

POLITECNICO DI BARI

DIPARTIMENTO DI INGENIERIE ELETTRICA E DELL’INFORMAZIONE

GRADE IN ENGINEERING IN INDUSTRIAL TECHNOLOGIES

END OF DEGREE THESIS
IN

INTERNET OF THINGS

Characterization of TelosB and Zolertia Z1

Running OpenWSN

Docent:
Prof. Ing. Luigi Alfredo GRIECO
Correlator:
Dott. Ing. Pietro BOCCADORO

Student:
Asier JORDANA URRIZA

Academic year 2015-2016

2

Index
1. Introduction .. 4

1.1 Problem ... 4

1.2 Tools .. 5

1.3 Reach of the thesis .. 5

Chapter 2: Communication Protocol .. 6

2.1 IEEE 802.15.4 ... 7

2.2 IEEE 802.15.4e ... 12

2.3 RPL ... 15

2.4 UDP ... 17

Chapter 3: Tools .. 18

3.1 Software: OpenWSN ... 18

3.1.1 OpenWSN Stack.. 19

3.1.2 Open Visualizer... 20

3.1.3 UDPlatency ... 21

3.1.4 Packets ... 22

3.1.5 Configuration .. 23

3.2 Hardware .. 24

3.2.1 TelosB ... 24

3.2.2 Zolertia Z1 ... 26

Chapter 4: Tests .. 29

4.1 Aim of the tests ... 29

4.2 Realization of the tests ... 30

4.3 Test 1 ... 31

4.4 Test 2 ... 35

4.5 Test 3 ... 37

4.6 Test 4 ... 39

4.7 Test 5 ... 41

4.8 Test 6 ... 43

4.9 Test 7 ... 45

Chapter 5: Results ... 47

5.1 Desynchronizations ... 47

5.2 PLR ... 49

3

5.3 Latency .. 50

6. Conclusion .. 54

7. Bibliography ... I

8. Appendix .. III

8.1 Code A1: UDPlatency.c .. III

8.2 Code A2: UDPlatency.c .. VIII

8.3 Code A3: UDPlatency.c .. VIII

8.4 Code A4: UDPlatency.c .. VIII

8.5 Code A5: UDPlatency.c .. VIII

8.6 Code B1: IEEE 802154E.h ... IX

8.7 Code B2: IEEE 802154E.h ... IX

8.8 Code C1: schedule.h ... IX

8.9 Code C2: schedule.h ... IX

8.10 Stack organization diagram of the OpenWSN protocol stack X

4

1. Introduction

Prof. Ing. Alfredo Grieco professor in the Politecnico di Bari, has presented an offer of thesis

related to the development on Internet of Things.

Asier Jordana Urriza, as an engineering student in Universidad Pública de Navarra, staying

in Bari, Italy as an ERASMUS student, in the Politecnico di Bari, has taken this project related

to this subject.

1.1 Problem

This project is oriented in the development of the Internet of Things. Nowadays, the

Internet of Things is a very innovative field with many opportunities. The boom in this

subject is thanks to the fast improvement of technology and development of the

internet in the last decades that has made possible to connect to the internet almost

any device, leading to many applications from smart houses that make our everyday life

easier to many industry related applications such as Wireless Sensor Networks.

Due to all the applications it can have, a lot of research communities have joined the

development of many tools in this field, such us motes (hardware) and operating

systems (software) oriented for the Internet of Things.

Among all the available platforms, in this thesis there are characterized two of these

motes running the same OS. The results obtained will be comparable.

The parameters that will be obtained are:

- Packet Lost Rate (PLR): percentual value of the number of packets lost during

the transmission;

- latency: the amount of time a packet needs to reach the destination, once it

has been sent.

Thanks to the results obtained, it is expected to help the development of these platforms

expanding the available information about them. As this field is quite new, the amount

of information is minimal and hard to find, and this information may help other

researches to continue developing, showing strong and weak points of the studied tools.

5

1.2 Tools

 The hardware that will be tested are the TelosB [13] mote by Memsic and the Z1

[14] by Zolertia. The software they will run for this thesis is OpenWSN.

6 motes of each type will be used, further details are given in chapter 3.

Other required tools:

 - laptop: that will collect all the data received by the root mote, using

 OpenUSB on application layer. The computer runs on Ubuntu 14.04.4due to the

 amount of support and tools available in this OS.

 - nickel-cadmium AA batteries: to power the motes. This batteries work at 1.2

 V and capacity may vary from 600 mAh to 1000 mAh. Each mote needs 2

 batteries except the one connected to the computer that will be powered via

 USB. In total 10 batteries will be used.

1.3 Reach of the thesis

This research field is very studied nowadays by many universities and companies due to

its potential and the resources available.

Its applications go from our every-day life (intelligent houses for example) to industrial

environments (process monitoring, real-time control, information management, etc.).

 These tests, will help to add a little step in this field, giving some performance

data about two platforms (TelosB [13] and Zolertia Z1 [14], running OpenWSN [10])

working under some different conditions.

With the data obtained it is expected to see which are to strong points of this scenario

and which points need further development and research.

6

Chapter 2: Communication Protocol

 In this chapter it is shown an introduction on the standards used for the Lower

layers of the communication protocol (Physical and MAC layers) [1].

To make a Wireless Sensor Network (WSN), it is necessary to define a protocol that

adapts to the needs of this network. Nowadays, there is a high number of wireless

protocols for many different applications, so it is interesting to take a look to the

different offers available.

Image 1 Standard communication wireless protocols [2]

The main reasons to set up a wireless network instead of a wired one, are:

 - no connectors;

 - major mobility;

 - ease of installation;

 - more flexibility;

 - improved share of resources;

 - lower cost and infrastructure.

7

In many cases, the requirements for a WSN are:

 - power consumption: low power consumption that will ensure the plant

 working for long time periods;

 - low cost: a company won’t pay for features that won’t use and will always

 priorize a simple-functional solution that lowers the costs of the inversion;

 - robustness and stability;

 - integration with the production plant.

Among all the wireless communication protocol standards available, each one focuses

some applications and optimizes some features over others, for that reason, it is

necessary to find the standard that focuses in the previous requirements.

2.1 IEEE 802.15.4

 Among all the standards available, the IEEE 802.15.4 standard [1][2][3][4] is very

suitable for a WSN. Image 2 compares IEEE 802.15.4 with Bluetooth and Wi-Fi, which

are two of the most known standards.

 Bluetooth and Wi-Fi are superior regarding to range and data throughput but

usually there is no need of a high data transmission in this kind of applications, and the

range is covered using several nodes and multihop techniques [3] that allow covering

wide areas and lowering power consumption at the same time. The 802.15.4 standard

is designed to get a small power consumption that grants long working time periods, a

small size that makes possible a complete integration with the plant and low

manufacturing costs due to the low characteristics.

Image 2 IEEE802.15.4, Bluetooth and Wi-Fi comparison

8

 IEEE 802.15.4 is a standard that specifies the physical layer and media access

control for low-rate wireless personal area networks (LR-WPAN) [2][3]. Upper layers are

not defined in this standard, and will depend on the application it is being implemented.

It implements the fundamental lower network layers, focusing on low-cost, low-speed

communications between devices with little infrastructure, intending to minimize the

power consumption.

The basic framework conceives:

- range: 10 m;

- transfer rate: Up to 250 kbps;

- real-time suitability;

- medium access: CSMA/CA collision avoidance;

- secure communication support;

- frequency bands: 868/915/2450 MHz.

The interaction among devices is conceived to be over a conceptually simple wireless

network.

 The network layers are based on the OSI model [1][3] but only the lower layers

are defined. Interaction with upper layers is intended, accessing the MAC through a

convergence sublayer, see Image 3. This implementations may rely on external devices

or be embedded self-functioning devices as it is in this case.

Image 3 IEEE802.15.4 protocol stack [2]

9

The physical layer manages the RF transceiver, performing channel selection and energy

and signal management functions.

It can operate in three different frequency bands: 868.0-868.6 MHz, 902-928 MHz and

2400-2483.5 MHz. The last band is the one used in this thesis because it is the band that

the radio chips in these motes use. See Image 4.

Image 4 IEEE802.15.4 radio bands [2]

As for the frames, the IEEE 802.15 standard does not exchange standard Ethernet

frames, because most IEEE 802.15 PHYs only support frames up to 128 bytes. The

physical frame-format is specified in IEEE 802.15.4.

This is how an IEEE 802.15.4 packet is structured when it reaches the Physical layer:

- Preamble: 4 bytes, used for synchronization;

- Start of Packet Delimiter: 1 byte;

- PHY Header: 1 byte, contains the length of the following data;

- PHY Service Data Unit (PSDU): from 0 to 127 bytes, data field.

10

Image 5 shows how an IEEE 802.15.4 packet is structured:

Image 5 IEEE 802.15.4 Packet Structure

The PSDU is created in the MAC layer and there are four different types of PSDU or MAC

frames:

- data frame;

- beacon frame;

- acknowledgment frame: confirms the reception of a correct packet, this feature

is optional;

- MAC command frame.

The MAC frame is structured as follows (Image 6):

- MAC header: contains information about source and destination addresses,

sequence number and frame control. Its length is variable but always lower than

23 bytes;

- MAC Service Data Unit (MSDU): contains the payload, variable length (the whole

frame never exceeds 128 bytes);

- MAC footer: frame check sequence, 2 bytes.

Image 6 IEEE 802.15.4 MAC frame

11

 IEEE 802.15.4 allows also the use of a superframe structure [4]. Thanks to this

structure, the coordinator can bound its channel time. A superframe is bounded by

beacons and can have active and inactive portions. The coordinator will only

communicate during the active period. During the inactive portion, it will enter in a low

power mode, in order to save battery. This is how a superframe structure is built:

Image 7 Superframe structure [4]

- Beacons: synchronize the attached devices and identify the network and the

superframe structure;

- Contention period: access by any node. Every node trying to communicate

during the contention period will compete with other devices, due to the slotted

CSMA/CA mechanism;

- Guaranteed Time Slots (GTS): for low latency applications or applications

requiring specific data bandwidth the coordinator can dedicate portions of the

active superframe to that application. This portions are called Guaranteed Time

Slots (GTSs) and appear in the end of the active portion of the superframe.

All transactions have to be completed before the time of next network beacon.

