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ABSTRACT: In this paper, a comparison between two approaches to predict the AC power output of PV systems is 

carried out in terms of forecast performance. Each approach uses one of the two main types of PV modeling, 

parametric and nonparametric, and both use as inputs several forecasts of meteorological variables from a Numerical 

Weather Prediction model. Furthermore, actual AC power measurements of a PV plant are used to train the 

nonparametric model, to adjust the parameters of the different PV components models used in the parametric 

approach and to assess the quality of the forecasts. The approaches presented similar behavior, although the 

nonparametric approach, based on Quantile Regression Forests, showed smaller biased errors due to the machine 

learning tool used. 
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1 INTRODUCTION 

Forecast procedures to predict the AC power 

delivered to the grid by large ground mounted PV plants 

and smaller BIPV or BAPV systems are important for 

both plant owners and electric system operators in order 

to minimize technical risks and expenses related to the 

uncertainty of generation and to maximize profits. 

A PV plant can be seen as a box with several inputs 

(irradiation, temperature and wind speed, for example) 

and one output, the AC power injected into the electrical 

grid. Two main types of approaches can be employed to 

estimate the AC power output given the required inputs: 

• The parametric approach, which conceives the PV

system as a white box where each subsystem can be

modeled using a collection of parameters.

• The nonparametric approach, which conceives the

PV system as a black box. It does not presume any

knowledge of internal characteristics and processes of

the PV system. Instead, it is a data-driven model that

estimates the behavior of the system from a historical

time series of inputs and outputs.

This paper presents the results of a comparative study

of these two approaches, not to elect the "best" one to be 

used with PV power forecast, but to present their pros 

and cons. Predictions of both approaches have been 

compared with measured AC power from a PV plant as 

described in Section 4, and the results are presented in 

Section 5. 

2 THE PARAMETRIC APPROACH 

A parametric PV model relies on a set of sub-models 

to compute the AC power injected into the electrical grid, 

namely: 

• Decomposition model that estimates diffuse and

beam components from the global irradiance on the

horizontal plane as the input.

• Transposition and shading models that estimate the

effective irradiance on the generator plane from the

diffuse and beam irradiances on the horizontal plane

as the input.

• PV generator model that estimates DC power from

the effective irradiance on the generator plane and the

ambient temperature.

• Inverter model that estimates AC power from the DC

power.

• Wiring and electrical equipment (transformers)

models that estimate Joule and conversion losses in

the way from the PV generator and inverter to the

electrical grid.

This modeling requires precise and detailed

information about the characteristics and behavior of 

each relevant component of the PV plant. This 

information is not always available so some 

simplifications and assumptions are needed, with the 

subsequent uncertainty in the output of these models. 

Consequently, the accuracy and precision of the 

estimations of a parametric model is driven by the 



performance of each sub-model and the accuracy of the 

measurements or estimations of each parameter, together 

with the accuracy of the irradiation and temperature 

(forecasts). 

The main advantage of a parametric model is the 

possibility to compute the AC power output prior the 

construction of a PV plant, during the project and 

planning stages, by using, for example, the nameplate 

characteristics of the PV plant components. However, 

regardless if the calculations are made before or after the 

construction, the model always needs reliable parameters, 

i.e., it is crucial to know the internals of the PV plant as 

much as possible. 

This scheme has been adopted in recent researches to 

forecast PV power. Lorenz et al. [1] derives solar 

irradiance forecasts based on forecasts of the global 

model of the European Centre for Medium-Range 

Forecasts (ECMWF) with a post-processing procedure, 

and PV power is derived with a set of physical modeling 

steps. Pelland et al. [2] uses photovoltaic simulation 

models with PV forecasts based on the spatially averaged 

solar irradiance forecasts derived from post-processing of 

a global numerical weather prediction model, namely 

Environment Canada’s Global Environmental Multiscale 

(GEM) model. 

The parametric approach analyzed in this paper uses 

as input variables predicted ambient temperature (Ta) and 

global horizontal irradiance (G0). It has two steps: 

• Step 1: Transform global horizontal irradiance into 

effective irradiance in the plane of the PV array (Gi) 

and then both ambient temperature and global 

horizontal irradiance into cell temperature (Tc). 

• Step 2: Simulate the losses in each element of the PV 

installation. 

