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Advisors: Roberto Ezcurra and Pedro Pascual

February, 2016





Acknowledgments

Many people supported me to write this thesis.

First and foremost I want to thank my advisors, Roberto Ezcurra and Pedro Pascual. They both

help me to grow and develop as a researcher during the period I have spent at the Universidad

Pública de Navarra. I greatly appreciate their friendship, their contributions to these essays,

time, ideas and discussions during this period.

I am also really grateful to the rest of lecturers and PhD students of the department of Eco-

nomics of the Universidad Pública de Navarra for their useful comments and insights on earlier

versions of this work. They made my PhD experience productive and stimulating.

I am infinity grateful to my parents, grandparents and sister, for all their love and encour-

agement to follow this path in life. Also to Lisa, for being the best girlfriend ever. Finally, I

would like to acknowledge all my friends who supported me during the last years.

Thank you all!



Contents

Introduction 9

1 Volatility and Growth in Europe 19

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Theoretical Framework: A Spatial Stochastic Growth Model . . . . . . . . . . . . 24

1.4 Empirical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4.2 Econometric Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4.3 Spatial Weights Matrix Selection . . . . . . . . . . . . . . . . . . . . . . . 35

1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.5.1 Main Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.5.2 Robustness Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2 Development Differentials in Europe 57

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.2 The Regional Lisbon Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3 Data and Econometric Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.3.1 Data and Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.3.2 Spatial Panel Data Models . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.3.3 Spatial Weights Matrix Selection . . . . . . . . . . . . . . . . . . . . . . . 75

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3 Unemployment Disparities in Europe 89

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3



3.2 Exploratory Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.3 A Space-Time Regional Unemployment Model . . . . . . . . . . . . . . . . . . . 100

3.4 Data and Econometric Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.4.2 Econometric Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.5.1 Dynamic Spatial Durbin Model Results . . . . . . . . . . . . . . . . . . . 118

3.5.2 Unemployment Disparities Before and After the Crisis . . . . . . . . . . . 128

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4 Dynamic Local Government Spending Interactions in Spain 141

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.2 Literature Review and Institutional Setting . . . . . . . . . . . . . . . . . . . . . 144

4.3 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.3.1 Theoretical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.4 Data and Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.5 Econometric Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.5.1 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.5.2 Parameter Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.5.3 Model Estimation and Interpretation. . . . . . . . . . . . . . . . . . . . . 161

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.6.1 Baseline Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.6.2 Relative Importance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 169

4.6.3 Spillovers Effects by Functional Category . . . . . . . . . . . . . . . . . . 171

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Directions of future research 183

A Appendix: Frequentist Spatial Panel Estimation 199

B Appendix: Bayesian Spatial Panel Estimation 209

C Appendix: Relative Importance Metrics 217

4



List of Figures

Figure 1.1:

GDP per capita Growth rates, 1991-2011. . . . . . . . . . . . . . . . . . . . . . . 30

Figure 1.2:

Output Growth Volatility, 1991-2011. . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 2.1:

Regional Lisbon Index 2000-2010. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 2.2:

GDP per capita 2000-2010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 2.3:

Regional Lisbon Index 2000-2010. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 3.1:

Unemployment Dynamics 2000-2011. . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 3.2:

Unemployment Relative Distribution. . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 3.3:

Relative Unemployment Rates 2000 . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 3.4:

Relative Unemployment Rates 2011 . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 3.5:

Spatially Conditioned Stochastic Kernel. . . . . . . . . . . . . . . . . . . . . . . 99

Figure 3.6:

Unemployment Scatter Plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 3.7:

Unemployment Dynamic Diffusion Effects: Transitory Shocks. . . . . . . . . . . 124

Figure 3.8:

Unemployment Dynamic Total Effects: Transitory Shocks. . . . . . . . . . . . . 125

5



Figure 3.9:

Unemployment Dynamic Diffusion Effects: Permanent Shocks. . . . . . . . . . . 126

Figure 3.10:

Unemployment Dynamic Total Effects: Permanent shocks. . . . . . . . . . . . . 127

Figure 4.1:

Space-Time Government Spending Correlations. . . . . . . . . . . . . . . . . . . 143

Figure 4.2:

Spatial Weight Matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Figure 4.3:

Impulse Responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Figure 4.4:

Accumulated Impulse Responses. . . . . . . . . . . . . . . . . . . . . . . . . . . 168

List of Tables

Table 1.1:

The Empirical Relationship between Volatility and Regional Growth. . . . . . . 23

Table 1.2:

Spatial Weights Matrix Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Table 1.3:

Estimation Results: Volatility and Regional Growth. . . . . . . . . . . . . . . . 39

Table 1.4:

Model Specification Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Table 1.5:

Spatial Durbin model: Direct, Indirect and Total effects. . . . . . . . . . . . . . 41

Table 1.6:

Robustness Analysis (I): An Alternative Measure of Volatility. . . . . . . . . . . 44

Table 1.7:

Robustnes Analysis (II): Alternative Spatial Specifications. . . . . . . . . . . . . 46

6



Table 1.8:

Robustness Analysis (III): The Effect of Regional Development Level. . . . . . . 47

Table 1.9:

Robustness Analysis (IV): The Impact of Exchange Rate Fluctuations. . . . . . 48

Table 2.1:

Regional Lisbon Index Calculation. . . . . . . . . . . . . . . . . . . . . . . . . . 62

Table 2.2:

Regional Lisbon Indicators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Table 2.3:

Regional Lisbon Index Ranking. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Table 2.4:

Development Dynamics Rankings. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Table 2.5:

Data and Descriptive Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 2.6:

Spatial Weights Matrix Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Table 2.7:

Main Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Table 2.8:

SDM Effect Decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table 3.1:

Parameter Restrictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Table 3.2:

Unemployment Drivers Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Table 3.3:

Correlations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Table 3.4:

Model Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Table 3.5:

Dynamic Spatial Durbin Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Table 3.6:

Unemployment Disparities Before and After the Crisis . . . . . . . . . . . . . . . 129

7



Table 4.1:

Local Government Services in Spain. . . . . . . . . . . . . . . . . . . . . . . . . 145

Table 4.2:

Empirical Studies on Government Spending Interactions in Spain. . . . . . . . . 146

Table 4.3:

Descriptive Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Table 4.4:

Bayesian Posterior Model Probabilities. . . . . . . . . . . . . . . . . . . . . . . . 159

Table 4.5:

Estimation Results and Short Run Effects. . . . . . . . . . . . . . . . . . . . . . 164

Table 4.6:

Long Run Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Table 4.7:

Model R2 Decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Table 4.8:

Government Spending Drivers Decomposition. . . . . . . . . . . . . . . . . . . . 171

Table 4.9:

Optimal W by Spending Category. . . . . . . . . . . . . . . . . . . . . . . . . . 172

Table 4.10:

Spillover Strength by Municipality and Spending Category. . . . . . . . . . . . . 172

8



Introduction

This thesis is an attempt to obtain further insight into the role of spatial and dynamic linkages

in the field of Economics given the crucial need for a better understanding of the fundamental

processes behind the spatial and temporal correlation patterns observable in the economic data.

To date, most theoretical economic models and econometric studies have treated units of

analysis as isolated entities, ignoring the spatial characteristics of the data and the potential

role of space in modulating the economic evolution of countries, regions, municipalities, etc.

Typically, the regression models used to analyze cross-section and panel data have assumed that

observations are independent of one another. As an example, a conventional regression model

that relates economic and social factors in country i to the growth rate of country i, assumes

that the growth rate in a neighboring country j has no influence on the growth rate of country

i (Barro, 1996). However, the existence of physical and human capital externalities as well as

technological interdependence between economies, suggests that the growth rate of country i

may depend on the growth rates of neighboring economies other than i (Ertur and Koch, 2007).

In this regard, the essence of spatial economic analysis is that space matters. This implies

that what happens in one economic unit of analysis is linked to what happens in neighboring eco-

nomic units. In a spatial economic modeling framework, the spatial dimension and geographical

arrangement of interacting economic agents are key drivers of economic processes and their final

outcomes. As a matter of fact, there are three distinct and distinguishable types of interaction

effects operating through space that can be distinguished: (i) endogenous interaction effects

among the dependent variable, (ii) exogenous interaction effects among the independent vari-

ables and (iii) interaction effects among the disturbance terms (Elhorst, 2014). Thus, recognition

of the wide range of interconnections between the interacting agents within any economic system

requires to accommodate such interdependence in the modeling process and in order to verify

models of social and spatial interaction, these spatial effects need to be explicitly accounted for.

Models that do not take into account spatial interaction in an economic setting should not
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suffer from major problems in the strength and validity of their conclusions as long as each econ-

omy evolves independently from the rest. However, this does not seem a realistic assumption in

the context of European integration or in the current process of economic globalization. Indeed,

in the context of the interconnected and globalized economy of the early twenty first century,

trade flows, migratory processes, capital movements, technology and knowledge transfers from

one country to another are of major importance (Mountford, 1997; Cheng and Yang, 1998;

Fingleton and López-Bazo, 2006; Pesaran and Smith, 2011).

In response to this new scenario, theoretical models of interacting agents and social in-

teraction have started in recent years to switch the emphasis from the individual behavior of

traditional atomistic agents to the interaction among them (Glaeser et al., 1996; Akerlof, 1997;

Ertur and Koch, 2007). This has provided new theoretical perspectives from which to ana-

lyze phenomena such as peer effects, neighborhood effects, spatial spillovers and network effects

(Manski, 2000). Through this research, therefore, an effort has been made to (i) extend tra-

ditional theoretical frameworks of growth, labor markets and fiscal policy in order to include

spatial interactions in the modeling exercise and to (ii) provide a link between the theoretical

models developed and the empirical analysis carried out.

However, two important problems arise in empirical modeling exercises if the sample data

has a spatial or a locational component: (i) spatial dependence between the observations and

(ii) spatial heterogeneity in the modeled relationships (Anselin, 2003, 2006).

Spatial dependence is a special case of cross-sectional dependence, in the sense that the struc-

ture of the correlation or covariance between random variables at different locations is derived

from a specific ordering, determined by the relative position (distance, spatial arrangement)

of the observations in geographic space or in network space. As explained by Lesage (2008),

from a theoretical viewpoint, consumers in a neighborhood may emulate each other leading to

spatial dependence. Local governments might engage in competition that could lead to local

uniformity in taxes and services (Revelli, 2006). Labor demand shortages may foster migration

flows to neighboring economies thereby reducing unemployment rate disparities across space

(Möller, 2001). Pollution could create systematic spatial patterns (Madison, 2006), and clusters

of consumers traveling to a more distant store to avoid a high crime zone might generate spatial

dependence patterns in the data (Ackerman and Murray, 2004).

Spatial heterogeneity is a special case of unobserved heterogeneity similar to that of the time

domain, where parameters are not spatially homogeneous, but varying over different geograph-

ical locations. There are abundant examples of spatial heterogeneity: one spatial unit could be
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located at high altitude in the mountains, the other on the border with a neighboring country;

one spatial unit might be rural and located in the periphery, the other in a core urban area.

Similarly, climatic characteristics and cultural elements such as social norms, trust and civic val-

ues, religious attitudes, etc, may differ considerably from one spatial unit to another. Failure to

account for these features in the data, therefore, increases the risk of obtaining biased estimation

results. In the context of panel data modeling, one way to remedy this problem is to introduce

spatial specific fixed effects which control for all time-invariant variables whose omission could

bias the estimates in a typical cross-sectional study. This solution is similar to that of the

time-period specific effects in the time domain, as they control for all spatial-invariant variables

whose omission could bias the estimates in a time-series study (Baltagi, 2001). A relevant issue

in spatial panel data modeling is that spatial units are fixed and not sampled. Therefore, along

this research, fixed effects models are used instead of random effect models given that the sample

happens to be the population and each spatial unit represents itself (Beenstock and Felsenstein,

2007). Moreover, the consensus is that in spatial econometric modeling contexts, fixed effect

models are generally more appropriate than random effect models since spatial econometricians

tend to work with space-time data of adjacent spatial units located in unbroken study areas,

such as regions, municipalities, etc (Elhorst, 2014).

Failure to take into account spatial dependence and spatial heterogeneity in econometric

models leads to major estimation problems because the coefficient estimates will be biased, in-

consistent and/or inefficient (Anselin and Bera, 1988; Anselin, 2003). Therefore, like correlation

in the time domain, the distinct nature of spatial modeling requires a specialized set of tech-

niques. However, it should be stressed here that spatial econometrics is not a straightforward

extension of time-series econometrics to two dimensions. An obvious difference is that two geo-

graphical units can affect each other mutually while two time series observations in time-series

data cannot. Moreover, as explained by Getis (2007), another complicating factor is the wide

variety of potential forms for modeling spatial dependence (neighbors, distance, links, etc) as

compared to those available for measuring temporal dependence.

In recent years, the spatial econometrics literature has shown a growing interest in the

specification and estimation of econometric relationships and shifted its attention from cross-

sectional spatial models to spatial panel data models (Anselin, 2010; Elhorst, 2010). This interest

can be explained by the increased availability of panel data sets and by the fact that panel data

offer researchers greater modeling possibilities than those provided by the single equation cross-

sectional setting, which was, for a long time, the primary focus of spatial econometrics. This

11



recent trend, has raised the need to develop new estimation approaches (Lee and Yu, 2010a,b;

Elhorst, 2014).

According to Elhorst (2014) it is possible to differentiate between different generations of

spatial econometric models. Early cross-sectional data models include key contributions such as

Griffith (1988), Anselin and Bera (1998), Kelejian and Prucha (1999), Arbia (2006), and LeSage

and Pace (2009). The second generation comprises non-dynamic models based on spatial panel

data. These models might just pool time-series cross-sectional data, but the majority control for

fixed or random spatial and/or time-period specific effects in order to deal with spatial and time

heterogeneity. Relevant contributions to this literature are Elhorst (2014), Mur et al. (2010),

Lee and Yu (2010a). The third generation of spatial econometric models encompasses dynamic

spatial panel data models (Lee and Yu, 2010b,c; Yu et al., 2008, 2012; ). Until recently, there

was no straightforward estimation method for this type of models. This is because methods

developed for dynamic but non-spatial and for spatial but non-dynamic panel data models

produce biased estimators when these methods/models are put together.

The structure of this thesis consists of four self-contained chapters. Chapter 1 analyzes the

volatility-regional growth nexus in a sample of European regions. Chapter 2 explores the role

of interaction effects shaping regional development gaps in Europe. Chapter 3 examines the

determinants of regional unemployment disparities in Europe. Chapter 4 looks into the nature

of fiscal policy interactions in local fiscal policy in Spain. A distinct and innovative feature of

this research is the use of static and dynamic spatial panel data estimation techniques for the

empirical testing and validation of the theoretical models developed in the successive chapters.

This methodological approach is particularly appropriate for the analysis of economic phenomena

from an integrated space-time perspective because it allows to model spillover, feedback and

diffusion effects among the study units.

Chapter 1 examines the relationship between growth and volatility. There are many the-

oretical reasons to support either a positive or a negative relationship between growth and

volatility (Aghion and Howitt, 1998). Following Ertur and Koch (2007), this study extends the

neoclassical macroeconomic growth models of De Hek (1999) and Jones et al. (2005) to take into

account technological externalities in the analysis of the volatility effect in European regional

growth rates. Spatial externalities are used to model technological interdependence, which ul-

timately implies that the economic growth rate of a particular region is affected not only by

its own degree of volatility but also by the output fluctuations experienced by the remaining

regions.
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In order to investigate the empirical validity of this result, the link between volatility and

economic growth is examined in a sample of 272 European regions over the period 1991-2011

using a static spatial panel including spatial fixed effects. Estimates show the existence of a

negative and statistically significant relationship between volatility and economic performance

in the European regions. This is partly due to the role played by spatial spillovers induced

by volatility in neighboring regions. The observed link is robust to the inclusion in the anal-

ysis of different explanatory variables that may affect both regional growth and business cycle

fluctuations such as GDP per capita, the levels of investment and human capital, employment

density or industry mix. Additionally, a number of checks to verify that the empirical results

do not depend on the measure of volatility used in the analysis or the econometric specification

employed to capture the nature of spatial spillovers are carried out. Therefore, the findings of

this chapter suggest that policies aimed at reducing the variability of cyclical macroeconomic

fluctuations at the regional level may have beneficial effects on long run growth rates.

In Chapter 2, regional economic development achievements in Europe are comprehensively

analyzed by means of a composite index in a sample of 258 NUTS-2 level regions for the pe-

riod 2000-2010. Nowadays, the widespread belief among academics and policy makers is that

composite indexes provide a better characterization of the multidimensional nature of societal

progress. To that end, a new multiplicative version of the Regional Lisbon Index (RLI) is pro-

posed. This alternative index contains computational changes with respect the index developed

by the regional policy directorate of the European Commission (Dijkstra, 2010). The Regional

Lisbon Index includes employment, education and R&D indicators. Targets for these indica-

tors are related to an action and economic development plan for the EU regions and have been

incorporated into European Regional Policy programming to monitor the evolution towards a

knowledge based economy (KBE). As to the various indicators in the composite indicator, labor

market indicators are observed to improve substantially, while the targets set for RD, early

school abandonment and life-long learning remained far from being achieved. The results ob-

tained in this chapter show that the European Union failed to reach the original Lisbon Strategy

targets by a 20%. These findings suggest that if policy makers aim to push Europe towards a

KBE, renewed effort will be required to create an adequate innovation environment.

In a second step, following recent contributions in the literature linking knowledge, inno-

vation and regional development (Rodŕıguez-Pose and Crescenzi, 2008; Capello et al., 2011;

Capello and Lenzi, 2013; 2014), this study analyzes the effect of a number of factors on the

evolution of the RLI. In particular, regional development is analyzed by estimating different
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static spatial panel data model specifications including spatial and time-period fixed effects in

which the dependent variable is the RLI growth rate. The empirical results of this modeling

exercise highlight the role played by spillover effects in the context of regional development.

The salient observation is that the main drivers of the RLI growth rate are technological capital,

infrastructures and employment growth. Additionally, a convergence process among regions is

observed, what implies that regions with lower levels of development are catching up with highly

developed regions.

Chapter 3 of this research analyzes the evolution of regional unemployment rates and the

sources of labor market disparities in a sample of 241 NUTS-2 European regions during the

period 2000-2011. This chapter extends the theoretical framework developed by Blanchard and

Katz (1992) and Zeilstra and Elhorst (2014) in order to accommodate regional labor market

inter-connectivity. This is achieved by constructing a spatially augmented labor market model

with interactions between labor supply, demand, wages and migration flows among regions. The

theoretical model solution results in a Dynamic Spatial Durbin Model empirical specification

including endogenous and exogenous interaction effects with regional level and national-level la-

bor market institutional factors as explanatory variables. Important methodological issues such

as the of choice spatial weight matrix, model specification and spatial co-integration are ad-

dressed. In conjunction with dynamic-spatial panel estimates, a set relative importance metrics

are computed to determine the effect of regional level disequilibrium, equilibrium and national

level factors in regional disparities in unemployment rates.

The empirical findings of this chapter suggest that unemployment disparities in the period

2000-2011 are explained by a mix of such factors with the equilibrium component dominating.

The study furthermore detects slight overall convergence in the unemployment rate for the

sample regions. However, the economic crisis that began in 2008 has virtually eliminated all

progress on the convergence process observed since 2000. The two main reasons explaining the

sharp increase in unemployment disparities experienced since 2008 are differences in regional

labor demand and in the institutional frameworks. Thus, the results suggest that legislative

changes and policies focused on nationwide labor market reforms should be implemented in

addition to other policy interventions at the regional level in order to reduce unemployment

gaps in Europe.

In Chapter 4, the nature of municipal fiscal policy interactions in Spain is explored. In the

presence of spatial interdependence and spatial externalities, if a local entity makes significant

expenditure in a particular spending category, neighboring local bodies may increase or reduce
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their spending in that particular category, which reflects complementarity or substitutability in

local public good provision. This is because of public government spending of a juridisdiction

may generate beneficial or negative effects that spread across boundaries, affecting the welfare

of residents in neighboring jurisdictions (Kelejian and Robinson, 1992; Case et al., 1993; Revelli,

2005). An important issue that has not been properly treated by previous spatial spillover models

of government spending developed by Brueckner (2003) and Solé-Ollé (2006) is the existence of

strong time correlations and persistence in local budgetary processes. In this chapter, spatial

spillover models of government spending are extended by including serial dynamic effect, in

order to overcome this problem. This extension allows for testing of two different hypothesis.

First, it allows to analyze whether local public good provision behaves as a complementary or

a substitutive good. Second, it helps to test the relevance of the incremental budget hypothesis

stemming from political science research (Wildavsky, 1964). To that end, a dynamic spatial

panel data model is estimated to quantify the relevance of spatial spillovers and diffusion effects

over time.

Using annual data for a sample of 1,230 Spanish municipalities during the period 2000-

2012, it is observed that there are significant simultaneous positive spatial spillovers in various

government expenditure categories. This suggests that, overall, locally provided public goods in

Spain behave as complements. However, the results obtained with relative importance metrics

analysis show that the incremental hypothesis has greater explanatory power than that of spatial

spillovers, which indicates that theoretical models of local government interactions should include

time lags to capture behavioral frictions arising from complex political processes. The main

result regarding the effects of exogenous explanatory variables is that municipal fiscal policy

is mainly driven by economic and demographic factors, while local political factors, such as

political power concentration, ideology or alignment with upper-tier level of government do not

play a relevant role in determining government spending dynamics.
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Chapter 1

Volatility and Regional Growth in Europe:
Does Space Matter?1

1.1 Introduction

Over the last two decades there have been numerous studies on spatial disparities in economic

performance and development in Europe using a variety of different approaches and methods.

This increasing interest has to do with the important advances that have taken place in economic

growth theory, coinciding with the introduction of endogenous growth models in the mid 1980s

(Barro and Sala-i-Martin, 1995). The assumptions underlying these models ultimately allow

for the reversal of the neoclassical prediction of convergence, and lead to the conclusion that

the faster growth of rich economies leads to an increase in regional disparities. In fact, the

self-sustained and the selective nature of economic growth is also highlighted by many models

of the “new economic geography” developed since the seminal contribution by Krugman (1991,

1998). According to these theories, increasing returns and agglomeration economies explain

the accumulation of economic activity in the more dynamic areas, which causes ultimately

spatial divergence. Academic debate aside, however, the increasing relevance of this topic in

the European setting is closely related to the strong emphasis placed on achieving economic

and social cohesion in the context of the process of integration currently underway (European

Commission, 2007).

The literature has stressed the role played by various factors on regional growth in Europe,

including the sectoral composition of economic activity (Paci and Pigliaru, 1999), structural

change processes (Gil et al., 2002), technology and innovation capacity (Fagerberg et al., 1997),

human capital stock (Rodŕıguez-Pose and Vilalta-Bufi, 2005), infrastructure endowment and

investment (Crescenzi and Rodŕıguez-Pose, 2008), European regional policy (Rodŕıguez-Pose

1A version of this essay has been published in Spatial Economic Analysis.
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and Fratesi, 2004), social capital (Beugelsdijk and Van Schaik, 2005), or income distribution

(Ezcurra, 2009).2 Nevertheless, the study of the possible relationship between volatility and

regional growth has received hardly any attention in this context. Indeed, to date, only Martin

and Rogers (2000) and Falk and Sinabell (2009) have examined this issue in a sample of European

regions using aggregate data for the economy as a whole. Martin and Rogers (2000) identify

a negative relationship between volatility and growth in a sample of 90 NUTS-1 and NUTS-

2 regions during the period 1979-1992.3 This finding contrasts with the positive correlation

observed by Falk and Sinabell (2009) in 1,084 NUTS-3 regions between 1995 and 2004.4

The limited number of analysis on the volatility-growth connection in the European setting is

especially remarkable in view of the abundant theoretical arguments supporting the existence of

a link between short-term economic instability and economic performance (Ramey and Ramey,

1995; Aghion and Saint-Paul, 1998). Moreover, the issue poses potentially important implica-

tions for the design of policy (Norrbin and Pinar Yigit, 2005). In particular, the presence of

a positive relationship suggests that public policies that endeavour to reduce the variability of

cyclical macroeconomic fluctuations may restrict the possibilities of growth in the long-term.

On the contrary, the existence of a negative link implies that government policies designed to

stabilize the business cycle will help to rise the long-term growth rate of the economy.

Against this background, and in order to complement the results obtained so far in the ex-

isting literature, the aim of this chapter is to examine further the relationship between volatility

and regional growth in Europe. In particular, this study pays special attention to the underlying

geographical dimension of the processes of regional growth in the European setting. Accordingly,

the sample regions are not treated as isolated units that evolve independently of the rest, and

spatial effects are incorporated formally into the analysis. This approach allows to investigate

the role played by spatial spillovers in explaining the impact of volatility on regional growth in

Europe. In particular, the present analysis takes explicitly into account the possibility that the

economic performance of any given region is influenced by the degree of volatility experienced

2This list of factors is not exhaustive. For further information, see the recent papers by Crespo Cuaresma
and Feldkircher (2013) and Crespo Cuaresma et al. (2014), who consider other potential determinants of regional
growth in Europe.

3NUTS is the French acronym for “Nomenclature of Territorial Units for Statistics”, a hierarchical classifica-
tion of subnational spatial units established by Eurostat according to administrative criteria. In this classification,
NUTS-0 corresponds to the country level, while increasing numbers indicate increasing levels of territorial disag-
gregation.

4In addition to these contributions based on aggregate data, Ezcurra (2010) employs sectorally dissagregated
data for six manufacturing activities to investigate the relationship between the fluctuations of the business
cycle and output growth in the European regions between 1980 and 2006. Furthermore, Chandra (2003) tests the
predictions of the portfolio model of the economy with European regional data. Using different frontier estimation
methods, this author provides evidence of the existence of a convex growth-instability frontier.
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by neighboring regions.

This study distinguishes itself from the earlier studies by Martin and Rogers (2000) and Falk

and Sinabell (2009) mentioned above in three major aspects.

First, taking into account the process of economic integration currently underway in Europe,

a theoretical framework to analyze the link between volatility and economic growth when regions

are spatially interconnected is presented. To that end, a spatially augmented stochastic growth

model with technological interdependence among economies is developed. Spatial externalities

are used to model technological interdependence, which ultimately implies that the economic

growth rate of a particular region is affected not only by its own degree of volatility, but also by

the output fluctuations registered by the remaining regions.

Second, there are important differences from a methodological perspective between this paper

and previous contributions. First, this is the first study investigating the link between regional

growth and volatility in Europe using panel data. The employment of panel data leads usually

to a greater availability of degrees of freedom, thus reducing the collinearity among explanatory

variables and improving the efficiency of the estimates. Panel data techniques also allow to take

into account unobserved heterogeneity (Islam, 2003). This is particularly useful in this context,

since region-specific factors are likely to affect regional growth patterns.

Third, unlike this paper, Martin and Rogers (2000) and Falk and Sinabell (2009) do not add

the investment level as a control variable when estimating the relationship between volatility and

economic growth in the European regions. This omission may affect their findings, since there

are numerous theoretical arguments that suggest the relevance of investment in this context (e.g.

Ramey and Ramey, 1995; Imbs, 2007).

The paper is organized as follows. After this introduction, Section 2 reviews briefly the main

results obtained so far in the empirical literature on the link between volatility and regional

growth. Section 3 presents a theoretical growth model to investigate the effect of the fluctua-

tions of the business cycle on economic performance when the regional economies are spatially

interconnected. Section 4 describes the data and the econometric approach used in the analysis.

The empirical findings of the paper are discussed in Section 5. The final section offers the main

conclusions from this work and the policy implications of the research.
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1.2 Literature Review

Business cycle fluctuations and long-run growth have traditionally been treated by economists

as separate areas of research. According to this perspective, the long-term growth rate of

the economy is considered as an exogenous trend that is not affected by short-term shocks.

This point of view, however, has been questioned over the last three decades, coinciding with

the publication of various contributions that link both phenomena in a common theoretical

framework (e.g. Kydland and Prescott, 1982; Aghion and Saint-Paul, 1998).

From a theoretical perspective, however, the relationship between the variability of cyclical

macroeconomic fluctuations and economic performance is ambiguous, as volatility can affect

growth via several different mechanisms that often work in opposite directions (Aghion and

Howitt, 1998; Jones et al., 2005). Consequently, empirical research has attempted to shed light

on the relationship between volatility and growth. In fact, numerous papers have explored

this issue during the last years using cross-country data and different econometric techniques.

Some authors find support for a positive link between volatility and growth (e.g. Kormendi

and Meguire, 1985; Grier and Tullock, 1989; Caporale and McKiernan, 1996), while other

researchers report a negative association (e.g. Ramey and Ramey, 1995; Martin and Rogers,

2000; Badinger, 2010). Finally, there are papers where the observed link is not statistically

significant (e.g. Speight, 1999; Chatterjee and Shukayev, 2006).