As a little summary, this standard allows to use cheap infrastructure, low energy

consumption and small sized hardware, which are the main requirements for WSNs, in

exchange of more limited characteristics, comparing to other wireless standards.

12

However, IEEE 802.15.4 has some limitations that can make the network not to work

properly under some circumstances:

 - MAC unreliability and unbounded latency: this effects are increased by the

 amount of nodes or traffic in the network. A higher traffic will result in higher

 latencies. This limitation is related to CSMA/CA access method that generates

 long waiting periods when the channel has a high demand [4];

 - no built-in frequency hopping technique: that makes the communication

 more sensible to noise and multipath-fading.

With this limitations in mind, Task group 4e, working for IEEE 802.15, developed from

January 2008 to October 2011 a new version for this standard, called IEEE 802.15.4e

that solved this issues.

2.2 IEEE 802.15.4e

 IEEE 802.15.4e is the result given to improve the support for industrial markets.

The major changes are: MAC behavior modes [5] and general functional improvements

such as Low Energy (LE), Information Elements (IE), Enhanced Beacons (EB),

Multipurpose Frame, MAC Performance Metrics and Fast Association (FastA) [5].

As for the MAC behavior, there are 5 new modes:

- Radio Frequency Identification Blink (BLINK): used for item or people

identification, location and tracking;

- Asynchronous Multi-Channel Adaptation (AMCA): applications where large

deployments are required;

- Deterministic and Synchronous Multi-Channel Extension (DSME): applications

with strict timeliness and reliability requirements;

- Low Latency Deterministic Network (LLDN): for applications requiring very low

latencies;

- Time Slotted Channel Hoping (TSCH): applications in industrial domains such as

process automation.

The experiments in this thesis run with TSCH mode enabled. This mode combines time

slotted access, multi-channel communication and channel hopping. To understand how

TSCH mode works, it is necessary to understand how it uses time slotted access, how it

executes the schedule and how channel hoping is implemented.

13

Time slotted Access:

Time slotted access makes latencies predictable and bounded and guarantees a

bandwidth for each application. Time is divided into time slots, and each time slot have

to be long enough for a MAC frame of maximum length to be sent and the

acknowledgment (ACK) to be received. The duration of a time slot is not defined in the

standard but for radios operating in the 2.4 GHz frequency band, takes about 4 ms to

send a maximum length (128 bytes) and 1 ms for the ACK. Using a 10 ms frame slot

which is a common value, there is a 5 ms period for packet processing and other

operations.

This time slots are grouped into slot frames, which are continuously repeating. The slot

frame length may vary, resulting in more available bandwidth and higher power

consumption with shorter slot frames. This will be adjusted depending on the

requirements of the application.

TSCH schedule:

 The schedule tells each node what to do in each time slot: transmit, receive or

sleep. The schedule indicates, for each scheduled cell (A cell in a TSCH schedule is an

atomic "unit" of resource) [6], a ChannelOffset and the address of the neighbor with

which to communicate.

 As for the TSCH scheduling, the standard explains how the MAC layer executes a

schedule but it doesn’t specify how it is built. It can ben centralized or distributed

scheduling [6].

In centralized scheduling, a manager node is responsible for building and maintaining

the network schedule. Every node has to update the manager with the list of nodes it

hears and the amount of data it generates. The manager will draw the connectivity

graph and will assign slots to different links based on data generation demands.

In distributed scheduling, there is no central entity and each node will decide

autonomously on which links to schedule with which neighbors. This scheduling method

is suitable for highly dynamic networks. For static networks, centralized schedules are

known to be superior to distributed ones.

When the cell is of transmission type, the node checks the buffer and if there is a packet

that matches the address of the neighbor written in the schedule information for that

time slot, the packet will be transmitted (an ACK may be asked if the option is enabled,

and the sending node will have to wait to receive it).

For receive cells, the node listens for possible incoming packets. If there is not packet

received after a certain period, the node will shut down its radio.

14

If the schedule is well built, both the sending node and the receiving node, will transmit

and hear in the same time (time slot) and to the same frequency (channel).

It is possible to increase the bandwidth dedicated to a certain link between two nodes

scheduling multiple cells to it. The union of all this cells is called a bundle and it will

repeat over time along with the slotframe.

Each transmit cell within the TSCH schedule is dedicated by default. In a dedicated cell,

only a certain node can send packets to another. This standard, has the option to create

shared cells that allow multiple nodes to communicate at the same time, on the same

frequency. A backoff algorithm is defined to avoid contention in this cells.

Taking into account that a node can only transmit, receive or sleep (each operation has

a power consumption value associated that will depend on the hardware), given the

schedule for a certain node, it is easy to calculate the expected average power

consumption.

Channel hoping:

Channel hoping mitigates the effects of interference and multipath fading. With channel

hoping enabled, every transmission is done in a different frequency and may help

avoiding noises generated by other machines (electric engines for example), especially

in industrial environments, that may affect only some channels. This way, changing to

another frequency increases the chances to avoid these affected channels.

 To explain how channel hoping is done, first, it is necessary to introduce the

Absolut Slot Number (ASN) [5]. The ASN initializes at 0 when a new network is created

and increases by one each time slot. All synchronized nodes in a network have the same

ASN.

 In a scheduled cell, there is specified a SlotOffset value (used in the computation

of the ASN) [5] and a ChannelOffset value [5]. There are as many ChannelOffset values

as there are frequencies available (16 when using radios that are compliant with IEEE

802.15.4 at 2.4 GHz when all channels are used).

To calculate the frequency, the ASN and ChannelOffset values are used in a function that

looks up on a table with all the available frequencies. The ASN and the ChanelOffset will

be the same for both nodes in the scheduled cell, so the same frequency will be

computed.

In the next slotframe, even with a static schedule (every scheduled cell repeats over time

with constant SlotOffset and ChannelOffset values), the ASN value will change, giving as

a result a different frequency for the same scheduled cell.

Channel hopping is a technique known to efficiently combat multi-path fading and

external interferences.

15

2.3 RPL

 RPL [7][8] stands for IPv6 Routing Protocol for Low powered and Lossy Networks.

Which is a routing protocol that has been conceived to overcome routing issues in Low

Power and Lossy Networks (LLN) as Wireless Sensor Networks (WSN).

 The objective of an RPL is to create a topology that minimizes the power

consumption of the nodes, avoiding cyclic paths, and finding the most power efficient

path. For this objective, a Destination-Oriented Direct Acyclic Graph (DODAG) [8] is built.

A DODAG is a directed graph, in which all edges are oriented in a way that no cycles

exist, and end in a sink called DODAG root (In a DAG, there can be more than one sink

but in a DODAG there is only one).

In a DODAG, there are two opposite “directions”:

- “Up”: direction in which information goes from edge nodes to the root;

- “Down”: direction from the root to the edge nodes.

 The RPL assigns ranks [8] to the nodes in the DODAG. The rank of a node is its

position relative to other nodes with respect to the root. The rank will always decrease

in the Down direction and increase in the Up direction. The way of calculate the Rank

may vary. It may just consider a simple topological distance, may be calculated as a

function of link metrics or may consider other properties such as constraints.

We can define 3 types of traffic in the network:

- Multipoint to point traffic (MP2P): usually the dominant traffic flow in LLNs. The

information goes in up direction. It is used to collect data from the network into

a sink, the DODAG root commonly;

- Point to multipoint traffic (P2MP): flows in down direction, mostly used when

the DODAG root has to inform the rest of the nodes some parameters about the

network or needs to ask all the nodes for some data;

- Point to point (P2P): this traffic can be in both directions, it is used when

specifically two nodes need to interact (for example, a controller and an

actuator). If the node has not routing tables stored, the packet will flow upwards,

until it reaches a node that is able to route the packet. As final instance, it will

reach the DODAG root.

16

With this rank methodology a message sent from an edge node to the root, will go

always to a lower rank node until it reaches its destination. The route will not have cycles

and the power consumption will be minimized, due to the rank gradient created towards

the DODAG root.

Image 8: RPL network diagram [7]

The RPL defines four types of messages for information exchange and topology

maintenance:

- DODAG information exchange (DIO): contains information about the current

rank of a node, the current RPL instance, IPv6 address of a node, etc;

- Destination advertisement object (DAO): enables support for down traffic to

propagate destination information upwards along the DODAG;

- DODAG information solicitation (DIS): is used to require DIO messages from a

reachable neighbor;

- DAO-ACK: is sent by DAO recipient in response to a DAO message.

In order to save battery in LLNs, the RPL, adapts the sending rate of DIO messages

according to the stability of the network. In a network with stable links, the control

messages will be rare.

17

2.4 UDP

 User Datagram Protocol (UDP) [9] is a transport level protocol, based on

exchange of datagrams in the environment of an interconnected set of computer

networks. This protocol assumes that the Internet Protocol (IP) [9] is used as the

underlying protocol. Allows to send packets in a network, without requiring a previously

stablished connection, because the header has the necessary addressing information.

Image 9 shows how a UDP header is built:

Image 9 User datagram protocol header format

The header has the following fields:

- Source Port: optional field that indicates the port of the sending process. It is the

port where a reply will be addressed in the absence of other information. If the

field is not used a 0 is inserted;

- Destination Port: it references the port of a particular internet destination

address;

- Length: the length in bytes of the user datagram, including the header and the

data;

- Checksum: is the 16 bit one’s complement of the sum of pseudo header of

information from the IP header, the UDP header and the data. This information

is used to protect against misrouted datagrams.

The UDP does not have confirmation or flow control and there is no guarantee of

delivery, ordering or duplicate protection.

 UDP is used when error checking is not necessary or is done by the application,

avoiding the load of that processing at the network interface level. Usually, it is used in

time-sensitive applications because dropping packets is preferable to waiting to delayed

packets. Applications requiring ordered reliable delivery of streams of data should use

the Transmission Control Protocol (TCP) [9].

18

Chapter 3: Tools

In this chapter, a deeper description of the tools presented in the introduction is given.

On one hand, there is an introduction to the basics of the software and later, the motes

that will be tested are described.

3.1 Software: OpenWSN

 OpenWSN [10] is an open-source implementation of a standards-based protocol

stack rooted in IEEE 802.15.4e Time Slotted Channel Hoping (TSCH) standard.

It enables ultra-low power and reliable networks that are fully integrated into the

internet.

Image 10 shows the protocol stack implemented in OpenWSN. This protocol stack is

based entirely on Internet of Things standards.