Fig. 1 shows the diagram of a general configuration 

of a grid-connected PV system, which is composed by a 

PV generator, an inverter (MPPT + DC/AC converter), 

and a low voltage/medium voltage (LV/MV) transformer, 

that was considered in this study. 

 

 
Figure 1: Diagram of a general configuration of a grid-

connected PV system 

 

The first part of Step 1 consists in estimating diffuse 

and beam components from the global irradiance on the 

horizontal plane. For this purpose, several hourly global-

diffuse correlations have been proposed in the literature 

[3, 4]. In this paper, the Erbs correlation has been used. 

The decomposition model represents the first source of 

inaccuracy of the parametric model. 

Other two calculation steps are then required: the 

translation of irradiance values from the horizontal 

surface to the plane of the PV modules and the reduction 

of generated power due to losses caused by shading, dirt, 

incidence and spectrum. The following sequence of 

calculations has been implemented: 

• Position of the Sun, position of the PV generator 

surface, and incidence angle [5]. 

• Geometric shading on the PV generator. 

• Irradiance on the PV generator plane [6, 7]. 

• Dirt and incidence losses [8]. 

• Shading losses [9]. 

• Spectral corrections [10]. 

Cell temperature is calculated on the basis of the 

ambient temperature and in-plane irradiance using the 

well-known Eq. 1. 

  (1) 

Now considering Step 2, the PV generator 

performance has been modeled using the formulation 

proposed in [11] and [12]. 

The inverter is characterized by its nominal output 

power (PI) and three experimental parameters (k0, k1 and 

k2), which are used to calculate its efficiency, ηI, 

according to [13]. 

The power efficiency of the transformers, ηT, can be 

expressed as a function of the output power, Pout, using 

Eq. 2. 

  (2) 

where PCore is the core losses and PCu is the copper 

losses, which can be calculated with Eq. 3. 

  (3) 

where PCu,nom is the copper losses when the transformer 

operates at its nominal output power, PT. Power losses in 

DC and AC wiring are calculated using equations that are 

analogous to Eq. 3. 

The parameters used in these mathematical models 

are mainly obtained from standard information, provided 

by manufacturers or promoters, which may be verified 

experimentally by on-site quality control testing 

procedures. 

 

 

3 THE NONPARAMETRIC PV MODEL 

 

Nonparametric PV models use only historical time 

series of meteorological variables and AC power 

measurements, so its accuracy depends mainly on the 

quality of the data. To illustrate how this feature could be 

useful, let's suppose that an electric system operator 

needs estimations of future generation of a PV plant, but 

he does not know anything about the plant, not even its 

nominal peak power. As system operators normally have 

access to the records of power output of generation 

plants, this data could be used to solve this problem. 

However, this characteristic also leads to its main 

disadvantage: the PV plant must exist and be operational 

for some time. 

One interesting advantage of a nonparametric model 

is the potential to compensate systematic errors 

associated to the inputs. For example, if irradiance data 

has a systematic error, the model will learn to associate 

the incorrect irradiance with the correct AC power output 

value during the training process. When supplied with 

new data from the same source, the output will not be 

compromised if the same error persists. 

The nonparametric approach has been implemented 

in several recent researches. Bacher et al. [14] forecasts 

hourly values of AC power of PV systems for horizons of 

up to 36 hours using adaptive linear time series models. 

Mandal et al. [15] forecasts one-hour-ahead power output 



of a PV system using a combination of wavelet transform 

and neural network techniques by incorporating the 

interactions of PV system with solar radiation and 

temperature data. Pedro and Coimbra [16] predicts 1 and 

2 h-ahead solar power of a PV system comparing several 

forecast techniques without exogenous inputs such as 

Auto-Regressive Integrated Moving Average, k-Nearest-

Neighbors, Artificial Neural Networks, and Neural 

Networks optimized by Genetic Algorithms. Zamo et al. 

[17] analyzes a mix of eight statistical methods to 

forecast PV power one day ahead in an hourly basis, and 

the Random Forests method presents the best results. 

The nonparametric model analyzed in this paper was 

extensively detailed and validated in [18]. It forecasts AC 

power one day ahead with hourly resolution using 

Quantile Regression Forests (QRF) and gives statistical 

information about the quantiles of the hourly prediction. 

