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Motor Unit Action Potential Duration, Il: A New Automatic
Measurement Method Based on the Wavelet Transform

1. Rodriguez,* L. Gila,7 A. Malanda,* 1. G. Gurtubay,1 F. Mallor,} S. Gomez,
L. Rodriguez,* and J. Navallas*

Summary: To present and evaluate a new algorithm, based on the
wavelet transform, for the automatic measurement of motor unit
action potential (MUAP) duration. A total of 240 MUAPs were
studied. The waveform of each MUAP was wavelet-transformed,
and the start and end points were estimated by regarding the maxima
and minima points in a particular scale of the wavelet transform. The
results of the new method were compared with the gold standard of
duration marker positions obtained by manual measurement. The
new method was also compared with a conventional algorithm,
which we had found to be best in a previous comparative study. To
evaluate the new method against manual measurements, the disper-
sion of automatic and manual duration markers were analyzed in a
set of 19 repeatedly recorded MUAPs. The differences between the
new algorithm’s marker positions and the gold standard of duration
marker positions were smaller than those observed with the conven-
tional method. The dispersion of the new algorithm’s marker posi-
tions was slightly less than that of the manual one. Our new method
for automatic measurement of MUAP duration is more accurate than
other available algorithms and more consistent than manual mea-
surements.

Key Words: Motor unit action potential, Duration, Quantitative
electromyography, Wavelet transform

(J Clin Neurophysiol 2006;23: eee—eee)

he definition of the motor unit action potential (MUAP)

duration, as well as its measurement procedure, presents
hard intrinsic difficulties, and therefore manual duration mea-
surement has been described as “an arbitrary task” (Sonoo,
2002). However, delimitation of the length of the MUAP
waveform, that is, the measurement of duration, is the first
step in the quantitative analysis of the MUAP and thus
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estimation of this parameter is indispensable in quantitative
electromyography.

A number of automatic algorithms have been designed
(Stalberg et al., 1986) to try to overcome the limitations of
subjective assessment of the MUAP duration. These algo-
rithms use criteria of amplitude and slope to reproduce the
process of visual inspection, avoiding subjective biases. In
Part I of the present work, we demonstrated the big variability
in manual measurements and the limitations of the currently
available automatic methods. As reported by others (Bischoff
et al., 1994; Stalberg et al., 1995; Takehara et al., 2004), these
limitations imply the necessity of continuous visual supervi-
sion and frequent manual readjustments of the duration mark-
ers. Most of the errors of automatic methods derive from the
presence of fluctuations in the baseline (BL) and from other
noise of other sources. Unfortunately, such BL irregularities
and noise are common in real recordings.

The discrete wavelet transform (DWT) is a technique
that simultaneously obtains a time and a scale representation of
signals and has been successfully applied for detecting biologic
events (Akay, 1996). This technique has provided promising
results in the analysis of various electrophysiological signals
such as blink reflex (Kumaran et al., 2000), electromyographic
(EMG) and electrocardiographic (ECG) recordings (al-Fahoum
and Howitt, 1999; Cuiwei et al.,, 1995; Fang et al., 1999),
electroencephalographic signals for analysis of epileptic activity
(Geva and Kerem, 1998), or event-related potentials (Gurtubay
etal., 2001). For EMG signals in the DWT domain, by regarding
the transformed signal at a suitable scale, it is possible to evade
the high-frequency noise and low-frequency fluctuation of the
BL. Thus, the DWT is a useful way of detecting the boundaries
between the MUAP waveform and the BL, that is, of measuring
MUAP duration.

In this report, we present a new algorithm, based on the
DWT, for automatic measurement of MUAP duration in clinical
recordings. The algorithm is compared with the Aalborg method
(AM), the conventional algorithm that we found to be best in the
comparative study reported in Part I. We analyze the behavior of
the above two methods with signals with different levels of
noise. In addition, the variability of the new method is compared
with that of manual measurements.

Part of the present study was presented at XVth Con-
gress of the International Society of Electrophysiology and
Kinesiology (ISEK 2004) and at the 42nd Annual Meeting of
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the Spanish Society of Clinical Neurophysiology (Rodriguez
et al., 2004a, Rodriguez et al., 2004b).