Image 10 The OpenWSN protocol stack [10]

The OpenWSN stack utilizes abstraction at two levels. The Berkeley Socket Abstraction

considers that the communication of two applications on two different hosts is through

a socket, identified by the IP addresses of the hosts and the two ports corresponding to

each application.

The OpenWSN stack respects this abstraction, and developing and application on it is

comparable to developing an application on a regular internet host.

19

The Hardware Abstraction groups all functions concerning the hardware into a group of

files called the ‘board support package’ (BSP). Thanks to this, a great part of the code

can be shared among all supported platforms.

This code portability made possible the use of a similar application written for this

experiment for two different platforms, TelosB and Zolertia Z1 that are introduced in

the next section of this chapter.

3.1.1 OpenWSN Stack

 Protocol layers are wired together to form a stack. Send functions are used to

push packets down the stack; Receive functions to pull them up. The bytes of a packet

live in the OpenQueue [11] component. A packet is a variable of type OpenQueueEntry_t

[11] and is defined in openwsn.h; components pass a pointer to an OpenQueueEntry_t

variables in the Send and Receive functions (See “8.10 Stack organization diagram of the

OpenWSN protocol stack” on the appendix for a more detailed diagram).

An OpenQueueEntry_t is the actual packet that is going to be sent, along with some

metadata created by some upper layers that lower layers will need to send the packet

down the stack. For example, the MAC layer sets a parameter that informs the driver

abut which channel it need to transmit the packet, or RPL layer specifies to MAC layer

about which neighbor the packet is headed.

To see how it works, here is an example of what each layer does and how the packet

flows from one layer to other:

- the application has to get a free OpenQueueEntry_t and creates the packet with

the payload that is going to be sent. As for the metadata, it will take ownership

and creatorship of the packet, it will include source and destination port that will

be used by layer 4 (TCP or UDP) and destination address that will be used in layer

3 by RPL. Finally it sends the packet to layer 4;

- layer 4 (UDP in this thesis), will take the ownership of the packet and it will write

where the payload starts and how long it is. Then it will add UDP header with the

source and destination addresses written by the application layer. Finally, sends

the packet to RPL;

- RPL in layer 3, takes ownership of the packet and fills the metadata with data for

the next hop. It forwards the packet to IPHC;

- IPHC (Internet Protocol Header Compression) [11] belongs to the adaptation

layer needed to compress the internet header into a smaller header that IEEE

802.15.4 standard can handle (6LoWPAN header). After adding this header, it

sends the packet to layer 2;

- in layer 2, the MAC protocol (IEEE 802.15.4e) takes ownership of the packet. It

fills the metadata with the amount of retries left, the power for the radio

antenna and the channel (obtained from schedule.c [11]). It will add the MAC

https://openwsn.atlassian.net/wiki/display/OW/Stack
https://openwsn.atlassian.net/wiki/display/OW/Stack

20

header with the next hop information and frame type information and the

packet is sent to the drivers;

- the drivers or physical layer will configure the radio power and the channel. It

won’t take ownership of the packet, so if something goes wrong, MAC will be

able to retransmit the packet.

3.1.2 Open Visualizer

 OpenVisualizer [12] is the primary tool for plugging OpenWSN network into the

Internet.

These are the main features:

- connects OpenWSN network to the Internet over a virtual interface (both

Windows and Linux);

- portable across popular operating systems;

- shows the internal state (neighbor table, scheduling table, queue, etc.) of each

node physically connected to the OpenVisualizer;

- displays errors reported by motes;

- can run with either physical motes, or emulated motes.

The software is based on publish-subscribe messaging between components in a Python

process. The diagram in Image 11 provides a high-level view. The Event Bus provides the

messaging framework. Specific components implement services like connection of

wireless motes via serial connection, and external or internal Python based applications

can be used (The application used for this thesis, UDPlatency is an internal Python

process). Also, notice that several motes may be connected simultaneously.

Image 11 Diagram of OpenVIsualizer's architecture [12]

21

This is how OpenVisualizer has worked in the tests:

- the root of the network received the packets and they were captured by the

component moteConnector [12] via USB;

- moteConnector extracts the data from the received packet and it is published in

the event bus;

- the UDPlatency script captures this data and updates the parameters with the

new values (new latencies, sequence number, PLR, etc.) and saves them in a text

file.

After the text file is created the process ends and from this point the user can use the

data generated freely.

3.1.3 UDPlatency

 UDPlatency is an application [Code A1] written by students of Politecnico di Bari.

UDPlatency is an application that consists of two parts. The first one, an application

written in the firmware that will run the mote, and the other part that will run with

OpenVisualizer in the computer and collects the data that receives the root mote.

The firmware part has to create the 128 byte long packets that will be sent by every

mote (On the following section is defined how packets are filled) to the network

coordinator. The software application will collect the data via USB serial

communication, then it will obtain certain parameters and finally creates a text file that

saves this parameters.

This is the data that shows the text file:

 - address of the sender mote;
 - minimum latency;
 - maximum latency;
 - number of packets received;
 - number of packets sent;
 - average latency;
 - latest latency: latency of the last received packet;
 - temperature value;
 - sequence number: the sequence number increases each time a new packet
 is sent, it is used to calculate the amount of duplicated packets;
 - number of duplicated packets;
 - packet lost rate (PLR): PLR without taking into account the duplicated packets.
 An after-work is necessary to calculate the real PLR;
 - received time: Data and time when the packet was received.

22

In the Image 12 there is an example of the data generated.

Image 12 Data obtained from the script

3.1.4 Packets

To get this data, the packets were filled as follows (Code A1):

 - Absolut Slot Number (ASN): it is used to calculate the latency, 5 bytes;
 - ID of the mote: 64 bit address of the mote, 8 bytes;
 - temperature value: 1 byte;
 - 7 dummy bytes: they were originally used to send the address of the preferred
 parent, along with the byte used for the temperature;
 - Sequence Number: it is used to calculate the amount of lost packets, 2 bytes;
 - 17 dummy bytes: they are used to complete the 128 byte payload.

The rest of the data in the packet is occupied by the header and metadata added by

other components in other layers:

 - Creator: 1 byte;
 - Owner: 1 byte;
 - Sequence Number: 2 bytes;
 - layer 4, protocol: 1 byte;
 - layer 4, source port: 2 bytes;
 - layer 4, destination port: 2 bytes;
 - layer 4, payload: 1 byte;
 - layer 4, length: 1 byte;
 - layer 3, destination address: 16 bytes;
 - layer 3, source address: 16 bytes;
 - layer 2, next hop: 8 bytes;
 - layer 2, previous hop: 8 bytes;
 - layer 2, frame type: 1 byte;
 - layer 2, dsn [11]: 1 byte;
 - layer 2, retries left: 1 byte;
 - layer 2, number of tx attempts: 1 byte;

23

 - layer 2, ASN: 5 bytes;
 - layer 2, cell objects: 1 byte;
 - layer 2, number of cells: 1 byte;
 - layer 2, frame ID: 1 byte;
 - layer 2, join priority: 1 byte;
 - layer 2, security: 1 byte;
 - layer 2, security level: 1 byte;
 - layer 2, key ID mode: 1 byte;
 - layer 2, key source: 8 bytes;
 - layer 1, tx power [11]: 1 byte;
 - layer 1, rssi [11]: 1 byte;
 - layer 1, lqi [11]: 1 byte;
 - layer 1, crc [11]: 1 byte;
 - layer 1, rx time stamp [11]: 1 byte.

3.1.5 Configuration

OpenWSN gives the opportunity to modify some parameters in order to adapt the

communications to the desired situation. In this thesis it was used the following

configuration (Codes B1 and C1):

 - super-frame length: 101 slots. It is done to get a low duty cycle (<1%) that will
 ensure a low power consumption;
 - Channel Hoping: enabled;
 - synchronization channel: 23, it was changed from the default (channel 20) in
 order to avoid interferences with other motes in the laboratory;
 - power of the radio: 0 db;
 - ADV timeout: ADV sent every 5 seconds;
 - maximum keep-alive period: 7,5 seconds.

Other parameters as number of retries and the number of shared channels are going to

be modified during the tests.

As a summary, it would be interesting to see that OpenWSN is a very suitable OS for this

tests. It is a software designed for WSNs that has adopted IEEE 802.15.4e in its core. This

standard suits perfectly for LLNs more specially in industrial and noisy environments. An

interesting application could be monitoring a production process in an industrial plant.

Besides, it is created to favor portability between different platforms, which makes the

OS very interesting to test different motes as it is in this case. It allows to implement

different applications in a simple way and many communication parameters are easy to

modify, giving a huge freedom that allows to make tests for many purposes and

applications, making OpenWSN a very useful tool for researchers.

24

3.2 Hardware

In this project 2 different motes are characterized. The TelosB by Memsic and the Z1 by

Zolertia.

3.2.1 TelosB

 MEMSIC’s TelosB Mote [13] is an open-source platform designed to enable

cutting-edge experimentation for the research community.

The TelosB bundles all the essentials for lab studies into a single platform including: USB

programming capability, an IEEE 802.15.4 radio with integrated antenna, a low-power

MCU with extended memory and an optional sensor suite. TelosB offers many features,

including:

 - RF transceiver: IEEE 802.15.4 compilant;
 - ISM band: 2.4 to 2.4835 GHz;
 - data rate: 250 kbps;
 - antenna: integrated onboard;
 - microcontroller: 8 MHz TI MSP430;
 - RAM: 10 kB;
 - low current consumption;
 - external flash: 1 MB;
 - programming and data collection via USB;
 - sensor suite: including integrated light, temperature and humidity sensors.

The TelosB platform was developed and published to the research community by UC

Berkeley. This platform delivers low power consumption allowing for long battery life

as well as fast wakeup from sleep state.

It is powered by two AA batteries in serial configuration that supply the mote with 3 V.

If the TelosB is plugged into the USB port for programming or communication, power is

provided from the host computer.

25

In Image 13, there is a block diagram that shows the main modules integrated in TelosB.