In order to overcome the problems related to systematic data quality variations that affect

many cross-country analyses, several scholars have investigated this issue using regional data

from the US (Chatterjee and Shukayev, 2006; Dawson and Stephenson, 1997), Canada (Dejuan

and Gurr, 2004), or the EU (Martin and Rogers, 2000; Falk and Sinabell, 2009). The regional

approach is particularly appealing in this context, as the use of smaller geographical areas allows

the researcher to increase the number of observations employed in the econometric analysis (Falk

and Sinabell, 2009). Nevertheless, the empirical research on the relationship between volatility

and economic growth based on regional data has been so far limited and, as occurs with cross-

country studies, generally reaches diverging conclusions. In fact, as can be observed in Table

(1.1), available empirical analyses at the regional level are not conclusive. The reasons for this

diversity of results have to do with the fact that these contributions differ considerably in terms

of the sample composition and the study period, the indicator used to measure the degree of

volatility, and the econometric approach. Accordingly, further empirical research is required to

clarify the nature of the link between volatility and economic growth at the regional level.
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When considering the findings of the papers included in Table (1.1), it is important to

recall that the literature on regional growth has emphasized repeatedly over the last decade the

relevance of spatial effects on regional economic performance (e.g. López-Bazo et al., 2004; Rey

and Janikas, 2005; Le Gallo and Dall’erba, 2008). To date, however, with the only exception of

Falk and Sinabell (2009), this issue has not been taken into account by the empirical literature

on the volatility-growth connection at the regional level. This omission is particularly important

from an econometric perspective and may lead to erroneous conclusions on the effect of volatility

on regional growth. In view of this, this study pays particular attention to the possibility

that spatial spillovers affect the relationship between the fluctuations of the business cycle and

regional growth. In order to formalize this idea, the next section presents a theoretical growth

model to analyze the link between volatility and economic growth when regional economies are

spatially interconnected.

1.3 Theoretical Framework: A Spatial Stochastic Growth Model

In order to explain the relationship between volatility and regional growth, in this section a spa-

tially augmented stochastic growth model is developed. Following Ertur and Koch (2007) and

Fischer (2011), the model includes Arrow-Romer externalities and spatial externalities, which

implies technological interdependence in a world of N regions denoted by i = 1, . . . ,N. These

regions have the same production possibilities, but they differ because of different resource en-

dowments and spatial locations. Within a region all agents are identical. Consider an aggregate

(Hicks-neutral) Cobb-Douglas production function for region i in period t with constant returns

to scale in labor and reproducible physical capital:

Yit = AitK
α
itL

1−α
it (1.1)

where Yit, Kit and Lit are respectively the output, the level of reproducible physical capital

and the level of labor. In turn, Ait stands for the aggregate level of technology, which can be

expressed as:

Ait = Ωtk
φ
its

γ
it

N∏
j 6=i

A
ρwij
jt (1.2)

As can be observed in Equation (1.2), the aggregate level of technology depends on four

terms. First, according to the traditional neoclassical growth model (Solow, 1956; Swan, 1956),
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Ωt denotes the proportion of technological progress that is exogenous and identical in all regions.

In particular, Ωt = Ω0e
gt where g is its constant rate of growth. Second, it is assumed that

region’s i level of technology increases with the level of physical capital per worker, kit = Kit
Lit

.

Note that Equation (1.2) implies that each unit of physical capital investment not only increases

the stock of capital but also increases the level of technology available for all firms in the

economy (Arrow, 1962; Romer, 1986). The parameter φ, with 0 ≤ φ ≤ 1, reflects the relevance

of these externalities associated with physical capital. Third, the level of technology in region i

is also affected by stochastic fluctuations resulting from random productivity shocks sit = eεit ,

where εit is white noise. These productivity shocks have associated a certain degree of volatility

which determines the output fluctuations experienced by the regional economy (De Hek, 1999;

Jones et al., 2005). In particular, it is assumed that the distribution of εit is given by the

measure µθ, where θ is an index of riskiness. More specifically, θ′ ≥ θ means that µθ′ is

dominated in the sense of second order stochastic dominance by µθ, which implies that a higher

θ corresponds to higher volatility of the innovation to the technology shock. In turn, −1 < γ < 1.

Finally, the fourth term in Equation (1.2) is a geometrically weighted average of the aggregate

level of technology of the neighboring regions. This term captures the idea that spillovers

arising from capital investment and productivity shocks extend across regional borders but do so

with decreasing intensity because of the existence of socio-economic and institutional differences

captured by geographical distance (Ertur and Koch, 2007; Fischer, 2011). In order to formalize

this argument, the so-called spatial weight terms wij that represent the spatial interdependence

between regions i and j are introduced. As is usual in the literature, these terms are assumed to

be non-negative, non-stochastic and finite, with 0 ≤ wij ≤ 1 and wij = 0 if i = j. It is further

assumed that
∑N

j 6=iwij = 1 for i = 1, . . . ,N, in order to avoid scale affects and ensuing explosive

growth. The parameter ρ, with 0 ≤ ρ < 1, measures the relevance of spatial externalities in

this context.

It should be noted that the presence of spatial technological interdependence in the model

implies that regions cannot be treated as isolated units but must be considered as an interde-

pendent system. Accordingly, rewriting the log-version of Equation (1.2) in matrix form yields:

A = Ω + φk + γs+ ρWA (1.3)

where A is the (N × 1) vector of logarithms of the aggregate level of technology for the N

regions, Ω is the (N × 1) vector of the logarithms of the exogenous part of technology, k is the
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(N × 1) vector of the logarithms of per worker physical capital, and s is the (N × 1) vector of

the logarithms of random productivity fluctuations. In turn, W denotes the (N ×N) matrix of

spatial weights representing the spatial connectivity structure between the N regions. Therefore,

if ρ 6= 0 and if 1
ρ is not an eigenvalue of W , solving Equation (1.3) for A yields:

A = (I − ρW )−1Ω + φ(I − ρW )−1k + γ(I − ρW )−1s (1.4)

Using the Sherman-Morrison formula to develop (I − ρW )−1 in its Taylor expansion form and

regrouping terms for region i the evolution of technology is given by:

Ait = Ω
1

1−ρ
t kφits

γ
it

N∏
j 6=i

k
φ
∑∞
r=1 ρ

rw
(r)
ij

jt s
γ
∑∞
r=1 ρ

rw
(r)
ij

jt (1.5)

Replacing Equation (1.5) in the normalized per worker production function version of Equation

(1.1) (i.e, dividing by Lit), it is possible to express output per worker as:

yit = Ω
1

1−ρ
t kviiit s

uii
it

N∏
j 6=i

k
vij
jt s

uij
jt (1.6)

where:

vii = α+ φ

(
1 +

∞∑
r=1

ρrw
(r)
ii

)
(1.7)

vij = φ

( ∞∑
r=1

ρrw
(r)
ij

)
∀i 6= j (1.8)

uii = γ

(
1 +

∞∑
r=1

ρrw
(r)
ii

)
(1.9)

uij = γ

( ∞∑
r=1

ρrw
(r)
ij

)
∀i 6= j (1.10)

Given the production function of Equation (1.6), at each date t the representative agent

of region i must choose how much to invest, xit, and consume, cit, in order to maximize her

expected overall utility. Assuming that physical capital fully depreciates each period, the agent

faces the following dynamic optimization problem (De Hek, 1999):

Max

∞∑
t=0

δtEU (cit) (1.11)
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subject to

cit + kit+1 = yit

yit = Ω
1

1−ρ
t kviiit s

uii
it

N∏
j 6=i

k
vij
jt s

uij
jt

cit ≥ 0, xit ≥ 0, ki0 given

where the parameter δ stands for the discount factor, with 0 < δ < 1. In turn, the preferences

are represented by a constant elasticity of substitution utility function:

u(cit) =
c1−σ
it − 1

1− σ
(1.12)

with σ 6= 1, σ > 0.

The first order conditions for consumption and investment are given by the following set of

equations:

[cit] : δtc−σit = λt (1.13)

[kit+1] : −λt + λt+1

viiΩ 1
1−ρ
t+1 s

uii
it+1k

vii−1
it+1

N∏
j 6=i

s
uij
jt k

vij
jt+1

 = 0 (1.14)

where λt is the Lagrange multiplier at time t. Combining Equations (1.13) and (1.14) the

following Euler equation is obtained:

1 = δE

( cit
cit+1

)σviiΩ 1
1−ρ
t+1 s

uii
it+1k

vii−1
it+1

N∏
j 6=i

s
uij
jt k

vij
jt+1

 (1.15)

Therefore the expected value of the growth rate of region i between t and t+ 1 is given by:

E

[
yit+1

yit

]
=

(δvii)E

Ω
1−σ
1−ρ
it+1k

vii−1
it+1 s

η
it+1

N∏
j 6=i

k
(1−σ)vij
jt+1 sζjt+1

 1
σ
Ω

1
1−ρ suiiit+1

N∏
j 6=i

k
vij
jt+1s

uij
jt+1


(1.16)

where η = (1− σ)uii and ζ = (1− σ)uij .

The interest relies in the effect of increasing volatility of the random productivity shocks

on the decision variables of the model and the resulting expected growth rate. To explore this
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issue, consider the following function of η and ζ:

Θ (η, ζ) =
[
E
(
suiiit+1, s

uij
jt+1

)] [
E
(
sηit+1, s

ζ
jt+1

)] 1
σ

(1.17)

Note that the impact of a change in volatility on the expected growth rate is determined by the

effect of a change in volatility on Θ (η, ζ). According to Equation (1.17), there are two channels

through which volatility can affect the expected growth rate. The first channel is related to the

learning by doing effect given by the function E
(
suiiit+1, s

uij
jt+1

)
, while the second channel has to

do with the optimal savings rate function
[
E
(
sηit+1, s

ζ
jt+1

)] 1
σ

. In order to analyze the effect of

a change in volatility on the expected growth rate, it is necessary to determine the shape of the

functions associated with each channel. Focusing on the learning by doing channel, Equation

(1.17) indicates that the impact on the expected growth rate of region i of an increase in the

degree of volatility experienced by the own region is positive when uii > 1, null if uii = 1 and

negative when 0 < uii < 1. Furthermore, an increasing volatility in the neighboring regions

exerts a positive effect on the expected growth rate of region i when uij > 1, null if uij = 1 and

negative when 0 < uij < 1. Regarding the channel related to the optimal saving rate, Equation

(1.17), shows that the impact on the expected growth rate of region i of an increase in the degree

of volatility experienced by the own region is positive when η > 1, null if η = 1 and negative

when 0 < η < 1. Additionally, an increasing volatility in the neighboring regions has a positive

effect on the expected growth rate of region i when ζ > 1, null if ζ = 1 and negative when ζ < 1.

As can be observed, the model shows that the final impact of volatility on regional growth

rates is theoretically ambiguous. Empirical research is therefore key to shed further light on the

relationship between business cycle fluctuations and regional economic growth. For this reason,

the rest of the paper is devoted to studying empirically this issue using data for the European

regions.

1.4 Empirical Framework

1.4.1 Data

The data for the empirical analysis are drawn from the Cambridge Econometrics regional

database and Eurostat. In order to maximize the number of countries included in the anal-

ysis, the study period goes from 1991 to 2011. The sample covers a total of 272 NUTS-2 regions
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belonging to 27 EU member states, as well as Norway.5 NUTS-2 regions are used in the analysis

instead of other possible alternatives for various reasons. First, NUTS-2 is the territorial unit

most commonly employed in the literature to investigate the determinants of regional growth in

Europe, which facilitates the comparison of the results with those obtained in previous papers.

Second, NUTS-2 regions are particularly relevant in terms of the EU regional policy since the

1989 reform of the European Structural Funds.

The key variables throughout the paper are the average and the standard deviation of the

growth rates of real GDP per capita in the various regions between 1991 and 2010. The average

annual growth rate for the European regions as a whole is 1.4%, while the standard deviation

of growth across regions and time is 3.1% on average. Nevertheless, both variables exhibit a

high degree of variation across the sample regions during the study period as can be observed

in Figures (1.1) and (1.2) below. Figure (1.1) plots the spatial distribution of GDP per capita

growth rates. The first quartile covers regions with growth rates below the 0.98%, the second

quartile covers regions with intermediate growth rates between the 0.98 and 1.35%, the third

quartile includes regions with growth rates between the 1.35% and 1.83% and the fourth quartile

fast growing regions with average rates above the 1.83% threshold. Similarly, Figure (1.2)

plots the spatial distribution of the output fluctuations. The first quartile covers regions with

fluctuations of 1.88 points around its long run average growth rate, the second quartile includes

regions with an average level of fluctuation between 1.88 and 2.55 points, the third covers

fluctuation levels between 2.55 and 3.30 points while the fourth quartile covers highly-volatile

regions where the average intensity of fluctuations is above 3.30 points its long run growth rate.

As observed, there are fast growing regions with important fluctuations in economic activity, as

in the cases of the Irish regions, Algarve in Portugal, or Aland in Finland. Likewise, high levels

of volatility are also found in some regions with low growth rates, as occurs with Liguria or

Calabria in Italy, Champagne-Ardenne in France. This is not particularly surprising given the

heterogeneous behavior in terms of economic performance experienced by the sample regions

during the study period, which gives a clear indication of the complexity of regional growth

patterns in Europe (Rodŕıguez-Pose, 2002).

5The lack of data has obliged me to exclude from the study the French overseas departments and territories,
and the Portuguese islands in the Atlantic.
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Figure 1.1: GDP per capita Growth rates, 1991-2011.
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Figure 1.2: Output Growth Volatility, 1991-2011.
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1.4.2 Econometric Model

As mentioned in the introduction, earlier studies on the volatility-growth connection in the

European regions use a cross-sectional approach (Martin and Rogers, 2000; Falk and Sinabell,

2009). Nevertheless, the nature of the dataset allows to employ panel data techniques in this

context, thus extending modeling possibilities as compared to the single equation cross-sectional

setting employed so far (Baltagi, 2001; Hsiao, 2003). In view of this, the empirical analysis begins

with the following fixed-effects model written in vector form for a cross-section of observations

at time t:

∆Yt = µ+Xtβ + εt (1.18)

where ∆Yt denotes a N×1 vector including the average growth rate of GDP per capita for every

region in the sample (i = 1, . . . , N) measured at a particular point in time (t = 1, . . . , T ).6 In this

study, t denotes windows over five-year periods, Xt is a N×K matrix that includes the standard

deviation of regional growth rates over each five-year period as a measure of volatility, as well as

a set of additional variables that control for other factors that are assumed to influence regional

growth.7 In turn, µ = (µ1, . . . , µN )
′

is a N × 1 vector that stands for unobservable region-

specific effects, whereas ε = (ε1t, . . . , εNt)
′

is a N × 1 vector that represents the corresponding

disturbance term.

The control variables included in X have been selected on the basis of the findings of existing

studies on the determinants of regional growth in Europe. While the choice of these variables is

theoretically well grounded, it ultimately depends on the availability of reliable statistical data

for the geographical setting on which the study is focused. Thus, following the convention in

the literature on economic growth, the initial level of GDP per capita is used to control for

economic convergence across regions (Barro and Sala-i-Martin, 1992). The inclusion of this

variable in the model helps to determine whether poor regions grew faster than richer ones

during the study period, thus providing information on the dynamics of regional disparities.

In addition, the level of investment and the population growth rate of the sample regions are

included, two variables theoretically important when it comes to explaining capital accumulation

and economic growth (Mankiw et al., 1992; Barro and Sala-i-Martin, 1995). Furthermore, the

share of the active population with tertiary education and/or an employment in science and

6In the remainder of the thesis it is assumed that the data are sorted first by time and then by spatial unit,
whereas the classic panel data literature tends to sort the data first by spatial unit and then by time.

7The employment of five year periods to calculate the dependent variable in Equation (1.18) is consistent with
the literature on the volatility-growth connection (e.g. Ramey and Ramey, 1995).
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technology is employed as a human capital control.8 This is particularly important, given the

relevant role played by investment in human capital when explaining regional growth in Europe

(Crespo Cuaresma and Feldkircher, 2013).

Additionally, regional growth patterns may be affected by the possible existence of agglom-

eration economies (Ciccone, 2002; Fujita and Thisse, 2002). Agglomeration economies result

from market and non-market interactions, and imply that proximity to larger markets leads to

productivity gains. In order to capture the degree of spatial concentration of economic activity

in a given area, the employment density of the various regions is added to the list of regressors

of the baseline specification (Ciccone, 2002). Furthermore, the economic performance of the

sample regions may be related to the sectoral composition of economic activity. Indeed, several

studies have found that industry mix affects regional growth in the EU (e.g. Paci and Pigliaru,

1999). Although the European economy has experienced a process of convergence in regional

productive structures during the last decades, considerable differences persist in the patterns of

regional specialization across Europe (Ezcurra et al., 2006). Accordingly, X also includes the

regional employment shares in agriculture, financial services and non-market services.

When examining the volatility-growth link, it is particularly important to control for regional

size, as this factor may be related to the intensity of the output fluctuations experienced by the

sample regions. Larger regions are often characterized by lower levels of specialization than

smaller regions (Ezcurra et al., 2006), which may imply a greater ability to face the adverse

effects of economic shocks (Malizia and Ke, 1993; Trendle, 2006). It should be recalled that

the region-specific effects included in the baseline specification allow to control for those time-

invariant factors relevant in this context. This is the case of region’s area. Nevertheless, a

check on the correlation coefficient between these region-specific effects and total population

(an alternative measure of regional size) reveals it is relatively low (ρ = 0.06). In view of this,

region’s population is included as an additional regressor in Equation (1.18).

With the only exception of the population growth rate, all the explanatory variables included

in matrix X are measured at the beginning of each subperiod in order to minimize any potential

endogeneity problem.

At this point it is important to note that, as is usual in the traditional convergence litera-

ture, Equation (1.18) considers the various regions as isolated units, thus ignoring the spatial

characteristics of the data and the potential role of geography in shaping economic growth (Rey

8This specific measure was selected due to the lack of data for other alternative indicators. Nevertheless, it is
worth noting that the nature of this variable implies that its use as a human capital control may be questionable,
which should be taken into account when interpreting empirical findings.
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and Janikas, 2005). This should raise no major problems, as long as each economy evolves

independently of the rest. However, this does not seem a very realistic assumption in the con-

text of the economic integration process currently underway in Europe. On the contrary, the

importance of interregional trade, migratory movements and technology and knowledge transfer

processes suggests that geographical location may play an important role in explaining regional

growth patterns in the European setting (López-Bazo et al., 2004; Creszenci, 2005; Fingleton

and López-Bazo, 2006). In fact, the theoretical model developed in Section 3 shows that regional

growth rates may be affected by the degree of volatility experienced by neighboring regions. The

consequences of omitting these spatial effects from the specification of Equation (1.18) are po-

tentially important from an econometric perspective (Anselin, 1988). Accordingly, this potential

problem is taken into account in the empirical analysis. At this point it is important to note

that the theoretical model does not provide a specific spatial specification to be estimated. In

view of this, a fixed-effects Spatial Durbin Model (SDM), which is sufficiently general to allow for

endogenous and exogenous spatial interactions between the sample regions is considered. This

model can be written as follows:

∆Yt = µ+ ρW∆Yt +Xtβ +WXtθ + υt (1.19)

where W is the spatial weights matrix used to capture the degree of spatial interdependence

between the various regions, and υt is the disturbance term. As can be observed, in this specifica-

tion the regional growth rates depend on the spatial lag of the dependent variable, W∆Yt, which

captures the spatial effects working through the dependent variable. In addition, the model also

includes the spatial lag of the measure of volatility and of the rest of control variables, WXt.

The presence of spatial lags of the dependent and explanatory variables complicates the

interpretation of the parameters in Equation (1.19) (Le Gallo et al., 2003; Anselin and Le Gallo,

2006). Therefore, some caution is required when interpreting the estimated coefficients in the

SDM. As shown by LeSage and Pace (2009, pp. 33-42), in a SDM a change in a particular

explanatory variable in region i has a direct effect on that region, but also an indirect effect

on the remaining regions. In this context, the direct effect captures the average change in

the economic growth rate of a particular region caused by a one unit change in that region’s

explanatory variable. In turn, the indirect effect can be interpreted as the aggregate impact

on the growth rate of a specific region of the change in an explanatory variable in all other

regions, or alternatively as the impact of changing an explanatory variable in a particular region
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on the growth rates of the remaining regions. LeSage and Pace (2009) show that the numerical

magnitudes of these two calculations of the indirect effect are identical due to symmetries in

computation. Finally, the total effect is the sum of the direct and indirect impacts.

The specification in Equation (1.19) is particularly useful in this context, because the SDM

allows one to estimate consistently the effect of volatility on regional growth when endogeneity

is induced by the omission of a (spatially autoregressive) variable. Indeed, LeSage and Pace

(2009) show that if an unobserved or unknown but relevant variable following a first-order

autoregressive process is omitted from the model, the SDM produces unbiased coefficient esti-

mates. Additionally, this model does not impose prior restrictions on the magnitude of potential

spillovers effects. Furthermore, the SDM is an attractive starting point for spatial econometric

modelling because it includes as special cases two alternative specifications widely used in the

literature: the Spatial Lag Model (SLM) and the Spatial Error Model (SEM). As can be checked,

the SDM can be simplified to the SLM when θ = 0:

∆Yt = µ+ ρW∆Yt +Xtβ + υt (1.20)

and to the SEM if θ + ρβ = 0:

∆Yt = µ+Xtβ + εt (1.21)

where εt = ξWεt + υt and υt ∼ i.i.d. In fact, the SDM produces unbiased coefficient estimates

even when the true data-generation process is a spatial lag or a spatial error model.

1.4.3 Spatial Weights Matrix Selection

The estimation of the various spatial models described above requires to define previously a

spatial weights matrix. Given that this is a critical issue in spatial econometric modelling

(Corrado and Fingleton, 2012), a broad range of alternative specifications of W are considered.

The first spatial weights matrix is based on the concept of first order contiguity, according to

which wij = 1 if regions i and j are physically adjacent and 0 otherwise. Secondly, several

matrices based on the k-nearest neighbors (k = 5, 10, 15, 20) computed from the great circle

distance between the centroids of the various regions (Le Gallo and Ertur, 2003). Additionally,

various inverse distance matrices are constructed with different cut-off values above which spatial

interactions are assumed negligible. As an alternative, inverse distance and exponential distance

decay matrices are considered, whose off-diagonal elements are defined by wij = 1
dαij

for α =

1.25, 1.50, . . . , 3.00 and wij = exp(−θdij) for θ = 0.005, . . . , 0.030, respectively (Keller and
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Shiue, 2007; Elhorst et al., 2013). As can be observed, the different matrices described above

are based in all cases on the geographical distance between the sample regions, which in itself is

strictly exogenous. This is consistent with the recommendation of Anselin and Bera (1998) and

allows the researcher to avoid the identification problems raised by Manski (1993). Furthermore,

as is common practice in applied research, all the matrices are row-standardized, so that it is

relative, and not absolute, distance which matters.

In the literature there are different criteria to determine the spatial weights matrix that best

describe the data. The most widely used approach is to compare the log-likelihood function

values. Nevertheless, this approach has been criticized because it only finds a local maximum

among competing models and it may be the case that the correctly specified W is not included

(Harris et al., 2011; Vega and Elhorst, 2013). As an alternative criterion, LeSage and Pace

(2009) propose the employment of the Bayesian posterior model probability, while Elhorst et al.

(2013) suggest to select the model with the lowest parameter estimate of the residual variance.

In the Bayesian estimation exercise, non-informative diffuse priors for the model parameters

(β, θ, σ) are used following the recommendation of LeSage (2014a). In particular, a normal-

gamma conjugate prior is used for β, θ and σ while a beta prior for ρ is used. To that end,

parameter c is set to zero and T to a very large number (1e+ 12) which results in a diffuse prior

for β, θ. Diffuse priors for σ are obtained setting d = 0 and v = 0. Finally, the parameterization

of the prior for ρ is done by setting a0 = 1.01:9

π(β) ∼ N (c, T )

π

(
1

σ2

)
∼ Γ (d, v)

π (ρ) ∼ 1

Beta (a0, a0)

(1 + ρ)a0−1 (1− ρ)a0−1

22a0−1

(1.22)

Table (1.2) shows that, according to these criteria, the most appropriate matrix in this context

is the exponential distance decay W with θ = 0.01. Therefore, this is the spatial weights matrix

used in the rest of the paper.10

9As noted by LeSage and Pace (2009), pp. 142, the Beta (a0, a0) prior for ρ with a0 = 1.01 is highly non-
informative and diffuse as it takes the form of a relatively uniform distribution centered on a mean value of zero
for the parameter ρ. For a graphical illustration on how ρ values map into densities see Figure 5.3 pp. 143. Also,
notice that the expression of the Inverse Gamma distribution corresponds to that of Equation 5.13 pp.142.

10Posterior probabilities displayed in Table (1.2) are computed by scaling log-marginal values for each group of
the geographical weights matrices. This is why the overall column-sum does not add up to one. However, when
integrating and scaling over all the different W matrices together, the results are even more explicit pointing
with a probability of 99% to the 1% exponential decay matrix as the most likely spatial scheme which suggests a
peak-shape posterior density distribution.
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Table 1.2: Spatial Weights Matrix Selection.

Bayesian posterior Log-likelihood Residual
model probability function value variance

First order contiguity 1.00 3509.84 1.18E-04
K-nearest neighbors (K = 5) 0.00 3552.87 1.09E-04
K-nearest neighbors (K = 10) 0.86 3551.59 1.09E-04
K-nearest neighbors (K = 15) 0.00 3512.16 1.17E-04
K-nearest neighbors(K = 20) 0.00 3466.42 1.28E-04
Cut-off 500 km 1.00 3564.08 1.07E-04
Cut-off 1, 000 km 0.00 3491.27 1.22E-04
Cut-off 1, 500 km 0.00 3438.74 1.34E-04
Cut-off 2, 000 km 0.00 3401.29 1.44E-04
1/dα, α = 1.25 0.00 3411.19 1.41E-04
1/dα, α = 1.50 0.00 3447.64 1.32E-04
1/dα, α = 1.75 0.00 3481.37 1.24E-04
1/dα, α = 2.00 0.72 3526.97 1.14E-04
1/dα, α = 2.25 0.27 3533.47 1.13E-04
1/dα, α = 2.50 0.00 3535.66 1.12E-04
1/dα, α = 2.75 0.00 3540.96 1.11E-04
1/dα, α = 3.00 0.00 3532.95 1.13E-04
exp− (θd), θ = 0.005 0.00 3534.70 1.12E-04
exp− (θd), θ = 0.010 1.00 3580.55 1.03E-04
exp− (θd), θ = 0.015 0.00 3579.38 1.04E-04
exp− (θd), θ = 0.020 0.00 3564.39 1.06E-04
exp− (θd), θ = 0.030 0.00 3540.31 1.11E-04

Notes: Bayesian Markov Monte Carlo (MCMC) routines for spatial panels required to compute
Bayesian posterior model probabilities do not exist yet. As an alternative, all cross-sectional
arguments of James LeSage routines are replaced by their spatial panel counterparts, for
example a block-diagonal NT ×NT matrix, diag(W, ...,W ) as argument for W . All W’s are
row-normalized.
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1.5 Results

1.5.1 Main Findings

The first column of Table (1.3) presents the results obtained when the fixed-effects model de-

scribed in Equation (1.18) is estimated by OLS assuming that the disturbances are independent

and identically distributed. As can be observed, the coefficient of the standard deviation of

regional growth rates is negative and statistically significant at the 1% level. This seems to

indicate the existence of a negative relationship between volatility and economic growth in the

European regions. Furthermore, the results show that the coefficient of initial GDP per capita

is negative and statistically significant, indicating the existence of a process of conditional con-

vergence across the sample regions. Likewise, the remaining control variables included in matrix

X are in general statistically significant and have the expected signs.

These results should be treated with caution. In particular it is important to recall that, as

mentioned above, there are important reasons to believe that spatial effects play an important

role in explaining regional growth patterns in the European setting, which may cause estimates

of Equation (1.18) to become biased, inconsistent and/or inefficient. In order to investigate

the relevance of this potential problem in the sample, the residuals of the OLS estimation of

Equation (1.18) are used to calculate the Lagrange multiplier tests for the SLM (LM-SLM) and

the SEM (LM-SEM), plus their robust versions.

Table (1.4) reveals that the results of these tests lead in all cases to the rejection of the

null hypothesis of absence of residual spatial dependence. In view of this, the various spatial

panel data models described in the previous section are estimated by maximum likelihood,

using routines written by Elhorst (2014) and the bias correction method proposed by Lee and

Yu (2010).

Column 2 of Table (1.3) presents the results from the SDM, whereas the SLM and the SEM

are presented respectively in columns 3 and 4. Before continuing it is important to evaluate which

is the best spatial specification in this context. To that end, likelihood-ratio tests (LR-SDM-

SLM and LR-SDM-SEM) are calculated to find out if the SDM can be simplified respectively

to the SLM (H0 : θ = 0) or the SEM (H0 : θ + ρβ = 0). As can be observed in Table (1.4),

the null hypotheses of both tests are rejected. This implies that the SDM is the appropriate

specification in this context (Elhorst, 2010). In fact, this conclusion is consistent with the

information provided by the various measures of goodness-of-fit included in Table (1.3).

As mentioned in the previous section, correct interpretation of the parameter estimates in the
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Table 1.3: Estimation Results: Volatility and Regional Growth.