METHODS

Subjects, MUAPs, and Manual Measurement of
Duration

A total of 240 MUAPs, 152 from 8 tibialis anterior
(TA) muscles and 88 from 8 first dorsal interosseous (FDI)
muscles, were analyzed. The subjects, the procedures for
recording and extraction of MUAPs, and the displays and
user interface for manual duration measurement are described
in Part I of this work. To establish a gold standard of the
duration markers positions (GSP), each MUAP was measured
six times (i.e., by two electromyographists, each on three
occasions), and the GSP was established as the mean position
of the three manual marker positions which were closest
together (see Part I for further detail).

Description of the New Algorithm for MUAP
Duration Measurement

On visual inspection of an EMG signal, MUAPs are
distinguishable because they consist of a set of peaks. With the
discrete wavelet transform (DWT), not only can we detect
MUAP peaks but also the start and end points of these peaks
(Cuiwei et al., 1995). The method we devised for finding the
start and end points in MUAPs comprises several stages (Fig. 1).

1. First, we apply the DWT with a specific mother wavelet
that has suitable properties for the task required and is
similar to the MUAP waveform.

MUAP

1. Discrete Wavelet Transform (DWT)

2. Scale Selection

|

3. Determination of maxima and minima in the DWT

a. Successive maxima and minima elimination
b. Distance conditions
¢. Thresholding

d. Slope criteria

|

4. Determination of MUAP start and end points

( MUAP duration )

FIGURE 1. Method of finding the start and end points in
MUAPs comprises several stages.

2

2. Scale selection. We select a scale that represents the
MUAP signal in terms of energy but excludes high-
frequency noise and low-frequency interferences such
as BL fluctuation. Different scales for determining the
start and end points of MUAPs are selected in accor-
dance with experimental results.

3. Determination of MUAP peaks in the selected DWT
scale. We use criteria of threshold and slope and an
analysis of the specific properties of the selected wave-
let to find the maxima and minima related to the MUAP
in the time domain.

4. Determination of MUAP start and end points. From the
DWT peaks found in the previous step, a simple slope-
based algorithm is applied to find the MUAP duration.

Discrete Wavelet Transform

The DWT was applied to the averaged MUAPs (see
Part I). As with other wavelet transforms, the DWT decom-
poses a signal into a rough approximation signal and a detail
signal. The approximation signal is subsequently divided into
new approximation and detail signals (Fig. 2). This process is
carried out iteratively producing a set of approximation signals
at different detail levels (scales) and a final gross approximation
of the signal. The different scales contain different spectral
components: Lower scales occupy higher frequency bands (al-
though not strictly separated). In the case of an MUAP detection
algorithm, it is the detail signals rather than the approximation
signals that are of interest.

The specific mother wavelet that we used was the
nonorthogonal quadratic spline wavelet with one vanishing
moment, which has previously been successfully used for the
detection of characteristic points (QRS complex and P and T
waves) in ECG signals (Cuiwei et al., 1995). An important
feature of this wavelet is its shift invariance with regard to
local extremes and zero crossings; the locations of local
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FIGURE 2. DWT decomposes a signal into a rough approx-
imation signal and a detail signal; approximation signal is
subsequently divided into new approximation and detail
signals.
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FIGURE 3. To find the MUAP start, we select the scale containing most energy, ds(n) (a). To find the MUAP end, we

select the highest energy scale of the first five, de(n) (b).

extremes and zero crossings in the EMG record correspond
with those in the wavelet domain. It has been shown (Mallat,
1992a) that using this wavelet every uniphasic wave in the
original signal leads to a pair of peaks (a negative followed by
a positive one) at every scale of the DWT. We implemented
the DWT with the Mallat algorithm (Mallat, 1992b).

Scale Selection

The signal is fully decomposed in J <log, L levels,
where L is the length of the signal. To find the MUAP start,
we select the scale containing most energy, ds(n) (Fig. 3a).
To find the MUAP end, we select the highest energy scale of
the first five, de(n) (Fig. 3b). These scales may or not may
coincide. As the MUARP start is usually abrupt and sharp, it
can be recognized in all scales. On the other hand, the end of
an MUAP is often long and of low amplitude and is thus more
difficult to discriminate; a smaller scale may give better
temporal resolution and facilitate visual assessment. The
above scale selection rules are empirical.

