3 7 47 12 0 12 74,47 

4 14 39 13 1 12 69,23 

5 b7 40 13 2 11 72,50 

Network  206 73 8 65 68,45 

 

N Desynch. Time 
desynch. (s) 

Avg latency 
(ms) 

Max latency 
(ms) 

Min latency 
(ms) 

1 0 0 3182,61 7830 390 

2 0 0 3264,64 8340 570 

3 0 0 4987,50 27615 525 

4 0 0 3178,93 15660 840 

5 0 0 3536,25 10545 315 

Network   3542,60 27615 315 
Table 6: test 1 (window without desynchronizations), obtained data for TelosB 

Z1: 

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%) 

1 10 46 22 4 18 60,87 

2 20 46 23 3 20 56,52 

3 30 37 18 2 16 56,76 

4 40 50 13 0 13 74,00 

5 50 47 10 0 10 78,72 

Network  226 86 9 77 65,93 

 

N Desynch. Time 
desynch. (s) 

Avg latency 
(ms) 

Max latency 
(ms) 

Min latency 
(ms) 

1 0 0 3182,61 15525 450 

2 0 0 2429,25 8205 45 

3 0 0 2280,00 6150 180 

4 0 0 3653,18 12990 180 

5 0 0 2467,50 4440 270 

Network   2770,66 15525 45 
Table 7: test 1 (Window without desynchronizations), obtained data for Z1 
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The average latency obtained is 3 times lower and a reduction of the maximum latency 

of one order of magnitude. 

On the other hand, the values for the PLR does not change significantly. 

These results show a better performance of the Z1 in these conditions: 

 -    average latency is 27.86 % lower for the Z1; 

 -    PLR is 2.52 % lower for the Z1. 

Anyway, the packet lost rate is inacceptable, (in this thesis, a PLR around 10 % will be 

considered as acceptable) further tests are needed. 
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4.4 Test 2 
 

In this second test the retransmissions are deleted with the aim of lowering the data 

traffic at MAC layer level. 

The changes made are shown in code B2. 

 

Number of retransmissions: 0 
Amount of shared channels: 6 
Period of transmission (s): 4 
Payload (bytes): 127 

Table 8: test 2, configuration 

TelosB: 

Memory impact: 

ROM (bytes) 44166 
RAM (bytes) 6902 

Table 9: test 2, memory impact for TelosB 

 

Data obtained from test 2 for TelosB: 

N Mote Pack. 
Sent 

Pack. Rec. Pack. 
Dupl. 

Rec.-Dupl. PLR (%) 

1 1d 295 79 0 79 73,22 

2 a2 296 17 0 17 94,26 

3 7 292 67 0 67 77,05 

4 14 289 59 0 59 79,58 

5 b7 288 29 0 29 89,93 

Network  1460 251 0 251 82,81 

 

N Desynch. Time 
desynch. (s) 

Avg latency 
(ms) 

Max latency 
(ms) 

Min latency 
(ms) 

1 0 0 722,81 2610 285 

2 0 0 776,67 1740 270 

3 0 0 818,82 1650 270 

4 0 0 970,25 2040 285 

5 0 0 863,50 1680 300 

Network   826,58 2610 270 
Table 10: test 2, obtained data for TelosB 
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Z1: 

Memory impact: 

ROM (bytes) 37908 
RAM (bytes) 6966 

Table 11: test 2, memory impact for Z1 

Data obtained from test 2 for Z1: 

 

N Mote Pack. 
Sent 

Pack. Rec. Pack. 
Dupl. 

Rec.-Dupl. PLR (%) 

1 10 311 137 0 137 55,95 

2 20 295 42 0 42 85,76 

3 30 270 14 0 14 94,81 

4 40 283 50 0 50 82,33 

5 50 313 92 0 92 70,61 

Network  1472 335 0 335 77,24 

 

N Desynch. Time 
desynch. (s) 

Avg latency 
(ms) 

Max latency 
(ms) 

Min latency 
(ms) 

1 0 0 721,41 1485 45 

2 0 0 659,65 2940 45 

3 0 0 337,00 1455 30 

4 0 0 493,82 1410 30 

5 0 0 520,97 2025 30 

Network   607,68 2940 30 
Table 12: test 2, obtained data for Z1 

 

By lowering the traffic, the latencies decreased by one order of magnitude. This might 

be because we lower the amount of collisions and the motes are less busy transmitting 

and receiving data. 

On the other hand and as expected, the PLR has worsen. There is a gain of 18.25 % of 

PLR for the TelosB and 9.38 % for the Z1. With no retransmissions, each message has 

one try to reach their destination. 

It is also important to notice that reducing the traffic, has made the network more 

stable, avoiding desynchronizations. 
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4.5 Test 3  
 

For the next test, the number of available channels is increased, trying to lower the 

latency.  

The changes made are in code C2. 