Model Non-spatial Spatial Durbin Spatial Lag Spatial error

Volatility -0.346*** -0.159*** -0.232*** -0.169***
(-21.88) (-8.68) (-13.92) (-9.35)

Initial GDP per capita (logs) -0.092*** -0.133*** -0.085*** -0.129***
(-19.29) (-25.10) (-17.86) (-24.77)

Investment 0.038*** 0.003 0.037*** 0.006
(3.19) (0.29) (3.20) (0.52)

Population growth -0.019 -0.096* -0.035 -0.054
(-0.30) (-1.76) (-0.58) (-1.12)

Human capital 0.165*** -0.001 0.122*** 0.000
(9.63) (-0.06) (7.23) (0.01)

Employment density (logs) -0.067*** 0.010 -0.006 0.006
(-7.76) (1.06) (-0.66) (0.66)

Agriculture -0.014 -0.026 -0.044** -0.032*
(-0.79) (-1.44) (-2.46) (-1.82)

Financial services 0.109*** 0.100*** 0.085*** 0.103***
(3.61) (2.98) (2.89) (3.16)

Non market services 0.088*** 0.001 0.078*** 0.009
(4.30) (0.03) (3.93) (0.37)

Population (logs) -0.020 -0.024 -0.046*** -0.019
(-1.23) (-1.64) (-2.92) (-1.32)

Neighbors’ volatility 0.068**
(2.41)

Neighbors’ initial GDP per capita 0.118***
(13.72)

Neighbors’ investment 0.005
(0.24)

Neighbors’ population growth -0.054
(-0.38)

Neighbor’s human capital 0.102***
(3.44)

Neighbors’ employment density -0.034**
(-2.19)

Neighbors’ agriculture 0.029
(0.98)

Neighbors’ financial services -0.192***
(-3.53)

Neighbors’ non market services -0.012
(-0.29)

Neighbors’ population -0.031
(-0.99)

Neighbor’s economic growth (ρ) 0.768*** 0.455***
(28.93) (17.91)

Spatial autoregressive parameter (ξ) 0.897***
(58.12)

Region-specific effects Yes Yes Yes Yes
Adjusted R-squared 0.72 0.79 0.71 0.54
Log-likelihood 3188.82 3580.55 3345.12 2467.25
Observations 1088 1088 1088 1088

Notes: The dependent variable is in all cases the average growth rate of GDP per capita of the various regions
measured over five-year periods. t-statistics in parentheses. * Significant at 10% level, ** significant at 5% level,
*** significant at 1% level.
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Table 1.4: Model Specification Tests.

Test Statistic p-value

LM-SLM test 396.11 0.000
LM-SEM test 854.11 0.000
Robust LM-SLM test 37.80 0.000
Robust LM-SEM test 495.80 0.000
LR-SDM-SLM test 400.93 0.000
LR-SDM-SEM test 61.70 0.000

SDM requires to take into account the direct, indirect and total effects associated with changes

in the regressors. Table (1.5) shows this information. Focusing on the main aim of the paper,

results reveal that the relationship between volatility and economic performance is negative and

statistically significant, thus confirming the empirical evidence provided by the previous analysis

and by Martin and Rogers (2000). In particular, the estimates show that lowering the volatility

measure by one standard deviation is associated with an increase in the average growth rate

of around 1.6%. Nevertheless, this total effect is the sum of the direct and indirect impact of

volatility on growth. The direct effect, Table (1.5) indicates that an increase in the degree of

volatility registered by a specific region exerts a negative and statistically significant impact on

its growth rate. In turn, the indirect effect shows that this increase also influences negative and

significantly on the growth rates of neighboring regions. In fact, the indirect effect accounts

for more than half of the overall impact caused by output fluctuations, thus corroborating the

empirical relevance of spatial spillovers in this context. Accordingly, the economic performance

of a particular region depends on the degree of volatility registered by the remaining regions,

which is consistent with the conclusions of the theoretical model developed in Section 3.11

These findings are not affected by the inclusion of additional controls, confirming that the

observed effect of the fluctuations of the business cycle on regional growth is not a spurious

correlation due to the omission of relevant variables. In particular, volatility remains positive and

significantly associated with economic growth even after controlling for the level of investment.

This is especially important given that the literature and the theoretical model highlight the

potential relevance of investment in explaining the volatility-growth connection (e.g. Ramey

and Ramey, 1995; Imbs, 2007). However, the results do not provide empirical support for

11In order to investigate whether the observed relationship between volatility and economic growth is stable
over time, the estimation of Equation (1.19) for the periods 1991-2006 and 1996-2011 is carried out using three
subperiods of five years in each case. The results are very similar to those described in the text. In fact, the only
noticeable difference has to do with the direct effect of volatility on economic growth for the period 1996-2011,
which is negative but not statistically significant at conventional levels.
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this transmission channel. In fact, the direct, indirect and total effects of volatility on economic

growth continue to be negative and statistically significant when the investment level is excluded

from the list of regressors.

Table 1.5: Spatial Durbin model: Direct, Indirect and Total effects.

Variable Direct Indirect Total
effects effects effects

Volatility -0.168*** -0.224** -0.392***
(-9.30) (-2.56) (-4.32)

Initial GDP per capita (logs) -0.130*** 0.068** -0.063**
(-24.77) (2.38) (-2.13)

Investment 0.005 0.033 0.038
(0.40) (0.38) (0.45)

Population growth -0.120* -0.545 -0.665
(-1.75) (-0.851) (-0.96)

Human capital 0.016 0.423*** 0.439***
(0.75) (3.86) (3.80)

Employment density (logs) 0.005 -0.111** -0.106*
(0.53) (-1.96) (-1.72)

Agriculture -0.024 0.038 0.014
(-1.32) (0.35) (0.10)

Financial services 0.080** -0.488*** -0.407**
(2.53) (-2.61) (-2.16)

Non-market services -0.002 -0.047 -0.049
(-0.05) (-0.32) -0.32)

Population (logs) -0.032** -0.208 -0.240*
(-2.08) (-1.61) (-1.77)

Notes: t-statistics in parentheses. *Significant at 10% level, ** significant
at 5% level, *** significant at 1% level. Inferences regarding the statistical
significance of these effects are based on the variation of 1000 simulated pa-
rameter combinations drawn from the variance-covariance matrix implied by
the BCML estimates.

Table (1.5) also provides interesting information about the different control variables included

in matrix X. Thus, it should be noted that the direct effect estimates are mostly statistically

significant. In particular, the results obtained show that regions with relatively low levels of GDP

per capita tend to grow faster, confirming the existence of a process of conditional convergence

across the European regions during the study period. Furthermore, the population growth rate is

negatively associated with the dependent variable. Likewise, empirical estimates also reveal that

the employment share in financial services has a positive impact on regional growth, while the

impact of total population is negative. These findings are in general consistent with the empirical

evidence provided by the literature on regional growth in Europe. In turn, the investment level,
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human capital, employment density and the employment shares in agriculture and non-market

services do not seem to exert a statistically significant direct effect on the dependent variable. In

any case, it is important to observe that there are variables in which the direct effects displayed

in Table (1.5) tend to be similar to the spatial Durbin model coefficient estimates of the non-

spatial lagged variables reported in the second column of Table (1.3). The differences between

these measures are due to feedback effects that arise from spatial spillovers induced by each

region in the whole system. In those cases where these differences are not particularly relevant,

it is possible to conclude that feedback effects do not play an important role in this context.

Table (1.5) also reveals that the indirect impacts are statistically significant for the initial level

of GDP per capita, the human capital control, employment density and the employment share

in financial services. This means that the effect on the dependent variable of the remaining

control variables tends to be confined to the region itself.

As mentioned above, the sum of direct and indirect effects allows one to quantify the total

effect on regional growth of the different control variables. When direct and indirect effects are

jointly taken into account, Table (1.5) indicates that the total effect is statistically significant

exclusively in the case of the initial level of GDP per capita, the human capital control, employ-

ment density, the employment share in financial services and total population. The total effect

of the initial level of GDP per capita implies a speed of convergence of 3.26%. When interpreting

this result, it is interesting to note that the level of development of neighboring regions has a

positive influence on the growth rate of any given region, thus reducing the speed of convergence

provided by the estimate of the direct effect of the initial level of GDP per capita. In turn,

the investment in human capital exerts a positive influence on the economic performance of the

European regions, which has to do with the relevance of spatial spillovers associated with this

variable. In the case of employment density and the employment share in financial services, the

negative indirect effects outweigh the positive direct effects. As a result, the total effects of these

variables show a negative correlation between them and the dependent variable. Furthermore,

smaller regions are characterized by registering higher growth rates, confirming the information

provided by the direct effect.

1.5.2 Robustness Checks

The analysis carried out so far suggests the existence of a negative and statistically significant

link between the intensity of output fluctuations and regional growth in Europe. In particular,

estimates seem to indicate that the observed relationship is in part due to the existence of spatial
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spillovers induced by volatility in neighboring regions. In the rest of this section the robustness

of these findings is investigated.

As a first robustness test, it is examined to what extent the results may be sensitive to

the choice of the measure used to quantify the incidence of volatility in the sample regions.

To that end, an alternative measure of volatility used in the real business cycle literature that

consists of the standard deviation of the GDP per capita gap (Hnatovska and Loayza, 2004)

is considered. To calculate this measure, the trend of each region’s GDP per capita series is

estimated by applying the Hodrick-Prescott filter. The standard deviation of GDP per capita

growth employed so far in the paper is based on the implicit assumption that the trend of GDP

grows at a constant rate, whereas this measure allows the trend of GDP to follow a richer, time-

and regional-dependent process. Table (1.6) shows the direct, indirect and total effects obtained

when the SDM is estimated using the standard deviation of the GDP per capita gap to capture

the relevance of the fluctuations of the business cycle in the sample regions. As can be seen,

the different effects of volatility on regional growth continue to be negative and statistically

significant in all cases, confirming previous results.

An additional issue is to examine until what extent previous findings are contingent on the

specific spatial model used to investigate the link between volatility and economic growth in

the European regions. In fact, the analysis performed so far is based on the estimation of a

SDM. As discussed in Section 4, in this particular context there are important reasons to justify

the employment of the SDM as the baseline specification. Nevertheless, it is important to note

that the SDM is a global spillover specification (LeSage, 2014b). In view of this and in order to

complement previous results, two local spatial spillover specifications are considered: the Spatial

Exogenous Lag Model (SLX) and the Spatial Durbin Error Model (SDEM), which can be written

respectively as follows:

∆Yt = α+Xtβ +WXtθ + υt (1.23)

and

∆Yt = α+Xtβ +WXtθ + εt (1.24)

where εt = ξWεt + υt and υt ∼ i.i.d.. The results obtained when these alternative specifications

are used instead of the SDM are shown in Table (1.7). As can be checked, the main findings

remain unaltered. The direct, indirect and total effects of volatility on economic growth are
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Table 1.6: Robustness Analysis (I): An Alternative Measure of Volatility.

Variable Direct Indirect Total
effects effects effects

Volatility -0.241*** -0.250*** -0.492***
(-14.52) (-3.16) (-5.99)

Initial GDP per capita (logs) -0.116*** 0.072*** -0.044
(-23.84) (2.69) (-1.58)

Investment 0.012 -0.002 0.010
(1.14) (-0.03) (0.14)

Population growth -0.154*** -0.712 -0.866
(-2.44) (-1.23) (-1.39)

Human capital 0.016 0.328*** 0.345***
(0.85) (3.54) (3.54)

Employment density (logs) -0.001 -0.099* -0.100*
(-0.13) (-1.92) (-1.86)

Agriculture -0.003 0.050 0.047
(-0.16) (0.53) (0.48)

Financial services 0.074** -0.488*** -0.414**
(2.43) (-2.94) (-2.47)

Non-market services 0.011 -0.095 -0.084
(0.52) (-0.78) (-0.68)

Population (logs) -0.018 -0.139 -0.157
(-1.29) (-1.22) (-1.32)

Notes: t-statistics in parentheses. *Significant at 10% level, ** significant
at 5% level, *** significant at 1% level. Inferences regarding the statistical
significance of these effects are based on the variation of 1000 simulated pa-
rameter combinations drawn from the variance-covariance matrix implied
by the BCML estimates.
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negative and statistically significant in all cases, regardless of the spatial model considered.

When interpreting previous results, it should be noted that the impact of volatility on eco-

nomic growth may differ across regions, depending on their level of development. According to

this hypothesis, the negative correlation observed between volatility and economic performance

may be caused by the inclusion in the sample of regions with different levels of economic devel-

opment. In order to test whether this is the case, the sample regions is divided into two groups:

(i) regions with a GDP per capita below the 75% of the sample mean at the beginning of each

five-year period, and (ii) remaining regions. This regional classification is used to estimate an

alternative version of Equation (1.19) that allows the volatility-growth relationship to be differ-

ent across groups (Ertur et al., 2006).12 The results of this additional analysis are summarized

in Table (1.8). As can be observed, the negative association between volatility and economic

performance still holds in the two groups of regions. Nevertheless, the different effects shown in

Table (1.8) are statistically significant at conventional levels only in the case of the low-income

regions. This result is potentially important from a policy perspective, as it suggests that output

fluctuations are particularly harmful for economic growth in the Europe’s poorest regions.

Finally, it is examined whether empirical results are affected by the fluctuations in the

exchange rates of the various countries. As pointed out by Bivand and Brunstad (2006, p. 284),

regions in countries with unusual exchange rate series can perform differently from regions in

countries with typical exchange rate series. This is potentially important in this context, since

the variations in the exchange rate series may have influence on the values of the regional growth

rates and the measure of volatility used in the econometric analysis. In order to investigate this

issue an approach similar to that used by Bivand and Brunstad (2006) is adopted here. In

particular, a dummy variable that allows to identify regions in countries with high fluctuations

in the exchange rate series over the study period is included. This dummy variable takes the value

one if the region is in a country where the standard deviation of the variation of the exchange

rate in each five-year period is above the third quartile of the distribution, zero otherwise. As can

be observed in Table (1.9), the total effect on the dependent variable of this dummy variable is

not statistically significant at conventional levels. However, previous findings on the relationship

between volatility and economic growth remains unaffected.

12As an alternative, one may to consider the possibility of estimating Equation (1.19) separately for two groups
of regions defined according to the level of development at the beginning of the study period. However, this would
imply to use different spatial weights matrices in the two groups, thus ignoring the spatial interdependences
between them.
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Table 1.8: Robustness Analysis (III): The Effect of Regional Development Level.

Variable Direct Indirect Total
effects effects effects

Volatility of poorest regions -0.172*** -0.221** -0.393***
(-9.33) (-2.18) (-3.74)

Volatility of remaining regions -0.082* -0.315 -0.397
(-1.74) (-0.87) (-1.05)

Initial GDP per capita (logs) -0.130*** 0.067** -0.063**
(-24.67) (2.23) (-2.02)

Investment 0.006 0.033 0.039
(0.49) (0.38) (0.43)

Population growth -0.122* -0.548 -0.669
(-1.75) (-0.81) (-0.93)

Human capital 0.015 0.421*** 0.436***
(0.74) (4.00) (3.96)

Employment density (logs) 0.004 -0.106* -0.101
(0.46) (-1.77) (-1.63)

Agriculture -0.023 0.037 0.015
(-1.22) (0.33) (0.12)

Financial services 0.081** -0.483** -0.402**
(2.49) (-2.49) (-2.05)

Non-market services 0.003 -0.051 -0.049
(0.11) (-0.37) (-0.34)

Population (logs) -0.031** -0.215 -0.246*
(-1.99) (-1.64) (-1.78)

Notes: t-statistics in parentheses. *Significant at 10% level, ** significant
at 5% level, *** significant at 1% level. Inferences regarding the statistical
significance of these effects are based on the variation of 1000 simulated pa-
rameter combinations drawn from the variance-covariance matrix implied by
the BCML estimates.
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Table 1.9: Robustness Analysis (IV): The Impact of Exchange Rate Fluctuations.

Variable Direct Indirect Total
effects effects effects

Volatility -0.177*** -0.186** -0.363***
(-9.53) (-1.96) (-3.65)

Initial GDP per capita (logs) -0.129*** 0.066** -0.063**
(-24.58) (2.19) (-2.05)

Investment 0.006 0.033 0.039
(0.57) (0.38) (0.44)

Population growth -0.106 -0.584 -0.691
(-1.53) (-0.86) (-0.95)

Human capital 0.014 0.454*** 0.468***
(0.68) (4.15) (4.11)

Employment density (logs) 0.006 -0.121** -0.115*
(0.69) (-2.01) (-1.83)

Agriculture -0.023 0.055 0.032
(-1.25) (0.47) (0.27)

Financial services 0.075** -0.490** -0.415**
(2.26) (-2.51) (-2.10)

Non-market services -0.006 -0.057 -0.063
(-0.25) (-0.38) (-0.41)

Population (logs) -0.036** -0.199 -0.235*
(-2.42) (-1.48) (-1.68)

Exchange rate factor 0.006*** -0.013* -0.007
(3.04) (-1.86) (-1.05)

Notes: t-statistics in parentheses. *Significant at 10% level, ** significant
at 5% level, *** significant at 1% level. Inferences regarding the statistical
significance of these effects are based on the variation of 1000 simulated pa-
rameter combinations drawn from the variance-covariance matrix implied by
the BCML estimates.
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1.6 Conclusions

This paper has examined the relationship between output volatility and regional growth in

Europe. To that end, a spatially augmented stochastic growth model with technological inter-

dependence among economies is developed. Spatial externalities are used to model technological

interdependence, which ultimately implies that the economic growth rate of a particular region is

affected not only by its own the degree of volatility but also by the output fluctuations registered

by the remaining regions. The model shows that economic fluctuations generate effects on the

growth rate of output through the channels of learning by doing and through the determination

of the optimal savings rate, which ultimately depends on the attitudes towards risk. These

effects are not confined to the region where the random innovation occurred and generate addi-

tional impacts in the production of other regions. In the theoretical model different parameter

values characterizing the scaling of shocks, the impact on learning, attitudes to risk, the returns

to scale of the different factors and the degree of regional interdependence shape the relationship

between volatility and growth. Thus, highly volatile productivity paths in a given region could

reduce its learning and knowledge formation affecting negatively not only its regional output

but also the rest of the regions in the system. On the contrary, if individuals in a region are risk

averse, volatile fluctuations will increase their savings through precautionary motives. The latter

will tend to rise the output growth rate in the long run. However, in the proposed theoretical

model, structural parameters take fairly general values and therefore, the question of whether

volatility affects positively or negatively growth is left to the empirical analysis.

In order to investigate the empirical validity of this result, the volatility-growth connection

in a sample of 272 European regions over the period 1991-2011 is examined. To do so, a spatial

panel data model using spatial econometric techniques that allows one to take into account the

relevance of spatial effects in the processes of regional growth is estimated. Empirical estimates

show the existence of a negative and statistically significant relationship between volatility and

economic growth in the European regions. This is partly due to the role played in this context by

spatial spillovers induced by volatility in neighboring regions. The observed link is robust to the

inclusion in the analysis of different explanatory variables that may affect regional growth such

as the initial GDP per capita, the level of investment and human capital, employment density

or industry mix. In addition, tests to check that the results do not depend on the measure

of volatility used in the analysis are carried out. Likewise, the negative link detected between

output fluctuations and economic growth still holds when alternative econometric specifications
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are employed to capture the nature of spatial spillovers in this context.

The results obtained in the paper have potentially interesting policy implications. At this

point it needs to be recalled that the variability of cyclical macroeconomic fluctuations have

typically been perceived as a negative phenomenon. The empirical evidence provided by the

present analysis confirms this perception. In particular, the estimates show that short-term

instability is negatively related to regional growth in the European context. This suggests that

traditional public policies designed to promote regional growth should be complemented with

initiatives to reduce the business cycle fluctuations experienced by the European regions. In this

line, policy-makers could attempt to attract new industries to diversify the regional productive

structure, thus reducing the risks faced by those regions with an excessive reliance on a small

number of economic activities (Ezcurra, 2011). In any case, although further research is required

to confirm definitely conclusions obtained here, the possible effect of short-term stability on

economic growth should not be overlooked by policy-makers.
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Chapter 2

Development Differentials and Interaction
Effects in the European Regions: A study
based on the Regional Lisbon Index1

2.1 Introduction

Economists generally assume that regional economic development follows on from economic

growth (Hirschman, 1958; Mynt, 1964). This classical view of the concept can be considered as

economicist, given that it only deals with the material side of development. In fact, the GDP

indicator is a basic one-dimensional measure of a country’s overall output. It does not measure

the development of a particular region as a whole, but rather summarizes the current state of

market transactions within a society, regardless of qualitative or distributive issues (Herrero et

al., 2010). Moreover, the predictive power of GDP is further limited because it measures only

present success, while giving no clue as to the probability of a long-term increase in regional

welfare (Brookfield, 2001).

Nowadays, the widespread belief among academics and policy makers is that composite

indexes provide a better characterization of the multidimensional nature of societal progress

(Stiglitz et al., 2010). Thus, recent years have seen a series of international initiatives to meet

the demand for accurate social development indicators, incorporating more than purely economic

perspectives. There are many alternative indicators that gradually incorporated as comprehen-

sive, sustainable and all-embracing measurements as possible: the Measure of Economic Welfare

and the Sustainable Measure of Economic Welfare (Nordhaus and Tobin, 1972), the Index of

Sustainable Economic Welfare (Daly and Cobb, 1989), the Genuine Progress Indicator (Pearce

and Atakinson, 1993; Pearce et al., 1996; Everett and Wilks, 1999), the Total Material Require-

ment Index (Adriaanse et al., 1997) or The Happy Planet Index (Marks et al., 2006), etc.

1This essay has been published in Tijdschrift voor Economische en Sociale Geografie.
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Nevertheless, the most relevant and widely-used composite indicator was published in the first

Human Development Report (HDR) of the United Nations Development Programme (UNDP)

has been the Human Development Index (HDI), designed by economist Mahbub ul Haq. How-

ever, HDI presents several problems in applied research if the focus of the study is related to

advanced economies such as European Union. The most important problems are its components.

The HDI components do not display an adequate portrayal of the broad concept of development

given that in Europe development capabilities pivot around other issues. This failure was recog-

nized by Anand and Sen (1994): “Yet once we take of the high and similar levels of achievement

in basic capabilities, it becomes relevant to asses performance using more refined capabilities”.2

In line with such policy making initiatives and in order to analyze development in European

member states, Dijkstra (2010) proposes a new composite index to be used in regional level

measurement: the Regional Lisbon Index (RLI). Remarkably, the RLI approach to the concept of

development includes neither GDP per capita nor GDP per person employed and its correlation

with GDP is 0.45, which suggests it provides new information that cannot be learned from

GDP data. The specific purpose of the RLI indicator developed by Dijkstra (2010) was to

serve as a measure of the achievement of objectives set out in the Lisbon Agenda or Lisbon

Strategy (henceforth LS). The said objectives refer fundamentally to employment, education

and research as the necessary means to achieve a knowledge-based economy (KBE) and social

cohesion. In point of fact, LS goals trace an action and development plan for the EU regions,

where the emphasis is laid on advancing towards a “knowledge society”. Furthermore, the

European Council, convened in Lisbon in March of 2000, announced its intention to “turn the

European Union into the most competitive knowledge-based economy in the world” (European

Council, 2000).

Originally, the aim of the RLI was to improve the methodology used in other Lisbon indica-

tors, such as those published by ESPON3, the Lisbon Monitoring Platform, Lisbon Council and

in the 4th Cohesion Report. Under the so-called Renewed LS (European Commission, 2005)

Member States were urged to include its objectives in their regional programming for the period

2007-2013. However, at the end of the decade, the European Commission (2010a) performed

an ambiguous, qualitative and optimistic evaluation of LS results, which has been criticized by

Lundvall and Lorenz (2011) among others. In 2010, the European Commission (2010b) sets out

new growth and employment strategy goals synthetized in “Europe 2020 ”, which builds on the

2This is primarily because GDP per head; literacy, enrollment and life expectancy are all high in Europe,
Bubbico and Dijkstra (2011).
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LS and calls for a particular attention to the territorial dimension of innovation and knowledge

creation (Paci and Marrocu, 2013). The two key differences between the Europe 2020 and the

LS are that (i) Europe 2020 includes environmental and poverty indicators and (ii) there has

been a shift from redistributive policies towards place-based policies aimed at sustaining specific

regional capabilities (Barca, 2009). Nevertheless, the fact that “Europe 2020 ” strategy estab-

lishes new employment, education, research and social cohesion criteria to address economic

development performance provides a motivation for empirical research based on the RLI, since

it is this that will be guiding the assessment of European Regional Policy outcomes.

The objective of this paper is threefold. The first aim is to study the path of European

regions towards a KBE as defined by RLI indicators and LS targets. To do so, a new version

of the RLI containing changes with respect the index developed Dijkstra (2010) is proposed.

Secondly, given that one of the main goals of the regional European development strategy has

been to achieve social and territorial cohesion (European Commission, 2010c) the proposed

alternative RLI indicator to analyze regional convergence dynamics among European regions is

employed. Finally, it is explored how a variety of factors affect regional development growth

rates. An innovative feature of the modeling exercise the role of geography and the existence

of spatial interaction effects between regional units are taken into account. At this purpose, a

spatial panel data econometrics approach is adopted. This empirical framework allows to analyze

the magnitude and significance of spatial spillovers by means of recently developed econometric

estimation techniques (LeSage and Pace, 2009; Lee and Yu 2010; 2010b; Elhrost, 2010; 2012;

2014). Important methodological issues such as region-specific and time-specific fixed effects,

spatial estimation methods, specification and the selection of the spatial matrix are addressed.

The chapter is organized as follows. Section 2, which follows this introduction, reviews the

construction and calculation of the composite Regional Lisbon Index. The shortcomings of

the original RLI are discussed and a new computation of the RLI to address them is proposed.

Section 3 describes the dataset used in the study and the empirical strategy used in this analysis.

The main research findings are presented in Section 4 and the principal conclusions in the final

section.

2.2 The Regional Lisbon Index

The development of a framework for the analysis of regional development based on composite

indexes aimed at generating useful insights for policymaking poses a major theoretical and
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empirical challenge (Streeten, 1994). However, researchers appear to agree that knowledge plays

a crucial role in helping, not only to stimulate and sustain long-term capabilities in firms and

organizations, but also to enhance the success and well-being of individuals and communities

(Howells, 2002). The “learning economy” (Lundvall and Johnson, 1994), “knowledge economies”

(Cooke, 2002), the “learning region” (Florida, 1995) among others, posit the systemic nature of

knowledge as the new paradigm for studying regional development.

The problem is that the KBE has not a unique interpretative paradigm and measuring the

progress of the European regions towards a KBE could prove to be a daunting task (Sokol,

2004; Godin, 2006). Nevertheless, the adoption of the RLI as a policy evaluation tool by the

European Comission and the European Central Bank3 appears an appropriate first step towards

efficient and quantitative monitoring of progress towards a KBE. At this regard, it is important to

remark that the literature has identified a set of factors acting as structural forces of competitive

disadvantage for the local economy. As Rodriguez-Pose (1999) points out, lagging regions in

the EU share a common set of analogous social features. Consequently, it is possible to identify

a set of structural conditions that are persistently associated with poor economic performance.

These factors concern, to different extents, to the features of the labor force, the employment of

local resources, the demographic structure and the accumulation and quality of human capital

(Malecki, 1997; Fargeberg et al., 1997; Rodriguez-Pose and Crescenzi, 2008).

The virtue of the RLI is that it captures the set of relevant dimensions involved in the de-

velopment of KBE by aggregating and weighting labor market, education and R&D indicators

(Powell and Snellman, 2004; Wamser et al., 2013). Further support for the decision to consider

these pillars of development was provided by seminal contributions from the fields of sociology

and economics that have analyzed this concept and emphasized the relevance of R&D and educa-

tion (Bell, 1973; Drueker, 1989). The labor market dimension of the RLI is condensed into three

employment rate variables: men aged 15-54, women aged 15-54 and the joint male and female

55-64 age group. In the context of a KBE, knowing implies an intrinsic relationship with doing.

Hence, job training for skills advancement and learning through employment within an inclusive

labor market are crucial pre-requisites for regional development. The educational dimension is

approximated by three more variables: the percentage of early school leavers aged 18-24; the

percentage of secondary education attainment in the 20-24 age group; and participation in life-

long learning in the 25-64 age group. Finally, the R&D dimension includes R&D expenditure

by businesses (BERD), and by government, higher education and non-profit organizations, in

3Loannou et al. (2008) develop a similar composite index framework to benchmark the LS advancements.
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both cases as a percentage of GDP (GERD).

The calculation of the RLI takes into account gaps with the Lisbon targets in a readily

understandable manner, by computing the relative distance from the Lisbon target instead of

the absolute values of the indicators. However, the computation of the Additive Regional Lisbon

Index (ARLI) developed by Dijkstra (2010) presents several shortcomings when compared to the

Multiplicative Regional Lisbon Index (MRLI) version proposed here. The computation of the

ARLI truncates the distribution of the scores by imputing a value of one irrespective of whether

a particular region just satisfied or widely surpassed the target level. This introduces a severe

bias in the distribution of relative ARLI scores. Figure (2.1) shows the distribution of the ARLI

(blue-line) and MRLI (red-line) scores in the years 2000 (dashed-line) and 2010. As it can be

seen in Figure (2.1) the probability mass of any region to achieve and/or overcome LS targets

goes to zero when implementing the ARLI (blue line) but also creates a twin-peaks shaped

relative distribution in the scores. Moreover, since the additive structure does not penalize

unbalanced development patterns, a region may obtain a relatively high overall score due to

marked performance improvements in only a few of the dimensions of the index.

Figure 2.1: Regional Lisbon Index 2000-2010.
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The methodological proposal here is to use an alternative multiplicative index and avoid

truncation in the distribution of RLI scores. Differences in the formulas used in the two ap-

proaches and the computational steps taken in each RLI version are summarized in Table (2.1).

As it is shown in the second row of Table (2.1), the computation of the index does not restrict the

score to a maximum of 1 if a region surpasses a given target. In the third step, each region’s sub-

indicator scores are aggregated using the geometric mean, which means that this new proposal,

unlike the ARLI, takes into account differences in performance across the various dimensions.