Image 13 TelosB block diagram

Characteristics of the TelosB:

Specifications

Processor Performance 16 bit RISC
Processor clock 8 MHz
Program Flash Memory 48 kB
External Flash 1024 kB
RAM 10 kB
Configuration EEPROM 16 kB
Serial Communications UART
Analog to Digital Converter 12 bit ADC
Digital to Analog Converter 12 bit DAC
Expansion connector 16 Pins
Processor current draw 1.8 mA (Active)
 5.1 µA (Sleep)
Frequency band 2400 MHz to 2483.5 MHz
Transmit (TX) data rate 250 kbps
RF power -24 dBm to 0 dBm
Transceiver current draw 23 mA (active)
 1 µA (Sleep)
Temperature sensor range -40 ºC to 123.8 ºC
Resolution 0.01 ºC
Accuracy ± 0.5 ºC

Battery 2x AA batteries
User interface USB

26

Processor and memory specifications are very low compared with other applications

nowadays such us smartphones. However, as mentioned in previous sections, this WSNs

don’t seek high performance but low power consumption and cheap hardware.

Besides, TelosB works in the 2.4 GHz frequency band which is one of the bands that uses

the IEEE 802.15 standard. It has an industrial temperature range compatible

temperature sensor from Texas Instruments and very low current consumptions that

are the features we are looking for.

Finally, its USB interface makes TelosB easy to program and extract the data from the

tests, which makes it really interesting for research purposes.

3.2.2 Zolertia Z1

 Z1 by Zolertia [14] (Image 14) is a low-power wireless sensor network (WSN)

module that serves as a general purpose development platform for WSN developers and

researchers.

Image 14 Zolertia Z1 [14]

The Z1 is a low power wireless module compliant with IEEE 802.15.4 and Zigbee

protocols intended to help WSN developers to test and deploy their own applications

and prototypes with the best tradeoff between time of development and hardware

flexibility.

27

Its core architecture is based upon the MSP430+CC2420 family of microcontrollers and

radio transceivers by Texas Instruments, which makes it compatible with motes based

on this same architecture. These are the main features:

 - expansion connector: 52 pin;
 - microcontroller: 16 MHz 2nd generation MSP430™;
 - ISM band: 2.4 GHz;
 - temperature sensor: TI ZIG001 industrial range digital temperature and
 humidity sensor;
 - optional external antenna: U.FL connector;
 - Micro-USB connector: for power and debugging.

The Z1 WSN Module is specified to be used in the industrial range of temperatures.

Nominally, it should be powered at 3V, although it may work partially or totally since 1.8

V (without radio) or 2.1 V (with radio).

Image 15 shows a block diagram with the main modules of the Z1.

Image 15 Zolertia Z1 block diagram

28

Zolertia Z1 characteristics:

Specifications

Processor Performance 16 bit MCU
Processor clock 16 MHz
Program Flash Memory 92 kB
External Flash 2048 kB
RAM 10 kB
Serial Communications UART
Analog to Digital Converter 8 bit ADC
Digital to Analog Converter 2 bit DAC
Expansion connector 52 Pins
Processor current draw <1 mA (Active)
 0.5 µA (Sleep)
Frequency band 2400 MHz to 2483.5 MHz
Transmit (TX) data rate 250 kbps
RF power -24 dBm to 0 dBm
Transceiver current draw 18.8 mA (active)
 1 µA (Sleep)
Temperature sensor range -25 ºC to 85 ºC
Resolution 0.1 ºC
Accuracy ± 0.5 ºC

Battery 2x AA batteries
User interface Micro USB

As for the Zolertia Z1, it has similar characteristics that the TelosB, with some

differences:

- 16 MHz clock speed (vs 8 MHz);

- built-in clock factory calibration;

- 92 kB flash (vs 48 kB);

- lower power consumption (Half);

- 10 kB RAM (vs 8 kB);

- 2 MB external flash memory (vs 1 MB);

- most of the MSP ports are visible (all the ADC and DAC);

- USB pins are visible to be able to use another kind of USB connector;

- calibration tables are not deleted during programming.

Zolertia Z1, with improved characteristics that the TelosB, is a very interesting choice for

this tests in order to compare a more powerful board using the same OS, so it is visible

how a better hardware affects to the overall performance.

29

Chapter 4: Tests

In this chapter, all the tests done for the thesis are given, explaining how the

experiments have been conducted and giving the results in tables and graphics with a

commentary of the obtained results.

4.1 Aim of the tests

The main objective of the thesis is to characterize the two motes running OpenWSN.

Focused on the latency and the packet lost rate (PLR).

All the results are given for each mote, and the average values for the network, making

possible to cross-compare both platforms.

For the latencies, it is given the maximum, minimum and average latency.

To calculate the PLR, the amount of packets sent, received and duplicated is needed,

using the following expression:

𝑃𝐿𝑅 (%) =
𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡 − 𝑈𝑛𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡
 𝑥 100 =

𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑙𝑜𝑠𝑡

𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡
 𝑥 100

Equation 1: PLR

It is also necessary to take into account the number and duration of desynchronizations,

because when one mote desynchronizes, the amount of traffic in the network will

change and the results won’t be comparable.

Both, latency and PLR are obtained at application layer. The latencies are calculated as

it follows: from the moment a message is sent from application layer, until it reaches

the application layer of the receiving mote. Due to this condition, retransmission on

MAC layer are not taken into account, so very high latencies may appear if a packet is

retransmitted many times.

Retransmissions on MAC layer, are not taken into account for the calculation of the PLR,

and only those sent from the application layer of the sending mote and received by the

application layer of the receiving mote are considered.

Finally, it is shown the impact that the firmware has in the memory of the motes, to see

how each change affects to the mote.

30

4.2 Realization of the tests

To make this results comparable, all tests must be done under the same conditions.

The tests consist in:

 -number of motes: 5 motes plus one as the DAG root of the network;

 -duration: 30 minutes, divided in 10 minutes of warm up, and 20 minutes of test;

 -topology: star topology.

Apart from these common aspects, there are some configurations that may vary from

one test to another, in order to obtain the desired results. These are the parameters

that will be modified:

 -number of retransmissions;

 -amount of shared channels;

 -period of transmission of the messages;

 -the payload.

All the tests where done twice, one for the TelosB and the other for the Z1.

31

4.3 Test 1

The aim of the first test is to obtain some comparable latencies and PLR values for both

motes.

Codes used in this tests are shown in the appendix A1, B1 and C1. For the Z1 see also

code A2.

Some initial conditions are chosen:

Number of retransmissions: 3
Amount of shared channels: 6
Period of transmission (s): 4
Payload (bytes): 127

Table 1: test 1, configuration

TelosB:

Memory impact:

ROM (bytes) 44184
RAM (bytes) 6902

Table 2: test 1, memory impact for TelosB

Data obtained from test 1 for TelosB:

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%)

1 1d 256 140 15 125 51,17

2 a2 287 91 10 81 71,78

3 7 297 137 15 122 58,92

4 14 293 83 4 79 73,04

5 b7 292 112 14 98 66,44

Network 1425 563 58 505 64,56

N Desynch. Time
desynch. (s)

Avg latency
(ms)

Max latency
(ms)

Min latency
(ms)

1 0 0 10582,71 137085 285

2 2 85 6507,86 58890 390

3 0 0 9538,91 262065 315

4 2 95 5390,42 71895 285

5 1 45 11097,59 240585 315

Network 8927,75 262065 285
Table 3: test 1, obtained data for TelosB

32

Z1:

Memory impact:

ROM (bytes) 37926
RAM (bytes) 6966

Table 4: test 1, memory impact for Z1

Data obtained from test 1 for Z1:

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%)

1 10 297 127 15 112 62,29

2 20 295 124 8 116 60,68

3 30 295 73 5 68 76,95

4 40 298 122 10 112 62,42

5 50 290 70 4 66 77,24

Network 1475 516 42 474 67,86

N Desynch. Time
desynch. (s)

Avg latency
(ms)

Max latency
(ms)

Min latency
(ms)

1 0 0 7881,05 118575 45

2 0 0 13028,59 436155 45

3 1 60 5314,73 91425 105

4 0 0 10784,88 284190 30

5 1 70 7838,36 81600 135

Network 9357,5 436155 30
Table 5: test 1, obtained data for Z1

These results show very high latencies and inadmissible PLR values, more than 60 % of

the packets sent never reach their destination.

The PLR increments linearly along with the time desynchronized, resulting in a higher

amount of packets lost when a mote loses synchronization.

On the other hand, many desynchronizations happened in different moments during the

test, so is not possible to compare the results among both platforms, because the

amount of motes transmitting data varies.

To solve this problem, it is shown a time window without desynchronizations.

33

This are the results obtained in the 4 minute window of the test 1:

TelosB:

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%)

1 1d 40 22 4 18 55,00

2 a2 40 13 1 12 70,00

3 7 47 12 0 12 74,47

4 14 39 13 1 12 69,23

5 b7 40 13 2 11 72,50

Network 206 73 8 65 68,45

N Desynch. Time
desynch. (s)

Avg latency
(ms)

Max latency
(ms)

Min latency
(ms)

1 0 0 3182,61 7830 390

2 0 0 3264,64 8340 570

3 0 0 4987,50 27615 525

4 0 0 3178,93 15660 840

5 0 0 3536,25 10545 315

Network 3542,60 27615 315
Table 6: test 1 (window without desynchronizations), obtained data for TelosB

Z1:

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%)

1 10 46 22 4 18 60,87

2 20 46 23 3 20 56,52

3 30 37 18 2 16 56,76

4 40 50 13 0 13 74,00

5 50 47 10 0 10 78,72

Network 226 86 9 77 65,93

N Desynch. Time
desynch. (s)

Avg latency
(ms)

Max latency
(ms)

Min latency
(ms)

1 0 0 3182,61 15525 450

2 0 0 2429,25 8205 45

3 0 0 2280,00 6150 180

4 0 0 3653,18 12990 180

5 0 0 2467,50 4440 270

Network 2770,66 15525 45
Table 7: test 1 (Window without desynchronizations), obtained data for Z1

34

The average latency obtained is 3 times lower and a reduction of the maximum latency

of one order of magnitude.

On the other hand, the values for the PLR does not change significantly.

These results show a better performance of the Z1 in these conditions:

 - average latency is 27.86 % lower for the Z1;

 - PLR is 2.52 % lower for the Z1.

Anyway, the packet lost rate is inacceptable, (in this thesis, a PLR around 10 % will be

considered as acceptable) further tests are needed.

35

4.4 Test 2

In this second test the retransmissions are deleted with the aim of lowering the data

traffic at MAC layer level.

The changes made are shown in code B2.