Typically, the most energetic scale is considered to
be the most informative and usually corresponds to an
intermediate scale, little affected by either high-frequency
noise or low-frequency BL fluctuation. Working in this
scale simplifies detection of start and end points in the
DWT domain. We use the detail signal corresponding to
this scale for subsequent processing of the signal. A process of
scale selection is needed because MUAP waveforms vary,
and energy is not always concentrated within the same
wavelet scale or frequency band. The higher the scale, the
higher the frequency resolution but the lower the temporal
resolution. In this application, temporal resolution is more
important than frequency resolution.

Determination of Maxima and Minima of
the DWT

In this stage, we detect the N relevant maxima and
minima related to the MUAP. While aware of BL fluctu-

Copyright © 2006 by the American Clinical Neurophysiology Society

ation and other noise, we find the set of local extremes in
the wavelet domain. We will call a, and 1, the amplitude and
position of the k-th maximum or minimum in ds(n) or de(n),
respectively.

First, we find the maximum DWT peak occurring
within the 15- to 30-ms interval of the whole 50-ms window.
The use of this time interval helps to limit the search to those
DWT peaks that correspond to the MUAP under analysis as
opposed to those of other MUAPs caught on the record. The
maximum DWT peak corresponds to the maximum MUAP
peak near the triggering point (Fig. 4). We refer to this peak
as [amax, Imax].

Next, we obtain two different sets of DWT maxima and
minima points: the set to the right (RMM) of the maximum
peak position (max) over de(n), RMM = {[a,, I ] € de(n); k
= max + 1,...,N} (Fig. 5a); and the one to the left (LMM)
over ds(n), LMM = {[a, L] € ds(n); k = max — 1, max
—2,..., 1} (Fig. 5b).

From these DWT local extremes, we now need to
ascertain which are related to MUAP maxima and minima.
The algorithm uses the following approaches to achieve this.

Elimination of Successive Maxima or Minima

As is evident by visual inspection, MUAP waveforms
are composed of successive maxima and minima. The
wavelet applied will not alter this morphology, and so
DWT maxima and minima should alternate. Peaks that do
not conform to this disposition must be from other sources,
such as high-frequency noise, and are removed. If the peak
being analyzed is of opposite morphology to the one before
it, the next condition is checked, as described below.

Checking the Distance Between Peaks
The difference in time interval between successive
pairs of maxima and minima, Al,, must be in accordance with

3
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FIGURE 5. Two different sets of DWT maxima and minima points.

the following equations with regard to the start and final
MUAP points, respectively:

195 ps=Al = k, *Al,,,
0= Alk = kZ*Almax

where Al is the measured time interval between the max-
imum peak and the next peak (whether maximum or mini-
mum) to the right. The factors k; or k, are for start and end
point calculations, respectively.

This temporal separation criterion is applied to separate
maxima and minima related to the peaks of the object MUAP
from those related to secondary MUAPs or noise (Fig. 5). We
use the distance from the maximum DWT peak to the next local
extreme to the right, Al,., as a time interval related to the
features of the analyzed MUAP. We can assume that there will

4

always be an extreme to the right of the maximum DWT peak
because the tail of an MUAP is longer than the initial part.

Thresholding

To find the start point we look, in the scale ds(n), for
maxima and minima above a symmetric threshold (*Th,)
(Fig. 6). Likewise, for calculating the end point, maxima and
minima above a different symmetric threshold (*Th,) are
looked for in the scale de(n). The thresholds serve to differ-
entiate between MUAP samples and noise samples or low-
frequency fluctuation samples. Threshold values were ob-
tained experimentally, as explained below.

For the start point, if the amplitude of the peak being
analyzed is higher than the threshold, the next condition can
be checked.