Poor performance in any dimension is now directly reflected in the new RLI, which captures

how well a region performs across the eight dimensions under consideration. In addition, the

fourth normalization/scaling step of Dijkstra (2010) was deleted given that it was producing

highly counter-intuitive results. That is, even if most of indicators during the sample period

where approaching to the LS targets, the overall Index was decreasing. Thus, ARLI is built here

so that it maximizes comparability with the MRLI by only applying the three first steps shown

in Table (2.1).

Table 2.1: Regional Lisbon Index Calculation.

Computational Step Additive RLI Multiplicative RLI

1. Regional Target Filter Ti,t,j = Tj − Ei,t,j Ti,t,j = Tj − Ei,t,j
Ei,t,j1 = Ri,t,j2 − Tj2 Ei,t,j1 = Ri,t,j2 − Tj2

2. Score Calculation Si,t,j = 1−
(

Ti,t,j−Ri,t,j
Ti,t,j−Rmin,t,j

)
if Ri,t,j < Ti,t,j Si,t,j =

Ri,t,j
Ti,t,j

Si,t,j = 1 if Ri,t,j ≥ Ti,t,j

3. Score Aggregation ARLIi,t = 100
(

1
J

∑J
j=1 αjSi,t,j

)
MRLIi,t = 100

(
N

√∏N
j Si,t,j

)
4. Normalization NARLIi,t =

ARLIi,t−ARLImin,t
ARLImax,t−ARLImin,t No Normalization

Note: In the first step Ei,t,j1 denotes the excess associated to the pair of overlapping indicators j1 and j2 at time t, Ti,t,j is
the Lisbon Target associated to indicator j of region i at time t and Ri,t,j is the score of region i at time t for indicator j.
In the third step the weights used to combine the indicators are adjusted to ensure that an increase of 1 percentage point
would lead to the same increase in the Lisbon Index. The BERD target indicator is weighted by 4/3 so that αBERD = 4/3
and GERD indicator is weighted by 2/3, so that αGERD = 2/3.

Table (2.2) reports sub-indicators scores and the original targets of the LS while also allows

for a global comparison of the ARLI and MRLI. As can be seen, according to the MRLI, EU

regions improved their score by 9.4 points while according to the ARLI an increase of 10.1 points

over the period ranging from 2000 to 2010 is observed. Final scores in 2010 were 81.5 and 80.5

respectively, which suggests there is still a large gap to be closed in order to fully achieve the LS

target of 100. The similarity in the overall result is due to the fact that the global behavior in
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the various sub-indicators is very similar in both indexes. Nevertheless, there is a high degree

of cross-region and cross-indicator variation underlying this aggregate pattern during the study

period. While labor market scores improved substantially, R&D, early school leavers and life-

long learning outcomes remained far away from the original targets. Thus, if policy makers aim

to push European economy towards a KBE, additional efforts to develop an adequate innovative

environment are needed.

Table 2.2: Regional Lisbon Indicators.

Lisbon Target ARLI ARLI MRLI MRLI
Indicator Score 2000 Score 2010 Score 2000 Score 2010

Emp, men aged 15-54 85 0.70 0.66 0.89 0.86
Emp, women aged 15-54 64 0.86 0.98 0.92 0.99
Emp, people aged 55-64 50 0.63 0.87 0.74 0.91
Early school leavers 10 0.83 0.90 0.58 0.67
Second Educ attaintment 85 0.79 0.86 0.89 0.93
Lifelong learning 12 0.55 0.79 0.55 0.79
Private RD as % of GDP 2 0.60 0.60 0.60 0.60
Government RD as % of GDP 1 0.70 0.85 0.70 0.85

Regional Lisbon Index 100 70.4 80.5 72.1 81.5

Note: Author’s own calculations based on Eurostat Database and information provided by the European
Comission upon request. Results presented in this table are in all cases weighted averages.

Tables (2.3) and (2.4) show the different scores and the rankings both for regional develop-

ment levels and the regional development dynamics based on the various RLI indicators and the

GDP indicator. As can be observed in Table (2.3), the two RLI measures give different top and

bottom rankings. However, the set of countries of the top 10 regions in both the ARLI and the

MRLI are very similar given that the majority of them belong to northern European countries,

suggesting some geographical clustering in development levels. This result is corroborated by

simple Moran’s tests measuring the degree of spatial autocorrelation for both ARLI and MRLI in

levels and growth rates.4 The MRLI gives Hovedstaden (Denmark) as the top ranking region in

2010 while according to the ARLI the regional leader was Etela-Soumi (Finland). Top positions

in MRLI and ARLI indexes contrast with those given by the GDPpc indicator in terms of both,

the regional ordering and the regional composition. This is because of top regions according to

the GDPpc indicator are financial and political centers such as London, Luxemburg or Bruxelles.

An additional feature of Table (2.3) is that regions in the bottom tend to be the same in both

the MRLI and GDPpc, as they usually include regions from Eastern countries such as Bulgaria

4Moran’s statistic for ARLI/MRLI in levels is 0.51, with p-value 0.00 and 0.47 with p-value 0.00. On the other
hand, Moran’s statistic for ARLI/MRLI in growth rates is 0.27 with p-value 0.00 and 0.19 with p-value 0.00.
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and Romania. Thus, a differential feature of the ARLI with respect the MRLI is that the set of

bottom regions is not only composed by eastern regions but also includes south-Italian regions

and Malta.

Regarding the observed dynamics of the sample regions it can be seen that the fast-mover set

given by the ARLI measure consists mainly of southern European regions belonging to countries

such as Spain, France or Italy. According to the MRLI, the fastest mover was Lincolnshire

while according to the ARLI, the region that developed the fastest during this decade was

Corse. Interestingly, in the MRLI case, and contrary to the ARLI case,a more diversified set

of regions appears in the top positions. This finding suggests that south-European regions may

have experienced an unbalanced development, characterized by the achievement of high scores

in education indicators but low scores in R&D and employment dimensions. Regarding lagging

behind regions, it is observed that some UK and Netherlands regions have experienced falls

in RD levels which has decreased their overall development performance. Conversely, lagging

regions in GDPpc indicator are geographically located in the South of Europe while the regions

experiencing the highest GDPpc growth rates are related to financial centers, abundant natural

resources such as oil and gas or include the capital city.

Taken together, these results suggest that (i) RLI levels and growth rates are geographically

clustered and (ii) that both, the MRLI/ARLI provide new information that cannot be gleaned

from GDP data and are therefore not redundant in the formation of an economic index of

development. Further information on differences in the spatial distribution of the GDP and RLI

indicators can be observed in Figures (2.2) and (2.3) below.

64



T
ab

le
2.

3:
R

eg
io

n
al

L
is

b
on

In
d

ex
R

an
k
in

g
.

M
u

lt
ip

li
ca

ti
v e

R
L

I
20

10
20

00
A

d
it

iv
e

R
L

I
20

10
20

00
G

D
P

P
er

C
a
p

it
a

2
0
1
0

2
0
0
0

R
an

k
in

g
R

an
k
in

g
R

a
n

k
in

g

T
op

10
H

ov
ed

st
ad

en
1.

31
1.

18
E

te
la

-S
u

om
i

0.
98

0.
96

In
n

er
L

o
n

d
o
n

8
4
.2

4
7
2
.1

7
R

eg
io

n
s

V
st

sv
er

ig
e

1.
29

0.
95

G
lo

u
ce

st
er

sh
ir

e
0.

97
0.

96
L

u
x
em

b
u

rg
5
8
.7

0
5
0
.7

4
S

y
d

sv
er

ig
e

1.
26

1.
23

S
y
d

sv
er

ig
e

0.
97

0.
94

R
g
io

n
d

e
B

ru
x
el

le
s-

C
a
p

it
a
le

5
1
.4

4
4
9
.9

7
S

to
ck

h
ol

m
1.

23
0.

98
L

an
si

-S
u

om
i

0.
97

0.
93

S
to

ck
h

o
lm

4
6
.5

0
4
1
,4

7
st

ra
M

el
la

n
sv

er
ig

e
1.

20
1.

22
S

te
ie

rm
ar

k
0.

96
0.

84
H

a
m

b
u

rg
4
5
.9

9
4
2
.5

6
E

as
t

A
n

gl
ia

1.
18

1.
14

H
ov

ed
st

ad
en

0.
96

0.
97

H
ov

ed
st

a
d

en
4
3
.1

2
4
0
.5

2
S

te
ie

rm
ar

k
1.

13
0.

84
V

at
sv

er
ig

e
0.

96
0.

98
N

o
rt

h
E

a
st

er
n

S
co

tl
a
n

d
4
0
.2

7
3
8
.2

7
B

ra
u

n
sc

h
w

ei
g

1.
12

1.
02

B
er

k
sh

ir
e

0.
96

0.
83

O
b

er
b

ay
er

n
3
9
.0

0
3
6
.8

8
P

ro
v
.

V
la

am
s

B
ra

b
an

t
1.

12
0.

95
V

la
am

s
B

ra
b

an
t

0.
96

0.
88

B
er

k
sh

ir
e

3
8
.9

8
3
8
.0

5
It

a-
S

u
om

i
1.

12
1.

03
H

am
p

sh
ir

e
0.

95
0.

96
W

ie
n

3
8
.2

9
3
6
.6

5

B
ot

to
m

10
Y

u
zh

en
ts

en
tr

al
en

0.
34

0.
29

S
ev

er
en

ts
en

tr
al

en
0.

44
0.

41
Y

u
g
o
iz

to
ch

en
2
.8

0
2
.5

8
R

eg
io

n
s

V
es

t
0.

33
0.

30
S

u
d

-E
st

0.
43

0.
49

C
en

tr
u

2
.7

8
2
.0

0
S

ev
er

oi
zt

o
ch

en
0.

33
0.

29
S

ev
er

oz
ap

ad
en

0.
43

0.
41

N
o
rd

-V
es

t
2
.5

8
1
.7

3
Y

u
go

iz
to

ch
en

0.
32

0.
28

E
sz

ak
-M

ag
ya

ro
rs

za
g

0.
43

0.
36

S
ev

er
en

ts
en

tr
a
le

n
2
.4

5
1
.2

1
S

u
d

-
M

u
n
te

n
ia

0.
30

0.
28

C
am

p
an

ia
0.

42
0.

34
Y

u
zh

en
ts

en
tr

a
le

n
2
.4

1
1
.0

3
C

en
tr

u
0.

30
0.

26
C

al
ab

ri
a

0.
42

0.
32

S
ev

er
o
za

p
a
d

en
2
.3

7
2
.8

5
S

u
d

-E
st

0.
29

0.
29

M
al

ta
0.

41
0.

27
S

u
d

-
M

u
n
te

n
ia

2
.3

2
1
.4

4
S

u
d

-V
es

t
O

lt
en

ia
0.

28
0.

31
C

en
tr

u
0.

41
0.

44
S

u
d

-E
st

2
.2

2
1
.6

1
S

ev
er

oz
ap

ad
en

0.
28

0.
26

P
u

gl
ia

0.
40

0.
34

S
u

d
-V

es
t

O
lt

en
ia

2
.1

1
1
.6

0
S

ev
er

en
ts

en
tr

al
en

0.
28

0.
27

S
ic

il
ia

0.
38

0.
31

N
o
rd

-E
st

1
.6

9
1
.2

9

N
o
te

:
G

D
P

p
c

d
a
ta

is
co

m
p
u
te

d
in

2
0
0
0

co
n
st

a
n
t

p
ri

ce
s

a
n
d

ex
p
re

ss
ed

in
th

o
u
sa

n
d
s.

65



T
ab

le
2.4:

D
evelop

m
en

t
D

y
n

am
ics

R
an

k
in

gs.

M
u

ltip
lica

tive
R

L
I

A
d

itive
R

L
I

G
D

P
P

er
C

ap
ita

F
a
st

M
ov

in
g

L
in

co
ln

sh
ire

7
.3

6
C

orse
13.57

In
n

er
L

on
d

on
1.21

R
eg

io
n

s
N

o
rte

6
.9

5
E

x
trem

ad
u

ra
6.30

L
u

x
em

b
u

rg
0.80

S
w

ieto
k
rzy

sk
ie

5
.5

4
A

n
d

alu
cia

4.37
O

v
re

N
orrlan

d
0.72

C
a
n
ta

b
ria

4
.9

7
S

ard
egn

a
4.21

S
ou

th
er

an
d

E
astern

0.67
N

y
u

g
a
t-D

u
n

a
n
tu

l
4
.7

5
C

an
tab

ria
4.13

N
orra

M
ellan

sverige
0.62

L
a

R
io

ja
4
.6

8
A

stu
rias

4.09
H

igh
lan

d
s

an
d

Islan
d

s
0.61

E
sto

n
ia

4
.4

7
M

alta
4.09

P
rah

a
0.61

P
rov

.
A

n
tw

erp
en

4
.2

5
S

lask
ie

4.09
G

ron
in

g
en

0.59
L

u
x
em

b
u

rg
4
.0

6
L

a
R

io
ja

4.06
A

ttik
i

0.58
C

o
rse

3
.8

5
C

h
am

p
agn

e-A
rd

en
n

e
3.86

A
lan

d
0.58

L
a
g
g
in

g
B

eh
in

d
E

ssex
-0

.2
9

C
en

tru
-0.42

A
lsace

-0.15
R

eg
io

n
s

F
riesla

n
d

-0
.3

3
L

eicester
sh

ire
-0.46

P
rov

A
u

t
B

olzan
o-B

ozen
-0.15

G
rea

ter
M

a
n

ch
ester

-0
.3

9
B

ed
ford

sh
ire

-0.48
A

b
ru

zzo
-0.16

D
o
rset

a
n

d
S

o
m

erset
-0

.4
7

M
u

n
ten

ia
-0.49

L
a

R
io

ja
-0.17

B
ed

fo
rd

sh
ire

-0
.4

7
Y

ork
sh

ire
-0.59

P
rov

A
u

t
T

ren
to

-0.18
U

trech
t

-0
.7

2
G

reater
M

an
ch

ester
-0.59

C
om

u
n

id
ad

d
e

M
ad

rid
-0.19

O
v
re

N
o
rrla

n
d

-0
.7

8
O

stra
M

ellan
sverige

-0.62
C

atalu
n
ya

-0.20
O

p
o
lsk

ie
-1

.2
7

B
ratislav

sk
y

-0.64
C

om
u

n
id

ad
V

alen
cian

a
-0.20

H
erefo

rd
sh

ire
-1

.5
9

K
en

t
-0.81

C
an

aria
s

-0.23
A

la
n

d
-1

.7
0

S
u

d
-E

st
-0.91

B
aleares

-0.50

N
o
te:

G
D

P
p

c
d
a
ta

is
co

m
p
u
ted

in
2
0
0
0

co
n
sta

n
t

p
rices

a
n
d

ex
p
ressed

in
th

o
u
sa

n
d
s.

66



Figure 2.2: GDP per capita 2000-2010.
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Figure 2.3: Regional Lisbon Index 2000-2010.
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2.3 Data and Econometric Methodology

This section describes the data and the empirical parametric strategy that will be used to

explore the role played by the various determinants of regional development rates measured by

the MRLI.

2.3.1 Data and Hypothesis

The sample for the empirical exercise covers a total of 254 NUTS-2 regions for 25 EU states for

a period running from 2000 to 2010, the indicated period for the achievement of the said LS

objectives.5 NUTS-2 level regions are used in the analysis instead of other possible alternatives

because NUTS-2 (i) is the territorial unit most commonly employed in European regional eco-

nomics literature and (ii) is particularly relevant in terms of EU regional policy, given that it is

the level at which cohesion and regional policy funds are assigned. The data for this study are

drawn from different data sources. Summary statistics, data sources and the precise definition

are shown in Table (2.5) below.

In general terms, the development rate towards a KBE is a reduced form function of a variety

of factors that can be broadly categorized as (i) the specific stage of development, (ii) regional

knowledge and innovation intensity factors, (iii) regional socio-economic enabling elements that

increase the probability of knowledge and innovation taking place and (iv) regional factors used

to control for region economic dynamism. The control variables in the analysis have been

selected on the basis of existing studies on the link between knowledge, innovation and regional

development in Europe (Rodriguez-Pose and Crescenzi, 2008; Capello et al., 2011; Capello and

Lenzi, 2013; 2014).

A) Regional Stage of Development

Following the convention in the literature of economic development, the initial level of MRLI is

used to control for convergence across regions (Barro and Sala-i-Martin, 1995). The inclusion

of this variable in the analysis allows us to determine whether under-developed regions grew

faster than highly-developed ones during the study period, thus providing information on the

dynamics of regional disparities.

B) Regional Knowledge and Innovation intensity

The first group of variables used to explain regional development patterns in Europe are those

5Although the time frame is rather short for a meaningful convergence analysis there is no available data of all
index components for a longer period. Moreover, data for the covariates in Malta and Lithuania were unavailable,
making impossible to include these regions in the regression analysis.
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capturing the intensity of invention and innovation. As shown in Capello and Lenzi (2013),

knowledge and innovation do not necessarily overlap in the spatial level. Factors that enhance

the creation and implementation of new knowledge can be quite different from the factors which

stimulate innovation and regions may exhibit larger endowments either of the former or of the

latter. Secondly, locally created knowledge does not automatically nor necessarily turn into

to local innovation, or, conversely, local innovation does not inevitably come out from locally

produced knowledge. Therefore, their effects are expected to be different from one another.

Formal basic knowledge/technological capital is measured by means of the number of patents

per million of people. The use of technological capital is complemented with the share of popu-

lation with tertiary education as a measure of human capital capabilities, provided that skilled

and highly educated people increase the efficiency of the existing production and it stimulates

the creation of new products and processes (Paci and Marrocu, 2013). However, patents and/or

R&D expenditures are not always translated into market innovations and these controls may

neglect innovative efforts than can be developed either in the form of process, organizational

configuration or product. Thus, following Capello and Lenzi (2014), to approximate the degree

of innovation an index measuring the share of small and medium firms introducing a new prod-

uct and/or a new process in the market is employed.

C) Regional Enabling Knowledge and Innovation Factors

In many cases, the link between basic knowledge and innovation is not very manifest and several

regions innovate on the basis of external knowledge, acquired through networking with leading

regions, and of specific know-how in local application sectors. Moreover, as Rodriguez-Pose

and Crescenzi (2008) point out, innovation is a territorially embedded process and it cannot

be understood independently from the social and institutional conditions existing in a given a

region. For this reason a variety of socioeconomic regional enabling factors that make the ad-

vancement towards a KBE more likely are included. A number of contributions (Tabellini, 2008;

Pilececk et al., 2013) highlight the role played by cooperative and trustworthy environments in

promoting knowledge and innovation socialization, thus enhancing local economic development

potential. For this reason, an indicator capturing social capital is included. Additionally, the

stock of physical infrastructure endowments is included as a proxy for both the accessibility

of the region and its connectivity with the rest of regions. However, the exact importance of

infrastructure as an element in economic development is far from conclusive given that recent

studies performed at the EU level find both positive (Crescenzi and Rodriguez-Pose, 2012) and

negative (Capello and Lenzi, 2014) effects. To capture the functional specialization effect, the
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share of employed in agriculture sector is included. Knowledge and innovation are more likely to

be developed through high-level than low-level functions (Duranton and Puga, 2000). Finally,

it is relevant to take into account that synergies, collective learning and knowledge spillovers

which are the base of regional development, are more likely to arise in highly dense regions than

in isolated ones. To study the effect caused by agglomeration economies population density is

included in the model.

D) Regional Dynamism

The third group of variables controls for a regions economic dynamism as in Capello and Lenzi

(2013). In order to account for the dynamics of the regional labor market the aggregate em-

ployment growth rate and the long term unemployment rate are considered. Additionally, the

investment to GDP ratio is included, which is also associated to a dynamic economic activity.

Therefore, the expected effect of this variable is that it will affect positively the development

rate as it is supposed to generate a push effect on the local economy.
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2.3.2 Spatial Panel Data Models

Recent theoretical and empirical work has shown that regional development may be driven by

intra-regional factors and by extra-regional factors affecting nearby regions (Ertur and Koch,

2007; Fisher, 2011, LeSage and Fisher, 2012). Thus, insofar every regional economy evolves

interacting with other regions, major problems may arise if the spatial characteristics of the

data and the potential role of neighboring effects in shaping regional development are ignored

(Crescenzi, 2005; Fingleton and López-Bazo, 2006). Moreover, the consequences of omitting

these interactions from the model specification are potentially important from an econometric

perspective, and may cause estimates to become biased, inconsistent and/or inefficient (Anselin,

2010). Thus, the empirical analysis begins by considering a two-way fixed-effects Spatial Durbin

Model (SDM), which is sufficiently general to allow for different types of spatial interactions

between the sample regions. This model can be written as follows:

∆Yt = ρW∆Yt + βXt + θWXt + µ+ ιNαt + εt (2.1)

where ∆Yt denotes a N×1 vector consisting of observations for the average growth rate of MRLI

in region i measured over two-year periods for every region i = 1, 2, ..N and Xt is an N × K

matrix of exogenous aggregate socioeconomic and economic covariates with associated response

parameters β contained in a K × 1 vector that are assumed to influence regional development.

A concern is that exogeneity of the right-hand side variables is assumed rather than tested.

As a solution, lagged data values are used to minimize endogeneity. This configuration of the

data implies a balanced panel data with 254 regional units and 5 time periods. Covariates in

Xt, are taken at the years t = 2000, 2002, 2004, 2006, 2008 while ∆Yt are growth rates for the

periods t =2001-02, 2003-04, 2005-06, 2007-08, 2009-2010. In turn, ρ is the spatial autoregressive

coefficient which captures the spatial effects working through the dependent variable. W is a

N×N matrix of known constants describing the spatial arrangement of the regions in the sample

where the diagonal elements are set to zero by assumption, since no region can be viewed as its

own neighbor. In addition, the model includes the spatial lag of the rest of control variables, WXt

whose impact is reflected by the K × 1 vector of coefficients θ. Additionally, µ = (µ1, ..., µN )
′

is a N × 1 vector of region fixed effects, αt = (α1, ..., αT )
′

denotes time specific effects and

ιN is a N × 1 vector of ones. Region fixed effects control for all region-specific time invariant

variables whose omission could bias the estimates while time-period fixed effects control for all

time-specific, space invariant variables whose omission could bias the estimates in a typical time
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series (Elhorst, 2010, 2014). Finally, εt = (ε1t, ..., εNt)
′

is a vector of i.i.d disturbances whose

elements have zero mean and finite variance σ2.The model is estimated following the Maximum-

Likelihood Bias-Corrected procedure (ML-BC) proposed by Lee and Yu (2010) for static spatial

panels.

As shown by LeSage and Pace (2009) in a SDM, a change in a particular explanatory variable

in region i has a direct effect on that region, but also an indirect effect on the remaining regions.

In this context, the direct effect captures the average change in the development growth rate of a

particular region caused by a one unit change in that region’s explanatory variable. In turn, the

indirect effect can be interpreted as the aggregate impact on the growth rate of a specific region

of the change in an explanatory variable in all other regions, or alternatively as the impact of

changing an explanatory variable in a particular region on the growth rates of the remaining

regions. Finally, the total effect is the sum of the direct and indirect impacts.

The above specification is particularly useful in this context, because the SDM does not

impose prior restrictions on the magnitude of potential spillovers effects. Furthermore, the SDM

is an attractive starting point for spatial econometric modeling because it includes as special

cases two alternative specifications widely used in the literature: the Spatial Lag Model (SLM)

and the Spatial Error Model (SEM). The SDM can be reduced to the SLM if θ = 0 and to the

SEM if -ρβ = θ. The SLM reads as:

∆Yt = ρW∆Yt + βXt + µ+ ιNαt + εt (2.2)

while the SEM is given by:

∆Yt = βXt + µ+ ιNαt + υt (2.3)

where υt = λWυt + εt and εt is i.i.d. Note that in this context, the SLM indicates that MRLI

growth rates are partly determined by a spatial interaction substantive process while in the SEM

case, deviations from the steady state in a region, may not be a function of region specific shocks

but instead of a complex set of shock spillovers. An important characteristic of the spillovers

produced by SLM is that they are global in nature. That is, a change in X at any location will

be transmitted to all other locations following the inverse of the spatial weight matrix even if

two locations are unconnected according to W . This contrasts with local spillovers which occur

at other locations without involving an inverse matrix. Typically, studies on the link between

development and innovation such as Paci and Marrocu (2013), Capello and Lenzi (2014) use the

Spatial Exogenous Lag (SLX), SLM or SEM models. However, as shown by McMillen (2003,
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2010) the SLM model has the problem of imposing a unique ratio between the spillover and

direct effects for every explanatory variable. The disadvantage of the SEM is that it does not

provide information about spillovers which is a major limitation if neighboring effects are of

great interest. On the other hand, although the SLX in Equation (2.4) is a flexible model, it

has the problem of not taking into consideration endogenous interactions effects. Other authors

such as Gibbons and Overman (2012) also criticize the use of the SDM because of the existence

of identification problems. In response to such criticisms, Vega and Elhorst (2013) and LeSage

(2014a) have pointed out that traditional spatial econometric modeling strategy needs revision.

They conclude that it is preferable to estimate the SDM and compare it with SLX in Equation

(2.4) or Spatial Durbin Error Model (SDEM) in Equation (2.5) containing exogenous interaction

effects rather than directly estimating SLM or SEM models.

∆Yt = βXt + θWXt + µ+ ιNαt + εt (2.4)

∆Yt = βXt + θWXt + µ+ ιNαt + υt (2.5)

where υt = λWυt + εt. In this paper such a renewed modeling strategy is employed in order

to improve the quantitative analysis accuracy on the magnitude of the spillover and feedback

effects.

2.3.3 Spatial Weights Matrix Selection

The estimation of the various spatial models described above requires to define a spatial weights

matrix. At this regard, one of the most criticized aspects of spatial econometric models is that

the spatial weights matrix cannot be estimated but needs to be specified in advance (Corrado

and Fingleton, 2012). There have been several studies that investigated how robust results are

to different specifications of W and which one is to be preferred. The most widely used criterion

to select the W matrix has been the log-likelihood. However, this approach has been criticized

because it only finds a local maximum among competing models (Harris et al., 2011). Against

this criticism Elhorst et al. (2013), suggest to look at the residual variance while LeSage and

Pace (2009) propose the Bayesian posterior model probability as an alternative criterion to select

model.

Table (2.6) reports the performance of SDM model with spatial fixed and time-period fixed

effects for a broad range of alternative specifications of W and puts together the three previous
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selection procedures.6 The first set of matrices consists of different versions of the inverse distance

matrix with cut-offs while the second set captures gravity-type matrices whose off-diagonal

elements are defined by Wij = 1
dαi,j

for α = 1, , 3. The last group of spatial matrices consists on

exponential-decay matrices, Wij = exp(−θdij) for θ = 0.005, .., 0.03 respectively, which rapidly

decline as distance increases (Keller and Shiue, 2007). All matrices have been row-normalized,

so that the entries of each row add up to 1. In the Bayesian estimation exercise, non-informative

diffuse priors for the model parameters (β, θ, σ) are used following the recommendation of LeSage

(2014b). In particular, a normal-gamma conjugate prior is employed for β, θ and σ while a beta

prior for ρ is employed. To that end, parameter c is set to zero and T to a very large number

(1e+ 12) which results in a diffuse prior for β, θ. Diffuse priors for σ are obtained setting d = 0

and v = 0. Finally a0 = 1.01:7

π(β) ∼ N (c, T )

π

(
1

σ2

)
∼ Γ (d, v)

π (ρ) ∼ 1

Beta (a0, a0)

(1 + ρ)a0−1 (1− ρ)a0−1

22a0−1

(2.6)

As it is observed the best matrix according to the different selection criteria isWij = −exp(0.005dij),

which imposes an speed of decay in the intensity of spatial interactions of 0.5% as distance among

regional units increases. Therefore, this is the spatial weights matrix used in the rest of the pa-

per.8

2.4 Results

This section reports and discusses the empirical findings. Table (2.7) reports the Maximum-

Likelihood Bias Corrected (ML-BC) estimation results of the various spatial econometric models

mentioned in previous section (Lee and Yu, 2010). The first column of Table (2.7) presents the

6Estimations with the various spatial weight matrices W have been performed in SDM models with regional
and time effects. As observed, with Wij = exp(−0.05dij) both spatial and time-period fixed effects should be
included in the model as the LR statistic on the joint significance of the spatial fixed effects is 675.19 with p-value
0.00 and that of the time-period fixed effect is 17.83 with p-value 0.00.

7As noted by LeSage and Pace (2009), pp. 142, the Beta (a0, a0) prior for ρ with a0 = 1.01 is highly non-
informative and diffuse as it takes the form of a relatively uniform distribution centered on a mean value of zero
for the parameter ρ. For a graphical illustration on how ρ values map into densities see Figure 5.3 pp. 143. Also,
notice that the expression of the Inverse Gamma distribution corresponds to that of Equation 5.13 pp.142.

8Posterior probabilities displayed in Table (1.2) are computed by scaling log-marginal values for each group of
the geographical weights matrices. This is why the overall column-sum does not add up to one. However, when
integrating and scaling over all the different W matrices together, the results are even more explicit pointing
with full probability to the 0.5% exponential decay matrix as the most likely spatial scheme which suggests a
peak-shape posterior density distribution.
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Table 2.6: Spatial Weights Matrix Selection.