 

Number of retransmissions: 3 
Amount of shared channels: 12 
Period of transmission (s): 4 
Payload (bytes): 127 

Table 13: test 3, configuration 

TelosB: 

Memory impact: 

ROM (bytes) 44196 
RAM (bytes) 7106 

Table 14: test 3, memory impact for TelosB 

Data obtained from test 3 for TelosB: 

 

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%) 

1 1d 267 98 9 89 66,67 

2 a2 290 94 10 84 71,03 

3 7 297 144 20 124 58,25 

4 14 159 41 0 41 74,21 

5 b7 296 133 8 125 57,77 

Network  1309 510 47 463 64,63 

 

N Desynch. Time 
desynch. (s) 

Avg latency 
(ms) 

Max latency 
(ms) 

Min latency 
(ms) 

1 1 5 3858,52 45015 330 

2 1 60 4199,67 45150 270 

3 1 5 3228,21 38310 375 

4 2 90 5204,63 55080 315 

5 0 0 4439,22 59685 315 

Network   4001,65 59685 270 
Table 15: test 3, obtained data for TelosB 
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Z1: 

 

Memory impact: 

ROM (bytes) 37938 
RAM (bytes) 7170 

Table 16: test 3, memory impact for TelosB 

Data obtained from test 3 for Z1: 

 

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%) 

1 10 306 146 17 129 57,84 

2 20 298 115 13 102 65,77 

3 30 285 52 6 46 83,86 

4 40 306 107 16 91 70,26 

5 50 284 65 4 61 78,52 

Network  1479 485 56 429 70,99 

 

 

N Desynch. Time 
desynch. (s) 

Avg latency 
(ms) 

Max latency 
(ms) 

Min latency 
(ms) 

1 0 0 3239,69 30810 30 

2 2 40 4857,35 40110 45 

3 3 90 3647,02 27255 45 

4 1 30 3629,58 59460 30 

5 3 60 4104,84 32025 30 

Network   3866,91 59460 30 
Table 17: test 3, obtained data for Z1 

 

As expected, the latency has dropped to half regarding to the first test but the value is 

still quite high. 

As for the PLR, there are similar results, having a small increase in packets lost. 

Comparing with the first test, the PLR also increases linearly along with the 

desynchronization time, with a similar slope, being this higher for the Z1. 
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4.6 Test 4  
 

Increasing the amount of available channels hasn’t solved the problem, so a decrease in 

the amount of traffic is needed. Taking into account that retransmissions can’t be 

disabled because the PLR goes up, the traffic in application layer is going to be reduced, 

increasing the period of the transmission of the packets. 

The changes made are in code A3. 

 

Number of retransmissions: 3 
Amount of shared channels: 6 
Period of transmission (s): 10 
Payload (bytes): 127 

Table 18: Test 4, configuration 

TelosB 

Memory impact: 

ROM (bytes) 44184 
RAM (bytes) 6902 

Table 19: test 4, memory impact for TelosB 

Data obtained from test 4 for TelosB: 

 

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%) 

1 1d 117 55 3 52 55,56 

2 a2 116 82 11 71 38,79 

3 7 121 96 16 80 33,88 

4 14 112 53 5 48 57,14 

5 b7 118 70 8 62 47,46 

Network  584 356 43 313 46,40 

 

N Desynch. Time 
desynch. (s) 

Avg latency 
(ms) 

Max latency 
(ms) 

Min latency 
(ms) 

1 0 0 2246,79 6720 390 

2 0 0 2023,92 6465 270 

3 0 0 2307,99 9990 270 

4 0 0 2265,56 9165 75 

5 0 0 2460,42 7395 300 

Network   2256,81 9990 75 
Table 20: test 4, obtained data for TelosB 
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Z1: 

Memory impact: 

ROM (bytes) 37926 
RAM (bytes) 6966 

Table 21: test 4, memory impact for Z1 

Data obtained from test 4 for Z1: 

 

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%) 

1 10 116 74 8 66 43,10 

2 20 114 75 13 62 45,61 

3 30 119 58 5 53 55,46 

4 40 113 38 2 36 68,14 

5 50 116 58 7 51 56,03 

Network  578 303 35 268 53,63 

 

N Desynch. Time 
desynch. (s) 

Avg latency 
(ms) 

Max latency 
(ms) 

Min latency 
(ms) 

1 0 0 1937,20 10995 30 

2 0 0 6995,07 43710 45 

3 0 0 1668,56 7470 30 

4 0 0 1556,07 5625 30 

5 0 0 1414,32 4530 75 

Network   2905,83 43710 30 
Table 22: test 4, obtained data for Z1 

 

Reducing the traffic at the application layer has reduced both the latency and the PLR. 

The traffic congestion has been reduced and retransmissions are still enabled to ensure 

that the PLR doesn’t increase a lot. 

There is a decrease of 18.16 % of the PLR for the TelosB and 14.23 % for the Z1 regarding 

the first test and four times lower latencies. 

Apart from that, the problem of the desynchronizations is gone, the same as in the test 

2, due to the lower traffic. 

Anyway, the PLR must be lower for this set up to be useful. 
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4.7 Test 5 
 

In the following test, the period of 10 seconds is maintained and the data payload is 

lowered taking away 17 bytes (13.28 % of the payload) that were included in the packet 

just to complete the 127 bytes. 

The changes made are in code A3. 