Besides, this study contributes with an analysis on how 

additional variability indexes, daily clearness index 

(KTd), training set length, training set selecting method 

and different configurations of predictors influence on the 

final results. Its methodology is as follows: 

• Previous AC power measurements from a PV plant 

are collected. 

• Forecasts of a set of Weather Research and 

Forecasting (WRF) variables (solar radiation, cloud 

cover, temperature, wind speed, etc.) from a 

Numerical Weather Prediction (NWP) model run by 

a meteorological institute are downloaded. 

• Each WRF variable is processed to extract 

information about the value at the location of interest 

and its relation with the surrounding locations and 

previous forecasts. In addition, three calculated 

variables describing the Sun-Earth geometry are 

included in the predictor set: azimuth angle, altitude 

angle, and extra-terrestrial irradiance on the 

horizontal plane. 

• The time series of processed WRF variables and AC 

power measurements is divided into two time series: 

train and test. The train time series comprises past 

values of both WRF variables and AC power, 

whereas the test time series contains only present 

WRF variables from the NWP model (forecasts). 

• A machine learning tool (QRF) is trained with the 

train time series. 

• Predictions of the median (quantile 0.5) and a 

confidence interval (quantiles 0.1 and 0.9) for the AC 

power are generated with the test time series. 

Its code is freely available from the repository 

https://github.com/iesiee/PVF, which itself is a R 

package named PVF [19]. An online toolbox that 

implements this methodology is available at 

http://vps156.cesvima.upm.es:3838/predictPac. 

 

 

4 COMPARISON PROCEDURES 

 

Each approach has a specific performance evaluation, 

but they share the same inputs and desired outputs. The 

inputs are irradiance (swflx) and ambient temperature 

(temp) forecasts obtained from Meteogalicia, a 

meteorological institute of the Xunta de Galicia (Spain) 

that publishes regularly results from a regional mesoscale 

Numerical Weather Prediction (NWP) model, the 

Weather Research and Forecasting (WRF) [20]. 

The output is a database of real AC power 

measurements from a PV plant situated in southern 

Portugal, with a 5-s resolution measurement. It has an 

azimuthal one-axis tracker, with a receiving surface tilted 

45°. The database was reduced to 1-h resolution due to 

the restrictions of the weather forecast data used. Table I 

summarizes the main characteristics of this PV plant. 

 

Table I: PV plant characteristics 

 

 Peak Power (kWp) Rated Power (kW) Area (Ha) 

 45,600 38,500 250 

 

A model performance is commonly evaluated by 

quantifying the discrepancy between forecasts and actual 

observations through the use of different statistics [21]. 

Because each performance statistic characterizes a certain 

aspect of the overall model performance, a complete 

evaluation needs the combined use of a collection of 

statistics tools. In this paper, the Mean Bias Error (MBE), 

the Root Mean Square Error (RMSE) and the Mean 

Absolute Error (MAE) will be used. 

The performance of the nonparametric approach has 

been assessed using a leave-one-out cross-validation 

procedure: 

• One day is extracted from the database to be the test 

set. 

• The training set is constructed with 30 days extracted 

from the remaining days of the data set, according to 

the similarity between the empirical distribution 

function of the irradiance forecast for the day to be 

predicted and the day included in the database. These 

configurations were selected due to the good 

performance presented in [18]. 

• The QRF is trained with the training set and hourly 

AC power is predicted. 

• The error between these predictions and AC power 

measurements for the test day is characterized with 

the performance statistics. 

On the other hand, the performance of the parametric 

approach has been assessed with the following procedure: 

• Hourly AC power for every day from the database is 

predicted. In order to do it, the inputs are entered in 

the sequence of mathematical models that represent 

the behavior of the PV system. 

• The daily error between predictions and AC power 

measurements is characterized with the performance 

statistics. 

 

 

5 RESULTS 

 

The performance procedures were repeated for every 

day in the dataset, resulting in a massive collection of 

performance statistics. For ease of understanding, the 

results of each performance statistic have been 

aggregated with the quantiles 0.25, 0.5 and 0.75, 

hereafter denominated QS.25; QS.5 and QS.75, respectively, 

to distinguish them from the quantiles of the predictions. 