Spatial Weights Bayesian Posterior Log-likelihood σ̂ε
2

Matrix Model Probability Function Value

Cut-off 500 km 0.94 -3012.38 8.18
Cut-off 1000 km 0.03 -3022.56 8.31
Cut-off 1500 km 0.00 -3039.06 8.53
Cut-off 2000 km 0.00 -3039.56 8.54
Cut-off 3000 km 0.03 -3031.69 8.44
1/dα, α = 1 0.34 -3030.04 8.41
1/dα, α = 1.25 0.52 -3024.34 8.34
1/dα, α = 1.5 0.14 -3020.09 8.28
1/dα, α = 1.75 0.05 -3021.46 8.30
1/dα, α = 2 0.23 -3024.58 8.34
1/dα, α = 2.25 0.00 -3020.24 8.29
1/dα, α = 2.5 0.00 -3027.21 8.38
1/dα, α = 2.75 0.00 -3029.17 8.40
1/dα, α = 3 0.00 -3032.72 8.45
exp− (θd), θ = 0.005 1.00 -3008.34 8.13
exp− (θd), θ = 0.01 0.00 -3011.50 8.17
exp− (θd), θ = 0.015 0.00 -3022.04 8.31
exp− (θd), θ = 0.02 0.00 -3030.97 8.43
exp− (θd), θ = 0.03 0.00 -3042.71 8.58

Notes: Bayesian Markov Monte Carlo (MCMC) routines for spatial panels required to
compute Bayesian posterior model probabilities do not exist yet. As an alternative all
cross-sectional arguments of James LeSage routines were replaced by their spatial panel
counterparts, for example a block-diagonal NT ×NT matrix, diag(W, ...,W ) as argument
for W . All W’s are row-normalized.
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results obtained with a two-way fixed-effects model estimated by OLS assuming that the distur-

bances are independent and identically distributed. As can be observed, the control variables

included in vector X are mostly statistically significant and have the expected signs. Column 2

of Table (2.7) presents the results from the SEM, Column 3 the results of the SLM whereas the

SDM, SLX and SDEM are presented respectively in columns 4, 5 and 6. Before continuing it is

important to evaluate which is the best spatial specification in this context. To do so, LR-tests

against the SDM are carried out to test whether this model can be restricted to simpler ver-

sions finding it should not. The results of these tests suggest that the SDM is the best fitting

model.9 This conclusion is consistent with the information provided by the various measures of

goodness-of-fit included in Table (2.7).

As mentioned in the previous section, for a correct interpretation of the estimates stemming

from the Spatial Durbin Model, the focus is on the direct, indirect and total effects associated

with changes in the set of regressors instead of the estimated parameters. Considering the

average direct impacts of Table (2.8), it is important to notice that there some differences to

the SDM model coefficient estimates reported in Table (2.7). Differences between these two

measures are due to feedback effects passing through the entire system and ultimately reaching

the region of origin. Therefore, these effects do not refer to the traditional non-spatial impact

of a change in Xik in Yi but to the effect of change in in Xik on Yi passing through all Y ′j s and

coming back to Yi (provided that Y ′j s and Yi are spatially connected through W ).

The analysis of the direct effects and feedbacks displays interesting features that are con-

sistent with the empirical literature of development. First, a strong and negative significant

impact of the initial level of development on the growth rate of subsequent periods (-0.66 per-

centage points) is observed. This result is robust to the spatial specification chosen, given that

direct effect estimates of SLX and SDEM also account for a -0.66 percentage points impact.

Second, knowledge-intensity factors behave as expected and exert a positive influence on the

MRLI growth rate. Nevertheless, for this group of regressors, only the direct effects of tech-

nological capital are significant. This result is driven by feedbacks effects of the 12.39%. This

result is also robust to SLX and SDEM specifications where the direct effects of technological

are also positive and significant. Regarding the set of KBE enabling factors, it is observed that

social capital and infrastructure have positive impacts while low-level specializations such as

agriculture have a negative effect. Feedback effects in enabling factors account for a 9% and

9The LR statistics of the SDM vs SLX (H0 : ρ = 0), SDM vs SLM (H0 : θ = 0) and SDM vs SEM (H0 :
θ + ρβ = 0) specifications, are 76.03 with p-value of 0.00, 742.36 with p-value of 0.00 and 222.85 with p-value of
0.00 respectively.
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Table 2.7: Main Results.

OLS SEM SLM SDM SLX SDEM

Initial MRLI -0.619*** -0.657*** -0.571*** -0.667*** -0.667*** -0.666***
(-26.26 ) (-24.56 ) (-21.48 ) (-24.64 ) (-26.27 ) (-24.75 )

Innovation 0.082*** 0.036* 0.054*** 0.022 0.017 0.022
(5.08 ) (1.75 ) (3.72 ) (1.02 ) (0.85) (1.02)

Knowledge capital 0.104 0.065 0.073 0.055*** 0.058 0.054
(1.59 ) (0.90) (2.79) (0.76) (0.85) (0.75)

Technological capital 0.017*** 0.009* 0.013*** 0.008 0.009* 0.009*
(3.54) (1.78 ) (2.69) (1.59) (1.94) (1.74)

Social capital 0.023 0.026 0.031 0.027 0.029* 0.026
(1.43) (1.53) (-0.93) (1.57) (1.81) (1.54)

Infrastructure 0.009*** 0.004* 0.009*** 0.003 0.004* 0.004
(4.18) (1.68) (3.70) (1.33) (1.73) (1.42)

Agriculture -0.168*** -0.171*** -0.115*** -0.156*** -0.155*** -0.145***
(-3.75) (-3.28) (-2.84) (-2.93) (-3.11) (-2.74)

Aglomeration 0.004 0.005 0.004 0.005 0.005 0.005
(1.02) (1.47) (0.95) (1.39) (1.55) (1.29)

Unemployment -0.221*** -0.137* -0.187*** -0.102 -0.072 -0.096
(-3.33) (-1.69) (-2.93) (-1.17) (-0.88) (-1.09)

Investment share 0.000 0.005 -0.018 -0.004 0.001 -0.002
(0.01) (0.12) (0.00) (-0.09) (0.01) (-0.06)

Employment growth 0.015 -0.011 -0.003 0.015 0.044* 0.030
(0.66) (-0.48) (-0.13) (0.59) (1.89) (1.12)

Neighbors’ Initial MRLI 0.465*** 0.731 0.100
(5.76) (1.04) (0.84)

Neighbors’ Innovation 0.013 0.117** 0.085
(0.25) (2.53) (1.16)

Neighbors’ Knowledge Capital 0.138 0.309 0.350
(0.55) (1.33) (1.00)

Neighbors’ Technological capital 0.021 0.058*** 0.053*
(1.10) (3.35) (1.85)

Neighbors’ Social Capital 0.027 -0.017 0.080
(0.43) (-0.28) (0.89)

Neighbors’ Infrastructure 0.007 0.022*** 0.016*
(1.36) (4.48) (1.91)

Neighbors’ Agriculture 0.350*** 0.354*** 0.234
(2.45) (2.64) (1.05)

Neighbors’ Aglomeration -0.036 -0.030 -0.050
(-1.36) (-1.23) (-1.43)

Neighbors’ Unemployment 0.079 -0.229 0.055
(0.39) (-1.21) (0.18)

Neighbors’ Investment share -0.004 -0.156 0.013
(-0.03 ) (-1.23) (0.07)

Neighbors’ Employment growth 0.422*** 0.777*** 0.570***
(3.07) (6.13) (3.00)

Wu/WY 0.777*** 0.539*** 0.640*** 0.654***
(19.44) (11.53) (11.93) (12.23)

Corrected R-squared 0.376 0.370 0.334 0.436 0.427 0.430
Log-Likelihood -3106.23 -3024.34 -3066.26 -3008.87 -3046.363 -3058.82

Notes: The dependent variable is in all cases the MRLI growth rate of the various regions. t-statistics in parentheses. *
Significant at 10% level, ** significant at 5% level, *** significant at 1% level. The results are obtained using the spatial

weights matrix W = exp−(θdij), θ = 0.005
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Table 2.8: SDM Effect Decomposition.

Feedback Direct Indirect Total
Effect Effect Effect Effect

Initial MRLI -0.32% -0.665*** 0.102 -0.563***
(-24.46) (0.55) (-3.01)

Innovation NR 0.023 0.076 0.100
(1.11) (0.62) (0.82)

Knowledge capital NR 0.063 0.484 0.547
(0.86) (0.70) 0.80)

Technological capital 12.39% 0.009* 0.072* 0.081*
(1.81) (1.74) (1.75)

Social capital 10.41% 0.030* 0.123 0.152
(1.72) (0.69) (0.85)

Infrastructure 9.03% 0.004* 0.027** 0.030**
(1.75) (1.96) (2.07)

Agriculture share -6.27% -0.146*** 0.731* 0.585
(-2.62) (1.81) (1.42)

Aglomeration NR 0.004 -0.092 -0.088
(0.98) (-1.17) (-1.10)

Long term unemployment NR -0.102 0.024 -0.078
(-1.16) (0.05) (-0.17)

Investment share NR -0.006 0.006 0.000
(-0.14) (0.02) (0.00)

Employment growth NR 0.031 1.20*** 1.232***
(1.14) (2.80) (2.78)

Notes: Effects are calculated using 1000 draws. t-statistics in parentheses. * Significant
at 10% level, **significant at 5% level, *** significant at 1% level. NR = Not relevant.
Inferences regarding the statistical significance of these effects are based on the variation of
1000 simulated parameter combinations drawn from the variance-covariance matrix implied
by the BCQML estimates.
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10.4% in infrastructure and social capital respectively. Regarding the effect of low functional

specialization, results of Table (2.8) show that agriculture has a negative direct effect that is

amplified by a 6.2% through feedback effects. Interestingly, population density does not seem

to be a significant driver of MRLI changes. Additionally, the results of (2.8) indicate the direct

effects of increasing infrastructures and low-level specializations are very similar among the var-

ious spatial specifications given that coefficient estimates of the SLX and SDEM in Table (2.7)

match those of the SDM. Finally, it is worth mentioning any of the factors belonging to the

regional dynamism group seem to have a significant direct impact on MRLI developments.

The average indirect impacts, third column of Table (2.8), represent the aggregate impact

on the MRLI growth rate of a specific region of the change in an explanatory variable in all

other regions. The presence or absence of these spillover effects, combined with the results

for the average direct impacts allow us to better understand the spatial evolution of MRLI

scores. At this point it is important to recall two aspects. First, there are discrepancies between

the indirect impact and the model coefficients on the spatially lagged explanatory variables

presented in Table (2.7). These discrepancies arise, as for the direct effects, from the existence

of feedbacks. The spillover effects are larger than the spatial lags of the covariates from the

SDM given that they capture cumulative impacts over space that would result from a change

in regional development rates induced by changes in the explanatory variables. Turning to the

results, it can be observed that for some covariates the local effect dominates and the spillovers

may not be relevant in this context. This is the case of the initial stage of development and

the social capital variables. A change in any of these variables has an effect on MRLI growth

rates, but such effect is confined within regional boundaries. On the contrary, the results suggest

the existence of strong and significant spillover effects in factors such as technological capital,

infrastructures, agriculture and employment growth. Moreover, the estimated spillover effect for

this group of covariates is robust to the spatial specification given that SLX and SDEM generate

results that are similar both qualitatively and quantitatively. Remarkably, technological capital,

infrastructure and agriculture present significant direct and spillover effects. This result implies

that a region-specific change in any of these variables does not only affect the respective regions

MRLI but also spills over into neighboring regions.

Total impact estimates are reported in the fourth column of Table (2.8). Estimates indicate

that a 1 percentage point change in the initial stage of development scores registered by a specific

region has a negative and statistically significant impact on its subsequent development growth

rate of -0.563 percentage points, thus providing empirical evidence of decreasing inter-regional
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development gaps. Likewise, the estimates reveals that the evolution of the MRLI depends on

the changes in the different sets of factors. Regarding the group of knowledge-intensity factors

a total positive effect of technological capital in MRLI growth rates is observed. On the other

hand, the results obtained here show that variables such as knowledge capital and the innovation

are not statistically significant at conventional levels. It is possible to conjecture this result is

due to the short time spam of the sample used in the analysis. A higher level of education or

market innovations usually take time to make their effects on development to be observable. As

to the set of enabling factors, the only significant control variable is the infrastructure, which

exerts a positive effect as in Crescenzi and Pose (2012). Therefore, infrastructures measuring the

accessibility to a given area have a positive impact in the achievement of LS goals. In addition,

it is observed that the total effects of regional employment growth are a relevant driver of MRLI

growth rates. That is, higher regional employment growth rates, typically associated to dynamic

regions, have a positive impact of 1.2 percentage points in MRLI growth rates. The relative

contribution of spillovers effects to the total effect is 88% for the technological capital, 90% for

the infrastructure and 95% for employment, which highlights the relevance of interaction effects

in the process of regional development. Taken together, the results obtained show that regional

development in Europe depends on a multiplicity of factors which have complex patterns of

spatial propagation.

2.5 Conclusions

In this chapter RLI scores are used to measure regional development in European regions. The

analysis focuses its attention on the evolution of regional development towards LS goals and

the emergence of regional disparities. The approach developed by Dijkstra (2010) to compute

RLI is reviewed and its shortcomings are discussed. To address these problems, a new measure

of progress towards a KBE based on the computation of the geometric mean of the various LS

sub-indicators is proposed. The advantage of the MRLI is that it does not bias the distribution

of the development scores and penalizes unbalanced patterns of development. Using this new

RLI version, it is shown that during the period of study, European regions experienced a positive

evolution in many dimensions, as suggested by the increase of the mean scores in most of the sub-

indexes. However, private and public R&D expenditures as well as some education indicators

remained far away from LS objectives limiting the overall fullfilment of the Agenda. The results

show that European Union failed to reach the LS targets by a 20%, although a process of
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convergence among regions can be observed based on the MRLI. Results based on the ARLI,

show that Southern-European regions have experienced very rapid growth, while by making use

of the MRLI, a diversified set of fast movers is found. It is also important to highlight the

existence of important geographical differences in the behavior of the GDP per capita and the

various RLI indexes.

The econometric analysis of regional development with the SDM shows that the effects of the

various factors driving regional development dynamics towards a KBE are not confined within

regional boundaries and that spatial spillovers are far from negligible. Furthermore, the global

spillover chain associated with technological capital and infrastructures suggests these factors

are relevant drivers of development growth rates. As to the total impacts it is observed a positive

effect of technological capital, infrastructures and employment growth in MRLI growth rates.

A finding emerging from the modeling exercise is the statistical significance of the spatial fixed

effects, which highlights the major importance of taking into account regional heterogeneity and

unobservable idiosyncratic regional factors in development analysis. Additionally, in the study,

different specifications of the spatial weights matrix are compared in order to investigate their

performance in describing the spatial arrangement of the sample regions. The evidence points

out to the employment of an exponential distance-decay matrix instead of the typical gravity

type weights matrix usually employed in the literature.

The results of this study raise some policy implications. Actions aimed at fostering regional

development in less-developed regions should consider the possibility of large global feedback

effects of infrastructure and technological capital investments passing through neighboring re-

gions, which could permanently alter the overall development regime. Thus, it should also be

noted that coordinated R&D investment in those regions might be more successful than isolated

actions, by helping to counteract the under-development trap effect due to geographical location.

A third implication arising from the significance of the regional fixed effects is that of European

regional policy should take into account the heterogeneity and specificities in development pat-

terns. The new regionally-adjusted incentives in EU 2020 policy seems to be a step in the right

direction.
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Chapter 3

What Drives Unemployment Disparities in
European regions? A Dynamic Spatial
Panel Approach

3.1 Introduction

Over the last two decades there have been numerous studies analyzing the causes of unemploy-

ment disparities in European regions using a variety of approaches and methods (Elhorst, 2003).

This rising interest has to do with the fact that the unemployment rate is a key indicator of

a region’s socio-economic well-being. At this regard, the rise of unemployment across Europe

and the failure of labor markets to achieve full employment are considered as one of the most

serious weaknesses of the European approach to economic policy (Jackman, 1998; Blanchard,

2006). In response to this problem, during the last decade, the reduction both of the aggregate

level of unemployment and of regional inequality among regions have become crucial issues for

policy analysis and intervention in the European Union (EU) (European Comission, 2010a).

Moreover, the attainment of acceptable levels of unemployment is nowadays a top priority on

the EU policy agenda (European Comission, 2010a,b).

There are important academic reasons for analyzing regional unemployment disparities in

Europe. First, the detail provided by data taken at the regional scale matters in the conclusions

obtained in the empirical analysis. While country aggregate data gives no information about the

regional structure of unemployment it has been documented that regional clusters of unemploy-

ment do not respect national boundaries (Overman and Puga, 2002). Not only the magnitude of

unemployment disparities among regions are as large as it is between countries but also regions

within a country may have different sources and structures of unemployment (OECD, 2009; Zeil-

stra and Elhorst, 2014).1 A second reason pointed out by Elhorst (2003) is that macroeconomic

1OECD (2009) reports that the differences in unemployment rates within OECD countries were almost twice
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studies performed at the country level (Bean, 1994; Scarpetta, 1996), give no explanation for the

existence of regional unemployment disparities. This strand of macroeconomics literature finds

that labor market institutions such as wage bargaining, collective coverage and employment

protection have a prominent role explaining country level differences, but in many countries,

institutions do not differ to any extent between regions. The latter implies that regional level

factors may be crucial to the understanding of unemployment disparities. Thirdly, according

to neoclassical theory, unemployment differentials among regions reflect an inefficient regional

economic system (Taylor, 1996).

Economic theory provides two different explanations as to the nature and significance of

regional unemployment disparities: the equilibrium view and the disequilibrium view. According

to the equilibrium view, long run differentials represent an equilibrium where factors such as

favorable climate or an attractive social environment encourage people to stay in regions where

the unemployment rate is high (Marston, 1985). Within this conceptual framework, each region

tends toward its own equilibrium unemployment rate, which is determined by regional demand

and supply factors, amenities and institutions. Therefore, a high unemployment rate in a given

area needs to be compensated by some other positive factors which act as a disincentive to

migration. The disequilibrium view, on the other hand, considers that all regions tend to

a competitive equilibrium unemployment rate and that the unemployment rate will level off

across areas (Blanchard and Katz, 1992). In the short run, regional disparities may reflect labor

market rigidities that restrict mobility or slow down the adjustment to asymmetric shocks (i.e,

a labor demand shortage). The adjustment process may be fast or slow. Thus, unemployment

disparities across areas could persist for a long time. In the long run, however, differences are

assumed to disappear through migration and factor mobility between regions.

Empirical studies are crucial in this regard, given that they provide a deeper understanding

of the unemployment phenomenon by confronting the plausibility of the competing theories and

the explanatory power of the variables involved in them with the data (Niehbur, 2003; Longhi et

al., 2005; Herwartz and Niehbur, 2011). So far, empirical observation of the economic landscape

in Europe has revealed the existence of persistent disparities in unemployment rates in countries

such as Spain (López-Bazo et al., 2005), Italy (Cracolici et al., 2007) and Germany (Patuelli et

al., 2012). These findings suggest that the nature of regional unemployment disparities in some

European countries could be the result of a long-run equilibrium pattern rather than a short-term

disequilibrium caused by temporary shocks. However, studies restricted to one country overlook

as high as those between countries in 2006.
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the effect of institutional variables and cannot be generalized to the whole European setting. The

omission of labor market institutional variables is of major importance in this regard, given that

institutions, understood as a set of laws, rules and conventions resulting from a collective choice,

provide restrictions or incentives that have an impact on the individual decisions on labor supply,

demand and wages paid, which ultimately alters the level of unemployment (Boeri, 2010).

An additional feature of unemployment rates in European regions that has been overlooked

by most previous studies is that they show positive spatial and positive temporal correlations.

As Elhorst (2003, 2005) points out, studies explaining trends in unemployment rates without

considering spatial and serial dynamic effects may have been miss-specified. The exceptions

in this respect are few. Patacchini and Zenou (2007) estimated a Time-Space Recursive Model

(TSRM) for UK regions, Basile et al. (2012) estimated a Dynamic Spatial Durbin Model (DSDM)

for Italian regions and Vega and Elhorst (2014) estimated a DSDM for European NUTS2 regions.

Similarly, Zeilstra and Elhorst (2014) employ a Dynamic Spatial Error Model (DSEM) to analyze

regional unemployment differentials in Europe.

This study complements the previous studies of Vega and Elhorst (2014) and Zeilstra and

Elhorst (2014) in that it integrates labor market institutions within an econometric specification

that accommodates spatial and serial dynamic effects for a sample of European regions of dif-

ferent countries. The resemblance to the study of Vega and Elhorst (2014) lies in the estimation

of a Dynamic Spatial Durbin Model (DSDM) employing the bias-corrected quasi maximum like-

lihood (BCQML) estimator developed by Yu et al. (2008) and Lee and Yu (2010) for dynamic

spatial panels. The main similarity to Zeilstra and Elhorst (2014), meanwhile, is the considera-

tion of regional and national factors in the model. However, there are important methodological

and theoretical differences with respect to each of these studies.

First, in previous studies on regional unemployment differentials no theoretical explanations

have been provided for the existence of endogenous spatial interactions between regions. As a

point of fact, in Zeilstra and Elhorst (2014), interactions between regions are modeled as the

result of spatially correlated shocks, which does not require any theoretical model. Against this

background, this chapter presents a spatially augmented labor market model with time inertia

and substantive spatial interdependence among regional economies. To this end, recent contri-

butions regarding the spatial wage-curve and migratory processes in a spatial context are taken

into account (Mitze, 2012; Fingleton and Palombi, 2013). In this framework, externalities are

used to model spatio-temporal interdependence among regions, which implies that the unem-

ployment rate of a particular region is affected not only by its own labor market characteristics
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but also by the labor market performance experienced of the remaining regions. Starting from

the theoretical model, a DSDM specification is derived and employed in the econometric exercise

using annual data for the period 2000-2011.

Secondly, the sample used in this study includes a greater number of regions than previous

studies. In Vega and Elhorst (2014) the sample used in their study covers 112 NUTS-2 regions

across 8 EU countries while that used in Zeilstra and Elhorst (2014) the 112 NUTS-2 regions plus

the UK regions. Moreover, the time-period in Zeilstra and Elhorst (2014) goes from 1983-1997,

a period of sustained unemployment growth. Vega and Elhorst (2014) employ a longer-time

series but the model just includes three controls. This study, in contrast, takes into account a

greater number of variables whose omission could bias the results. Specifically, the sample used

in this study includes 241 NUTS2 regions from 23 European countries for the period 2000-2011,

which helps to minimize the asymmetries in the response of the different regions to the phases

of the cycle.

Thirdly, this study performs a variety of econometric tests regarding spatial co-integration,

parameter identification and model selection which are relevant to drawing inferences in the

context of dynamic spatial panels. The model selection in this context is particularly important

as different models ultimately imply different spillover processes (LeSage, 2014a). Therefore,

instead of assuming a specific spatial specification (the Dynamic Spatial Error (DSEM) in Zeil-

stra and Elhorst (2014) and the DSDM in Vega and Elhorst (2014)), the present study extends

the methodology developed by LeSage (2014b) and implements a novel Bayesian procedure for

comparing dynamic spatial panel models, which enables joint analysis of the different spatial

models and the spatial interaction matrices. This procedure shows that DSDM specifications

outperform alternative specifications. Importantly, with the DSDM specification in hand, it is

possible to estimate short run, long-run effects and impulse-responses over time and space, thus

obtaining further insight into the functioning of the European labor market.

Fourth, the study is not restricted to the computation of the effects of the various covariates.

In a second phase, relative importance metrics allowing for all possible causal patterns among the

regressors are computed (Groemping, 2006, 2007). These metrics perform an R2 decomposition

enabling more detailed analysis of the relative contribution of each variable to unemployment

disparities than previous decompositions over regional and national level factors in Zeilstra and

Elhorst (2014). Following the grouping of variables adopted by Partridge and Rickman (1997a,b)

and Lopez-Bazo et al. (2005), the relevance of regional disequilibrium and equilibrium factors

(labor market, demographic and amenities) is also calculated.

92



Finally, in order to deepen our understanding of the origins of regional unemployment dis-

parities in Europe, the estimation the DSDM and the calculation of the metrics of relative

importance is performed not only for the period 2000-2011 but also for the periods 2000-2008

and 2009-2011. The separate analysis of the two periods is relevant, as previous studies of re-

gional unemployment outcomes before and after the 2008 economic crisis reveal a reversal in the

dynamics in a number of labor market variables (Marelli et al., 2012). Such a contrast in the

behavior of the two time periods could indicate a change in both the nature and the intensity

of the impact of different factors on unemployment outcomes. Thus, this analysis is intended to

provide insights for policy making in the context of the sluggish recovery taking place in Europe.

This chapter is organized as follows. Section 2, which follows this introduction, provides an

exploratory analysis of unemployment rate differentials in EU. Section 3 presents a theoretical

model of regional unemployment with spatial interactions. Section 4 describes the dataset used

in this study and the econometric methodology used in the analysis. The empirical findings are

presented in Section 5, while Section 6 concludes.

3.2 Exploratory Evidence

The sample covers a total of 241 NUTS-2 regions belonging to 23 EU countries. The analy-

sis considers NUTS-2 level regions rather than other possible alternatives for various reasons.

Firstly, the use of NUTS-2 level data allows for comparison with the previous studies of Zeilstra

and Elhorst (2014) and Vega and Elhorst (2014). Secondly, NUTS-2 is the territorial unit most

commonly employed in the literature on regional economic issues and it is particularly relevant

in terms of EU regional policy, given that cohesion and regional policy funds are assigned at

this level.

The study period goes from 2000 to 2011 and the key variable throughout the paper is the

regional unemployment rate in the various regions. Changes in aggregate European unemploy-

ment rates are reported in Figure (3.1) above. As can be seen, at the beginning of the decade,

the average unemployment rate was about the 9%. It remained stable around that level until

2005 and decreased to 6.76% between 2005 and 2008. Nevertheless, with the outbreak of the

financial crisis and its extension to the productive economy it reached the 9.4% level in 2011.

As shown in Figure (3.1), the coefficient of variation -as a first proxy of unemployment differ-

entials in European regions- displayed a similar evolution: it decreased until 2007 and hiked

from 2008 to 2011. However, the linear fit shows that the overall pattern is one of decreasing
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unemployment differentials between regions.

Figure 3.1: Unemployment Dynamics 2000-2011.

With the aim of providing a deeper insight into the regional pattern of unemployment dispar-

ities in Europe, the density function associated with the distribution of unemployment rates in

2000, 2008 and 2011 is estimated. Figure (3.2) plots the distribution of regional unemployment

rates relative to the average of all regions, what is called the EU relative unemployment rates

(i.e, URit = Uit
Ūt

) where Uit is the unemployment in region i at period t and Ūt is the European

average unemployment rate. In this diagram, note that a value of 1 on the horizontal axes

indicates the European average unemployment rate, 2 indicates twice the European average and

so on. On the other hand, the height of the curve over any point gives the probability that

any particular region i will have that relative rate of unemployment. As it is shown in Figure

(3.2), the probability mass of any region to be allocated in the European average was higher

in 2011 (80%) than in 2000 (55%). Furthermore, the probability mass in the right side of the

distribution which corresponds to regions with an unemployment rate about 1.5 or 2 times above

the European average has decreased. Thus, Figure (3.2) hints at a small decrease in inequality

of European unemployment rates. However, the evolution of the distribution shows a different

pattern between 2000-2008 and 2008-2011. Relative unemployment rates clearly converged dur-

ing the period 2000-2008, while during 2008-2011 period, regional inequalities increased. This
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is because of the probability mass of any region to be located in the lower (0 to 0.5 times below

the average) and upper extremes (above 1.5 times the average) was higher in 2011 than in 2008.

Therefore, it is possible to conclude that although regional unemployment disparities decreased

during 2000-2011, the sub-period ranging from 2008-2011 is characterized by an increase in

disparities.2

Figure 3.2: Unemployment Relative Distribution.

The overall slow convergence pattern observed in Figure (3.2) is due to both: (i) the catching-

up behavior of the Eastern European regional economies such as Poland, Slovenia, East-Germany

or Latvia and (ii) the lagging behavior of the north of Europe that starting in most of the cases

with relatively low levels of unemployment worsened their position. Nevertheless, this aggregate

pattern of convergence hides a considerable degree of heterogeneity given that some regions that

were initially in a bad position have worsened it even more. This is corroborated when looking

at the geographical distribution of relative unemployment rates in Figures (3.3) and (3.4) where

the quartiles of the relative positions in the distribution are plotted.

The first quartile of the geographical distribution covers the most successful regions in terms

of relative unemployment in the years 2000 and 2011. In the year 2000, the first quartile contains

2The picture of the evolution of unemployment differentials provided in Figure (3.2) does not vary when using
absolute deviations instead of relative deviations.
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regions with unemployment rates below the 51% of the EU average, while by the year 2011 it

contains those with an unemployment rate below the 61% of the European average. Examples of

regions belonging to this group in the year 2000 are those of Ireland, southern UK and Sweden,

northern Italy and southern Germany. On the contrary, the group of regions that belong to

the fourth quartile are those displaying the relatively poorest performance, with unemployment

rates above 1.3 and 1.25 times the EU average in 2000 and 2011, respectively. In the year 2000,

regions with an unemployment rate above 1.3 times the EU average can be found in southern

Italy, eastern Germany, southern Spain, Poland, etc. As revealed by the comparison between

the two figures, an interesting case is that of regions from Poland that starting with a relative

rate 1.9 times above average, converged to a level below 1.2 times the European average. A

markedly good performance is also found in many regions of southern Italy and the south of

France, improving by more than a 17% their relative position with respect the European average.