Number of retransmissions: 0
Amount of shared channels: 6
Period of transmission (s): 4
Payload (bytes): 127

Table 8: test 2, configuration

TelosB:

Memory impact:

ROM (bytes) 44166
RAM (bytes) 6902

Table 9: test 2, memory impact for TelosB

Data obtained from test 2 for TelosB:

N Mote Pack.
Sent

Pack. Rec. Pack.
Dupl.

Rec.-Dupl. PLR (%)

1 1d 295 79 0 79 73,22

2 a2 296 17 0 17 94,26

3 7 292 67 0 67 77,05

4 14 289 59 0 59 79,58

5 b7 288 29 0 29 89,93

Network 1460 251 0 251 82,81

N Desynch. Time
desynch. (s)

Avg latency
(ms)

Max latency
(ms)

Min latency
(ms)

1 0 0 722,81 2610 285

2 0 0 776,67 1740 270

3 0 0 818,82 1650 270

4 0 0 970,25 2040 285

5 0 0 863,50 1680 300

Network 826,58 2610 270
Table 10: test 2, obtained data for TelosB

36

Z1:

Memory impact:

ROM (bytes) 37908
RAM (bytes) 6966

Table 11: test 2, memory impact for Z1

Data obtained from test 2 for Z1:

N Mote Pack.
Sent

Pack. Rec. Pack.
Dupl.

Rec.-Dupl. PLR (%)

1 10 311 137 0 137 55,95

2 20 295 42 0 42 85,76

3 30 270 14 0 14 94,81

4 40 283 50 0 50 82,33

5 50 313 92 0 92 70,61

Network 1472 335 0 335 77,24

N Desynch. Time
desynch. (s)

Avg latency
(ms)

Max latency
(ms)

Min latency
(ms)

1 0 0 721,41 1485 45

2 0 0 659,65 2940 45

3 0 0 337,00 1455 30

4 0 0 493,82 1410 30

5 0 0 520,97 2025 30

Network 607,68 2940 30
Table 12: test 2, obtained data for Z1

By lowering the traffic, the latencies decreased by one order of magnitude. This might

be because we lower the amount of collisions and the motes are less busy transmitting

and receiving data.

On the other hand and as expected, the PLR has worsen. There is a gain of 18.25 % of

PLR for the TelosB and 9.38 % for the Z1. With no retransmissions, each message has

one try to reach their destination.

It is also important to notice that reducing the traffic, has made the network more

stable, avoiding desynchronizations.

37

4.5 Test 3

For the next test, the number of available channels is increased, trying to lower the

latency.

The changes made are in code C2.

Number of retransmissions: 3
Amount of shared channels: 12
Period of transmission (s): 4
Payload (bytes): 127

Table 13: test 3, configuration

TelosB:

Memory impact:

ROM (bytes) 44196
RAM (bytes) 7106

Table 14: test 3, memory impact for TelosB

Data obtained from test 3 for TelosB:

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%)

1 1d 267 98 9 89 66,67

2 a2 290 94 10 84 71,03

3 7 297 144 20 124 58,25

4 14 159 41 0 41 74,21

5 b7 296 133 8 125 57,77

Network 1309 510 47 463 64,63

N Desynch. Time
desynch. (s)

Avg latency
(ms)

Max latency
(ms)

Min latency
(ms)

1 1 5 3858,52 45015 330

2 1 60 4199,67 45150 270

3 1 5 3228,21 38310 375

4 2 90 5204,63 55080 315

5 0 0 4439,22 59685 315

Network 4001,65 59685 270
Table 15: test 3, obtained data for TelosB

38

Z1:

Memory impact:

ROM (bytes) 37938
RAM (bytes) 7170

Table 16: test 3, memory impact for TelosB

Data obtained from test 3 for Z1:

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%)

1 10 306 146 17 129 57,84

2 20 298 115 13 102 65,77

3 30 285 52 6 46 83,86

4 40 306 107 16 91 70,26

5 50 284 65 4 61 78,52

Network 1479 485 56 429 70,99

N Desynch. Time
desynch. (s)

Avg latency
(ms)

Max latency
(ms)

Min latency
(ms)

1 0 0 3239,69 30810 30

2 2 40 4857,35 40110 45

3 3 90 3647,02 27255 45

4 1 30 3629,58 59460 30

5 3 60 4104,84 32025 30

Network 3866,91 59460 30
Table 17: test 3, obtained data for Z1

As expected, the latency has dropped to half regarding to the first test but the value is

still quite high.

As for the PLR, there are similar results, having a small increase in packets lost.

Comparing with the first test, the PLR also increases linearly along with the

desynchronization time, with a similar slope, being this higher for the Z1.

39

4.6 Test 4

Increasing the amount of available channels hasn’t solved the problem, so a decrease in

the amount of traffic is needed. Taking into account that retransmissions can’t be

disabled because the PLR goes up, the traffic in application layer is going to be reduced,

increasing the period of the transmission of the packets.

The changes made are in code A3.

Number of retransmissions: 3
Amount of shared channels: 6
Period of transmission (s): 10
Payload (bytes): 127

Table 18: Test 4, configuration

TelosB

Memory impact:

ROM (bytes) 44184
RAM (bytes) 6902

Table 19: test 4, memory impact for TelosB

Data obtained from test 4 for TelosB:

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%)

1 1d 117 55 3 52 55,56

2 a2 116 82 11 71 38,79

3 7 121 96 16 80 33,88

4 14 112 53 5 48 57,14

5 b7 118 70 8 62 47,46

Network 584 356 43 313 46,40

N Desynch. Time
desynch. (s)

Avg latency
(ms)

Max latency
(ms)

Min latency
(ms)

1 0 0 2246,79 6720 390

2 0 0 2023,92 6465 270

3 0 0 2307,99 9990 270

4 0 0 2265,56 9165 75

5 0 0 2460,42 7395 300

Network 2256,81 9990 75
Table 20: test 4, obtained data for TelosB

40

Z1:

Memory impact:

ROM (bytes) 37926
RAM (bytes) 6966

Table 21: test 4, memory impact for Z1

Data obtained from test 4 for Z1:

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%)

1 10 116 74 8 66 43,10

2 20 114 75 13 62 45,61

3 30 119 58 5 53 55,46

4 40 113 38 2 36 68,14

5 50 116 58 7 51 56,03

Network 578 303 35 268 53,63

N Desynch. Time
desynch. (s)

Avg latency
(ms)

Max latency
(ms)

Min latency
(ms)

1 0 0 1937,20 10995 30

2 0 0 6995,07 43710 45

3 0 0 1668,56 7470 30

4 0 0 1556,07 5625 30

5 0 0 1414,32 4530 75

Network 2905,83 43710 30
Table 22: test 4, obtained data for Z1

Reducing the traffic at the application layer has reduced both the latency and the PLR.

The traffic congestion has been reduced and retransmissions are still enabled to ensure

that the PLR doesn’t increase a lot.

There is a decrease of 18.16 % of the PLR for the TelosB and 14.23 % for the Z1 regarding

the first test and four times lower latencies.

Apart from that, the problem of the desynchronizations is gone, the same as in the test

2, due to the lower traffic.

Anyway, the PLR must be lower for this set up to be useful.

41

4.7 Test 5

In the following test, the period of 10 seconds is maintained and the data payload is

lowered taking away 17 bytes (13.28 % of the payload) that were included in the packet

just to complete the 127 bytes.

The changes made are in code A3.

Number of retransmissions: 3
Amount of shared channels: 6
Period of transmission (s): 10
Payload (bytes): 110

Table 23: test 5, configuration

TelosB:

Memory impact:

ROM (bytes) 44154
RAM (bytes) 6902

Table 24: test 5, memory impact for TelosB

Data obtained from test 5 for TelosB:

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%)

1 1d 118 75 9 66 44,07

2 a2 115 67 8 59 48,70

3 7 118 46 4 42 64,41

4 14 111 62 3 59 46,85

5 b7 119 82 12 70 41,18

Network 581 332 36 296 49,05

N Desynch. Time
desynch. (s)

Avg latency
(ms)

Max latency
(ms)

Min latency
(ms)

1 0 0 2358,16 10005 300

2 0 0 2331,84 8475 210

3 0 0 2231,49 7080 270

4 0 0 2255,71 6825 285

5 0 0 2058,89 5535 300

Network 2243,42 10005 210
Table 25: test 5, obtained data for TelosB

42

Z1:

Memory impact:

ROM (bytes) 37900
RAM (bytes) 6966

Table 26: test 5, memory impact for Z1

Data obtained from test 5 for Z1:

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%)

1 10 116 92 13 79 31,90

2 20 118 56 5 51 56,78

3 30 114 72 8 64 43,86

4 40 115 55 3 52 54,78

5 50 113 55 6 49 56,64

Network 576 330 35 295 48,78

N Desynch. Time
desynch. (s)

Avg latency
(ms)

Max latency
(ms)

Min latency
(ms)

1 0 0 1387,74 5535 45

2 0 0 1811,05 4560 30

3 0 0 1497,53 6255 30

4 0 0 1356,96 6930 30

5 0 0 1743,75 4440 30

Network 1538,06 6930 30
Table 27: test 5, obtained data for Z1

The results are comparable to the previous test. There is a minor improvement in the

latency but the PLR has worsen.

Lowering the payload has not brought any significant changes so the full payload is kept.

43

4.8 Test 6

Looking at the results obtained in the previous tests, the most effective way to lower

the PLR is to increase the period. The period is increased to 30 s.

The changes made are in code A4.