 

Number of retransmissions: 3 
Amount of shared channels: 6 
Period of transmission (s): 10 
Payload (bytes): 110 

Table 23: test 5, configuration 

 

TelosB: 

Memory impact: 

ROM (bytes) 44154 
RAM (bytes) 6902 

Table 24: test 5, memory impact for TelosB 

 

Data obtained from test 5 for TelosB: 

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%) 

1 1d 118 75 9 66 44,07 

2 a2 115 67 8 59 48,70 

3 7 118 46 4 42 64,41 

4 14 111 62 3 59 46,85 

5 b7 119 82 12 70 41,18 

Network  581 332 36 296 49,05 

 

N Desynch. Time 
desynch. (s) 

Avg latency 
(ms) 

Max latency 
(ms) 

Min latency 
(ms) 

1 0 0 2358,16 10005 300 

2 0 0 2331,84 8475 210 

3 0 0 2231,49 7080 270 

4 0 0 2255,71 6825 285 

5 0 0 2058,89 5535 300 

Network   2243,42 10005 210 
Table 25: test 5, obtained data for TelosB 
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Z1: 

Memory impact: 

ROM (bytes) 37900 
RAM (bytes) 6966 

Table 26: test 5, memory impact for Z1 

Data obtained from test 5 for Z1: 

 

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%) 

1 10 116 92 13 79 31,90 

2 20 118 56 5 51 56,78 

3 30 114 72 8 64 43,86 

4 40 115 55 3 52 54,78 

5 50 113 55 6 49 56,64 

Network  576 330 35 295 48,78 

 

N Desynch. Time 
desynch. (s) 

Avg latency 
(ms) 

Max latency 
(ms) 

Min latency 
(ms) 

1 0 0 1387,74 5535 45 

2 0 0 1811,05 4560 30 

3 0 0 1497,53 6255 30 

4 0 0 1356,96 6930 30 

5 0 0 1743,75 4440 30 

Network   1538,06 6930 30 
Table 27: test 5, obtained data for Z1 

 

The results are comparable to the previous test. There is a minor improvement in the 

latency but the PLR has worsen. 

Lowering the payload has not brought any significant changes so the full payload is kept. 
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4.8 Test 6 
 

Looking at the results obtained in the previous tests, the most effective way to lower 

the PLR is to increase the period. The period is increased to 30 s. 

The changes made are in code A4. 

 

Number of retransmissions: 3 
Amount of shared channels: 6 
Period of transmission (s): 30 
Payload (bytes): 127 

Table 28: test 6, configuration 

TelosB: 

Memory impact: 

ROM (bytes) 44212 
RAM (bytes) 6904 

Table 29: test 6, memory impact for TelosB 

Data obtained from test 6 for TelosB: 

 

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%) 

1 1d 35 34 8 26 25,71 

2 a2 38 33 9 24 36,84 

3 7 37 24 4 20 45,95 

4 14 39 23 2 21 46,15 

5 b7 39 42 14 28 28,21 

Network  188 156 37 119 36,70 

 

N Desynch. Time 
desynch. (s) 

Avg latency 
(ms) 

Max latency 
(ms) 

Min latency 
(ms) 

1 0 0 2561,14 12510 300 

2 0 0 2923,24 8490 360 

3 0 0 2671,20 6885 315 

4 0 0 2961,88 10665 315 

5 0 0 2494,53 8640 345 

Network   2696,65 12510 300 
Table 30: test 6, obtained data for TelosB 
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Z1: 

Memory impact: 

ROM (bytes) 37952 
RAM (bytes) 6968 

Table 31: test 6, memory impact for Z1 

Data obtained from test 6 for Z1: 

 

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%) 

1 10 38 29 5 24 36,84 

2 20 39 40 13 27 30,77 

3 30 37 26 5 21 43,24 

4 40 38 26 5 21 44,74 

5 50 37 31 7 24 35,14 

Network  189 152 35 117 38,10 

 

N Desynch. Time 
desynch. (s) 

Avg latency 
(ms) 

Max latency 
(ms) 

Min latency 
(ms) 

1 0 0 2625,50 6435 30 

2 0 0 2564,63 7020 30 

3 0 0 2570,00 7170 30 

4 0 0 2033,89 6765 105 

5 0 0 2580,94 8685 225 

Network   2489,24 8685 30 
Table 32: test 6, obtained data for Z1 

 

The PLR has dropped under 40 %, which is a proof that decreasing the traffic at 

application layer is causing the network to get better results. 

On the other hand, the latency seems to be stabilized at around 2500 ms, and doesn’t 

seem to improve increasing the period. 
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4.9 Test 7 
 

Increase of the period to 90 s, trying to reduce the PLR more. 

The changes made are in code A5. 

 

Number of retransmissions: 3 
Amount of shared channels: 6 
Period of transmission (s): 90 
Payload (bytes): 127 

Table 33: test 7, configuration 

TelosB: 

Memory impact: 

ROM (bytes) 44212 
RAM (bytes) 6904 

Table 34: test 7, memory impact for TelosB 

Data obtained from test 7 for TelosB: 

 

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%) 

1 1d 11 15 4 11 0,00 

2 a2 12 10 1 9 25,00 

3 7 11 12 2 10 9,09 

4 14 11 10 1 9 18,18 

5 b7 12 12 1 11 8,33 

Network  57 59 9 50 12,28 

 

N Desynch. Time 
desynch. (s) 

Avg latency 
(ms) 

Max latency 
(ms) 

Min latency 
(ms) 

1 0 0 2138,57 6540 600 

2 0 0 2133,33 4740 555 

3 0 0 2216,25 6555 465 

4 0 0 3201,67 6825 405 

5 0 0 2091,25 5415 450 

Network   2456,69 7755 405 
Table 35: test 7, obtained data for TelosB 
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Z1: 

Memory impact: 

ROM (bytes) 37952 
RAM (bytes) 6968 

Table 36: test 7, memory impact for Z1 

Data obtained from test 7 for Z1: 

 

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%) 

1 10 12 14 3 11 8,33 

2 20 10 13 3 10 0,00 

3 30 14 18 4 14 0,00 

4 40 10 10 1 9 10,00 

5 50 12 11 2 9 25,00 

Network  58 66 13 53 8,62 

 

N Desynch. Time 
desynch. (s) 

Avg latency 
(ms) 

Max latency 
(ms) 

Min latency 
(ms) 

1 0 0 2010,00 5775 75 

2 0 0 3536,54 10830 75 

3 0 0 3018,53 10740 30 

4 0 0 1976,25 3975 735 

5 0 0 2422,50 5880 510 

Network   2679,59 10830 30 
Table 37: test 7, obtained data for Z1 

 

With a period of 90 seconds, the PLR has reached acceptable values, whereas the latency 

hasn´t changed and has kept stable around 2500 ms. 
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Chapter 5: Results 
 

In this chapter the data from the previous chapter is analyzed, giving the results of the 

tests. 

