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Abstract: The multimode interference (MMI) effect in a single mode-multimode-single 

mode (SMS) can be used for development of wavelength shift detection based sensors. In 

this work, the focus is centered on obtaining wavelength shifts with low cutoff single mode 

fibers, which allows exploring the wavelength range from 600 to 1000 nm, where optical 

sources and detectors are less expensive than at longer wavelengths. In addition, the 

application of a reduction in the fiber diameter of the SMS structure by means of HF etching, 

combined with the deposition of a thin-film, enables to enhance the sensitivity of the 

devices at the same time the objective mentioned before is achieved. In this sense, the 

effect of the deposition of a pH sensitive thin-film on SMS structures with different 

diameters allowed attaining a maximum sensitivity of 15nm per pH unit in the range from 

pH 4 to pH 6, which improves by a factor of 3 the sensitivity of SMS sensors without etching 

operating at longer wavelengths.   
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1. INTRODUCTION  

 

During the last 30 years numerous optical fiber optic sensors have been developed to 

monitor different physical variables such as temperature, strain and refractive index [1]. 

Optical fiber presents interesting properties: electromagnetic immunity, low attenuation 

and compact dimensions. In addition, multiple configurations have been explored, such as 

those based on photonic crystal fibers, optical fiber long period gratings (LPGs), optical fiber 

Bragg gratings (FBGs) or optical fiber interferometers based on Fabry-Pérot, Mach-Zender 

and Michelson configurations [2, 3]. Fiber optic sensors are used in different fields, such as 

civil engineering in structural health monitoring, or the gas, oil and renewable energy 

industries to control and reduce the pollution emissions to the environment [4]. 

Optical fibers sensors can be divided into two different categories: extrinsic and intrinsic. In 

the first one, the light beam is modulated outside the fiber for the measurement using: 

mirrors, gas, liquid or other mechanisms. In the intrinsic method, the light signal is 

modulated within the fiber [1].   

A low-cost fabrication alternative technique based on the intrinsic method consists of the 

multi modal interference (MMI) configuration. MMI configuration has been widely explored 

with the utilization of single mode-multimode-single mode (SMS) structures for 

temperature, strain, displacement and refractive index sensing applications [5,6]. This 

phenomenon can be implemented using a simple SMS structure, which is fabricated by 

means of splicing two segments of single mode fiber (SMF) at the ends of a multi-mode fiber 

(MMF) segment [7-9].  With this structure, different maxima and minima are created in the 

optical spectrum. Most of the research in this kind of optical sensors has been focused on 

wavelengths longer than 1000 nm. This requires the utilization of complex and expensive 

light sources and detectors, which reduces the utilization of these devices in many 

applications. Therefore, the implementation of a SMS device that operates at shorter 

wavelengths in the range of 600-1000 nm, where optical sources and detectors are less 

expensive, could help to widen the fields of application of these devices. A main drawback 

of the application of these devices at shorter wavelengths is that the sensitivity is reduced 



[10]. Consequently, it is necessary to improve the sensitivity of these devices in the visible 

and near infrared range to be considered as useful tools for sensing applications.  

In the next sections, we will describe the implementation of a low-cost optical fiber sensing 

alternative using SMS structures with enhanced sensitivity in the visible and near infrared 

region. As an example of application of the proposed device, a pH sensor will be developed 

and tested for different diameters. Other optical fiber pH sensors have been developed [11, 

12, 13]; but these devices operate in the infrared region and they need an expensive 

experimental setup. In this paper, we present a less expensive pH sensor with higher 

sensitivity by unit compared to the previously cited researches. Particularly, the optical fiber 

pH sensors can be applied in: biochemistry [14, 15], structural monitoring [16] and energy 

[17,18,19]. 

2. SMS STRUCTURE: MODES OF OPERATION. 

The SMS structure is developed by fusion splicing a section of no-core multimode fiber 

(MMF) between two SMF pigtails. The incident light is transmitted through the core of the 

SMF and coupled into different propagation modes in a segment of MMF [9]. At the end of 

the MMF segment the light is recoupled into the core mode of another SMF.  

 

Fig. 1.  Single mode-multi mode-single mode structure. 