Number of retransmissions: 3
Amount of shared channels: 6
Period of transmission (s): 30
Payload (bytes): 127

Table 28: test 6, configuration

TelosB:

Memory impact:

ROM (bytes) 44212
RAM (bytes) 6904

Table 29: test 6, memory impact for TelosB

Data obtained from test 6 for TelosB:

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%)

1 1d 35 34 8 26 25,71

2 a2 38 33 9 24 36,84

3 7 37 24 4 20 45,95

4 14 39 23 2 21 46,15

5 b7 39 42 14 28 28,21

Network 188 156 37 119 36,70

N Desynch. Time
desynch. (s)

Avg latency
(ms)

Max latency
(ms)

Min latency
(ms)

1 0 0 2561,14 12510 300

2 0 0 2923,24 8490 360

3 0 0 2671,20 6885 315

4 0 0 2961,88 10665 315

5 0 0 2494,53 8640 345

Network 2696,65 12510 300
Table 30: test 6, obtained data for TelosB

44

Z1:

Memory impact:

ROM (bytes) 37952
RAM (bytes) 6968

Table 31: test 6, memory impact for Z1

Data obtained from test 6 for Z1:

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%)

1 10 38 29 5 24 36,84

2 20 39 40 13 27 30,77

3 30 37 26 5 21 43,24

4 40 38 26 5 21 44,74

5 50 37 31 7 24 35,14

Network 189 152 35 117 38,10

N Desynch. Time
desynch. (s)

Avg latency
(ms)

Max latency
(ms)

Min latency
(ms)

1 0 0 2625,50 6435 30

2 0 0 2564,63 7020 30

3 0 0 2570,00 7170 30

4 0 0 2033,89 6765 105

5 0 0 2580,94 8685 225

Network 2489,24 8685 30
Table 32: test 6, obtained data for Z1

The PLR has dropped under 40 %, which is a proof that decreasing the traffic at

application layer is causing the network to get better results.

On the other hand, the latency seems to be stabilized at around 2500 ms, and doesn’t

seem to improve increasing the period.

45

4.9 Test 7

Increase of the period to 90 s, trying to reduce the PLR more.

The changes made are in code A5.

Number of retransmissions: 3
Amount of shared channels: 6
Period of transmission (s): 90
Payload (bytes): 127

Table 33: test 7, configuration

TelosB:

Memory impact:

ROM (bytes) 44212
RAM (bytes) 6904

Table 34: test 7, memory impact for TelosB

Data obtained from test 7 for TelosB:

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%)

1 1d 11 15 4 11 0,00

2 a2 12 10 1 9 25,00

3 7 11 12 2 10 9,09

4 14 11 10 1 9 18,18

5 b7 12 12 1 11 8,33

Network 57 59 9 50 12,28

N Desynch. Time
desynch. (s)

Avg latency
(ms)

Max latency
(ms)

Min latency
(ms)

1 0 0 2138,57 6540 600

2 0 0 2133,33 4740 555

3 0 0 2216,25 6555 465

4 0 0 3201,67 6825 405

5 0 0 2091,25 5415 450

Network 2456,69 7755 405
Table 35: test 7, obtained data for TelosB

46

Z1:

Memory impact:

ROM (bytes) 37952
RAM (bytes) 6968

Table 36: test 7, memory impact for Z1

Data obtained from test 7 for Z1:

N Mote Pack. Sent Pack. Rec. Pack. Dupl. Rec.-Dupl. PLR (%)

1 10 12 14 3 11 8,33

2 20 10 13 3 10 0,00

3 30 14 18 4 14 0,00

4 40 10 10 1 9 10,00

5 50 12 11 2 9 25,00

Network 58 66 13 53 8,62

N Desynch. Time
desynch. (s)

Avg latency
(ms)

Max latency
(ms)

Min latency
(ms)

1 0 0 2010,00 5775 75

2 0 0 3536,54 10830 75

3 0 0 3018,53 10740 30

4 0 0 1976,25 3975 735

5 0 0 2422,50 5880 510

Network 2679,59 10830 30
Table 37: test 7, obtained data for Z1

With a period of 90 seconds, the PLR has reached acceptable values, whereas the latency

hasn´t changed and has kept stable around 2500 ms.

47

Chapter 5: Results

In this chapter the data from the previous chapter is analyzed, giving the results of the

tests.

5.1 Desynchronizations

In tests number 1 and 3 some desynchronizations happened during the realization of

the tests. These are the only tests with both, 4 second period and retransmissions

enabled.

After lowering the traffic at application or MAC layer, desynchronizations have

disappeared, which means that with a high amount of traffic, a lot of collisions

happened, in a way that ADV messages cannot arrive the mote, resulting in a

desynchronization.

It is also interesting to see how the desynchronizations create an increase of the PLR,

this effect being this higher in the motes with longer desynchronization periods, as

shown in Figure 1, Figure 2, Figure 3 and Figure 4.

Figure 1 - Test 1: PLR-Desynchronizations with TelosB

0

20

40

60

80

100

0 20 40 60 80 100

P
LR

 (
%

)

Time desynchronized (s)

PLR - Desynchronizations

48

Figure 2 - Test 1: PLR-Desynchronizations with Zolertia Z1

Figure 3 - Test 3: PLR-Desynchronizations with TelosB

Figure 4 - Test 3: PLR-Desynchronizations with Zolertia Z1

Figure 1 and Figure 2 show the effect of the amount of time desynchronized in the PLR

for both motes in test 1 and Figure 3 and Figure 4 for test 3.

0

20

40

60

80

100

0 20 40 60 80

P
LR

 (
%

)

Time desynchronized (s)

PLR - Desynchronizations

0

20

40

60

80

100

0 20 40 60 80 100

P
LR

 (
%

)

Time desynchronized (s)

PLR - Desynchronizations

0

20

40

60

80

100

0 20 40 60 80 100

P
LR

 (
%

)

Time desynchronized (s)

PLR - Desynchronizations

49

The slopes in the linear function vary from 0,16 to 0,29, being this effect greater on the

Z1 motes, in Table 38 it is shown a comparison of these slopes (Increase of PLR (%) per

desynchronized time unit (s)).

 TelosB Z1

Test 1 0,19 0,23

Test 3 0,16 0,29

Table 38 Increase of PLR for each second desynchronized

5.2 PLR

The PLR has got very bad results in most tests, with values over 50 % in 3 tests and over

20 % in 6 out of the 7 tests.

It is important to see that both motes have had a very similar behavior in all tests as

Figure 5 shows.

The PLR has been specially affected in test 2, in which there weren’t retransmissions,

causing a lot of packets not reaching the DAGROOT.

In test 3 the results are similar for those of test 1 so it is possible to guess that the

amount of available channels does not affect to the PLR in a significant way.

Figure 5 Evolution of PLR in the tests

0

20

40

60

80

100

1 2 3 4 5 6 7

P
LR

 (
%

)

Test #

Evolution of PLR in the tests

TelosB Z1

50

The tests have shown that increasing the period of the data transmission has improved

the PLR reaching to 12.28 % for TelosB and 8.62 % for Z1 with 90 s period. Figure 6 shows

how the PLR has changed with different periods. For this graphic tests 1, 4, 6 and 7 have

been taken into account. All of them have 6 channels, full payload and retries enabled

and the only difference is the transmission period.

Figure 6 Evolution of PLR with the period

To finalize with the PLR, the Z1 has got the best results in the last test with a 3.66% of

difference with respect to the TelosB but in other tests the TelosB has got better results,

so we cannot say that one of them is clearly better than the other regarding this

parameter.

5.3 Latency

Latencies have been quite high in all the tests. Figure 7 shows a comparison of the

average latencies of both motes in all the tests.

Once again, both motes have had a very similar behavior, resulting in two similar curves

in the graph.

In the first test, the average latency was close to 10 s, which is a very high value for this

type of networks. This configuration had 3 retries and 6 channels the same as the last

test but the 4 seconds period added to the desynchronizations, have given this bad

results.

Taking a look at the window of 4 minutes without desynchronizations, the average

latency drops down, making obvious that the desynchronizations generate high

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
LR

 (
%

)

Period (s)

PLR-Transmission Period

TelosB

Z1

51

latencies, due to the messages that wait to be retransmitted until the motes synchronize

again.

In test 3, the available channels were duplicated with the aim of reducing latencies. The

test was successful, getting much lower latencies than in the first test but the effect of

the desynchronizations is still there, having higher latencies than in the rest of the tests

with only 6 channels but no desynchronizations.

The best result for latencies are in the second test, in which there were not

retransmissions. This is due to the fact that all the messages that arrived successfully

were received in the first try but as the PLR has shown, most of the packets were lost.

In the rest of the tests with no desynchronizations and lower data traffic, the average

latencies have been more or less stable around 2.5 seconds.

Figure 7 Average latency in the tests

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

1 2 3 4 5 6 7

La
te

n
cy

 (
s)

Test #

Average latency

TelosB Z1

52

As for the maximum latencies (Figure 8), the first and third tests have got the worse

results showing the effects of the desynchronizations. The maximum latencies are much

lower in the rest of the tests.

In test 4, the Z1 has got a very high maximum latency. Taking a look in the tables of the

previous chapter, it is caused by a mote that got very high latencies, increasing the

average and giving this unexpected value, probably caused by some error during the

test, because it does not seem to repeat this behavior in other tests.

Figure 8 Maximum latency in the tests

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7

La
te

n
cy

 (
s)

Test #

Maximum latencies

TelosB Z1

53

Finally, as for the minimum latency, Figure 9 shows the minimum latency obtained in

each test.

This results show that the Zolertia Z1 has been able to get the lower latencies, obtaining

a minimum latency of 30 ms in most tests, whereas the TelosB has got minimum

latencies over 200 ms. Here is the first result in which the processor of the Z1 has shown

its better specifications, being able to get in all the tests some packets whit 30 ms

latency. Even in the last tests, in which the total amount of packets received by each

mote was low (around 10 packets) due to the high period of transmission, the Z1 was

able to get this low value. The TelosB on the other hand, had an increase of the minimum

latency showing that getting low latency values is rarer, so it experienced an increase in

minimum latency.

Figure 9 Minimum latencies in the tests

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7

La
te

n
cy

 (
m

s)

Test #

Minimum latency

TelosB Z1

54

6. Conclusion

The objective of this thesis was to characterize Wireless Sensor Networks (WSNs) in

terms of performances. For that purpose, latencies and packet lost rate numbers of two

known motes (TelosB and Zolertia Z1 running OpenWSN) have been compared.

The results have shown how they work under different conditions (amount of channels,

retransmissions, transmission period and payload length) and which conditions are

needed to get admissible results.

Furthermore, all the tests have been done equally for both motes, which means that

results are cross-comparable.

After looking at the results of the tests, we can conclude that the PLR is strongly

influenced by the amount of traffic in the network for both platforms.

The only way to get an acceptable PLR (around 10%) has been with a 90 second period

of data transmission, getting higher values for other values, reaching over 60 % of PLR

with 4 seconds period, or 80 % without retransmissions.

On the other hand, the latencies are better with higher periods too, getting an average

latencies above 8 seconds for periods of 4 seconds. Anyway, latency settles down faster

that the PLR, getting an average latency around 2,5 seconds for periods higher than 10

seconds.