 

5.1 Desynchronizations 
 

In tests number 1 and 3 some desynchronizations happened during the realization of 

the tests. These are the only tests with both, 4 second period and retransmissions 

enabled. 

After lowering the traffic at application or MAC layer, desynchronizations have 

disappeared, which means that with a high amount of traffic, a lot of collisions 

happened, in a way that ADV messages cannot arrive the mote, resulting in a 

desynchronization. 

It is also interesting to see how the desynchronizations create an increase of the PLR, 

this effect being this higher in the motes with longer desynchronization periods, as 

shown in Figure 1, Figure 2, Figure 3 and Figure 4. 

 

 

Figure 1 - Test 1: PLR-Desynchronizations with TelosB 
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Figure 2 - Test 1: PLR-Desynchronizations with Zolertia Z1 

 

Figure 3 - Test 3: PLR-Desynchronizations with TelosB 

 

Figure 4 - Test 3: PLR-Desynchronizations with Zolertia Z1 

 

Figure 1 and Figure 2 show the effect of the amount of time desynchronized in the PLR 

for both motes in test 1 and Figure 3 and Figure 4 for test 3. 

0

20

40

60

80

100

0 20 40 60 80

P
LR

 (
%

)

Time desynchronized (s)

PLR - Desynchronizations

0

20

40

60

80

100

0 20 40 60 80 100

P
LR

 (
%

)

Time desynchronized (s)

PLR - Desynchronizations

0

20

40

60

80

100

0 20 40 60 80 100

P
LR

 (
%

)

Time desynchronized (s)

PLR - Desynchronizations



49 
 

The slopes in the linear function vary from 0,16 to 0,29, being this effect greater on the 

Z1 motes, in Table 38 it is shown a comparison of these slopes (Increase of PLR (%) per 

desynchronized time unit (s)). 

 

 TelosB Z1 

Test 1 0,19 0,23 

Test 3 0,16 0,29 

Table 38 Increase of PLR for each second desynchronized 

 

 

 

5.2 PLR 
 

The PLR has got very bad results in most tests, with values over 50 % in 3 tests and over 

20 % in 6 out of the 7 tests. 

It is important to see that both motes have had a very similar behavior in all tests as 

Figure 5 shows. 

The PLR has been specially affected in test 2, in which there weren’t retransmissions, 

causing a lot of packets not reaching the DAGROOT. 

In test 3 the results are similar for those of test 1 so it is possible to guess that the 

amount of available channels does not affect to the PLR in a significant way. 

 

 

Figure 5 Evolution of PLR in the tests 
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The tests have shown that increasing the period of the data transmission has improved 

the PLR reaching to 12.28 % for TelosB and 8.62 % for Z1 with 90 s period. Figure 6 shows 

how the PLR has changed with different periods. For this graphic tests 1, 4, 6 and 7 have 

been taken into account. All of them have 6 channels, full payload and retries enabled 

and the only difference is the transmission period. 

 

 

Figure 6 Evolution of PLR with the period 
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test but the 4 seconds period added to the desynchronizations, have given this bad 

results. 

Taking a look at the window of 4 minutes without desynchronizations, the average 

latency drops down, making obvious that the desynchronizations generate high 

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
LR

 (
%

)

Period (s)

PLR-Transmission Period

TelosB

Z1



51 
 

latencies, due to the messages that wait to be retransmitted until the motes synchronize 

again. 

In test 3, the available channels were duplicated with the aim of reducing latencies. The 

test was successful, getting much lower latencies than in the first test but the effect of 

the desynchronizations is still there, having higher latencies than in the rest of the tests 

with only 6 channels but no desynchronizations. 

The best result for latencies are in the second test, in which there were not 

retransmissions. This is due to the fact that all the messages that arrived successfully 

were received in the first try but as the PLR has shown, most of the packets were lost. 

In the rest of the tests with no desynchronizations and lower data traffic, the average 

latencies have been more or less stable around 2.5 seconds. 

 

 

 

Figure 7 Average latency in the tests 
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As for the maximum latencies (Figure 8), the first and third tests have got the worse 

results showing the effects of the desynchronizations. The maximum latencies are much 

lower in the rest of the tests. 

In test 4, the Z1 has got a very high maximum latency. Taking a look in the tables of the 

previous chapter, it is caused by a mote that got very high latencies, increasing the 

average and giving this unexpected value, probably caused by some error during the 

test, because it does not seem to repeat this behavior in other tests. 

 

 

 

Figure 8 Maximum latency in the tests 
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Finally, as for the minimum latency, Figure 9 shows the minimum latency obtained in 

each test. 