The self-imaging effect it is an interesting phenomenon which allows to understand the 

performance of an SMS structure [7,20]. When an optical signal is launched into an SMS 

structure, it excites the supported modes of the MMF. As light propagates through the 

MMF, images of the input fields are created at specific lengths. Due to the MMI effect, both 

transmission and attenuation bands are obtained in the optical spectrum. At certain 

lengths, where the phase difference is multiple of 2π, self-images are obtained, exact 

replicas of the input field [20,21]. The transmission bands obtained by the self-imaging 

effect can be controlled by the dimension of the MMF segment. The length of the MMF 

section for positioning the band at a specific wavelength can be obtained with this 

expression [22]:  
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where D is the diameter of the structure, ����� is the refractive index of MMF, λ is the 

operational wavelength and p is the self-image order.  

As an example, Fig. 2(a) shows the transmission spectrum of an SMS structure with 

diameter 125 μm and MMF length 60 mm. Coreless MMF segments from POFC Inc. (Taiwan) 

and standard SMF pigtails from Telnet Redes Inteligentes Inc. (Zaragoza, Spain) were used 

for manufacturing this structure. Since standard SMF fiber is designed for operation at 

wavelengths above 1100 nm, the wavelength range analyzed was 1150-1700 nm. In Fig. 2(a) 

the self-image band can be observed at 1500 nm. However, it has been proved more 

recently that for small diameters it is possible to obtain a sinusoidal spectrum (see Fig. 2(b) 

for an SMS structure with diameter 30 μm and MMF length 60 mm), where the sensitivity 

to the surrounding refractive index is improved thanks to the diameter reduction [11,23]. 

Indeed, the sensitivity does not depend on the monitorization of a self-image band, but 

rather on the diameter of the device. This sensitivity increased is explained by the fact that 

the position of the transmission bands is dependent on the effective indices of modes in 

the MMF section [24], and it is well known that as the diameter of an optical fiber is 

reduced, the effective index of the modes becomes more sensitive to the surrounding 

medium refractive index [25]. 

 

Fig. 2.  Transmission spectrum for: a) SMS structure with diameter 125 μm and MMF length 

60 mm; b) SMS structure with diameter 25μm and MMF length 60 mm.  

3.  CHARACTERIZATION OF LOW CUTOFF WAVELENGTH ETCHED SMS STRUCTURES 

A. Experimental setup 

To operate at shorter wavelengths than those explored in Fig. 2, the SMS structure under 

analysis consisted of a 20 mm	coreless fiber segment, spliced on each end to an SMF S630 

Thorlabs (core diameter 3.5μm and cladding diameter 125μm, NA=0.12 and operating 

wavelength 630-860nm). The SMS structure was kept straight during both the construction 



and the characterization processes to avoid any bending artifacts. To this purpose, the U-

holder depicted in Fig. 3 was used to support the SMS structure during the etching process. 

Since the operating wavelength range is located below 1100nm, an ASBN-W tungsten-

halogen broadband source from Spectral Products Inc. and an HR4000 spectrometer from 

Ocean Optics were used (see Fig. 3). In Fig. 4 the SMS structure after the 40% HF etching is 

depicted. 

 

Fig. 3. Experimental setup for monitoring the optical spectrum of the SMS structure during 

the etching process. 

B. Diameter reduction 

Before explaining the diameter reduction process, it is important to identify the built 

Etched-SMS structures: E-SMS1= 65 µm, E-SMS2= 45 µm and E-SMS3=25 µm; depicted in 

Fig.4. Each E-SMS structure was deposited in 40% HF during: E-SMS1 = 30 minutes, E-SMS2 

= 40 minutes and E-SMS3 = 50 minutes. After that, it is necessary to remove the 

corresponding E-SMS structure from the HF solution and to clean with water afterwards. 

Finally, the structures are left in air for at least 6 hours.  

  

Fig. 4. SMS structure after the 40% HF etching with diameters	=	65, 45 and 25µm. 

 

 

C. Refractive index analysis 

To verify the response of the wavelength shifts in the E-SMS structures, the E-SMS3 

structure (25µm) was immersed in three different refractive indices. Its sinusoidal spectrum 

(see Fig. 5) allowed tracking wavelength shifts of any of the different maxima and minima.  

 



Fig. 5. Transmission spectra for an etched SMS structure with 25 µm diameter in three 

different refractive index solutions.  