The results are grouped according to the KTd into 

three classes: cloudy days 0 ≤ KTd < 0.532, partially 

clouded days 0.532 ≤ KTd < 0.678 and clear days 0.678 ≤ 

KTd ≤ 1. The ranges of KTd were selected so that each 

class comprises one third of the total number of days 

present in the database. 

 

5.1 Statistical comparison 

To make comparison between simulations easier, 

MBE, RMSE and MAE have been normalized in order to 



fall in a more restricted range of values. In statistic 

studies, it is common to normalize these statistics to the 

range, max(O) – min(O), or the mean, mean(O), of the 

observations (O). For a statistical comparison, the first 

option was chosen to ensure most of the values fall in a 

range between 0 and 1. Therefore, the normalized 

statistics are nMBE, nRMSE and nMAE. 

Tables II and III show the statistical 

performances of the parametric and the nonparametric 

approaches, respectively. 

 

Table II: Quantiles QS.25, QS.5 and QS.75 of the performance statistics for each KTd class using the parametric approach 

 

 Statistic 0 ≤ KTd < 0.531 0.531 ≤ KTd < 0.687 0.687 ≤ KTd ≤ 1 

  QS.25 QS.5 QS.75 QS.25 QS.5 QS.75 QS.25 QS.5 QS.75 

 nMBE 22.5% 13.1% 39.6% -3.4% 13.5% 27.2% 0.5% 7.0% 12.1% 

 nRMSE 45.4% 59.9% 87.5% 26.8% 34.4% 44.0% 14.2% 17.6% 21.1% 

 nMAE 36.8% 51.1% 74.9% 21.3% 27.5% 35.6% 11.2% 13.3% 16.5% 

 

Table III: Quantiles QS.25, QS.5 and QS.75 of the performance statistics for each KTd class using the nonparametric approach 

 

 Statistic 0 ≤ KTd < 0.531 0.531 ≤ KTd < 0.687 0.687 ≤ KTd ≤ 1 

  QS.25 QS.5 QS.75 QS.25 QS.5 QS.75 QS.25 QS.5 QS.75 

 nMBE -17.5% 3.8% 18.7% -7.9% 0.2% 5.6% -4.1% 0.2% 2.3%

 nRMSE 28.4% 35.3% 46.4% 8.8% 18.3% 26.6% 3.3% 5.7% 12.4% 

 nMAE 21.9% 27.7% 38.1% 6.1% 13.4% 21.1% 2.5% 3.8% 7.9% 

 

The parametric approach shows a statistical 

performance somewhat worse, but this result is expected 

due to the uncertainties and errors mainly related to the 

quality of the input variables (weather forecasts), which 

can be partially suppressed by the QRF used in the 

nonparametric approach. 

 

5.2 Daily energy production uncertainty comparison 

Although the prediction of AC power output of PV 

plants using both parametric and nonparametric 

approaches have good statistical performance, some 

further analysis is necessary to assess the impacts on 

daily energy prediction. Two scenarios are accounted 

here: markets that penalize the daily energy error, for 

which the MBE is appropriate, and markets that penalize 

the hourly energy error, for which the MAE is preferred. 

In this context, these metrics are more useful if presented 

as an energy ratio, and thus they were normalized respect 

to the daily measured energy, resulting in cvMBE and 

cvMAE, respectively. Table IV presents the results for the 

quantile QS.5, weighted with the energy generated by the 

PV plant under the corresponding KTd class. 

 

Table IV: Weighted errors of energy forecast according to the KTd class 

 

 Statistic Approach 0 ≤ KTd < 0.531 0.531 ≤ KTd < 0.687 0.687 ≤ KTd ≤ 1 

 cvMBE Parametric 2.9% 4.7% 3.4% 

  Nonparametric 1.2% 0.1% 0.1% 

 cvMAE Parametric 9.3% 9.0% 6.1% 

  Nonparametric 8.7% 6.5% 2.2% 

 

Values of cvMBE for the nonparametric approach are 

smaller than those for the parametric approach, but this is 

expected due to the machine learning tool used. 

Nevertheless, the values obtained for the parametric 

approach are very good as well. Total daily energy is 

forecasted with a weighted cvMBE of less than 5% for 

both approaches and all KTd classes. Considering the 

nonparametric approach, the weighted cvMBE is less than 

2% for cloudy days and it is only 0.1% for clear days. 