This results show that the Zolertia Z1 has been able to get the lower latencies, obtaining 

a minimum latency of 30 ms in most tests, whereas the TelosB has got minimum 

latencies over 200 ms. Here is the first result in which the processor of the Z1 has shown 

its better specifications, being able to get in all the tests some packets whit 30 ms 

latency. Even in the last tests, in which the total amount of packets received by each 

mote was low (around 10 packets) due to the high period of transmission, the Z1 was 

able to get this low value. The TelosB on the other hand, had an increase of the minimum 

latency showing that getting low latency values is rarer, so it experienced an increase in 

minimum latency. 

 

 

Figure 9 Minimum latencies in the tests 
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6. Conclusion 
 

The objective of this thesis was to characterize Wireless Sensor Networks (WSNs) in 

terms of performances. For that purpose, latencies and packet lost rate numbers of two 

known motes (TelosB and Zolertia Z1 running OpenWSN) have been compared. 

The results have shown how they work under different conditions (amount of channels, 

retransmissions, transmission period and payload length) and which conditions are 

needed to get admissible results. 

Furthermore, all the tests have been done equally for both motes, which means that 

results are cross-comparable. 

After looking at the results of the tests, we can conclude that the PLR is strongly 

influenced by the amount of traffic in the network for both platforms. 

The only way to get an acceptable PLR (around 10%) has been with a 90 second period 

of data transmission, getting higher values for other values, reaching over 60 % of PLR 

with 4 seconds period, or 80 % without retransmissions. 

On the other hand, the latencies are better with higher periods too, getting an average 

latencies above 8 seconds for periods of 4 seconds. Anyway, latency settles down faster 

that the PLR, getting an average latency around 2,5 seconds for periods higher than 10 

seconds. 

The better results for the latencies have been obtained without retransmissions, being 

under 1 second, but the increase of the PLR, doesn’t allow us to use this configuration 

because of the high amount of packets lost. 

This results make clear that this scenario cannot be used for any real time application, 

due to the high period required and the high latencies obtained, it is impossible to 

control anything that needs a fast response and high frequency control actions. 

Anyway, it is possible to find some applications that do not require high speeds in which 

the variables under control cannot change fast in the time, such as temperature, 

pressure, humidity, etc. 

If we compare both motes, we cannot say that there has been a huge difference 

between them. In some tests the TelosB has gotten better results for latency or PLR 

numbers whereas in others the Z1 has gotten better results, never having a significant 

difference. 

In every test both motes have given the expected results, increasing or lowering the 

latencies and PLR values with similar tendencies, for example, both of them have 

lowered the PLR when we increased the period of transmission or both of them have 

lowered the latency and increased the PLR when there weren’t retransmissions. 
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As for the final test, being the one with the most acceptable results, the Z1 has got an 

8.62 % of PLR against the 12.28 % gotten by TelosB. Resulting in a difference of 3.66 %. 

On the other side, the latencies have been better for the TelosB mote, with an average 

latency of 2456,69 ms in contrast with the 2679,59 ms of the Z1. Resulting on a 9,07 % 

faster results for the TelosB. 

This results are surprising for the fact that the microcontroller of the Z1 has 16 MHz clock 

frequency that doubles the 8 MHz of the TelosB, expecting to obtain better results for 

the first one. The superior clock speed has only been evident in the values for minimum 

latencies, even if they have not made any difference in the average latency. This issue 

needs to be studied, a higher performance is expected from a superior, more expensive 

hardware, and OpenWSN has not been able to take advantage of this features. 

It is also important to consider that the experiments have been done in a noisy 

environment, influenced by Wi-Fi networks that operate in the same radio frequency 

(2.4 GHz) and other motes and devices. 

Currently, The Internet Of Things is a subject with a lot of repercussion and demand, 

that brings many opportunities for a close future. Nowadays, the exchange of 

information is a fundament in our society and making a wider and safer internet in which 

millions of devices can communicate, makes our life more comfortable, easier and safer, 

giving us the possibility to access many information and controlling remotely all the 

connected devices that are part of our environment. 

This thesis gives a little start to the characterization of two motes running a new 

firmware under development but the work ahead from this point is full of possibilities 

that will need the help of many universities around the world and the research 

community. 

To continue the characterization, there are many possibilities that would allow to know 

better this subject: 

 -    tests with different amount of motes; 

 -    different topologies; 

 -    expansion to more devices: Openmote for example; 

 -    expansion to other firmwares: Contiki or Riot; 

 -    longer tests: to see how the motes work on long term working periods; 

 -    addition of more sensor data: humidity; 

 - different configurations: to improve performance, trying to reduce 

 latency, adapting for real-time applications, etc; 

 -    tests in different environments; 

 -    experiments on the communication security. 
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8. Appendix 
 

8.1 Code A1: UDPlatency.c 
 

#include "opendefs.h" 
#include "udplatency.h" 
#include "openudp.h" 
#include "openqueue.h" 
#include "openserial.h" 
#include "packetfunctions.h" 
#include "opentimers.h" 
#include "openrandom.h" 
#include "opencoap.h" 
#include "scheduler.h" 
#include "IEEE802154E.h" 
#include "idmanager.h" 
#include "neighbors.h" 
#include "sixtop.h" 
#include "scheduler.h" 
#include "sht11.h" 
 
//=========================== defines ========================================= 
 
//#define UDPLATENCYPERIOD 10000 
//#define NUMPKTTEST 300 
 
//=========================== variables ======================================= 
 
udplatency_vars_t udplatency_vars; 
//=========================== prototypes ====================================== 
 
void udplatency_timer(void); 
void udplatency_pushTimer(void); 
void udplatency_PushTask(void); 
void trigger_forward(void); 
 