There are also regions that starting from a relatively low level of unemployment improved their

relative unemployment rate. This is the case of German Landers or regions in the east of France

that improved their relative position. A divergent behavior with respect the European average is

observed in northern European regions belonging to Sweden, Denmark, Ireland, United Kingdom

or Hungary, whose relative position deteriorated by more than 26%. The worst results, however,

are found in the periphery of Europe. Starting from relatively high unemployment levels (i.e,

1.5 times above the EU average), during the study period most of the Spanish regions have

increased its distance with respect the EU average (i.e, 2.3 times above it). The Greek and

Portuguese regions display a similarly bad performance.

Previous results suggest there is a geographical component behind the evolution of the dis-

tribution of unemployment rates. As a further check on the role played by spatial location of the

various regions in explaining labor market outcomes the approach based on the pioneer work of

Quah (1996) is used to construct a conditioned distribution, in which each region’s unemploy-

ment rate is expressed relative to the average of its neighbors. Specifically, the weighted average

relative unemployment rate of neighboring regions is given by WUt where W is a (N × N)

spatial weight matrix describing the spatial interdependence among the sample regions and Ut

is a N × 1 vector of regional unemployment rates for each period. The spatial weight matrix

used in this preliminary analysis is defined as:

W =


wij = 0 if i = j

wij =
1/d2

ij∑
j

1/d2
ij

if i 6= j
(3.1)
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Figure 3.3: Relative Unemployment Rates 2000
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Figure 3.4: Relative Unemployment Rates 2011
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where wij terms denote the spatial weights connecting i and j and dij is the great-circle distance

between the centroids of regions i and j. The use the inverse of the squared distance is justified

as it reflects a gravity function. Note that W is row standardized, so it is the relative, not the

absolute distance that matters. Having defined this conditioning scheme, it is possible to assess

the role played in this context by spatial interactions across the sample regions. In order to

explore the role of spatial location a stochastic kernel following the methodology outlined by

Magrini (2004, 2007) is estimated.3 Stochastic kernel estimation allows to capture the transi-

tions between the original distribution and the neighbor-relative unemployment distribution by

employing all information available for the study period as a whole. The results are depicted in

Figure (3.5).

Figure 3.5: Spatially Conditioned Stochastic Kernel.

As it can be observed, neighboring effects are relevant in this context, provided that the

probability mass is not centered around the main diagonal. Indeed, kernel estimates reveal

that the probability mass tends to be located parallel to the axis corresponding to the original

distribution and below the European average. Accordingly, spatial effects are a relevant factor

explaining observed variations in unemployment rates. Further evidence on the relevance of spa-

tial effects is provided by positive Moran’s I statistic which takes a value of 0.36 (p-value=0.00)

in 2000 and 0.47 (p-value=0.00) in 2011. Hence, it is possible to conclude that the regional dis-

3The estimation of the stochastic kernel relies in Gaussian kernel smoothing functions developed by Magrini
(2007) and it is performed by employing the L-stage Direct Plug-In estimator with an adaptative bandwith that
scales pilot estimates of the joint distribution by α = 0.5, as suggested by Silverman (1986).
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tribution of unemployment rates is characterized by intense positive spatial dependence. This

indicates that regions with high unemployment rates are spatially close to regions with unem-

ployment rates above the European average, while regions with unemployment rates below the

average are more likely to be surrounded by other low-unemployment regions as shown in the

scatter plot in Figure (3.6) below:

Figure 3.6: Unemployment Scatter Plot.

3.3 A Space-Time Regional Unemployment Model

The theoretical model used in this study to analyze the evolution of regional disparities in

unemployment rates is built on previous work of Blanchard and Katz (1992) and Zeilstra and

Elhorst (2014). However, in view of the empirical evidence provided in previous section, a

novel feature included in this model is that regional labor market interactions are directly taken

into account and regions are not considered to evolve independently. Indeed, in the context of

economic integration process currently underway in Europe, the importance of inter-regional

trade, capital flows, migratory movements and technology and knowledge transfer processes

suggests that geographical location and spatial connectivity may play an important role in
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explaining regional unemployment outcomes. The model reads as:

nit = −α1 (wit − pit) + α2Uit − βnXn,it − γnZn,it − ϕnWXn,jt − πnWZn,jt

+λnMit + εdit (3.2)

(wit − pit) = βwXw,it + γwZw,it − α3Uit − α4∆Uit − δ1WUjt − δ2∆WUjt + ϕwWXw,jt

+πwWZw,jt + εwit (3.3)

lit = α5 (wit − pit)− α6Uit + βlXl,it + γlZl,it + ϕlWXl,jt + πlWZl,jt + λlMit

+εsit (3.4)

Mit =

N∑
j 6=i

mijt = α7 (wit − pit)− α8Uit − δ3WijUjt + βmXm,it + γmZm,it

+ϕmWXm,jt + πmWZm,jt + εmit (3.5)

Uit = lit − nit

(3.6)

where Uit is unemployment in region i at time t; nit is labor demand; lit is labor supply; wit is

the gross nominal wage, pit is the price level, wit − pit is real wage level, Mit is the net inward

migration in region i, mijt denotes net migration flows from j to i, Ujt denotes unemployment

in neighboring regions j 6= i and W =
∑N

j=1wij is a spatial weight matrix that represent the

spatial interdependence between regions i and j. As is usual in the literature, W is assumed to

be non-negative, non-stochastic and finite, with 0 ≤ wij ≤ 1 and wij = 0 if i = j. Xit and Zit

denote the regional-level labor market conditions and national level labor market institutional

factors, respectively, while Xjt and Zjt denote neighbor’s market conditions and institutional

framework. The α, λ parameters are positive, δ β, γ, ϕ and π are unknown and the terms, εdit,

εwit, ε
s
it and εmit denote labor demand, wage, labor supply and migration shocks respectively.

In Equation (3.2) labor demand nit, is assumed to depend on real wages, unemployment rates,

regional labor market factors (Xn,it, Xn,jt, i.e, output fluctuations, education) and institutional

factors (Zn,it, Zn,jt, i.e, taxes and employment protection legislation (EPL)). Real wages have

a negative effect on labor demand within a region given that a lower wage makes a region

more attractive to firms (−α1 < 0). The effect of the unemployment rate, on the other hand,

is assumed to be positive (α2 > 0) as a higher unemployment increases the pool of workers

from which to choose and induces firm-in migration. Net migration shocks have a positive

effect (λn > 0) on labor demand as they may increase human capital levels, foster local good

consumption and rise local potential and investment (Elhorst, 2003).
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Equation (3.3) is a wage setting equation where real wages depend positively on labor mar-

ket factors (Xw,it, Xw,jt, i.e, sectoral composition) and institutional conditions (Zw,it,Zw,jt i.e,

coordination, union density, coverage, etc) affecting worker bargaining positions and negatively

on the unemployment rate (−α3 < 0) and the growth rate of unemployment (−α4 < 0). The

inclusion of the growth rate of unemployment is relevant as changes in unemployment growth

rates ∆U , may have additional impacts on wages, as recent literature on the wage curve has

shown (Blanchflower and Oswald, 1994; 2005). Hence, Equation (3.3) takes the form a spatial

wage-curve as in recent studies of Longhi et al. (2006), Baltagi et al. (2012) and Fingleton

and Palombi (2013) given that it includes the spatial lag of unemployment terms. Spatial ex-

ternalities in bargaining power are given by parameters (δ1, δ2) and can be justified by the fact

that if workers are mobile, employers in strongly interacting regions surrounded by regions with

low unemployment levels cannot reduce wages without fearing a potential move of workers to

adjacent areas.4

Equation (3.4) expresses labor supply as a function of real wages, regional labor market

conditions (Xl,it, Xl,jt, demographic composition of the population), and institutional factors

(Zl,it,Zl,jt i.e, unemployment benefits) and unemployment. In Equation (3.4), higher wages will

increase labor supply through more labor force participation (α5 > 0). Similarly, a positive

change in the net-inward migration outcomes will rise the labor supply. The effect of unem-

ployment rates on labor supply depends on whether the discouraged worker effect dominates

the additional worker effect. However, given that in empirical research the discouraged worker

effect appears to be specially relevant, the effect of unemployment on labor supply is assumed

to be negative and given by (−α6 < 0) .

Finally, Equation (3.5) is a migration equation similar to that employed by Alecke et al.

(2010), Mitze (2012) and Basile et al. (2012) and captures the net migration process in region

i. Wages have a positive effect on migration inflows attracting the most mobile and educated

workers (α7 > 0). A high unemployment rate in i decreases migration (−α8 < 0), as it indicates

that the region may be coping with economic problems (i.e, fiscal crises, instability, etc) making

it less attractive. Thus, if region i is under-performing, it is most likely that the higher skilled

labor force can more readily migrate to another region j. Similarly, a higher unemployment rate

in the region of origin j will increase population flows from j to i. As a point of fact, the effect of

unemployment in region j on the migration patterns in i is modulated by the effects of distance

4Estimates of Longhi et al. (2006) show that Blanchflower and Oswald’s relationship is stronger if regions are
more isolated, because the mobility costs associated with a job change (commuting, migration, job search) are
higher in less accessible, remote regions and thus the local labor supply is relatively inelastic.
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given that higher distances imply higher costs of moving, less information, etc. Additionally,

migration is affected by regional amenities and disamenities Xm,it, Xm,jt (i.e, temperatures) and

by institutional factors that may work as pull or push factors for regional migration Zm,it, Zm,jt

(i.e, the strictness of institutional regulations constraining the possibilities to migrate from j to

i).

An innovative element of this model is the introduction of neighbor’s variables in the equa-

tions of demand, supply, wages and net migration in region i, what ultimately implies that

neighboring region characteristics will have an impact in the unemployment rate of region i.

Moreover, it allows to explore the channels through which spatial dependence among unemploy-

ment rates in regions i and j may emerge.

The first channel of interdependence in the unemployment rates among neighboring regions

operates through the spatial migration curve (Möller, 2001; Mitze, 2012). An increase in the

unemployment rate of region j in Equation (3.5) could induce migration from j to i, which

would have the effect of increasing the supply of labor in the receiving region i in Equation (3.4).

However, migration flows effects may not be confined to changes in the labor supply and could

have additional positive effects on the demand for labor in i. If the demand effect dominates

the supply (λl − λn > 0), an increase in unemployment in j could reduce unemployment in i if

δ3 < 0 creating a negative spatial dependence pattern. On the contrary, if δ3 > 0 and if the

demand channel dominates the labor supply, changes in unemployment in neighboring regions

will induce a positive spatial dependence pattern in regional unemployment rates.

The second channel works through the spatial wage curve. A change in unemployment

rates in a neighboring region j will alter the bargaining power of workers over wages in j but

also in i through Equation (3.3). If unemployment in i is high and δ1, δ2 > 0, an increase in

unemployment in j may cause the real wages in i to fall. This is because of the bargaining power

externality will favor employers in i allowing reductions in wages paid in region i. Incentives

for firms originally located in j to change their location and move its production to region i

to reduce their labor costs will reduce the demand for labor in j and increase it in i, in line

with findings by Azariadis and Pisarides (2007) and Vallanti (2007). The negative effect on

the real wages of region i will further augment this reduction by α1 + α5, thereby creating a

negative spatial correlation dependence. On the other hand, if δ1, δ2 < 0, an increase in the

unemployment rates of region j will drive up bargaining power and wages in i. This will reduce

labor demand in i. The positive effect on unemployment rates in i will be further augmented

by the direct increase in the labor supply and by migration effects. This scenario corresponds
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to a positive spatial dependence pattern.

Additionally, although for simplicity the interplay between the demand for goods and labor

market functioning is not directly included in the model, a third channel of interaction between

regions may emerge due to labor market institutional spillovers (Egger et al., 2012; Felbermayr

et al., 2011, 2013). If as highlighted by Helpman and Itshoki (2010) in the context of trade

models, institutional reforms in j affect wages, unemployment rates might become in i might

become dependent of those in j. For instance, institutional reform in j decreasing taxes paid by

firms will encourage businesses to locate there, thus reducing the labor demand in i. Likewise,

a change in the institutional framework in j rising the bargaining power of unions and workers

driving up wages will have a negative competitiveness effect in j. Relatively lower wage costs

in i will increase i competitiveness, making harder for firms in j to sell their output which will

increase unemployment in j. In addition, institutional reforms in neighboring economies may

also produce cross-income effects between j and i. Reforms to reduce worker’s wage bargaining

power in j will, in the long run, reduce spending on products made by firms in i and marketed

in j. This, in turn, will negatively affect labor demand in i and increase its unemployment rate.

According to Mian and Sufi (2014), regions with a relatively higher share of non-tradable goods

will be less vulnerable to contagions stemming from neighboring economies.

In order to solve the model for the unemployment rates the following steps are required. First,

plug Equation (3.3) in Equation (3.5) to obtain the migration Equation (3.5)’ as a function

of wages. Then plug both, Equation (3.3) and Equation (3.5)’ in Equations (3.2) and (3.4).

Finally, substitute Equations (3.2)’ and Equation (3.4)’ in Equation (3.6) to obtain the following

Dynamic Spatial Durbin Model specification as in Equation (3.7) below:

Uit = τUit−1 + ρWUjt + ηWUjt−1 + β̃1X̃it + β̃2Z̃it + θ̃1WX̃jt + θ̃2WZ̃jt + ψε̃it (3.7)

where X̃it, Z̃it, X̃jt, Z̃jt and ε̃it denote the corresponding vectors of covariates. The parameter

restrictions implied by the theoretical model are shown in Table (3.1) below. Note that, in

this model, starting from a steady state pattern of regional unemployment, a region-specific

shock will not only affect the respective labor market, but instead spill over to neighboring

regions labor market supply and demand. Given this interdependence, the induced changes of

unemployment in neighboring areas may spill over again to adjacent labor markets, including

the location where the shock originated.
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Table 3.1: Parameter Restrictions.

Implicit Model Theoretical Model
Parameter Parameter

τ α4[(α1+α5)+α7(λl−λn)]
Φ

ρ (δ1+δ2)(α7(λn−λl)−(α1+α5))+δ3(λl−λnright)
Φ

η δ2(α7(λl−λn)+(α1+α5))
Φ

β̃1 [β∗w, β
∗
m, β

∗
n, β

∗
l ] =

[
βw(α7(λl−λn)+(α1+α5))

Φ , βm(λl−λn)
Φ ,−βn

Φ ,
βl
Φ

]
θ̃1 [ϕ∗w, ϕ

∗
m, ϕ

∗
n, ϕ

∗
l ] =

[
ϕw(α7(λl−λn)+(α1+α5))

Φ , ϕm(λl−λn)
Φ ,−ϕn

Φ , ϕlΦ

]
β̃2 [γ∗w, γ

∗
m, γ

∗
n, γ
∗
l ] =

[
γw(α7(λl−λn)+(α1+α5))

Φ , γm(λl−λn)
Φ ,−γn

Φ ,
γl
Φ

]
θ̃2 [π∗w, π

∗
m, π

∗
n, π

∗
l ] =

[
πw(α7(λl−λn)+(α1+α5))

Φ , πm(λl−λn)
Φ ,−πn

Φ ,
πl
Φ

]
ψ̃

[
ψw∗, ψm∗, ψd∗, ψs∗

]
=
[

(α7(λl−λn)+(α1+α5))
Φ , (λl−λn)

Φ ,− 1
Φ ,

1
Φ

]
Note: Φ = 1− [(α3 + α4) (α7 (λn − λl)− (α1 + α5))− (α2 + α6) + α8 (λn − λl)]

3.4 Data and Econometric Methodology

3.4.1 Data

The implicit model of unemployment obtained in Equation (3.7) above shows the unemployment

rate is a reduced form function of a variety of factors affecting the labor demand, supply,

migration and wages. These are referred to both, regional and national level institutional factors.

To explore further the nature of unemployment differentials, the distinction between regional

disequilibrium and equilibrium factors made in Partridge and Rickman (1997a,b) and López-

Bazo et al. (2005) is also considered. The factors included in the regression analysis, the

behavioral hypothesis, its computation and the data source are summarized below in Table

(3.2).

A) Disequilibrium Factors.

These factors refer to unemployment differences produced by divergences in short run dynam-

ics and asymmetric responses to shocks. The variables included are the employment growth,

real wage growth and cyclical real output fluctuations. If a region creates employment at a

faster rate the European average, unemployment in that region should decrease relatively (Diaz,

2011). On the other hand, a slow rate of wage adjustments explain why idiosyncratic shocks

or asymmetric responses to common shocks might produce unemployment rates to differ across

regions for a long time (Marston, 1985; López-Bazo et al., 2005). Specifically, a positive rela-

tionship between changes in wages and unemployment rates means that the origin of most of

labor market shocks arise from supply side while a negative relationship implies demand driven

disequilibrium (Blanchard and Katz., 1992; Partridge and Rickman, 1997a,b). Another candi-
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Ŷ
it

=
100 (

ŷ
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date for explaining unemployment movements as a function of demand shocks is the deviation of

GDP per capita from its full employment or long run trend level, which, according to Isserman

et al. (1986) is the most widely used indicator of demand.

B) Equilibrium Factors

B.1) Labor Market Equilibrium Factors

Sectoral diversification in a region may affect unemployment rates (Longhi et al., 2005). The

more specialized a regional economy, the less it is able to adjust employment reductions in any

given sector (Simon, 1988). On the other hand, firms located in more specialized regions can

gain from agglomeration effects such as knowledge spillovers, and be more productive than sim-

ilar firms in less specialized regions. Specialization is measured by the Herfhindal index and its

expected effect uncertain. Additionally, differences in the industry mix might impact the geo-

graphical distribution of unemployment (Overman and Puga 2002, Niehbur 2003; López-Bazo

et al., 2005). Accordingly, the model also includes regional employment shares in manufacturing

industries and non-market services. Industrial regions specializing in export-oriented manufac-

tures may exhibit lower unemployment rates than those specializing in sheltered industries such

as public services (Rodriquez-Pose and Fratesi, 2007). This might be due to the large multipliers

associated to manufacture (Elhorst, 2003). However, other authors consider that a high employ-

ment share in declining industries may produce the opposite results (Diaz, 2011). Finally, a

real wage level index is also included. Given that real wages are supposed to exert a negative

influence on labor demand and a positive effect on labor supply, a positive relationship with

unemployment is expected.

B.2) Demographic Equilibrium Factors.

The structure of the population may have important influences on labor supply and demand

(Groenewold, 1997). Moreover, when the various cohorts suffer from different unemployment

rates, their relative size affects the aggregate unemployment rate and labor force participation.

According to previous studies older populations should display lower unemployment rates. To

control for this the share of population aged between 55 and 64 years old and the share of

young population aged between 15-24 years is included. Empirical studies find the participation

rate, has a negative effect on unemployment outcomes (Elhorst, 2003). Nevertheless, this is at

odds with the accounting identity where if the participation rate increases the number of un-

employed must go up (Fleisher and Rodes, 1976). Therefore, the a priori effect of participation

is uncertain. Human capital is expected to affect negatively unemployment for a considerable

number of reasons such as higher demand for skills, lower probability of lay off, etc. (Nickell
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and Bell, 1996). Furthermore, people with higher educational attainment are likely to conduct

more efficient searches and are less prone to layoffs in an economy with continued technological

advancements. To proxy human capital levels in the sample regions, an index that combines

the share of population with a low educational attainment and the share of population with a

high educational attainment is employed (Bubbico and Dijkstra, 2011). The net migration rate

is also expected to impact unemployment outcomes and relying on the neoclassical explanation

it might be an important mechanism balancing regional disparities. However, as explained in

theoretical model section, the expected effect of net migration is ambiguous and its determina-

tion remains as an empirical question.

B.3) Amenities.

Amenities are considered as a compensating differential for the higher probability of unemploy-

ment. Variables used to proxy for producer and consumer amenities were largely conditioned

by the availability of data. Population density is included as a proxy for urbanization following

López-Bazo et al. (2005) and Cracolici et al. (2007) while temperatures are introduced to proxy

for climatological amenities. Regions with dense populations will provide cultural, educational

and health amenities. Additionally, highly urbanized and dense areas may increase the probabil-

ity of matching job seekers and firms. On the other hand, negative effects may arise if the time

spent by workers to collect information about the vacancies on the job market rises. Therefore,

a priori, the effect of population density is unknown. On the contrary, the effect of temperatures

is not clear beforehand, as relatively higher temperatures and better climatic conditions are

expected to disincentive outward-migration. Thus, the effect of this variable ultimately depends

on the link between migration and unemployment.

C) Labor Market Institutions.

In order to approximate the role of labor market institutions a number of indicators are con-

sidered: an employment protection legislation index (EPL), the generosity of unemployment

benefits, the tax wedge, a bargaining coverage index, a coordination index, the share of tempo-

rary contracts, an index measuring the ratio of the legal minimum wage relative to the average

wage and an index measuring the strength of migration controls.

The expected effect of the EPL is ambiguous as employment protection has been designed

to protect jobs and increase job stability by reducing job destruction (OECD, 2013) which may

help to avoid unemployment. However, according to Boeri and Van Ours (2008) a stronger EPL

reduces job creation, because employers are more reluctant to open a vacancy. Unemployment

benefits also affect unemployment rates through different channels. First, they increase reser-
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vation wages of recipients, reducing their search intensity. Second, they rise the floor of wages

and because of higher wages lead to lower employment, unemployment may increase. Thirdly,

they increase the expected profit of participating in the labor market with respect the one asso-

ciated to inactivity. Most of the literature at this respect finds a positive relationship between

unemployment benefits and unemployment rates (Blanchard and Wolfers, 2000; Belot and Van

Ours, 2001; 2004). Additionally, the gap between the cost of labor to the firm and the net wage

of the worker, the so called tax wedge is considered. The extent to which the tax wedge affects

unemployment depends on whether the taxes are passed on workers in the form of lower wages,

which ultimately depends on the elasticity of labor supply and demand. As empirical studies

virtually fit all possible relationships its expected effect is uncertain (Nickell, 1997; Di Tella and

Macculloch, 2005; Lehman et al., 2014).

The characteristics of different collective bargaining systems may affect regional unemploy-

ment rates. In centralized systems, negotiations take place at the country level between national

unions and employer’s associations while, in decentralized systems negotiations take place at the

level of the individual enterprise. Another relevant feature of the institutional framework is the

degree of coordination between the bargaining partners in order to reach consensus. However,

there are only minor differences in the degrees of centralization and coordination. In view of

this, these two variables are aggregated in a centralization-coordination index. Meanwhile, a

bargaining coverage index is computed as the sum of the union density and the collective bar-

gaining coverage indicators.5 According to Calmfors and Drifill (1998) the effect of centralized

and coordinated bargaining outcomes on unemployment is conditional to the bargaining cov-

erage. These two indexes are combined into three new variables: bargaining coverage index in

regions with a low, intermediate and a high coordination index. Longhi et al. (2005) and Zeilstra

and Elhorst (2014) find evidence of a hump shaped relationship between bargaining coverage

level and the level of unemployment. Hence, the relationship between bargaining coverage level

and unemployment is expected to take the form of an inverted U.

The share temporary contracts is expected to increase unemployment rates as these type of

contracts allow for rapid and deep employment cuts to keep productivity levels once the econ-

omy receives a negative a shock, thus raising unemployment rates (Marelli et al., 2012; Gúell

and Rodŕıguez Mora, 2014). This type of labor market institution contrasts with labor hoarding

5The reason for this choice is due to the relationship between union density and bargaining coverage. When
the outcome of collective bargaining is extended to all workers, the incentive for workers to join unions is clearly
lower than in those cases when the conditions collectively bargained are binding only for union members (Longhi
et al., 2005). Hence, the higher the collective bargaining coverage, the lower the union density and viceversa.
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practices where adjustments against shocks is based on working hour adjustments. Similarly,

minimum wage relative to average wage is expected to have a positive effect on unemployment

given that it decreases the quantity of labor demanded and further increases the quantity of

labor supplied (Elhorst, 2003). Empirical studies including this ratio have found a significant

effect in Europe (Banerji, 2014). Finally, an index measuring the evolution of strictness in mi-

gration policy constructed with data taken from the United Nations Database is included in the

econometric specification.6 The aim of this index is to measure the overall openness to inter-

national migration.7 An increase in the strictness will increase negative incentives to change

location and reduce migration flows. While an increase in this index will tend to increase un-

employment disparities by limiting the free movement of labor, the expected effect on aggregate

unemployment is uncertain.

A concern is that national level institutional variables are highly correlated with some re-

gional factors, making it impossible to disentangle between the contribution of the various factor

on the unemployment rates. This does not pose problems in this context, however, given that,

as can be observed in Table (3.3 ), correlations among the institutional labor market variables

and disequilibrium factors and equilibrium factors are relatively low. Specifically, the highest

correlations between institutional factors and the other variables appear in the relationships

between real wages and unemployment benefits (0.52) and the bargaining coverage indicator

(0.51). All the other correlations among the institutional labor market factors and regional level

factors are below 0.5.

3.4.2 Econometric Approach

The empirical counterpart to the implicit model in Equation (3.7) including regional fixed and

time-period fixed effects is given by:

Ut = µ+ ιNαt + τUt−1 + ρWUt + ηWUt−1 +Xtβ +WXθ + εt (3.8)

where Ut is a N × 1 vector consisting of observations for the unemployment rate measured in

percentage for every region i = 1, . . . , N at a particular point in time t = 1, . . . , T , Xt, is an

N ×K matrix of exogenous aggregate socioeconomic and economic covariates with associated

6This dataset is employed instead of alternative information included in the Migrant Integration Policy Index
(MIPEX) of Niessen et al. (2007), as the later have only recently become available and the time span is rather
short.

7However, a drawback of this index is that it does not provide information on the initial level of strictness and
just informs on the evolution of migratory regulations
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response parameters β contained in a K×1 vector that are assumed to influence unemployment.

τ , the response parameter of the lagged dependent variable Ut−1 is assumed to be restricted to

the interval (−1, 1) and εt = (ε1t, . . . , εNt)
′

is a N × 1 vector that represents the corresponding

disturbance term which is assumed to be i.i.d with zero mean and finite variance σ2. The

variables WUt and WUt−1 denote contemporaneous and lagged endogenous interaction effects

among the dependent variable. In turn, ρ is called the spatial auto-regressive coefficient. W

is a N × N matrix of known constants describing the spatial arrangement of the regions in

the sample. µ = (µ1, . . . , µN )
′

is a vector of region fixed effects, αt = (α1, ..., αT )
′

denote time

specific effects and ιN is a N×1 vector of ones. Region fixed effects control for all region-specific

time invariant variables whose omission could bias the estimates, while time-period fixed effects

control for all time-specific, space invariant variables whose omission could bias the estimates in

a typical time series (Baltagi, 2001; Elhorst, 2010).

The estimator employed in this research to explore the relationship between the set of vari-

ables and unemployment is the bias-corrected quasi maximum likelihood BCQML developed by

Lee and Yu (2010). The QML estimator is biased when both the number of spatial units and

the points in time in the sample go to infinity. However, by providing an asymptotic theory on

the distribution of this estimator they show how to introduce a bias correction procedure that

will yield consistent parameter estimates provided that the model is stable. If τ + ρ + η turns

out to be significantly smaller than one the model is stable. On the contrary, if τ +ρ+η > 1 the

model is explosive and if the hypothesis τ +ρ+η = 1 cannot be statistically rejected, the model

is said to be spatially co-integrated (Yu et al., 2012). A concern is that the BCQML corrects

for the endogeneity of the space-time lags but not for the possible endogeneity of the right-hand

side variables. Therefore, the results should be taken with caution.

To carry out inference about short run dynamics with the DSDM of Equation (3.8), the

matrix of partial derivatives of Ut with respect the k-th explanatory variable of Xt in region 1

up to region N at a particular point in time t is given by:

∂Ut

∂Xk
t

= (I − ρW )−1
[
µ+ ιNαt + β(k) + θ(k)W

]
(3.9)

Direct effects (diagonal terms in Equations (3.9) and (3.13) capture the effect on unemploy-

ment in i caused by a one unit change in an exogenous variable Xk in i. In turn, the indirect

effect (off-diagonal terms) can be interpreted as the effect of a change in Xk in all other regions

j 6= i on the unemployment rate in i. The dynamic space-time model above enables the com-

112



putation of own
∂Uit+T
∂Xk

it

and cross-partial derivatives
∂Uit+T
∂Xk

jt

that trace the effects through time

and space. Specifically, the cross-partial derivatives involving different time periods are referred

as diffusion effects, since diffusion takes time. Conditioning on the initial period observation

and assuming this period is only subject to spatial dependence (Debarsy et al., 2012) the data

generating process can be expressed as:

Ut =

K∑
k=1

Q−1
(
β(k) + θ(k)W

)
X

(k)
t +Q−1 (µ+ ιNαt + εt) (3.10)

where Q is a lower-triangular block matrix containing blocks with N ×N matrixes of the form:

Q =



B 0 . . . 0

C B 0

0 C
. . .

...
...

. . .