The better results for the latencies have been obtained without retransmissions, being

under 1 second, but the increase of the PLR, doesn’t allow us to use this configuration

because of the high amount of packets lost.

This results make clear that this scenario cannot be used for any real time application,

due to the high period required and the high latencies obtained, it is impossible to

control anything that needs a fast response and high frequency control actions.

Anyway, it is possible to find some applications that do not require high speeds in which

the variables under control cannot change fast in the time, such as temperature,

pressure, humidity, etc.

If we compare both motes, we cannot say that there has been a huge difference

between them. In some tests the TelosB has gotten better results for latency or PLR

numbers whereas in others the Z1 has gotten better results, never having a significant

difference.

In every test both motes have given the expected results, increasing or lowering the

latencies and PLR values with similar tendencies, for example, both of them have

lowered the PLR when we increased the period of transmission or both of them have

lowered the latency and increased the PLR when there weren’t retransmissions.

55

As for the final test, being the one with the most acceptable results, the Z1 has got an

8.62 % of PLR against the 12.28 % gotten by TelosB. Resulting in a difference of 3.66 %.

On the other side, the latencies have been better for the TelosB mote, with an average

latency of 2456,69 ms in contrast with the 2679,59 ms of the Z1. Resulting on a 9,07 %

faster results for the TelosB.

This results are surprising for the fact that the microcontroller of the Z1 has 16 MHz clock

frequency that doubles the 8 MHz of the TelosB, expecting to obtain better results for

the first one. The superior clock speed has only been evident in the values for minimum

latencies, even if they have not made any difference in the average latency. This issue

needs to be studied, a higher performance is expected from a superior, more expensive

hardware, and OpenWSN has not been able to take advantage of this features.

It is also important to consider that the experiments have been done in a noisy

environment, influenced by Wi-Fi networks that operate in the same radio frequency

(2.4 GHz) and other motes and devices.

Currently, The Internet Of Things is a subject with a lot of repercussion and demand,

that brings many opportunities for a close future. Nowadays, the exchange of

information is a fundament in our society and making a wider and safer internet in which

millions of devices can communicate, makes our life more comfortable, easier and safer,

giving us the possibility to access many information and controlling remotely all the

connected devices that are part of our environment.

This thesis gives a little start to the characterization of two motes running a new

firmware under development but the work ahead from this point is full of possibilities

that will need the help of many universities around the world and the research

community.

To continue the characterization, there are many possibilities that would allow to know

better this subject:

 - tests with different amount of motes;

 - different topologies;

 - expansion to more devices: Openmote for example;

 - expansion to other firmwares: Contiki or Riot;

 - longer tests: to see how the motes work on long term working periods;

 - addition of more sensor data: humidity;

 - different configurations: to improve performance, trying to reduce

 latency, adapting for real-time applications, etc;

 - tests in different environments;

 - experiments on the communication security.

I

7. Bibliography

[1] P. Kinney - IEEE 802.15 WPAN Task Group 4e (TG4e) - IEEE standard association

- www.ieee802.org/15/pub/TG4e.html - 2003 - Consulted: 09/07/2016.

[2] J. A. Gutierrez - IEEE std. 802.15.4 Enabling Pervasive Wireless Sensor Networks -

EATON – 2005.

 [3] F. Zhao, L Guibas - Wireless Sensor Networks – 2004 - 1st edition.

[4] Wireless & Mobile Network Lab - IEEE 802.15.4 MAC - http://wireless.cs.tku.edu.tw/

~kpshih/course/wireless96/IEEE%20802.15.4%20MAC%20Layer.pdf - 2005 - Consulted:

03/08/2016.

[5] G. Anastasi - From IEEE 802.15.4 to IEEE 802.15.4e Another Step towards the Internet

of (Important) Things - Pervasive Computing & Networking Lab (PerLab) Dept. of

Information Engineering, University of Pisa - 2014.

[6] T. Watteyne, M. Palattella, L. Grieco - Using IEEE 802.15.4e Time-Slotted Channel

Hopping (TSCH) in the Internet of Things (IoT): Problem Statement - Internet Engineering

Task Force (IETF) - 2015.

[7] T. Tsvetkov - RPL: IPv6 Routing Protocol for Low Power and Lossy Networks - Fakultät

für informatik, Technishe Universität München - 2011.

[8] T. Winter - RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks - Internet

Engineering Task Force (IETF) - 2012.

[9] J. Postel - User Datagram Protocol - Internet Engineering Task Force (IETF) - 1980.

[10] F. Chraim - OpenWSN: a Standards-Based Low-Power Wireless Development

Enviroment - Transactions on Emerging Telecommunications Technologies - 2012.

II

[11] T. Watteyne - Stack - OpenWSN-atlassian - https://openwsn.atlassian.net/wiki

/display/OW/Stack - 2014 - Consulted: 03/08/2016.

[12] T. Watteyne - Architecture - OpenWSN-atlassian - https://openwsn.atlassian.net

/wiki/display/OW/Architecture - 2013 - Consulted: 03/08/2016.

[13] Memsic inc. - TelosB datasheet - TelosB mote platform - 2003 - 6020-0094-03 Rev

A.

[14] Zolertia - Zolertia Z1 data sheet - 2010 - v1.1 Rev. C.

III

8. Appendix

8.1 Code A1: UDPlatency.c

#include "opendefs.h"
#include "udplatency.h"
#include "openudp.h"
#include "openqueue.h"
#include "openserial.h"
#include "packetfunctions.h"
#include "opentimers.h"
#include "openrandom.h"
#include "opencoap.h"
#include "scheduler.h"
#include "IEEE802154E.h"
#include "idmanager.h"
#include "neighbors.h"
#include "sixtop.h"
#include "scheduler.h"
#include "sht11.h"

//=========================== defines ===

//#define UDPLATENCYPERIOD 10000
//#define NUMPKTTEST 300

//=========================== variables =======================================

udplatency_vars_t udplatency_vars;
//=========================== prototypes ======================================

void udplatency_timer(void);
void udplatency_pushTimer(void);
void udplatency_PushTask(void);
void trigger_forward(void);

//=========================== public ==

void udplatency_init(void) {
 udplatency_vars.seqNum_my = 0;
 udplatency_vars.seqNum_global = 0;
 udplatency_vars.udplatency_security = 0;
 udplatency_vars.triggerReceived = 0;

 udplatency_vars.UDPLATENCYPERIOD = 4000;
 udplatency_vars.NUMPKTTEST = 600;

 udplatency_vars.timerId = opentimers_start(udplatency_vars.UDPLATENCYPERIOD,

 TIMER_PERIODIC,TIME_MS,

 udplatency_timer);
}

void udplatency_task() {
 OpenQueueEntry_t* pkt;
 open_addr_t * p;
 open_addr_t q;
 unsigned int avg = 0;

IV

 // don't run if not synch
 if (ieee154e_isSynch() == FALSE) return;

 // don't run on dagroot
 if (idmanager_getIsDAGroot()) {
 opentimers_stop(udplatency_vars.timerId);
 return;
 }

 // prepare packet
 pkt = openqueue_getFreePacketBuffer(COMPONENT_UDPLATENCY);
 if (pkt==NULL) {
// openserial_printError(COMPONENT_UDPLATENCY,ERR_NO_FREE_PACKET_BUFFER,
// (errorparameter_t)0,
// (errorparameter_t)0);
 // increment seqNum, PLR stats on OV
 udplatency_vars.seqNum_my++;
 udplatency_vars.seqNum_global++;
 return;
 }

 pkt->creator = COMPONENT_UDPLATENCY;
 pkt->owner = COMPONENT_UDPLATENCY;
 pkt->l4_protocol = IANA_UDP;
 pkt->l4_sourcePortORicmpv6Type = WKP_UDP_LATENCY;
 pkt->l4_destination_port = WKP_UDP_LATENCY;
 pkt->l3_destinationAdd.type = ADDR_128B;
 memcpy(&pkt->l3_destinationAdd.addr_128b[0],&ipAddr_motedata,16);

 // the payload contains the 64bit address of the sender + the ASN

 packetfunctions_reserveHeaderSize(pkt, sizeof(asn_t));
 ieee154e_getAsn(pkt->payload);//gets asn from mac layer.

 packetfunctions_reserveHeaderSize(pkt,8);
 p=idmanager_getMyID(ADDR_64B);
 pkt->payload[0] = p->addr_64b[0];
 pkt->payload[1] = p->addr_64b[1];
 pkt->payload[2] = p->addr_64b[2];
 pkt->payload[3] = p->addr_64b[3];
 pkt->payload[4] = p->addr_64b[4];
 pkt->payload[5] = p->addr_64b[5];
 pkt->payload[6] = p->addr_64b[6];
 pkt->payload[7] = p->addr_64b[7];

 packetfunctions_reserveHeaderSize(pkt,8);
 avg =sht11_cal_temp();

 pkt->payload[0] = avg;
 pkt->payload[1] = 0;
 pkt->payload[2] = 0;
 pkt->payload[3] = 0;
 pkt->payload[4] = 0;
 pkt->payload[5] = 0;
 pkt->payload[6] = 0;
 pkt->payload[7] = 0;

 // insert Sequence Number
 packetfunctions_reserveHeaderSize(pkt,sizeof(udplatency_vars.seqNum_global));
 pkt->payload[0] = (udplatency_vars.seqNum_global >> 8) & 0xff;
 pkt->payload[1] = udplatency_vars.seqNum_global & 0xff;

V

 pkt->FIFO_seqNum = udplatency_vars.seqNum_my;

 openserial_printInfo(COMPONENT_UDPLATENCY,155,
 (errorparameter_t)pkt->FIFO_seqNum,
 (errorparameter_t)100);

 //17 bytes payload
 uint8_t i;
 for (i = 0; i < 16; i++){
 packetfunctions_reserveHeaderSize(pkt,1);
 pkt->payload[0] = i;
 }

 // send packet
 if ((openudp_send(pkt)) == E_FAIL) {
 openqueue_freePacketBuffer(pkt);
 }

 // increment seqNum
 udplatency_vars.seqNum_my++;
 udplatency_vars.seqNum_global++;

 // close timer when test finish
 if (udplatency_vars.seqNum_my > udplatency_vars.NUMPKTTEST) {
 udplatency_vars.triggerReceived = FALSE;
 udplatency_vars.seqNum_my = 0;
 udplatency_vars.seqNum_global = 0;
 opentimers_stop(udplatency_vars.timerId);
 }