//=========================== public ========================================== 
 
void udplatency_init(void) { 
   udplatency_vars.seqNum_my       = 0; 
   udplatency_vars.seqNum_global   = 0; 
   udplatency_vars.udplatency_security  = 0; 
   udplatency_vars.triggerReceived   = 0; 
 
   udplatency_vars.UDPLATENCYPERIOD = 4000; 
   udplatency_vars.NUMPKTTEST = 600; 
 
   udplatency_vars.timerId    = opentimers_start(udplatency_vars.UDPLATENCYPERIOD, 
              
 TIMER_PERIODIC,TIME_MS, 
              
 udplatency_timer); 
} 
 
void udplatency_task() { 
   OpenQueueEntry_t* pkt; 
   open_addr_t * p; 
   open_addr_t  q; 
   unsigned int          avg        = 0; 
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   // don't run if not synch 
   if (ieee154e_isSynch() == FALSE) return; 
 
   // don't run on dagroot 
   if (idmanager_getIsDAGroot()) { 
       opentimers_stop(udplatency_vars.timerId); 
       return; 
   } 
 
   // prepare packet 
   pkt = openqueue_getFreePacketBuffer(COMPONENT_UDPLATENCY); 
   if (pkt==NULL) { 
//    openserial_printError(COMPONENT_UDPLATENCY,ERR_NO_FREE_PACKET_BUFFER, 
//                            (errorparameter_t)0, 
//                            (errorparameter_t)0); 
    // increment seqNum, PLR stats on OV 
    udplatency_vars.seqNum_my++; 
    udplatency_vars.seqNum_global++; 
      return; 
   } 
 
   pkt->creator                     = COMPONENT_UDPLATENCY; 
   pkt->owner                       = COMPONENT_UDPLATENCY; 
   pkt->l4_protocol                 = IANA_UDP; 
   pkt->l4_sourcePortORicmpv6Type   = WKP_UDP_LATENCY; 
   pkt->l4_destination_port         = WKP_UDP_LATENCY; 
   pkt->l3_destinationAdd.type      = ADDR_128B; 
   memcpy(&pkt->l3_destinationAdd.addr_128b[0],&ipAddr_motedata,16); 
 
   // the payload contains the 64bit address of the sender + the ASN 
 
   packetfunctions_reserveHeaderSize(pkt, sizeof(asn_t)); 
   ieee154e_getAsn(pkt->payload);//gets asn from mac layer. 
 
    
   packetfunctions_reserveHeaderSize(pkt,8); 
   p=idmanager_getMyID(ADDR_64B); 
   pkt->payload[0]    = p->addr_64b[0]; 
   pkt->payload[1]    = p->addr_64b[1]; 
   pkt->payload[2]    = p->addr_64b[2]; 
   pkt->payload[3]    = p->addr_64b[3]; 
   pkt->payload[4]    = p->addr_64b[4]; 
   pkt->payload[5]    = p->addr_64b[5]; 
   pkt->payload[6]    = p->addr_64b[6]; 
   pkt->payload[7]    = p->addr_64b[7]; 
    
      packetfunctions_reserveHeaderSize(pkt,8); 
      avg   =sht11_cal_temp(); 
 
      pkt->payload[0]                     = avg; 
      pkt->payload[1]     = 0; 
      pkt->payload[2]     = 0; 
      pkt->payload[3]     = 0; 
      pkt->payload[4]     = 0; 
      pkt->payload[5]     = 0; 
      pkt->payload[6]     = 0; 
      pkt->payload[7]     = 0; 
 
   // insert Sequence Number 
   packetfunctions_reserveHeaderSize(pkt,sizeof(udplatency_vars.seqNum_global)); 
   pkt->payload[0]    = (udplatency_vars.seqNum_global >> 8) & 0xff; 
   pkt->payload[1]    = udplatency_vars.seqNum_global & 0xff; 
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   pkt->FIFO_seqNum = udplatency_vars.seqNum_my; 
 
   openserial_printInfo(COMPONENT_UDPLATENCY,155, 
        (errorparameter_t)pkt->FIFO_seqNum, 
        (errorparameter_t)100); 
 
 
   //17 bytes payload 
   uint8_t i; 
   for (i = 0; i < 16; i++){ 
    packetfunctions_reserveHeaderSize(pkt,1); 
    pkt->payload[0] = i; 
   } 
 
   // send packet 
   if ((openudp_send(pkt)) == E_FAIL) { 
      openqueue_freePacketBuffer(pkt); 
   } 
 
   // increment seqNum 
   udplatency_vars.seqNum_my++; 
   udplatency_vars.seqNum_global++; 
 
   // close timer when test finish 
   if (udplatency_vars.seqNum_my > udplatency_vars.NUMPKTTEST) { 
    udplatency_vars.triggerReceived = FALSE; 
    udplatency_vars.seqNum_my = 0; 
    udplatency_vars.seqNum_global = 0; 
       opentimers_stop(udplatency_vars.timerId); 
   } 
 
} 
 
 
void udplatency_timer(void) { 
  scheduler_push_task(udplatency_task,TASKPRIO_COAP); 
} 
 
void udplatency_pushTimer(void){ 
  scheduler_push_task(udplatency_PushTask,TASKPRIO_SIXTOP); 
} 
 
void udplatency_forwardTimer(void){ 
 scheduler_push_task(trigger_forward,TASKPRIO_SIXTOP); 
} 
 
void udplatency_PushTask(void){ 
 udplatency_vars.timerId    = opentimers_start(udplatency_vars.UDPLATENCYPERIOD, 
           