0 . . . C B


(3.11)

with C = − (τ + ηW ) and B = (IN − ρW ). One implication of this, is that by computing C and

B−1 it is possible to analyze the -own and cross-partial derivative impacts for any time horizon

T . Generally, the T -period ahead (cumulative) impact on unemployment from a permanent

change at time t in k -th variable is given by:

∂Ut+T

∂Xk
t

=
T∑
s=1

[
(−1)s

(
B−1C

)s
B−1

] [
µ+ ιNαt + β(k) + θ(k)W

]
(3.12)

When T goes to infinity, the previous expression collapses to the long run effect, which is given

by:
∂Ut

∂Xk
t

= [(1− τ) I − (ρ+ η)W ]−1
[
µ+ ιNαt + β(k) + θ(k)W

]
(3.13)

The model in Equation (3.8) can be contrasted against alternative dynamic spatial panel data

model specifications such as the Dynamic Spatial Lag Model (DSLM), the Dynamic Spatial Error

Model (DSEM) and the Dynamic Spatial Durbin Error Model (DSDEM). As can be checked,

the DSDM can be simplified to the DSLM by shutting down exogenous interactions θ = 0:

Ut = µ+ αt + τUt−1 + ρWUt + ηWUt−1 +Xtβ + εt (3.14)
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to the DSDEM if η = ρβ = 0

Ut = µ+ ιNαt + τUt−1 +Xtβ + θ + υt

υt = λWυt + εt

(3.15)

where εt ∼ i.i.d., and to the DSEM if η = θ + ρβ = 0

Ut = µ+ ιNαt +Xtβ +WXtθ + υt

υt = λWυt + εt

(3.16)

In any case, the estimation of the above equations involves defining a spatial weights ma-

trix. Given that this is a critical issue in spatial econometric modeling (Corrado and Fingleton,

2012) a variety of row-standarized W geographical distance based matrices between the sample

regions are considered. The use of geographical distance matrices ensures the exogeneity of the

W , as recommended by Anselin and Bera (1998) and avoids the identification problems raised

by Manski (1993). Several matrices based on the k-nearest neighbours (k = 5, 10, 15, 20, 25, 30)

computed from the great circle distance between the centroids of the various regions are consid-

ered. Additionally, various inverse distance matrices with different cut-off values above which

spatial interactions are assumed negligible are employed. As an alternative to these specifica-

tions, a set of inverse power distance and exponential distance decay matrices whose off-diagonal

elements are defined by wij = 1
dαij

for α = 1, . . . , 3 and wij = exp(−θdij) for θ = 0.005, . . . , 0.03

(Keller and Shiue, 2007; Elhorst et al., 2013) is taken under consideration. The latter matrices,

although assume spatial interactions are continuous are characterized by faster decays.

In order to choose between DSDM, DSAR, DSDEM and DSEM specifications of the un-

employment rate, and thus between a global-local, global, local or zero spillovers specifications

as well as to choose between different potential specifications of the spatial weight matrix W ,

a Bayesian comparison approach is applied. Note that this exercise is relevant as it helps to

validate whether or not the spillovers and the nature of interactions in the theoretical model are

supported by the data. This approach determines the Bayesian posterior inclusion probabilities

(PIP) of the alternative specifications given a particular spatial weight matrix, as well as the PIP

of different spatial weight matrices given a particular model specification. These probabilities

are based on the log marginal likelihood of a model obtained by integrating out all parameters

of the model over the entire parameter space on which they are defined. If the log marginal

likelihood value of one model or of one W is higher than that of another model or another W ,
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the PIP is also higher. One advantage of Bayesian methods over Wald and/or Lagrange multi-

plier statistics is that instead of comparing the performance of one model against another model

based on specific parameter estimates, the Bayesian approach compares the performance of one

model against another model (in this case DSDM against DSDEM, DSLM and DSEM), on their

entire parameter space. Moreover, inferences drawn on the log marginal likelihood function

values for the models under consideration are further justified because they have the same set

of explanatory variables, X and WX, and are based on the same uniform prior for ρ and λ.

In this exercise, non-informative diffuse priors for the model parameters (τ, η, β, θ, σ) are used

following the recommendation of LeSage (2014). In particular, the normal-gamma conjugate

prior for β, θ, τ, η and σ and a beta prior for ρ:8

π(β) ∼ N (c, T )

π

(
1

σ2

)
∼ Γ (d, v)

π (ρ) ∼ 1

Beta (a0, a0)

(1 + ρ)a0−1 (1− ρ)a0−1

22a0−1

(3.17)

Columns 1 to 4, in Table (3.4) report the PIP for the different spatial specifications including

spatial fixed and time-period fixed effects given alternative specifications of W which allows

the comparison of the different models for each W . In columns 5 to 8 for a given spatial

specification, PIP across spatial weight matrices are reported. As shown in Table (3.4), for all

the spatial processes considered exponential decay matrices with a 2% decay as distance increases

are preferred to the rest. For this W , the DSDM specification is the one that displays a higher

PIP. This finding supports the DSDM specification derived from the theoretical model including

endogenous and exogenous interaction. The model comparison also reveals that the DSEM

process is never the best candidate to describe unemployment rate outcomes. Importantly, this

result suggests that the spatial specification employed by Zeilstra and Elhorst (2014) may not

be the most adequate for modeling the evolution of unemployment rates in European regions.

As regards the inclusion of time period fixed effects F-tests are used to check whether time

effects parameters could be restricted. The corresponding F-tests on the inclusion of time-

period fixed effects when using Wij = exp − (0.02dij) display an F-test statistic of 2.42 with

8Parameter c are set to zero and T to a very large number (1e + 12) which results in a diffuse prior for β, θ,
τ , η while diffuse priors for σ are obtained by setting d = 0 and v = 0. Finally a0 = 1.01. As noted by LeSage
and Pace (2009), pp. 142, the Beta (a0, a0) prior for ρ with a0 = 1.01 is highly non-informative and diffuse as it
takes the form of a relatively uniform distribution centered on a mean value of zero for the parameter ρ. For a
graphical illustration on how ρ values map into densities see Figure 5.3 pp. 143. Also, notice that the expression
of the Inverse Gamma distribution corresponds to that of Equation 5.13 pp.142.
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Table 3.4: Model Selection.

Posterior Probabilities Posterior Probabilities
Across Spatial Models Across Spatial Weight Matrices

Spatial Weight Matrix DSDM DSLM DSEM DSDEM DSDM DSLM DSEM DSDEM

Cut-off 500 km 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cut-off 1000 km 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
Cut-off 1500 km 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
Cut-off 2000 km 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
Cut-off 2500 km 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
Cut-off 3000 km 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
exp− (θd), θ = 0.01 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
exp− (θd), θ = 0.02 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
exp− (θd), θ = 0.03 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
exp− (θd), θ = 0.04 0.98 0.02 0.00 0.00 0.00 0.00 0.00 0.00
exp− (θd), θ = 0.05 0.91 0.09 0.00 0.00 0.00 0.00 0.00 0.00
1/dα, α = 1 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
1/dα, α = 1.25 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
1/dα, α = 1.5 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
1/dα, α = 1.75 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
1/dα, α = 2 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1/dα, α = 2.25 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1/dα, α = 2.5 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1/dα, α = 2.75 0.98 0.02 0.00 0.00 0.00 0.00 0.00 0.00
1/dα, α = 3 0.80 0.20 0.00 0.00 0.00 0.00 0.00 0.00
K-nearest neighbors (K = 1) 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
K-Nearest neighbors (K = 2) 0.98 0.02 0.00 0.00 0.00 0.00 0.00 0.00
K-Nearest neighbors (K = 3) 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K-Nearest neighbors (K = 4) 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K-Nearest neighbors (K = 5) 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K-Nearest neighbors (K = 6) 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K-Nearest neighbors (K = 7) 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K-Nearest neighbors (K = 8) 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K-Nearest neighbors (K = 9) 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K-Nearest neighbors (K = 10) 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K-Nearest neighbors (K = 15) 0.70 0.30 0.00 0.00 0.00 0.00 0.00 0.00
K-Nearest neighbors (K = 20) 0.93 0.07 0.00 0.00 0.00 0.00 0.00 0.00
K-Nearest neighbors (K = 25) 0.26 0.74 0.00 0.00 0.00 0.00 0.00 0.00
K-Nearest neighbors (K = 30) 0.05 0.95 0.00 0.00 0.00 0.00 0.00 0.00
K-Nearest neighbors (K = 35) 0.09 0.91 0.00 0.00 0.00 0.00 0.00 0.00
K-Nearest neighbors (K = 40) 0.08 0.92 0.00 0.00 0.00 0.00 0.00 0.00
K-Nearest neighbors (K = 50) 0.08 0.92 0.00 0.00 0.00 0.00 0.00 0.00

Notes: Bayesian Markov Monte Carlo (MCMC) routines for spatial panels required to compute Bayesian posterior model
probabilities do not exist yet. As an alternative all cross-sectional arguments of James LeSage routines are replaced by their
spatial panel counterparts, for example a block-diagonal NT × NT matrix, diag(W, ...,W ) as argument for W . All W’s are
row-normalized.
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p-value 0.003. Thus, the null hypothesis that the model with both spatial fixed and time-period

fixed effects does not provide a significantly better fit than the one-way fixed effects model is

rejected. Finally, to find out whether the two-way effects models are stable the value of τ+ρ+η is

calculated and a two-sided Wald-test is carried out to investigate the null hypothesis τ+ρ+η = 1.

Importantly, when usingWij = exp(−0.02dij) the model is stable and does not suffer from spatial

co-integration (i.e, τ + ρ + η = 0.89, F=34.14 with p-value 0.00). An additional issue in the

estimation of Equation (3.8) is the identification of the DSDM parameters. Elhorst (2012b)

recommends imposing zero restrictions on the model parameters to avoid the identification

problems and provides an overview of the main restrictions that have been considered in the

literature to get rid of this identification problem. However, in a recent study, Lee and Yu

(2015) using Monte Carlo experiments show that the omission of relevant Durbin terms can

significantly bias regression estimates, while the inclusion of an irrelevant Durbin term causes

no obvious loss of efficiency. Moreover, they provide sufficient rank conditions under which the

parameters of the DSDM of equation (3.8) can be identified when estimating the model by QML.

These conditions are checked before estimations. In this specific case, the rank conditions to the

transformed data are both satisfied.
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3.5 Results

3.5.1 Dynamic Spatial Durbin Model Results

Table (3.5) shows the results of the estimation of the DSDM employing the optimal spatial

weight matrix Wij = exp(−0.02dij). Column 1 reports the own-region coefficient estimates,

while Column 2 shows the estimated parameters for the effect of changes in the regressors of

neighboring regions. However, before continuing, it is important to evaluate some features of

the model estimation. First, as can be observed in Column 1, the coefficients estimates of the

dependent variable lagged in time Ut−1 and in space WUt are both positive and significant,

while the coefficient of the dependent variable lagged in space and time WUt−1 is negative

and significant. This result confirms that the dynamic spatial panel data modeling framework

used in this analysis is suitable for studying the evolution of unemployment rates and that

unemployment problems tend to be transmitted from one region to another.

The results obtained here for the parameter values of the spatial lag, time lag and space-time

lag terms are consistent with a number of combinations in the theoretical model. Given that

positive spatial dependence is predominant in spatial analysis (Kao and Bera, 2013), it may

be interesting to analyze the theoretical foundation of a negative space-time diffusion term in

unemployment rates. Let us assume a combination of parameters such that: (i) δ1, δ2, δ3 < 0

(ii) λl−λn > 0 or λn−λl < 0 and (iii) Φ > 0. Under this parameterization, the value of τ will be

positive τ > 0 given that λl − λn > 0 and all α > 0. Similarly, the value of ρ will be positive as

δ1(λn−λl) > 0, δ2(λn−λl) > 0 and δ3 (λl − λn) > 0. Additionally, η will be negative as: δ2 < 0

and (α7 (λl − λn)) > 0. Hence, a possible interpretation for the negative space-time diffusion

will be the following. In the spatial wage curve, an increase in neighboring unemployment rates

in t − 1, would produce a bargaining power externality reducing the capability of workers in

i lowering their wages. This is because of ∂(wit − pit)/∂Ujt−1 = δ2 < 0. This lower wage in

i will produce two effects. The direct effect on labor demand and supply will tend to reduce

unemployment in i by A = δ2(α1 + α5) < 0. As the attractiveness of region i for inmigrants

will be reduced, this will produce a contraction in both labor supply and labor demand in

region i. If, as assumed, the labor supply channel is stronger than that of the labor demand,

the contraction in migration will produce an additional effect on unemployment rate in i of

B = δ2α7(λl − λn) < 0 given that δ2 < 0 and (λl − λn) > 0. Thus, as A + B < 0, an increase

in WUjt−1 may end up decreasing Uit. Note, however, that there are other possible parameter

combinations compatible with the empirical findings.
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A distinctive feature of the framework adopted here with respect that of Zeilstra and Elhorst

(2014) is the possibility of assessing the relevance of direct and indirect effects. Direct, indirect

and total short run effects are reported in columns 3, 5 and 6 respectively. Direct effect estimates

reported in column 3 include feedback effects that arise as a result of impacts passing through

neighboring regions and back to the region where the change was originated (from i to j to k

and back to i). The absolute size in percentage points of these feedback effects for each variable

is reported in column 4. On average, feedback effects increase by 9.3% the coefficient estimate.

However, there is variability among them and some variables generate larger feedback effects

on unemployment than others. In particular, the strongest feedback effects are observed in the

employment protection legislation (42.84%), the share of employment in manufactures (20.38%),

employment growth rates (20.32%) and the share of population with age between 55-64 years

old (12.22%). On the other hand, there are variables, such as the case of the level of real wages

(1.98%) or the output fluctuations (2.44%), for which the feedbacks effects are small.

The direct impact estimates displayed in Table (3.5) show some interesting features that

are consistent with the empirical literature analyzing unemployment rates in European regions.

First, as regards regional disequilibrium factors, there is evidence that an increase in the employ-

ment growth rates and positive aggregate demand fluctuations in region i reduce unemployment

rates in i. Second, with respect to labor market equilibrium variables it is observed that higher

real wages and sectoral specialization are positively related to the unemployment rate while the

share of employment in manufactures has a negative effect. Demographic factors display the

expected effects. An increase in the share of older population, education and net migration

decreases unemployment while an increase in the participation rate and in the share of young

population increases it. As to the role played by the amenities it is observed that the direct

effect population density is not significant while that of temperatures is negatively related to

unemployment rates. On the other hand, institutional factors such as unemployment benefits

and the strictness of in-migration policy have a positive effect on unemployment rates while the

tax-wedge, the EPL indicator, the share of temporary contracts and a high bargaining coverage

conditional to a high level of centralization and coordination have a negative effect on unem-

ployment rates. The effects of minimum wages and bargaining coverage conditional to medium

levels of coordination and centralization are not statistically significant.

Short run indirect effects are significant at the 5% level for eight variables while three vari-

ables appear to be significant at the 10% level. Indirect effects significantly amplify direct effects

in most cases. The results show that the amplification phenomenon is particularly pronounced,
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accounting in several cases for more than a half the total effect. The interpretation of this result

is that if all regions j = 1, . . . , N other than i experience a change in Xk, this will have a

stronger effect in i that if only i experiments a change in Xk even if i generate spillover effects

that go back to i. This is due to the fact that the DSDM contains a global spillover multiplier.

As can be observed, the sign of the indirect effects goes in line with that of the direct effects

in employment growth, output fluctuations, the share of employment in manufacture, the share

of old population, education, participation, population density, the minimum to average wage

ratio and in the EPL. On the contrary, for some other variables such as the employment share

in non-market services, sectoral specialization, migration, temperatures, unemployment bene-

fits and the share of temporary contracts the indirect effects have the opposite sign than that

observed in the direct effects.

As shown in Table (3.5) the simultaneous total effect of a unit increase in the growth rate

of employment exerts a negative impact on the unemployment rate of about -0.44 percentage

points. This result goes in line with that obtained in Zeilstra and Elhorst (2014) or Vega and

Elhorst (2014) who find a total negative effect. Additionally, a one percentage point aggregate

demand fluctuation has a negative effect of -0.036 percentage points. As regards regional labor

market equilibrium factors, marginal effects of real wages are 0.008 percentage points, what

supports the findings of Partridge and Rickman (1997a,b). The total effects associated to changes

in the productive structure show that regions with a high share of employment in industry

tend to have lower levels of unemployment. On the other hand, regions with a high share of

employment in the non-market services sector have higher unemployment rates. Specifically,

Table (3.5) shows that the simultaneous effect of a unit increase in the share of industry reduces

unemployment rates by -0.43 percentage points whereas the effect of an increase in the share of

employment in non-market services increases the unemployment rate in 0.02 percentage points.

This result can be explained by the large multipliers associated to the manufacturing sector and

supports the findings of Overman and Puga (2002), where the industry mix had a relevant effect

in the distribution of unemployment. Specialization does not exert a significant effect in the

reduction of unemployment. However, this result masks the fact that the direct effect a change

in specialization exerts a positive effect on unemployment, as suggested by Simon (1988).

As regards the effect of demographic equilibrium factors it is observed that an increase

in the share of population between 55-64 years old has a negative effect on unemployment

rates of -0.33 percentage points while the total effect of an increase in the share of population

between 16-25 years old is not significant. Nevertheless, the direct of the latter is positive
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which, overall, supports previous findings of authors such as Molho (1995a,b). Thus, younger

populations tend to suffer more unemployment problems that beset those with a proportion

of older people. Likewise, the direct effect of increasing migration rates is negative but total

effects do not appear to be significant due to the strong dispersion in the indirect effects. As

expected, increasing education attainment reduces unemployment which can be explained by

the higher demand for skills, lower probability of lay off, etc (Nickell and Bell, 1996). Finally,

the link between participation rates and unemployment is positive, which goes in line with the

accounting identity. Specifically, increasing participation rates have a positive effect on the

evolution of unemployment, with a simultaneous impact of 0.26 percentage points. On the

other hand, population density is found to be positively related to regional unemployment while

temperatures do seem to exert any statistically significant effect.9

Concerning national institutional variables, the results obtained in the 2000-2011 period show

that the generosity of unemployment benefits, the share of temporary contracts the tax wedge

or the migration strictness indicator are not significant while increasing minimum wages relative

to average wages has an upward significant effect on unemployment rates. On the contrary, the

total effect of an increase in the EPL index reduces unemployment. This finding contradicts

previous insights reported by Boeri and Van Ours (2008), who argue that a higher EPL may

reduce job creation as employers become reluctant to open vacancies. However, the result can

be explained by the fact that the higher the EPL the higher the job stability and the stronger

the reduction of job destruction. Finally, the results regarding the effect of the bargaining

coverage conditional to centralized and coordinated environments provide evidence in favor of

the inverted U shape hypothesis of Longhi et al. (2005) and Zeilstra and Elhorst (2014). Thus,

higher levels of bargaining coverage conditional to decentralized or highly centralized systems

outperform medium centralized systems. However, these results should be qualified, given that

the total effects are only weakly significant.

Columns, 6 to 9, display long run effects, while column 10 displays the expected effects. As

shown, most of the variables in the analysis generate expected results and display qualitatively

similar effects in both, the short term and in the long term. Moreover, the positive differences

between the long run and the short run effects are consistent with macroeconomic theory and

imply that, apart from the first period where interaction effects are mainly pure spatial feedback

effects, space-time feedbacks passing from one region to another seem to be relevant in order

9This could be explained by the fact that the econometric specification already includes spatial fixed effects
and the average temperature of a region does not change significantly over such a short period of time.
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to explain unemployment rate movements. Furthremore, the fact that simultaneous effects only

account for a 16.3% of the total long run effect suggests that the diffusion of shocks takes time.

To study the dynamic responses of unemployment rates to changes in the different regressors,

the model is used to perform impulse-response analysis using Equation (3.12). Impulse-response

functions in a dynamic spatial panel context contain both, temporal dynamic effects and spatial

diffusion effects which correspond to exogenous changes that propagate across space. Figure (3.7)

decomposes the dynamic trajectory of unemployment after a transitory change in a regressor into

direct and indirect responses while Figure (3.8) displays the total effect when using the results

obtained with the DSDM and the DSLM. The impulse-response analysis shows that both DSDM

(continuous lines) and DSLM (dashed lines) tend to produce qualitatively and quantitatively

similar direct effects results for most of the variables. However, there are sizeable differences in

the estimated magnitudes of the indirect effects, which is due to the fact that the DSLM omits

the local spillover multiplier matrix. The greater discrepancies are observed in the effect of non-

market services, net migration, the share of old population and the participation rate. Further

comparison between the DSDM the and DSLM total effects reveals that the main discrepancies

are obtained in the window that ranges between the period of impact and the next five time

periods. Additionally, the observed decay pattern in the DSDM is faster than the one predicted

by the DSLM. As shown in Figure (3.10), three periods after the shock, the cumulative effect

accounted for 50.2% of total long-term effect. After five periods, the cumulative effect accounted

for 64.3% of the long-term effect while after ten periods the cumulative effect was about the

83.4% the long-run effect. These results suggest that the full effect on unemployment rates

resulting from changes in the model regressors takes time to materialize and that the short run

analysis may considerably under-estimate the final effects.
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Figure 3.7: Unemployment Dynamic Diffusion Effects: Transitory Shocks.

(a) Education (b) Employment growth (c) EPL

(d) Industry (e) Migration (f) Minimum wage

(g) Non market ss (h) Pop 55-64 (i) Participation

(j) Population density (k) Real wages (l) Barg cov & low cc

(m) Barg cov & med cc (n) Barg cov & high cc (o) Output gap
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Figure 3.8: Unemployment Dynamic Total Effects: Transitory Shocks.

(a) Education (b) Employment growth (c) EPL

(d) Industry (e) Migration (f) Minimum wage

(g) Non market ss (h) Pop 55-64 (i) Participation

(j) Population Density (k) Real wage (l) Barg cov & low cc

(m) Barg cov & med cc (n) Barg cov & high cc (o) Output gap
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Figure 3.9: Unemployment Dynamic Diffusion Effects: Permanent Shocks.

(a) Education (b) Employment growth (c) EPL

(d) Industry (e) Migration (f) Minimum wage

(g) Non market ss (h) Pop 55-64 (i) Participation

(j) Population density (k) Real wage (l) Barg cov & low cc

(m) Barg cov & med cc (n) Barg cov & high cc (o) Output gap
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Figure 3.10: Unemployment Dynamic Total Effects: Permanent shocks.

(a) Education (b) Employment growth (c) EPL

(d) Industry (e) Migration (f) Minimum wage

(g) Non market ss (h) Pop 55-64 (i) Participation

(j) Population density (k) Real wage (l) Barg cov & low cc

(m) Barg cov & med cc (n) Barg cov & high cc (o) Output gap
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3.5.2 Unemployment Disparities Before and After the Crisis

Previous results indicate the sign and the strength of the link between the various regressors

and unemployment in the period 2000-2011, but are silent on the relative explanatory power of

each of the variables driving unemployment disparities. The investigation of the drivers of dis-

parities is relevant from a policy-making perspective given that if unemployment disparities are

of equilibrium nature, policies may not be able to reduce unemployment permanently (Marston,

1985). To explore this issue, a variety of relative importance metrics that decompose the R2 of

the model are calculated. 10 For the correect interpretation of the R2 decomposition, recall that

in the context of a spatial panel data, with n = 1, . . . , N and t = 1, . . . , T , the R2 informs on the

model’s explained variability across spatial units and time. Thus, decompositions on the rela-

tive importance of a factor Xk tell us the percentage of explained disparities across spatial units

and across time-periods by k. In particular, the LMG metric is computed following Groemping

(2007) while GENIZI and CAR scores are computed following Zubber and Strimmer (2011).

Given that results produced by them were similar, only the average of the three for is reported

in Table (3.6).

Moreover, with the aim of analyzing the relevance of the various the drivers of regional

unemployment in Europe, the DSDM is re-estimated for the periods 2000-2008 and 2009-2011

and R2 decompositions are carried out. This extended analysis is justified given that Chow-tests

for the existence of structural breaks for the year 2008 are significant (F=114.27, p-value 0.00).

Additionally, a test on the significance of the differences regarding the relative contribution of

each factor is computed. Overall, the results shown in Table (3.6) suggest that not only the link

between some regressors and unemployment is phase-dependent but also its relative importance.

For the period 2000-2011, the variability in the spatial lag of neighboring regions explains a

21.97% of disparities, while the space-time lag explains 9.04%. The strong importance of neigh-

boring effects in this study supports previous findings of Overman and Puga (2002). In addition,

differences in the time lag explain a 28.89% while the set of regressors explain the 38.45% of the

variability. 52.47% of disparities stems from differences in own regional factors, while 47.53%

of disparities are due to differences in neighbors’ exogenous characteristics. Among the set of

10Note that the computation of a goodness-of-fit measure in many spatial panel data modeling contexts is
problematic since there is no precise counterpart to the R2 of an OLS regression with disturbance covariance
σ2In. Indeed, an objection of is that there is no assurance that adding or eliminating a variable to (from) the
model will result in an increase (decrease) of the R2. This issue affects fixed effects SEMs/SDEMs and random
effects models of all types. However, as pointed out by Elhorst (2014) this is not an issue in the context of fixed
effects DSDM employed in this study. Moreover, given that the relative importance analysis is concerned about
the share of variability in the dependent variable explained by the spatial lag, the R2 is employed to explain
disparities.
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Table 3.6: Unemployment Disparities Before and After the Crisis

Relative Importance Decomposition (%) Total Short Run Effects

Factors Sample Sample Sample Sub-Sample Sample Sample
2000-2011 2000-2008 2009-2011 Difference 2000-2008 2009-2011

Unexplained 4.90 7.06 1.43
Explained 95.10 92.94 98.57

Spatial Lag 21.98 25.39 14.44 - 10.99***
Time Lag 28.90 26.88 2.68 -24.25***
Space-Time Lag 9.04 8.58 3.99 -4.63*
Regressors 38.45 36.83 78.86 39.88***
Regional Fixed Effects 1.63 2.32 2.93

A.) Disequilibrium Factors 22.33 18.22 25.73 7.51***

Employment Growth 15.65 13.19 1.71 -11.48*** -0.325*** -0.230**
RGDP pc Gap 6.59 4.61 19.36 14.75** -0.030 -0.189***
Real Wage Growth 0.09 0.42 4.65 4.24*** -0.016 0.113***

B.) Equilibrium Factors 54.90 63.69 35.41 -28.27***

B.1) Labor Market 22.68 22.04 11.62 -10.42***

Real Wage 0.98 1.42 1.43 0.01 0.011* 0.043***
Emp. Share Manufactures 8.67 9.26 0.72 -8.53*** -0.486*** -0.318
Emp. Share Non Market Services 11.22 6.40 2.23 -4.17*** 0.104* 0.491*
Specialization 1.81 4.97 7.24 2.27* 0.130* 0.362*

B.2) Demographic Factors 18.69 27.00 15.88 -11.12**

Population 55-64 8.54 3.99 3.69 -0.29 -0.272** -0.426**
Population 16-25 1.05 10.72 1.75 -8.96*** 0.193*** 0.585***
Participation 2.01 4.95 3.06 -1.89 0.267** 0.696*
Education 1.13 5.05 3.05 -2.00 -0.185*** 0.019
Net Migration 5.95 2.31 4.33 2.02*** 0.599*** -0.164*

B.3) Amenities 9.29 8.34 2.79 -5.56***

Population Density 8.93 4.16 1.92 -2.24** 0.011** 0.25
Temperatures 0.37 4.19 0.86 -3.32*** -0.506*** 0.165

B.4) Regional Fixed Effects 4.24 6.30 5.13 -1.17

C.) Labor Market Institutions 22.77 18.10 38.86 20.76***

Unemployment Benefits 4.49 5.63 2.12 -3.51* 0.053* -0.143***
Tax Wedge 1.15 1.52 5.51 4.00*** 0.024** 0.222*
Bargaining cov & Low coord 1.78 2.72 0.42 -2.30** -0.014 0.029
Bargaining cov & Med coord 1.66 1.40 1.28 -0.11 0.005 0.153***
Bargaining cov & High coord 3.18 0.38 4.37 3.99*** -0.003 -0.037***
EPL 2.50 1.08 18.25 17.17*** -0.003 -0.162***
Minimum Wage 3.74 1.16 0.57 -0.59 -0.130*** -0.048
Temporary Contracts 3.01 2.94 3.79 0.85 -0.022* 0.134**
Migration Strictness 1.26 1.28 2.54 1.26*** 0.118** -0.195

Note: The dependent variable is in all cases the unemployment rate of the various regions. * Significant at 10% level, ** significant
at 5% level, *** significant at 1% level. Relative importance values are obtained by averaging the results obtain with the LMG
metric and with CAR and GENIZI scores. The t-test on the statistical significance of disparities in the two sub-samples, s1 and s2

for each factor k is computed as tk = Dk√
Σk

=
Rk(s1)Rk(s2)

σ2
k(s1)

+σ2
k(s2)

−2Covk(s1),k(s2)
where Rk(s) is the average across metrics in the sub-sample

s and σ2
k(s) and Covk(s1),k(s2) denote the variances and covariance of the relative importance metrics estimates for factor k.
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regional level factors, disequilibrium factors explain a 22.32% while the equilibrium component

explains a 54.90%. Within this group, regional labor market factors explain 22.68% of dispar-

ities, demographic factors explain 18.68% and amenities a 9.29%. National level institutions,

also play a relevant explaining a 22.77% of disparities. Thus, estimates for the period 2000-2011

suggest that unemployment disparities mainly reflect a spatial equilibrium where differences in

the productive structure (19.89%), age composition (9.59%) and population density (8.92%) are

responsible of unemployment disparity across regions and time.