In order to prove the hypothesis of the research, that the reduction of the diameter in the 

SMS structures allow to increase the sensitivity due the HF at 40%; the E-SMS1, E-SMS2 and 

E-SMS3 structures were immersed in differents refractive index solutions. Fig. 6 shows the 

sensitivity response for the  three structures. The wavelength shift in the refractive index 

range 1.333-1.421 for the E-SMS1 structure was 3nm, for the E-SMS2 structure was 4nm 

and  for the E-SMS3 strucutre was 17nm. The results show that the sensitivity increases for 

SMS structures with a smaller diameter up to 193 nm per refractive index unit. 

 

Fig. 6. Wavelength shift as a function of the refractive index for three SMS sturctures with 

three different diameters: 125, 65 and 25µm.  

4. APPLICATION OF LOW CUTOFF ETCHED SMS STRUCTURES FOR PH SENSING 

A. pH sensor fabrication process 

Before presenting the results for a pH sensing application, it is important to show the 

diameters of the etched-SMS structures: E-SMS1 structure = 64.15 µm, E-SMS2 structure = 

41.07 µm and E-SMS3 structure = 23.73 µm.  To verify the diameter obtained by etching, 

the diameter of the E-SMS structures was compared with the original diameter of the SMS 

structure (Coreless MMF 125 µm) using a digital microscope MEIJI MT87 and a 

computational algorithm based on triangulation of images developed in MATLAB® (see Fig. 

7).  

 

 

Fig.7. a)   Original diameter SMS Structure=125 µm. b) E-SMS1 structure diameter= 64.15 

µm. c) E-SMS2 structure diameter= 41.07 µm. d) E-SMS3 structure diameter= 23.73μm. 

 

After the etching process, each structure was fit to a deposition robot XYZ to deposit a thin-

film with layer-by-layer (LbL) self-assembly technique [11]. To begin the process, it was 

necessary to immerse an E-SMS structure into 0.1 M KOH solution for 10 min to acquire 



negative charge. Then, the E-SMS was cleaned up in ultrapure water. After that, it was 

subjected to alternated immersions of 2 minutes in two solutions of poly (allylamine 

hydrochloride) (PAH) and poly (acrylic acid) (PAA) to obtain a layer pair. The pH of the 

solutions was measured using an electronic pH-meter (Crison Inc.) and was necessary to 

add NaOH and HCl to adjust the solutions at pH= 4.5. Both solutions were prepared using 

ultrapure deionized water (18.2 MΩ).  

The total number of layer pairs deposited for each E-SMS structure was 4. The selection of 

this value was based on the mode transition, which occurs when a thin-film is deposited on 

an SMS structure [24]. This phenomenon allows enhancing the sensitivity of the device if an 

adequate thin-film thickness is selected. An increase in the coating thickness leads to a 

higher sensitivity. However, at the same time there is a reduction in the visibility of the 

transmission bands [27]. Moreover, if the coating thickness exceeds a specific value the 

bands are no longer visible [24]. Consequently, it is necessary to select a coating thickness 

that allows attaining the maximum sensitivity at the same time the bands are still visible. In 

the structure explored in [27] the maximum number of bilayers deposited was 18. In view 

that the experiments were performed at 1500-1600 nm, and that here the central 

wavelength of the band to analyze is located at about 800 nm, the coating thickness should 

be reduced, proportionally, to half the number of bilayers: 9. However, according to our 

experiments we have observed that 4 bilayers are is the limit value that enables a precise 

tracking of the transmission band, as it is described in Fig. 8. Otherwise the signal is too 

weak (see Fig. 8). In this sense, it must be considered that light is being coupled to an optical 

fiber with core diameter 3.5 µm.  



 

Fig. 8. Transmission spectral recorded after the deposition of each PAH/PAA bilayer. 

B. pH characterization process 

The sensitivity response of the three E-SMS structures coated with 4 bilayers of PAH/PAA 

was analyzed and compared. Each E-SMS structure was immersed alternatively in pH 4 and 

6 buffer solutions (60 seconds in each solution). This time allowed obtaining a stable 

transmission spectrum, which permitted to track correctly the central wavelength of one of 

the bands in the spectrum.  PAH/PAA based sensors can be used for pH values ranging from 

3 to 7 [11,28]. However, in view that the aim in this work is to see the sensitivity increase 

as a function of the fiber diameter, only pH values 4 and 6 have been explored. 