 TIMER_PERIODIC,TIME_MS, 
           
 udplatency_timer); 
} 
 
void udplatency_sendDone(OpenQueueEntry_t* msg, owerror_t error) { 
   msg->owner = COMPONENT_UDPLATENCY; 
   if (msg->creator!=COMPONENT_UDPLATENCY) { 
      //openserial_printError(COMPONENT_UDPLATENCY,ERR_UNEXPECTED_SENDDONE, 
      //                    (errorparameter_t)0, 
      //                    (errorparameter_t)0); 
   } 
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   openqueue_freePacketBuffer(msg); 
} 
 
void udplatency_receive(OpenQueueEntry_t* msg) { 
   openqueue_freePacketBuffer(msg); 
} 
 
void trigger_receive(OpenQueueEntry_t* msg){ 
 
 //TODO 
 uint16_t receivedRate; 
 uint16_t numberOfPackets; 
 uint8_t  securityFlag; 
 uint16_t timeToWaitReceived; 
 if(idmanager_getIsDAGroot()){ 
  udplatency_vars.triggerReceived = TRUE; 
 } 
 
 //if I have received the desync message previously, simply discard it. 
 if (udplatency_vars.triggerReceived == TRUE){ 
  //free the RAM 
  openqueue_freePacketBuffer(msg); 
 
  return; 
 } else { 
  udplatency_vars.triggerReceived = TRUE; 
 } 
 
    openserial_printError(COMPONENT_UDPLATENCY,ERR_INVALIDSERIALFRAME, 
                  (errorparameter_t)0, 
                  (errorparameter_t)500); 
 
    //toss the protocol header 
 packetfunctions_tossHeader(msg,1); 
 
 //retrieve values 
 //get the rate 
 receivedRate = msg->payload[0] + 256 * msg->payload[1]; 
 packetfunctions_tossHeader(msg,2); 
 
 //get the number of packets to generate 
 numberOfPackets = msg->payload[0] + 256 * msg->payload[1]; 
 packetfunctions_tossHeader(msg,2); 
 
 //get the security flag 
 securityFlag = msg->payload[0]; 
 packetfunctions_tossHeader(msg,1); 
 
 //get the time to wait 
 timeToWaitReceived = msg->payload[0] + 256 * msg->payload[1]; 
 packetfunctions_tossHeader(msg,2); 
 
 //free up the RAM 
 openqueue_freePacketBuffer(msg); 
 
 //save variables 
 udplatency_vars.UDPLATENCYPERIOD    = receivedRate; 
 udplatency_vars.NUMPKTTEST          = numberOfPackets; 
 udplatency_vars.udplatency_security = securityFlag; 
 udplatency_vars.timeToWaitReceived  = timeToWaitReceived; 
 
 //schedule the timer for the start of the UDPLatency task 
 udplatency_vars.globaltimerId = opentimers_start(timeToWaitReceived, 
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  TIMER_ONESHOT,TIME_MS, 
            
  udplatency_pushTimer); 
} 
 
 
uint16_t udplatency_getSeqNum(void){ 
 uint16_t value; 
 value = udplatency_vars.seqNum_global; 
 udplatency_vars.seqNum_global++; 
 return value; 
} 
uint8_t udplatency_getTimerId(void){ 
 return udplatency_vars.timerId; 
} 
 
void udplatency_setSecurity(bool value){ 
 udplatency_vars.udplatency_security = value; 
} 
 
bool udplatency_getSecurity(void){ 
 return udplatency_vars.udplatency_security; 
} 
 
void udplatency_setPeriod(uint16_t value){ 
 udplatency_vars.UDPLATENCYPERIOD = value; 
} 
 
//Forward the trigger message down in the tree 
 
 
void trigger_forward(void){ 
 
 OpenQueueEntry_t* pkt; 
 
    //generate a broadcast MAC message with received parameters 
    pkt = openqueue_getFreePacketBuffer(COMPONENT_OPENBRIDGE); 
    if (pkt==NULL) { 
    return; 
    } 
 
    openserial_printError(COMPONENT_UDPLATENCY,ERR_INVALIDSERIALFRAME, 
                  (errorparameter_t)0, 
                  (errorparameter_t)501); 
 
   //admin 
   pkt->creator  = COMPONENT_SIXTOP; 
   pkt->owner    = COMPONENT_UDPLATENCY; 
 
   // some l2 information about this packet 
   pkt->l2_frameType                     = IEEE154_TYPE_DATA; 
   pkt->l2_nextORpreviousHop.type        = ADDR_16B; 
   pkt->l2_nextORpreviousHop.addr_16b[0] = 0xff; 
   pkt->l2_nextORpreviousHop.addr_16b[1] = 0xff; 
   pkt->isBroadcastIE                    = TRUE; 
   //   pkt->FIFO_sn        = 0; //maximum priority 
 
   //payload 
   //amount of time we have to wait for the start of sending packets 
   packetfunctions_reserveHeaderSize(pkt, sizeof(uint16_t)); 
   pkt->payload[0] = (uint8_t) udplatency_vars.timeToWaitReceived; 
   pkt->payload[1] = (uint8_t) (udplatency_vars.timeToWaitReceived >> 8); 
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   //security flag 
   packetfunctions_reserveHeaderSize(pkt, sizeof(uint8_t)); 
   pkt->payload[0] = udplatency_vars.udplatency_security; //list-termination 
 