Copyright © 2006 by the American Clinical Neurophysiology Society

Fe,
AQ:7



| balts/z1g-jcn/z1g-jcn/z1g00606/2192180-06z | xppws | S=1 | 9/15/06 | 6:38 | Art: WNP200083 | Input-nim

Journal of Clinical Neurophysiology ¢ Volume 23, Number 6, December 2006

Motor Unit Action Potential Duration: Part Il

800 -

600

400

200
Th1

-Th1
=200+

Amplitude (pV)

-400

-600 -

-800

% 30 35 40 45 50
Time (ms)

(a)

FIGURE 6.

Amplitude (pV)

0 5 10 15 20 25 30 35 40 45 50
Time (ms)

(@)

FIGURE 7. Start and end points. Peak is related to the MUAP.

A different approach is applied for the end point. As
mentioned above, the MUAP end point is indistinct and
difficult to determine because the final phase of the potential
returns to the BL very slowly and asymptotically. However,
very low-amplitude MUAP turns do exist, and their corre-
sponding low-amplitude DWT maxima or minima may es-
cape detection by the previous processes when their ampli-
tude is below the threshold Th,. Thus, for such DWT
extremes, conditions a, b, and d are rechecked, and if the
extreme passes these criteria, it is not excluded, that is, it is
considered to be related to the MUAP.

Applying Slope Criteria

If the absolute value of the slope between the last
accepted local maximum or minimum and the peak that is
being analyzed is greater than s, or s, (for start and end

Copyright © 2006 by the American Clinical Neurophysiology Society
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To find the start point we look, in the scale ds(n), for maxima and minima above a symmetric threshold (+Th,).
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points, respectively), then that peak is considered to be
related to the MUAP (Fig. 7). The values for s, and s, were
obtained experimentally.

After consecutively subjecting each of the peaks of the
LMM and RMM sets to these conditional tests and excluding
those peaks that do not meet the criteria, we assume we have
identified the maxima and minima in the DWT related to the
MUAP peaks (Fig. 7).

Determination of the Start and End Points of
the MUAP Waveform

To find the MUAP start point, we identify the left-most
DWT maximum or minimum that has passed the four con-
ditions described above and proceed to search toward the
beginning of the analysis window; the MUAP is considered

5
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FIGURE 8. MUAP duration is calculated as the time interval
between start and end points.

to start in the sample whose absolute slope is greater than the
slope threshold, s;.

Similarly, to find the MUAP end point, we take the
right-most DWT peak that has passed the four conditions and
proceed to search toward the end of the analysis window; the
sample whose absolute slope is greater than the slope thresh-
old, s,, is considered to contain the MUAP end point.

The values for sy and s, were obtained experimentally.
MUAP duration is calculated as the time interval between
start and end points (Fig. 8).

We used a genetic algorithm to determine the values of
all the parameters (Th,, Th,, k;, ks, s}, S5, 3, and s,) involved
in the calculation of MUAP start and end points. Genetic
algorithms are general optimization procedures, the inspira-
tion for which is based on the mechanisms such as natural
selection genetic coding and gene combination and mutation,
which underlie natural evolution (Goldberg, 1989).

We applied genetic algorithms to a “training set” of 64
randomly selected MUAPs to optimize parameter values such
that the automatic algorithm’s MUAP start and end points
were as close as possible to the corresponding GSP positions.

The parameters values for the initial points were

Th, =8.74 nV, k, =32, 5,=0.67 nV/s,83,=0.19 nV/s
The parameter values for the final points were
Th, = 3.67 WV, k, =3.91,5,=2.79 pV/s,8, =0.18 WV/s

Note that the amplitude threshold, Th,, used to identify
DWT maxima and minima for the start point, is higher than
that, Th, for the end point. The explanation can be found in
the MUAP waveform, in which the peak after the start point
is usually “sharp” and of high amplitude, whereas the peak
before the end point is “blunt” and of low amplitude, with a
slow return to the BL. This is also the reason why the
constant time interval for MUAP end (k,) is larger than that
for the start (k).

6

Description of the Aalborg Method

The AM algorithm was developed by Stalberg and
coworkers (Stalberg et al., 1986) at the Institute of Electronic
Systems at Aalborg University Center (Denmark). The
MUAP start and end points are found as the first point from
the triggering point that has less than £5 wV signal fluctu-
ation within the following (for the end) or previous (for the
start) 5-ms window-, and an absolute amplitude value less
than 20 wV from the BL. The BL is the electrical zero of the
amplifier. Of published automatic duration algorithms, the
AM gave the best results in our previous comparative study
(see Part I of this work).