}

void udplatency_timer(void) {
 scheduler_push_task(udplatency_task,TASKPRIO_COAP);
}

void udplatency_pushTimer(void){
 scheduler_push_task(udplatency_PushTask,TASKPRIO_SIXTOP);
}

void udplatency_forwardTimer(void){
 scheduler_push_task(trigger_forward,TASKPRIO_SIXTOP);
}

void udplatency_PushTask(void){
 udplatency_vars.timerId = opentimers_start(udplatency_vars.UDPLATENCYPERIOD,

 TIMER_PERIODIC,TIME_MS,

 udplatency_timer);
}

void udplatency_sendDone(OpenQueueEntry_t* msg, owerror_t error) {
 msg->owner = COMPONENT_UDPLATENCY;
 if (msg->creator!=COMPONENT_UDPLATENCY) {
 //openserial_printError(COMPONENT_UDPLATENCY,ERR_UNEXPECTED_SENDDONE,
 // (errorparameter_t)0,
 // (errorparameter_t)0);
 }

VI

 openqueue_freePacketBuffer(msg);
}

void udplatency_receive(OpenQueueEntry_t* msg) {
 openqueue_freePacketBuffer(msg);
}

void trigger_receive(OpenQueueEntry_t* msg){

 //TODO
 uint16_t receivedRate;
 uint16_t numberOfPackets;
 uint8_t securityFlag;
 uint16_t timeToWaitReceived;
 if(idmanager_getIsDAGroot()){
 udplatency_vars.triggerReceived = TRUE;
 }

 //if I have received the desync message previously, simply discard it.
 if (udplatency_vars.triggerReceived == TRUE){
 //free the RAM
 openqueue_freePacketBuffer(msg);

 return;
 } else {
 udplatency_vars.triggerReceived = TRUE;
 }

 openserial_printError(COMPONENT_UDPLATENCY,ERR_INVALIDSERIALFRAME,
 (errorparameter_t)0,
 (errorparameter_t)500);

 //toss the protocol header
 packetfunctions_tossHeader(msg,1);

 //retrieve values
 //get the rate
 receivedRate = msg->payload[0] + 256 * msg->payload[1];
 packetfunctions_tossHeader(msg,2);

 //get the number of packets to generate
 numberOfPackets = msg->payload[0] + 256 * msg->payload[1];
 packetfunctions_tossHeader(msg,2);

 //get the security flag
 securityFlag = msg->payload[0];
 packetfunctions_tossHeader(msg,1);

 //get the time to wait
 timeToWaitReceived = msg->payload[0] + 256 * msg->payload[1];
 packetfunctions_tossHeader(msg,2);

 //free up the RAM
 openqueue_freePacketBuffer(msg);

 //save variables
 udplatency_vars.UDPLATENCYPERIOD = receivedRate;
 udplatency_vars.NUMPKTTEST = numberOfPackets;
 udplatency_vars.udplatency_security = securityFlag;
 udplatency_vars.timeToWaitReceived = timeToWaitReceived;

 //schedule the timer for the start of the UDPLatency task
 udplatency_vars.globaltimerId = opentimers_start(timeToWaitReceived,

VII

 TIMER_ONESHOT,TIME_MS,

 udplatency_pushTimer);
}

uint16_t udplatency_getSeqNum(void){
 uint16_t value;
 value = udplatency_vars.seqNum_global;
 udplatency_vars.seqNum_global++;
 return value;
}
uint8_t udplatency_getTimerId(void){
 return udplatency_vars.timerId;
}

void udplatency_setSecurity(bool value){
 udplatency_vars.udplatency_security = value;
}

bool udplatency_getSecurity(void){
 return udplatency_vars.udplatency_security;
}

void udplatency_setPeriod(uint16_t value){
 udplatency_vars.UDPLATENCYPERIOD = value;
}

//Forward the trigger message down in the tree

void trigger_forward(void){

 OpenQueueEntry_t* pkt;

 //generate a broadcast MAC message with received parameters
 pkt = openqueue_getFreePacketBuffer(COMPONENT_OPENBRIDGE);
 if (pkt==NULL) {
 return;
 }

 openserial_printError(COMPONENT_UDPLATENCY,ERR_INVALIDSERIALFRAME,
 (errorparameter_t)0,
 (errorparameter_t)501);

 //admin
 pkt->creator = COMPONENT_SIXTOP;
 pkt->owner = COMPONENT_UDPLATENCY;

 // some l2 information about this packet
 pkt->l2_frameType = IEEE154_TYPE_DATA;
 pkt->l2_nextORpreviousHop.type = ADDR_16B;
 pkt->l2_nextORpreviousHop.addr_16b[0] = 0xff;
 pkt->l2_nextORpreviousHop.addr_16b[1] = 0xff;
 pkt->isBroadcastIE = TRUE;
 // pkt->FIFO_sn = 0; //maximum priority

 //payload
 //amount of time we have to wait for the start of sending packets
 packetfunctions_reserveHeaderSize(pkt, sizeof(uint16_t));
 pkt->payload[0] = (uint8_t) udplatency_vars.timeToWaitReceived;
 pkt->payload[1] = (uint8_t) (udplatency_vars.timeToWaitReceived >> 8);

VIII

 //security flag
 packetfunctions_reserveHeaderSize(pkt, sizeof(uint8_t));
 pkt->payload[0] = udplatency_vars.udplatency_security; //list-termination

 //number of packets
 packetfunctions_reserveHeaderSize(pkt, sizeof(uint16_t));
 pkt->payload[0] = (uint8_t) udplatency_vars.NUMPKTTEST;
 pkt->payload[1] = (uint8_t) (udplatency_vars.NUMPKTTEST >> 8);

 //rate
 packetfunctions_reserveHeaderSize(pkt, sizeof(uint16_t));
 pkt->payload[0] = (uint8_t) udplatency_vars.UDPLATENCYPERIOD;
 pkt->payload[1] = (uint8_t) (udplatency_vars.UDPLATENCYPERIOD >> 8);

 //add id for the protocol
 packetfunctions_reserveHeaderSize(pkt, sizeof(uint8_t));
 pkt->payload[0] = 0xAB;

 // put in queue for MAC to handle
 sixtop_send(pkt);

 return;

}

8.2 Code A2: UDPlatency.c

 packetfunctions_reserveHeaderSize(pkt,8);
 avg =tmp102_read_temp_simple();

 pkt->payload[0] = avg;
 pkt->payload[1] = 0;
 pkt->payload[2] = 0;
 pkt->payload[3] = 0;
 pkt->payload[4] = 0;
 pkt->payload[5] = 0;
 pkt->payload[6] = 0;
 pkt->payload[7] = 0;

8.3 Code A3: UDPlatency.c

 udplatency_vars.UDPLATENCYPERIOD = 10000;
 udplatency_vars.NUMPKTTEST = 600;

8.4 Code A4: UDPlatency.c

 udplatency_vars.UDPLATENCYPERIOD = 30000;
 udplatency_vars.NUMPKTTEST = 600;

8.5 Code A5: UDPlatency.c

 udplatency_vars.UDPLATENCYPERIOD = 90000;
 udplatency_vars.NUMPKTTEST = 600;

IX

8.6 Code B1: IEEE 802154E.h

#define SYNCHRONIZING_CHANNEL 23 // channel the mote listens on to synchronize
#define TXRETRIES 3 // number of MAC retries before declaring failed
#define TX_POWER 31 // 1=-25dBm, 31=0dBm (max value)
#define RESYNCHRONIZATIONGUARD 5 // in 32kHz ticks. min distance to the end of the slot to successfully
 //synchronize
#define US_PER_TICK 30 // number of us per 32kHz clock tick
#define ADVTIMEOUT 5 // in seconds: sending ADV every 30 seconds
#define MAXKAPERIOD 500 // in slots: @15ms per slot -> ~30 seconds. Max value used by adaptive
synchronization.
#define DESYNCTIMEOUT 4000 //in slots: @15ms per slot -> ~35 seconds. A larger DESYNCTIMEOUT is
 //needed if using a larger KATIMEOUT.
#define LIMITLARGETIMECORRECTION 5 // threshold number of ticks to declare a timeCorrection "large"
#define LENGTH_IEEE154_MAX 128 // max length of a valid radio packet
#define DUTY_CYCLE_WINDOW_LIMIT (0xFFFFFFFF>>1) // limit of the dutycycle window

8.7 Code B2: IEEE 802154E.h

#define SYNCHRONIZING_CHANNEL 23 // channel the mote listens on to synchronize
#define TXRETRIES 0 // number of MAC retries before declaring failed
#define TX_POWER 31 // 1=-25dBm, 31=0dBm (max value)
#define RESYNCHRONIZATIONGUARD 5 // in 32kHz ticks. min distance to the end of the slot to successfully
 //synchronize
#define US_PER_TICK 30 // number of us per 32kHz clock tick
#define ADVTIMEOUT 5 // in seconds: sending ADV every 30 seconds
#define MAXKAPERIOD 500 // in slots: @15ms per slot -> ~30 seconds. Max value used by adaptive
synchronization.
#define DESYNCTIMEOUT 4000 //in slots: @15ms per slot -> ~35 seconds. A larger DESYNCTIMEOUT is
 //needed if using a larger KATIMEOUT.
#define LIMITLARGETIMECORRECTION 5 // threshold number of ticks to declare a timeCorrection "large"
#define LENGTH_IEEE154_MAX 128 // max length of a valid radio packet
#define DUTY_CYCLE_WINDOW_LIMIT (0xFFFFFFFF>>1) // limit of the dutycycle window

8.8 Code C1: schedule.h

#define SUPERFRAME_LENGTH 101 //should be 101

#define NUMADVSLOTS 1
#define NUMSHAREDTXRX 6
//#define NUMDEDICATEDTX 14
//#define NUMDEDICATEDRX 14
#define NUMSERIALRX 1

8.9 Code C2: schedule.h

#define SUPERFRAME_LENGTH 101 //should be 101

#define NUMADVSLOTS 1
#define NUMSHAREDTXRX 12
//#define NUMDEDICATEDTX 14
//#define NUMDEDICATEDRX 14
#define NUMSERIALRX 1

X

8.10 Stack organization diagram of the OpenWSN protocol stack

https://openwsn.atlassian.net/wiki/display/OW/Stack