   //number of packets 
   packetfunctions_reserveHeaderSize(pkt, sizeof(uint16_t)); 
   pkt->payload[0] = (uint8_t) udplatency_vars.NUMPKTTEST; 
   pkt->payload[1] = (uint8_t) (udplatency_vars.NUMPKTTEST >> 8); 
 
   //rate 
   packetfunctions_reserveHeaderSize(pkt, sizeof(uint16_t)); 
   pkt->payload[0] = (uint8_t) udplatency_vars.UDPLATENCYPERIOD; 
   pkt->payload[1] = (uint8_t) (udplatency_vars.UDPLATENCYPERIOD >> 8); 
 
   //add id for the protocol 
   packetfunctions_reserveHeaderSize(pkt, sizeof(uint8_t)); 
   pkt->payload[0] = 0xAB; 
 
   // put in queue for MAC to handle 
   sixtop_send(pkt); 
 
   return; 
 
} 
 

8.2 Code A2: UDPlatency.c 
 

   packetfunctions_reserveHeaderSize(pkt,8); 
   avg   =tmp102_read_temp_simple(); 
 
   pkt->payload[0]                             = avg; 
   pkt->payload[1]      = 0; 
   pkt->payload[2]     = 0; 
   pkt->payload[3]     = 0; 
   pkt->payload[4]     = 0; 
   pkt->payload[5]     = 0; 
   pkt->payload[6]     = 0; 
   pkt->payload[7]     = 0; 
 

8.3 Code A3: UDPlatency.c 
 
   udplatency_vars.UDPLATENCYPERIOD = 10000; 
   udplatency_vars.NUMPKTTEST = 600; 

 

8.4 Code A4: UDPlatency.c 
 
   udplatency_vars.UDPLATENCYPERIOD = 30000; 
   udplatency_vars.NUMPKTTEST = 600; 

 

8.5 Code A5: UDPlatency.c 
 
   udplatency_vars.UDPLATENCYPERIOD = 90000; 
   udplatency_vars.NUMPKTTEST = 600; 
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8.6 Code B1: IEEE 802154E.h 
 
#define SYNCHRONIZING_CHANNEL             23 // channel the mote listens on to synchronize 
#define TXRETRIES                             3 // number of MAC retries before declaring failed 
#define TX_POWER                             31 // 1=-25dBm, 31=0dBm (max value) 
#define RESYNCHRONIZATIONGUARD          5 // in 32kHz ticks. min distance to the end of the slot to successfully  
     //synchronize 
#define US_PER_TICK                       30 // number of us per 32kHz clock tick 
#define ADVTIMEOUT                                       5 // in seconds: sending ADV every 30 seconds 
#define MAXKAPERIOD                             500 // in slots: @15ms per slot -> ~30 seconds. Max value used by adaptive 
synchronization. 
#define DESYNCTIMEOUT              4000 //in slots: @15ms per slot -> ~35 seconds. A larger DESYNCTIMEOUT is  
     //needed if using a larger KATIMEOUT. 
#define LIMITLARGETIMECORRECTION      5 // threshold number of ticks to declare a timeCorrection "large" 
#define LENGTH_IEEE154_MAX              128 // max length of a valid radio packet   
#define DUTY_CYCLE_WINDOW_LIMIT    (0xFFFFFFFF>>1) // limit of the dutycycle window 

 

8.7 Code B2: IEEE 802154E.h 
 
#define SYNCHRONIZING_CHANNEL             23 // channel the mote listens on to synchronize 
#define TXRETRIES                             0 // number of MAC retries before declaring failed 
#define TX_POWER                             31 // 1=-25dBm, 31=0dBm (max value) 
#define RESYNCHRONIZATIONGUARD          5 // in 32kHz ticks. min distance to the end of the slot to successfully  
     //synchronize 
#define US_PER_TICK                       30 // number of us per 32kHz clock tick 
#define ADVTIMEOUT                                       5 // in seconds: sending ADV every 30 seconds 
#define MAXKAPERIOD                             500 // in slots: @15ms per slot -> ~30 seconds. Max value used by adaptive 
synchronization. 
#define DESYNCTIMEOUT              4000 //in slots: @15ms per slot -> ~35 seconds. A larger DESYNCTIMEOUT is  
     //needed if using a larger KATIMEOUT. 
#define LIMITLARGETIMECORRECTION      5 // threshold number of ticks to declare a timeCorrection "large" 
#define LENGTH_IEEE154_MAX              128 // max length of a valid radio packet   
#define DUTY_CYCLE_WINDOW_LIMIT    (0xFFFFFFFF>>1) // limit of the dutycycle window 

 
 

8.8 Code C1: schedule.h 
 

#define SUPERFRAME_LENGTH      101 //should be 101 
 
#define NUMADVSLOTS               1 
#define NUMSHAREDTXRX          6  
//#define NUMDEDICATEDTX   14 
//#define NUMDEDICATEDRX   14 
#define NUMSERIALRX                1 
 
 

8.9 Code C2: schedule.h 
 
#define SUPERFRAME_LENGTH      101 //should be 101 
 
#define NUMADVSLOTS               1 
#define NUMSHAREDTXRX         12  
//#define NUMDEDICATEDTX   14 
//#define NUMDEDICATEDRX   14 
#define NUMSERIALRX                1 
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8.10 Stack organization diagram of the OpenWSN protocol stack 
 

 

https://openwsn.atlassian.net/wiki/display/OW/Stack