 

Regarding the E-SMS1 structure, the central wavelength of the band monitored during the 

experiment experiences a wavelength shift of 4.5nm (see Fig. 9a). The E-SMS2 structure 

presented a wavelength shift in the same pH solutions of 15nm (see Fig. 9b). Finally, a 

wavelength shift of 30 nm was attained for E-SMS3 structure (see Fig. 9c).  The unstable 

signal between the immersion in pH 4 and pH 6 obeys to the rinsing in water after the 

extraction of the sensor from each pH buffer solution.  

 

 

 



 

 

Fig.9 a) E-SMS1 structure sensitivity response. b) E-SMS2 structure sensitivity response. c) 

E-SMS3 structure sensitivity response. 

 

By comparing the results obtained with the three structures, the E-SMS3 structure improves 

by a factor of 2 the sensitivity attained with E-SMS2 structure, whereas the E-SMS2 



structure improves by a factor of 3 the sensitivity of E-SMS1 structure. This improvement 

agrees with previous analysis performed with SMS structures in the telecommunications 

band [23,27]. Moreover, the sensitivity obtained with the E-SMS2 structure equals the best 

performance of the SMS structure operating in the telecommunications band in [11], 

whereas the E-SMS3 structure doubles this sensitivity.  

The wavelength shift from pH 4 to pH 6 is attributed to the variation of the thickness of the 

PAH/PAA polymeric matrix, a phenomenon that has been confirmed in other works [29, 30]. 

In fact, this phenomenon explains why a hysteresis is observed in the results of Fig. 9, due 

to the swelling and deswelling of the polymers.  

 

In order to support the idea that the polymer thickness is modified due to the effect of pH, 

the transmission spectrum for a coating of thickness 40 and 100 nm has been obtained 

numerically with FIMMWAVE®. The wavelength shift of the transmission band closer to 800 

nm has been analyzed for different diameters of the SMS structure ranging from 20 to 70 

µm. The selection of the coating thickness values (40 and 100 nm), has been based on the 

estimated thickness of 16-17.5 nm per bilayer obtained in other works [30, 31], which 

should lead to approximately 70 nm for the 4 bilayers deposited in this work. Considering 

that the coating swells and deswells as a function of pH, a variation from 40 to 100 nm has 

been considered a good option for the analysis. In addition, the refractive index model 

calculated in [31] has been used here for the PAH/PAA coating.  

 

The model indicates that the sensitivity is inversely proportional to the diameter. The 

experimental results do not follow exactly the same trend. The sensitivity increase is more 

abrupt. However, it must be considered that the surface where the PAH/PAA polymeric 

matrix is deposited presents a lower surface area when the diameter is reduced, which 

leads to a faster drying of the surface, and it is well know that the bilayer thickness in LBL 

process is sensitive to the drying step [32-35]. This could be the main reason for the 

discrepancy between the theoretical and the experimental model. 



 

 

Figure 10: Wavelength shift from pH 4 to pH 6 for different diameters of the SMS structure. 

The SMS structure was coated with 4 bilayers of PAH/PAA. The theoretical model represents 

the wavelength shift induced by reducing the nanocoating from 100 nm to 40 nm. 

 

5. CONCLUSION 

In this work, it has been demonstrated that the sensitivity of low cutoff SMS etched 

structures can be improved with an etching process, which can be used for applications 

operating in the visible and near infrared region, where the cost of optical sources and 

detectors is reduced compared to the equipment that operates at longer wavelengths. 

A pH sensing application has been explored. Initially, the effect of diameter reduction in 

terms of sensitivity to refractive index was explored. PAH/PAA based sensors can be used 

for pH values ranging from 3 to 7 [11,28]. However, in view that the aim in this work is to 

see the sensitivity increase as a function of the fiber diameter, only pH values 4 and 6 have 

been explored. 



On this basis three different etched multimode core diameters were explored for the pH 

sensor: 64.15 μm, 41.07 μm, 23.73 μm. A nanocoating of 4 bilayers, which allowed 

increasing the sensitivity without compromising the visibility of the transmission bands, was 

deposited. After this, a maximum wavelength shift of 30nm in the pH range 4-6 was attained 

with the SMS structure diameter whose diameter was reduced by a factor of 5 compared 

to the original diameter (125μm).   

These results improve the sensitivity attained with unetched SMS structures in the 

telecommunications band, which opens the door to the development of other applications 

where the sensitivity is more critical towards the ability of the device to detect a specific 

parameter, such as biosensors or chemical sensors. 
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