Comparative Study of the Conventional and
New Methods for Automatic Duration
Measurement

We applied the AM and our wavelet-based method
(WBM) to our set of 240 MUAPs. The results were compared
with the GSP and the relative mean differences evaluated
with Student #-test. For each method, we counted the number
of “gross errors,” which we defined as an absolute difference
between automatic marker position and GSP of greater than
5 ms. The proportions of gross errors under the AM and the
WBM were compared with the x* test.

Behavior of the Automatic Methods With
Noise

To assess the robustness of both automatic methods in the
presence of noise, we added zero-mean white gaussian noise to
all the 240 accepted MUAP signals and ran both AM and WBM
algorithms for different signal-to-noise ratios (SNR). The differ-
ences between the GSP and the automatic placements of the
duration markers for both methods were obtained. The mean and
SD of such differences were plotted against SNR.

Comparative Study of Manual and Automatic
Duration Measurements

To analyze the consistency of the manual and the WBM
duration measurements, we recorded 19 MUAPs between 3
and 7 times. Then, six manual duration measurements (by
two electromyographists on three occasions) and one auto-
matic duration measurement were available for each recorded
MUAP. Thus, for each of the 19 MUAPs, we had between 18
and 42 manual marker placements and between 3 and 7
automatic placements. We compared the dispersion of these
placements. We used the standard deviation (SD) to estimate
the dispersion of manual measurements. However, because of
the small sample size, to estimate the dispersion of the
automatic placements we used a method based on the range,
according to the following estimator:

R

0'de2

where R is the range of the start or end marker positions for
the same MUAP and d, is a parameter dependent on the
number of automatic positions for the same MUAP (Mont-

Copyright © 2006 by the American Clinical Neurophysiology Society
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TABLE 1. Differences Between the Gold Standard of the
Duration Marker Positions and Marker Positions Obtained by
Aalborg Method and by Our New Wavelet Based Method
for Automatic Duration MUAP Measurement

Muscle/Method AM WBM
TA (n = 152)
Start 2,4/5,6/1,5-3,3 -0,1/2,2/—0,5-0,2
End —1,7/5,9/—2.6-——0,7 -0,4/3,2/—0,1-0,9
FDI (n = 88)
Start 2,6/6,7/1,2-4,0 0,1/1,0/—0,1-0,3
End —1,9/5,8/—3,1-—0,61 -0,9/2,3/—1,3-0,4

GSP, Gold standard of the duration marker positions; AM, Aalborg method; WBM,
wavelet-based method; TA, tibialis anterior muscle; FDI, first dorsal interoseous
muscle.

Mean/SD/95% confidence interval (ms). All mean differences between the two
methods are significant (P < 0.001; r-test).

gomery, 2001). For start and end markers respectively, we
used the 7-test to compare the dispersions of manual (SD) and
automatic (o) placements.

RESULTS

Comparison of the Automatic Methods

The mean differences between AM and WBM marker
positions and GSPs are given in Table 1. For both start and
end markers in both TA and FDI muscles, our new method
has lower mean differences, with lower SDs. The lower SD
means that our method is more accurate and consistent.
The confidence intervals illustrate that our method is
unbiased (i.e., centered on the GSP), as zero is included in
all cases.

@

(b)

(d)

Copyright © 2006 by the American Clinical Neurophysiology Society

The WBM gave fewer gross errors than did the AM:
2.9% versus 17.9% for MUARP start points and 8.8% versus
15.0% for end points (P < 0.05; x* test).

As illustrated in Fig. 9a, the WBM overcomes the
problem of discharges of other MUAPs present in the record
before and after the MUAP under analysis.

The AM sometimes fails in positioning markers when
the amplitude samples of the following (or previous) 5-ms
window from the trigger point fluctuate more than =5 uV, as
in the end marker in Fig. 9b. Besides, the AM also fails as a
consequence of the selection of the BL level as the electrical
zero. In many cases, large, slow fluctuation of the BL results
in a considerable shift of the MUAP up or down with respect
to the electrical zero, despite the fact that several discharges
are averaged. This error will affect the thresholds of this
algorithm referred to the BL, and it may obtain inaccurate
start and end MUAP points (Fig. 9, ¢ and d).