In terms of hourly prediction, the performances of the 

two approaches are also good and even more alike, 

especially for cloudy or partially clouded days. Most of 

the difference between their performances is related to 

the bias the parametric method presents due to the errors 

of the forecasts used as inputs. The overall weighted 

cvMAE is less than 9.5% and it is around 2% for clear 

days using the nonparametric model. 

 

 

6 CONCLUSION 
 

A comparison between two approaches to forecast 

the AC power output of a PV system, one using a 

parametric PV model and the other a nonparametric PV 

model based on QRF, was made. Some points can be 

highlighted: 

• Both approaches have state-of-the-art statistical 

performance. Besides, their performances in terms of 

daily and hourly energy prediction are very good. 

• The two approaches have very similar performance, 

but the nonparametric is slightly better given the 

conditions of this study, especially for the biased 

metrics (nMBE and cvMBE) due to the machine 

learning tool used (Quantile Regression Forests). 

• Daily energy production is forecasted with a 

weighted cvMBE of less than 5%. Considering the 

nonparametric model, this statistic is below 2% for 

cloudy days and it is only 0.1% for clear days. 

• In terms of hourly prediction, most of the difference 

between approaches’ performances is due to the bias 

the parametric method presents. The overall weighted 

cvMAE is less than 9.5% and it is around 2% for clear 

days using the nonparametric model. 

When selecting one of the approaches, not only the 

accuracy must be considered, but also the application and 

the variables and parameters available. 
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COMPARATIVE STUDY OF NONPARAMETRIC AND PARAMETRIC PV 

MODELS TO FORECAST AC POWER OUTPUT OF PV PLANTS 

INTRODUCTION 

 

     The results of a comparative analysis of two PV models applied 

to AC power output forecast are presented, not to elect the "best" 

one, but to present their pros and cons. When selecting one of the 

approaches, not only the accuracy must be considered, but also the 

application and the variables and parameters available. 

 

     There are two approaches to model a PV system: 

• The parametric: 

 

 

 

 

 

 

 

     A parametric modeling requires precise and detailed information 

about the characteristics and behavior of each relevant component 

of the PV plant. This information is not always available so some 

simplifications and assumptions are needed, with the subsequent 

uncertainty in the output of these models. 

• The nonparametric: 

 

 

 

 

 

 

     Nonparametric PV models use only historical time series of 

meteorological variables and AC power measurements, so its 

accuracy depends mainly on the quality of the data. This 

characteristic leads to its main disadvantage: the PV plant must 

exist and be operational for some time.  One interesting advantage 

of a nonparametric model is the potential to compensate systematic 

errors associated to the inputs. 
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     Errors of energy production forecast weighted by the energy 

generated by the PV plant under the corresponding KTd class were 

also calculated: 

CONCLUSION 

 
• The PV models used in this study have state-of-the-art statistical 

performance in terms of daily and hourly energy prediction. 

• The two approaches presented similar performance, but the 

nonparametric is slightly better given the conditions of the study. 

• Due to the machine learning tool the nonparametric approach is 

based on (Quantile Regression Forests), it presented low values 

for biased metrics (nMBE and cvMBE). 

STATISTICAL COMPARISON 

 

     The study was based on real AC power measurements from a 

45.6 MWp PV plant situated in southern Portugal. It has an 

azimuthal one-axis tracker, with a receiving surface tilted 45°. 

Statistic Approach 
KTd class 

[0, 0.531] (0.531, 0.687] (0.687, 1] 

cvMBE 
Parametric 2.90% 4.70% 3.40% 

Nonparametric 1.20% 0.10% 0.10% 

cvMAE 
Parametric 9.30% 9.00% 6.10% 

Nonparametric 8.70% 6.50% 2.20% 

• The lower statistical performance of the parametric approach is expected due to the uncertainties and errors mainly related to the quality of 

the input variables (weather forecasts), which can be partially suppressed by the machine learning tool used in the nonparametric approach. 

• Daily energy production is forecasted with a weighted cvMBE of less than 5%. Considering only the nonparametric model, this statistic is 

below 2% for cloudy days and it is virtually none for clear days. 
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