Although the WBM performs better than the AM, it
still produces gross errors in a small number of cases. The
WBM fails to position the start marker correctly when a
MUAP waveform has turns with a low level of amplitude
variation. This failure is a consequence of the wavelet
transformation because with quadratic spline wavelet
DWT, such peaks yield a low-amplitude maximum-mini-
mum pair that may not exceed the threshold, Th;, and so
they are excluded from the MUAP and halt progression of
the algorithm. An example is given in Fig. 10, in which the
start marker is located after the GSP.

Also, the WBM sometimes fails when positioning the
end marker. The DWT cannot fully cope with the problematic
long, low-sloped tails of some MUAPs (Fig. 11). The algo-
rithm searches for peaks with amplitude values below Th,
and sometimes finds a noise peak or a BL fluctuation peak

FIGURE 9. WBM overcomes the
problem of discharges of other
MUAPs present in the record before
and after the MUAP under analysis
(a). AM sometimes fails in positioning
markers when the amplitude samples
of the following (or previous) 5-ms
window from the trigger point fluctu-
ate more than =5 uV, as in the end
marker in b.
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With quadratic spline wavelet DWT, peaks yield a low-amplitude maximum-minimum pair, which may not ex-

ceed the threshold, so they are excluded from the MUAP and halt progression of the algorithm. Start marker is located after

the GSP.
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that meets the stipulated conditions but is not really a part of
the MUAP under analysis (Fig. 12).

Comparison of the Automatic Methods With
Different Levels of Noise

In Fig. 13, we plot the means and standard deviations of
differences from differences between the GSP and the posi-
tions obtained by both automatic methods against SNR.

Across the SNR range and for both start and end marker
positions, the WBM gave lower mean differences than the AM. The
WBM attained stable performance at higher levels of noise than the
AM did, which indicates that the WBM is more robust in this
respect.
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DWT cannot fully cope with the problematic long, low-sloped tails of some MUAPs.

Standard deviation values indicate that the WBM was
more precise than the AM; for most of the SNR range, SD
values were lower with the WBM than with the AM. Only at
low SNR, when AM presented very high mean differences,
was SD lower with AM than with WBM.

Comparison of Manual and Automatic
Duration Measurements

The means of SD values for the start and end manual
positions were 0.5 and 1.1 ms, respectively. The mean of o
values was 0.6 ms for both start and end WBM markers. No
significant differences were found between the respective
dispersions of the start point. However, the difference be-

Copyright © 2006 by the American Clinical Neurophysiology Society
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FIGURE 12. Algorithm searches for peaks with amplitude values below Th, and sometimes finds a noise peak or a BL fluctua-
tion peak that meets the stipulated conditions but is not really a part of the MUAP under analysis.
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FIGURE 13. Mean and standard deviations of differences are plotted from differences between the GSP and positions
obtained by both automatic methods against SNR.

tween the estimated dispersions of the end point placements
was significant (P < 0.05; t-test), that of the WBM being
lower (0.6 against 1.1 ms). An example of the different
degree of dispersion in the placements of the duration mark-
ers obtained manually and with our new automatic method is
given in Fig. 14.

Computational Cost

The CPU times in milliseconds (mean/SD) for the
WBM and for the AM were 20.4 (12.6) and 4.2 (8.5),
respectively.

DISCUSSION

In terms of automatic measurement of MUAP duration,
real EMG signals pose several problems, such as the presence

Copyright © 2006 by the American Clinical Neurophysiology Society

(b)

of MUAPs other than the one being analyzed, high-frequency
noise, and BL fluctuations. The new automatic method for
measuring MUAP duration that we describe in this report
deals with the aforementioned problems better than previ-
ously described algorithms, such as the AM, thereby provid-
ing more accurate duration marker placements and fewer
gross aberrant errors.

The AM differentiates the MUAP waveform from the BL
on the basis of the quantitative criteria of amplitude and slope. If,
as in the AM, the BL is taken as electrical zero without
consideration of possible DC offset in the MUAP, then appli-
cation of the amplitude criteria can result in misplacement of
markers (Rodriguez et al., 2006). The WBM largely precludes
such errors because the intermediate scales of the wavelet

9



| balts/z1g-jcn/z1g-jen/z1g00606/2192180-06z | xppws | S=1 | 9/15/06 | 6:38 | Art: WNP200083 | Input-nim |

Rodriguez et al.

Journal of Clinical Neurophysiology ® Volume 23, Number 6, December 2006

SD,=0.7ms

100 pv

5ms

(a)

FIGURE 14.
with our new automatic method.

transform separate out a lot of the noise and BL fluctuation
before application of thresholding and slope criteria.

Although the WBM is relatively robust against BL
fluctuation and other artifacts, it does present certain limita-
tions. It fails to position the start marker correctly when a
MUAP waveform has turns with a low level of amplitude
variation. Also, the WBM sometimes fails when positioning
the end marker of MUAPs with long, low-sloped tails.

Besides making use of the DWT, the WBM also de-
pends on thresholding and slope criteria. As with previously
reported automatic methods (Stalberg et al., 1986; Stalberg et
al., 1996; Stewart et al., 1989), we established the values of
the parameters used in these criteria by finding those values
that enabled the algorithm to best reproduce manual duration
measurements. To achieve this, we used genetic algorithms
and a carefully prepared set of gold standard manual duration
measurements from two senior electromyographists. Since
our goal is the measurement of MUAP duration in a clinical
setting, we believe this is a good way to optimize the
parameter values. However, duration measurements and cor-
responding gold standards will vary to some degree from
electromyographist to electromyographist, and so the result-
ing parameter values cannot be completely objective.

Thus, errors in positioning the end point are not fully
dependent on the algorithm execution because there are diffi-
culties in the definition of clinical MUAP duration (Dumitru and
King, 1999; Dumitru et al., 1999) and inherent limitations and
randomness in its manual measurement (Sonoo, 2002), which
are in some way represented in the automatic method. Never-
theless, further refinement of the method is necessary to obtain
the best adaptation to the particular characteristics of the EMG
signals and to the intrinsic difficulties of the MUAP duration
measurement.

Setting aside the problems of the appropriate definition
and criteria of MUAP clinical duration, an automatic method
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Example of the different degree of dispersion in the placements of the duration markers obtained manually and

capable to fulfill any given criteria in any condition should
present a high reliability. When analyzing several times the
same MUAP, an automatic method always gives the same
positions for start and end markers, showing maximum re-
peatability. With an efficient automatic method, if there were
any bias in the marker positioning, it would be systematic and
homogeneous in trend and magnitude, not arbitrary as sub-
jective manual placements. Thus, the ideal method for reach-
ing a satisfactory consistency in the MUAP duration mea-
surement should be automatic, overcoming the inherent
variability of human appreciation.

To assess the variability of an automatic method, it is
necessary to present the same MUAP in different fashions,
for example, by recording it several times, as it has been done
in the present work. The dispersion of end markers positions
obtained by the new automatic method was slightly but
significantly lower than that of the corresponding manual
measurements. This result tantalizingly points at the possi-
bility of improving the consistency of duration measurements
by means of an automatic method. To demonstrate this
conclusively, a larger study, which will allow for the use of
more powerful statistical methodologies such as, for example,
the Gage R & R method, is required.

The WBM has sufficiently good performance to proceed
to be tested by practical application in a clinical setting. Al-
though the algorithm was more time-consuming than other
automatic methods, its mean CPU time in the Matlab environ-
ment was about 20 ms, which is short enough for real-time
processing. In clinical practice, the algorithm could reduce the
requirement for manual intervention in duration marker place-
ment, thereby facilitating the electromyographist’s work. To-
gether with multi-MUAP systems, the presented algorithm could
also reduce patient discomfort by reducing the exploration time.
Nevertheless, further research is necessary to assess the behavior

Copyright © 2006 by the American Clinical Neurophysiology Society
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of the new algorithm under the different recording conditions of
both normal and pathologic MUAPs.
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