In general, the results for the period 2000-2008 are very similar to those obtained for the

period 2000-2011. However, with the outbreak of the financial crisis in 2008, and its extension

to the labor markets in 2009, unemployment rates correlations across time and space decreased

considerably, which explains the fall in relative importance of the spatial and serial dynamic

effects and the increase in the explanatory relevance of regressors in the period 2009-2011. After

the crisis, although equilibrium factors explain a higher share of disparities than disequilibrium

ones (35.41% vs 25.72%), the gap between these two sets of factors decreased markedly. During

2009-2011 disequilibrium factors increased their importance from 18.21 to 25.72%. This increase

is mainly produced by the increasing importance of real output per capita fluctuations and real

wage growth rates. Moreover, in the second sub-sample, real wage growth appears to be posi-

tively linked to unemployment rates. Taken together, these results suggest that the temporary

disequilibrium component of unemployment disparities in the post-crisis period increased its

relevance due to a combination of asymmetric negative labor demand and wage shocks.

Equilibrium factors, on the other hand, decreased in importance from 61.68% to 35.41% as

explained in the drop in the three categories. With respect to regional labor market factors,

there are two relevant differences. Firstly, as refers to the employment share in manufactures,

the variable became insignificant and reduced its importance from 9.25 to a 0.72%. Secondly,

sectoral specialization became significant after the crisis and increased its relative importance

from 4.96 to 7.24%. Given that the effect of sectoral specialization in 2009-2011 was positive,

it is possible to conclude that diversified regional economies performed better because of the

possibility to re-allocate jobs from one sector to another. Demographic factors also decreased

in importance from 27% to 15.88%, mainly because of the decreasing importance of disparities

in the share of young population. The latter could be related to an age composition effect

(different cohorts have different age specific unemployment rates) or a cohort size effect (cohort

size affects the age-specific unemployment rates). In addition, amenities decreased in relevance

and lost their significance as explanatory factors of unemployment outcomes while the share of
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regional fixed effects remained relatively constant.

On the contrary, the most relevant finding arising from this exercise is the sharp increase in

the relative importance of national level labor market institution after the crisis, from a 18.10%

level to a 38.86%. The most pronounced change is observed in the EPL indicator as it displays

an increase from 1.08 to 18.25%. This finding suggests that differences in the protection of

workers are crucial to explain the emergence of divergences of unemployment rates after the

crisis. Second, the relative importance of the tax wedge increased to a 5.81% level and its effect

became positive and significant. This result suggests disparities on taxes became a relevant driver

of unemployment outcomes after the crisis and that regions with high tax wedges discouraged

job creation and reduced labor demand. Additionally, it is observed that the set of indicators

related to the bargaining coverage framework increased their explanatory power.

Finally, the changing role in some institutional level factors is worth mentioning. While the

generosity of unemployment benefits had a positive effect increasing unemployment rates before

the crisis as usual in the literature (Belot and Van Ours, 2001), its effect became negative after it.

This finding suggests that the positive link between the generosity of benefits and unemployment

may operate with more strength in booming phases by reducing search intensity and increasing

reservation wages. On the contrary, after the crisis, the negative link could be explained by

the fact that unemployment benefits act as a buffer helping to keep consumption levels and

firms’ activity over a threshold. A changing role is also observed in the link between temporary

contracts and unemployment. While flexibility may have contributed to job creation in the

booming phase, after the 2008 recession, regions with an excess of temporary contracts performed

worse than those with other contractual forms (i.e, labor hoarding practices where adjustments

against shocks were based on working hour adjustments). This is because of temporary contracts

allow for rapid and deep employment cuts to keep productivity levels once the economy receives

a negative a shock, thus raising unemployment rates (Marelli et al., 2012). At this regard, this

supports previous analysis of Bentolila and Saint-Paul (1992) and Boeri and Garibaldi (2007),

who argue that two-tier labor market reforms have a transitional honeymoon, job-creating effect

which typically precedes reductions in employment as a result of temporary workers lower labor

productivity. To conclude, it can observed that minimum wages and migration strictness became

insignificant after the crisis and that they do not help to explain differences in unemployment

rates.
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3.6 Conclusions

This chapter explores changes over time in the distribution of European unemployment rates

and the role played by different factors shaping the evolution of regional disparities. The analy-

sis of the distribution of unemployment rates during the period 2000-2011 reveals that overall,

regional disparities have decreased because of the catch-up process experienced by eastern Eu-

ropean regions with relatively high unemployment rates in the year 2000. Nevertheless, regional

unemployment gaps seem to be highly persistent as indicated by the distribution dynamics anal-

ysis. The exploratory analysis also reveals a distinct behavior before and after the economic

crisis: while convergence took place during 2000-2008, after the crisis, European regions ex-

perienced an important process of divergence characterized by the fact that economies of the

periphery of Europe worsened their relative position.

As shown in the exploratory analysis, the unemployment rate in a region is affected by la-

bor market outcomes in neighboring regions. Taking this into account, a theoretical model to

explain regional unemployment rates with spatial interactions among regions is developed. This

theoretical model helps in understanding the channels through which spatial dependence in un-

employment rates emerges in European regions. The solution of the theoretical model implies a

DSDM empirical specification containing endogenous and exogenous interactions among spatial

units. In order to analyze the relationship between explanatory variables and unemployment,

as well as the dynamic responses of unemployment to changes in the various groups of factors,

an impulse response analysis is carried out and used a variety of R2 decomposition methods.

R2 decomposition metrics for the period 2000-2011 suggest that the regional equilibrium com-

ponent may be the most relevant driver of regional unemployment disparities and that regional

disparities may reflect a spatial equilibrium in which regional equilibrium factors play a major

role.

However, this aggregate analysis does not seem to be completely satisfactory for the under-

standing on the nature of unemployment disparities, given that Chow tests suggest that there

are structural differences in the way the various factors under consideration are related to re-

gional unemployment rates before and after the economic crisis. Additionally, a t-test statistic

on the relative importance differences in the two subsamples reveals that the different factors

have a time-dependent relevance. The separate analysis of the contributions of explanatory

variables in the different sub-samples and the evolution of the various regressors shows that the

convergence process experienced from 2000-2008, was mainly due to a combination of positive
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temporary labor demand shocks and demographic outcomes. On the contrary, the emergence of

disparities during 2009-2011 are mainly explained by regional disequilibrium and national level

institutional factors. Although the results should be taken with caution, two key findings emerge

of this analysis. The first is that asymmetric demand fluctuations account for a considerable

share of unemployment disparities. This finding suggests that some of the divergence process

characterizing the period 2009-2011 could be reversed once the shocks are fully absorbed. Ad-

ditionally, it is shown that national-level institutional variables before the crisis were not so

relevant, in the aftermath of the crisis, they account for almost the 40% of them. Within this

group of factors, employment protection legislation, the tax wedge and the collective bargaining

setting are the most important ones.

Therefore, the results of this study pose some interesting policy implications. First, given

that the nature of unemployment disparities reflects a mix between regional disequilibrium and

equilibrium factors, together with country level institutional characteristics, there seems to be

some role for national and regional economic policies to mitigate the increase of unemployment

differentials observed in 2009-2011. Second, the articulation of stimulus policies to boost real

GDP per capita and labor demand in regions affected by high unemployment rates may generate

beneficial effects. However, in view of the fiscal restrictions affecting many European regions after

the 2008 crisis, the scope of this option may be limited. As an alternative, regional authorities

could act on equilibrium factors. At this level of intervention, policy options aiming at the

reduction of unemployment rates may focus on the diversification of the productive structure

as this may help to buffer recessive shocks and increase regional adaptability to future crisis.

Third, given that national level labor market factors seem to be the key driver of unemployment

disparities after the crisis, legislative reforms affecting the institutional framework may have

important effects. The findings of this study suggest that policies aimed at protecting jobs and

reducing tax burdens may help to improve the functioning of regional labor markets. In this

sense, future research could take into account interactions among institutional characteristics in

order to gain knowledge on what labor market reforms should be implemented. An interesting

issue that could be further explored in the future is the interplay between the components of

the EPL and other institutional factors. For instance, the increase in job destruction induced by

temporary jobs may have a stronger effect on unemployment if the gap in firing costs in favor

of permanent contracts is high, given that this will lower the the proportion of temporary jobs

transformed into permanent jobs.

Finally, the implementation of labor market policies should be coordinated and take into
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account the existence of strong spillover effects, as one of the key findings of this study is that

space-time interactions among regions are a key element shaping the evolution of unemployment

rates.
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Chapter 4

Dynamic Local Government Spending
Interactions among Spanish Municipalities

4.1 Introduction

How relevant are space-time interactions when modeling government spending? What are the

effects of the various economic, demographic and political factors on local government spend-

ing? Does the intensity of spatial spillovers processes vary across different functional spending

categories? These questions are of key importance both to our understanding of local public

finance and for local fiscal policy alike. This chapter analyzes the evolution of local government

spending in a sample of 1,230 Spanish municipalities, over the period 2000 to 2012 with popula-

tion size above 5,000 inhabitants. A novel feature of the analysis carried out is that it takes into

account the existence of temporal and spatial interactions among neighboring municipalities by

employing dynamic spatial panel modeling techniques and relative importance metrics.

The study of local government spatial interactions has attracted a significant amount of

research in the fields of public finance and regional science. Frequently, empirical studies have

found that municipalities consider both the tax rate and the government expenditure of their

neighbor’s when making their own fiscal policy decisions. In this regard, the economic literature

has proposed various theories to explain the existence of spatial interactions between municipali-

ties. The strand of literature on tax welfare and competition models, which analyzes interactions

in taxation policies, suggests that spatial interactions may emerge because of taxes are chosen

strategically as reactions to neighboring fiscal policies (Brueckner, 2003; Devereux et al., 2008).

In a similar vein, the literature of benefit spillovers investigates if public government spending of

a juridisdiction generates beneficial or negative effects that spread across boundaries, affecting

the welfare of residents in neighboring jurisdictions (Kelejian and Robinson, 1992; Case et al.,

1993; Revelli, 2002; 2006). The main focus of this line of research has been to analyze whether
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the spending decisions of a local government depend on policies chosen elsewhere.

Other explanations such as the political yardstick competition hypothesis (Salmon, 1987;

Besley and Case, 1995; Bordignon et al., 2003; Santolini and Bartolini, 2012) emphasize the

relevance of political factors as the sources of spatial interdependence. According to the yardstick

competition hypothesis spatial interactions may arise from the existence of an informational

spillover from the fiscal policies enacted in the neighboring regions. This information spillover

will affect the beliefs of the electorate in a local jurisdiction and the local incumbent’s behavior

(Elhorst and Freret, 2009). The key prediction emerging from this strand of literature is that

weak local governments will tend to mimic with more intensity the behavior of neighbor’s. To

explain tax mimcking, Santolini (2008, 2009) has introduced the idea of social partisan trend

hypothesis, which proposes that fiscal policy interactions at the municipal level may be driven

by ideological similarities between the governing parties involved.

The set of previous theoretical approaches to explain the existence of spatial correlations in

the levels of public spending has been accompanied by the development of a variety of spatial

econometric methods (LeSage and Pace, 2009; Anselin, 2010; Elhorst, 2010; Elhorst 2014; Lee

and Yu, 2010a). Nevertheless, most studies on fiscal interactions at local level ignored one of

the key political science contributions to the research on budgetary processes: the fact that

budgets are highly correlated over time and that they follow an incremental pattern (Lindblom,

1959; Wildavsky, 1964; Davis et al., 1966; Dezhbakhsh et al., 2003). Early contributions from

Dempster and Wildavsky (1979) or Berry (1990), identify incrementalism with regular annual

change in a budget category and close adherence to previous existing levels. This means that

expenditure in a given year t depends to some extent on that in year t − 1. Political scientists

have argued that incrementalism in budgetary processes may emerge due to the existence of

(i) information costs, (ii) political constraints in complex and uncertain environments, (iii)

the need to maintain political conflict and citizen demands under tolerable limits and (iv) the

institutionalized bureaucracy of the budgetary process (Robinson, 2003; 2006). Under such

scenarios, decision makers cannot proceed deliberately and comprehensively when deciding how

much to spend, but must proceed through small, incremental changes.

As regards the case of Spain, there are few studies analyzing time-series behavior of budgetary

processes. However these find that incrementalism is of particular importance (Dorta et al., 2010;

Camaño and Lago-Peñas, 2011). Similarly, Solé-Ollé (2006) and Bastida et al. (2013) analyze the

existence of spatial interactions for various government expenditures categories in Spain while

Lopéz-Hernadéz et al. (2015) analyze interactions for counties. However, none of the previous
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analysis integrate both spatial and temporal dynamics within a unified modeling framework.

The lack of econometric analysis integrating both types of effects is especially remarkable in

view of the abundant statistical and theoretical arguments supporting the existence of a link,

not only between own and neighboring levels of expenditures but also between past and future

expenditures along time. As suggested by the strong spatial and temporal correlations reported

in Figure (4.1) below, studies that have analyzed the drivers of local government spending taking

into account spatial lags but omitting time dynamics may have been miss-specified and could

suffer from the omitted-variable bias which would ultimately lead to biased and inconsistent

estimates of the model parameters.1

Figure 4.1: Space-Time Government Spending Correlations.

Importantly, the existence of positive or negative spatial spillovers poses potentially impor-

tant implications for policy design given that the presence of positive spillovers as found in

Bastida et al. (2013), may suggest that local spending behaves as a complementary public good.

Nevertheless, in the presence of spatial interdependence and spatial externalities, if a local entity

spends heavily in a particular expenditure category, neighboring local bodies might reduce their

1The only exception including space-time endogenous interactions to describe the government expenditure
process in a spatial panel setting is that of Costa et al. (2013), who estimate a Dynamic Spatial Lag (DSLM)
specification for Portuguese municipalities using the system GMM estimator.
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spending in that category because of their citizens could benefit from the services provisioned

by the first (i.e, free-ride). Therefore, if locally provided public goods behave as substitutes, the

reaction to changes in public expenditures in neighboring municipalities should be negative, as

empirically observed by Solé-Ollé (2003).

In order to complete the results obtained so far in the existing literature, this paper aims

to examine further the process of local government spending in Spanish municipalities. To that

end, a Dynamic Spatial Durbin Model (DSDM) is estimated employing the bias-corrected quasi-

maximum likelihood (BCQML) estimator for dynamic spatial panels developed by Lee and Yu

(2010b). The contributions of this extended model are: (i) the unrealistic assumption of govern-

ment budgets to be independent over space and time has no longer to be made, (ii) enables the

investigation of the magnitude and significance of spillovers in a variety of spending categories

and (iii) facilitates assessment of the relative importance of spatial spillover theory and the incre-

mentalist theory of budgeting for explaining public spending patterns. Relevant methodological

issues for dynamic spatial panel modeling such as the inclusion of fixed-spatial and time-period

fixed effects, the estimation method, spatial co-integration, parameter identification and the

selection of the spatial matrix will be addressed.

The chapter is organized as follows. After this introduction, Section 2 briefly reviews the

literature on fiscal policy interactions at the local level in Spain and the basic institutional

structure of local administration in Spain. Section 3 presents the model used to analyze local

government spending interactions. Section 4 examines the data set and the behavioral hypothesis

related to the various covariates. Section 5 discusses the econometric methodology used in this

analysis while the main empirical findings of the paper are documented in Section 6. Finally,

Section 7 offers the main conclusions from this work.

4.2 Literature Review and Institutional Setting

Spain has five vertical layers of government: central, regional, provincial, county and municipal

ones. There are seventeen regional governments, the so-called Autonomous Communities (AC),

which have fairly wide-ranging spending responsibilities including, for example, the provision

of healthcare, education and welfare. Across most of the country, the 51 provincial councils

and 324 counties have no real say in government spending decisions as their basic function is to

assist in the management of municipal activity. Moreover, county councils in most AC’s have
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no specifically designated task.2 The local layer of Spanish government, on the other hand,

consists of more than eight thousand municipalities. 88.6% of them are very small, have fewer

than five thousand inhabitants and account for no more than a 25% of the population. However,

municipalities with more than 5,000 inhabitants account for 75.2% of the population and have

several economic tasks, with major expenditure categories corresponding to the traditional re-

sponsibilities assigned to the local public sector (environmental services, urban planning, public

transport, water supply, culture, welfare, etc). As explained in Garćıa-Sanchéz et al. (2012)

Spanish municipalities provide specific services as population size increases. Table (4.1) below

summarizes local government’s service provision related to different population sizes.

Table 4.1: Local Government Services in Spain.

Essential Services Compulsory services

All Municipalities Municipalities Municipalities Municipalities
> 5000 inhabitants > 20000 inhabitants > 50000 inhabitants

Street lighting Public parks Civil defense Public transport
Cementeries Public libraries Social Services Environmental Protection

Waste collection Market Fire prevention
Street cleaning Waste treatment Public sports

Domestic supply of facilities
drinking water

Sewer system and drains
Road access

Paving of public roads
Food and drink control

Source: Garćıa-Sanchéz et al. (2012)

As Delgado et al. (2014) point out, Spain is probably one of the most suitable cases in which

to study the issue of interactions in government spending at the municipal level, given that the

Spanish regional government is highly decentralized. As shown in Table (4.2) below, Solé-Ollé

(2006) and Bastida et al. (2013) study municipal government expenditure interactions. In his

seminal paper, Solé-Ollé (2006) presents a framework to measure benefit spillovers emerging

from the provision of local public goods and crowding spillovers, arising from the crowding of

facilities by residents in neighboring municipalities. Using a sample of 2,610 municipalities for

the year 1999 he estimates a Static Spatial Durbin Model (SSDM) by means of an instrumental

variable (IV) estimator and finds a negative spatial interaction between neighbor’s government

level of spending and the existence of relevant crowding spillovers. Bastida et al. (2013) using

2005 data for 3,204 municipalities, estimate Static Spatial Lag Model (SSLM) and a Static Spatial

Error Model (SSEM) specifications by means of an IV estimator. They distinguish between a

2Spain’s counties are territorial divisions defined by physical and geographic boundaries and the affinity of
their inhabitants. They are known in Spanish as ”comarcas”
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variety of functional spending categories finding that there are positive spatial spillovers among

all expenditure categories. Finally, in a recent study, Lopéz-Hernadéz et al. (2015) explore the

existence of spatial spillovers in government spending in a sample of 313 counties for the period

2010-2012 finding positive spatial interactions in cultural, sport and environmental expenditures.

Table 4.2: Empirical Studies on Government Spending Interactions in Spain.

Authors (year) Sample and Spending Estimation Spatial Spillover
Period Variable Method Specification Results

Solé-Ollé (2006) N =2610 Total 2SLS-IV SDM -
T=1999 per capita

Bastida et al. (2013) N = 3204 Total 2SLS-IV SLM, SEM +
T=2005 Security SLM, SEM +

Education SLM, SEM +
Waste SLM, SEM +
Culture SLM, SEM +
Housing SLM, SEM +
Water SLM, SEM +

Lopéz-Hernadéz et al. (2015) N= 313 Cultural NS SARAR/SLM +
T= 2010-2012 Sport NS SARAR/SLM +

Environmental NS SARAR/SLM +

Notes: SDM denotes Spatial Durbin Model, SARAR denotes Mixed Regressive Spatial Autoregressive Model with a Spatial
Autoregressive Disturbance, SLM denotes Spatial Lag Model, SLX denotes the exogenous spatial lag and SEM denotes spatial
error model. NS means that it is not specified in the corresponding study.

Apart from the spatial analysis of Lopéz-Hernadéz et al. (2015), where the unit of study is

the county, as can be observed in Table (4.2), the available empirical evidence at the municipal

level is contradictory with regard to the nature of spatial interaction in spending levels between

neighboring municipalities. The reasons for these controversial results may have to do with the

fact that these contributions differ considerably in terms of sample composition, time-period

and spatial specification. As a consequence, the question of whether a change in government

spending in a given municipality has a positive or negative impact on neighboring municipalities

is far from settled and further empirical research is required. This paper distinguishes itself from

earlier studies by Solé-Ollé (2006), Bastida et al. (2013) and Lopéz-Hernadéz et al. (2015) in

four major methodological aspects:

First, the three aforementioned studies use cross-sectional data frameworks to investigate

the existence of spatial spillovers whereas this analysis is based on panel data. The problem of

cross-sectional studies is that, by construction, they omit time-period fixed effects which may

induce an upward bias of the estimated coefficients of the spatial lags (Lee and Yu, 2010c).

This problem could be solved by introducing time-period fixed effects in a panel data setting.
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Moreover, the inclusion of time-period effects in the context of local government is highly relevant

given that public expenditures are likely to exhibit a common municipal temporal behavior as

the opportunistic cycles literature has shown (Shi and Svensson 2006; Fiva and Natvik, 2013;

Forte-Deltell et al., 2013; Guillamón et al., 2013). Furthermore, given the strong cross-sectional

variability of Spanish municipal attributes argues for the inclusion of spatial fixed effects in order

to capture unobserved heterogeneity specific to the municipality. Additionally, the employment

of panel data usually results in a greater availability of degrees of freedom, thus reducing the

collinearity among explanatory variables and improving the efficiency of the estimates (Baltagi,

2001; Hsiao, 2003).

The second and most relevant difference with respect to previous studies is that the above-

cited authors omit time-lag government spending dynamic effects while this study takes into

account both spatial and temporal correlations in spending. As explained above, the omission

of these terms implies that previous studies may have ruled out an important explanation devel-

oped in the field of political science and they may suffer from a serious miss-specification bias.

Moreover, the DSDM containing endogenous and exogenous interactions contrasts favorably

with static and more restrictive SLM spatial specifications adopted by Bastida et al. (2013) and

Lopéz-Hernadéz et al. (2015) given that the spillovers produced by the SLM are global in nature

and impose a unique ratio between the spillover effect and direct effects for every explanatory

variable which is not realistic (Mc Millen, 2003; 2010; Vega and Elhorst, 2013). Similarly, the

adoption of a dynamic spatial panel allows for a time-varying ratio between the direct and the

spillover effect instead of a fixed ratio across time as in Solé-Ollé (2006).

Third, unlike the present study, which bases the estimation is based on the BCQML estimator

for dynamic spatial panels of Lee and Yu (2010b), both Solé-Ollé (2006) and Bastida et al.

(2013) estimate their respective SDM and SLM models employing 2SLS-IV estimators whose

main drawback is that the coefficient estimate of the spatial autoregressive term may fall outside

its parameter space (Elhorst and Freret, 2009).

Fourth, Solé-Ollé (2006) and Bastida et al. (2013) present point estimates to analyze the

effect of the different regressors. However, as pointed by LeSage and Pace (2009) and Elhorst

(2010), inferences based solely in the estimation of the model may lead to erroneous conclusions.

Partial derivative interpretation of the impact from changes to the variables of the model are

the current state of the art in the spatial econometrics literature and provide a more valid basis

for testing for the existence of spatial spillovers.

147



4.3 The Model

4.3.1 Theoretical Framework

This section develops a simple model of fiscal policy interdependence for Spanish municipalities.

The model draws on previous contributions from the literature on government spillover models

(Case et al., 1993; Brueckner, 2003; Revelli, 2005). In each municipality i = 1, 2, . . . , N , there is

a representative consumer who derives utility from the consumption of a private good (C) and a

public good (G). Following the convention in expenditure spillover models, it is assumed that the

welfare of the representative consumer depends, apart from residents’ private consumption and

a vector of own characteristics Xit, on own local public services and on own Git and neighbor’s

public spending G̃jt. Thus, the inclusion of Xit reflects the assumption of welfare in municipality

i is related to the amenities or disamenities in the own local economy.

The main differences with respect to previous theoretical models of spillovers is that the

present framework further assumes that the representative’s consumer utility function of munic-

ipality i may also be affected by own Git−1 and past neighbor’s G̃jt−1 expenditures as well as by

neighbor’s characteristics X̃jt. The first two terms reflect the existence of public good provision

habits in the policy-maker and help to capture incremental budget behavior stemming from com-

plex bureocratic and political processes. On the other hand, exogenous characteristics extend

the idea of welfare interdependence among agents for some exogenous variables. As explained

by Brueckner (2003), people might use facilities in other localities and population dynamics or

labor market outcomes can generate feelings of insecurity in adjacent neighborhoods. Thus, the

characteristics of neighboring municipalities, such as population size, its composition and growth

rate, may generate important disamenities (crime, pollution, noise, difficult commutes, crowds,

a reduced sense of com- munity, and a greater transience of social relationships). For instance,

an increase in neighboring municipalities migration will rise the costs of migration, and if the

population size increases rapidly, expansions in public goods, infrastructure, and housing might

not be able to keep pace, thus reducing welfare of municipality i.

Therefore, the utility function of the representative agent of municipality i at time t is given

by:

Vit = v
(
Cit, Git, Git−1, G̃jt, G̃jt−1, Xit, X̃jt

)
(4.1)

where the function v (.) satisfies the conditions of monotonicity and concavity for Cit and Git. In

this setting, private consumption Cit depends via the budget constraint on the level of the public
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good provision Git, income net of taxes Y d
it and transfers Iit such that Cit = c

(
Y d
it , Git, Iit

)
. The

budget constraint reads as:

pitGit + Cit = Iit + Y d
it (4.2)

where pit is the price of public goods Git and the price of the private good has been normalized

to 1. In this setting, any jurisdiction will typically interact with a potentially large number of

other jurisdictions with decreasing intensity as distance between jurisdiction increases. There-

fore, neighbors’ expenditure is taken to be a weighted average of the expenditures of other

jurisdictions:

G̃jt =
1

N

N∑
j=1

wijGjt (4.3)

where the weights wij are a negative unknown function of geographical distance between i and

j. The maximum utility level derived from Git is given by the equalization of the marginal

rate of substitution between Cit and Git. As shown by Akai and Suhara (2013), the first-order

condition of this type of problem reads as:

Ri
(
Y d
it + Iit − pitGit, Git, G̃jt;Git−1, G̃jt−1, Xit, X̃jt

)
= pit =

VGit
VCit

(4.4)

By differentiating Equation (4.4) with respect to Git and G̃jt we get:

(
RiGit − pitR

i
Cit

)
dGit +

(
Ri
G̃jt

)
dG̃jt = 0 (4.5)

Therefore the simultaneous effect of municipality i when other municipalities j 6= i increase

their supply of the public good is:

dGit

dG̃jt
= − 1

RiGit − pitR
i
Cit

Ri
G̃jt

(4.6)

From RiGit < 0 and RiCit > 0, the expression − 1
RiGit

−pitRiCit
Ri
G̃jt

in Equation (4.6) is positive.

This implies that the direction of i’s response depends on the sign of i’s marginal rate of substi-

tution
(
Ri
G̃jt

)
. Thus, it is possible to describe the behavior of public spending in municipality

i as follows:

(a) When Ri
G̃jt

< 0, dGit
dG̃jt

< 0. The behavior of the public good provided by municipality i

is a strategic substitute.
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(b) When Ri
G̃jt

= 0, then dGit
dG̃jt

= 0. The behavior of the public good provided by municipality

i is independent.

(c) When Ri
G̃jt

> 0, then dGit
dG̃jt

> 0. The behavior of the public good provided by municipality

i is a strategic complement.3

Notice, however, that the inclusion of own municipal and exogenous lagged endogenous

interactions into the utility function implies that there is also an optimal best-response of Git

with respect changes in G̃jt−1 which reflects diffusion effects over space and time of government

policy. These diffusion effects may operate through two different channels. First, a change in

G̃jt−1 could affect the response of government spending in municipality i in Git−1, and as far as

Git−1 and Git are correlated because of the incremental budgetary process and the time inertia

implied by bureaucratic processes, such a change could produce and impact in governments

spending at time t. The second channel of diffusion follows the same reasoning and consists on

the following sequence. A change in G̃jt−1 could have an impact in G̃jt and insofar as there are

any beneficial spillovers arising from j to i, G̃jt may affect Git. Therefore, the effect of a change

in G̃jt−1 on Git is given by the following set of cross-reaction functions:

dGit

dG̃jt−1

=
RiGit−1

Ri
G̃jt−1(

RiGit − pitR
i
Cit

)(
RiGit−1

− pit−1RiCit−1

) +
Ri
G̃jt
Rj
G̃jt−1(

RiGit − pitR
i
Cit

)(
Rj
G̃jt
− pjtRjC̃jt

)
(4.7)

Additionally, given that preferences are interdependent with neighbor characteristics, the

response of Git to changes in exogenous characteristics of neighboring municipalities Xjt is

given by:

dGit

dX̃jt

=
Ri
G̃jt
Rj
X̃jt(

RiGit − pitR
i
Cit

)(
Rj
G̃jt
− pjtRjC̃jt

) − Ri
X̃jt(

RiGit − pitR
i
Cit

) (4.8)

Equation (4.8) states that the spending decision of a particular municipality to behave in

some way depends on explanatory variables of other units through a direct
(
Ri
X̃jt

)
and indirect

channel
(
Ri
G̃jt
Rj
X̃jt

)
. According to the terminology developed by Elhorst (2014) and LeSage

(2014a), the direct channel in this setting reflects a local spatial spillover as it does not require

endogenous feedback effects passing through optimal reactions in j while the indirect channel

3Note that Git and Gjt are not regarded as homogeneous within municipality i. This would have im-

plied a utility function Vit = v
(
Cit, Git, Git−1,+G̃jt,+G̃jt−1, Xit, X̃jt

)
inducing the fact that RiGit

and RiGjt

have the same sign < 0. Also note that weakly separable utility functions may have implied that Vit =

v
(
c (Cit, Git) , Git−1, G̃jt, G̃jt−1, Xit, X̃jt

)
which in turn may produce that dGit/dGjt = 0 as in case (b).
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reflects a global spillover process where optimal reactions in G̃j due to a change in the X̃j

characteristic, set in motion a sequence of adjustments in potentially all municipalities in the

sample such that a new long-run steady state equilibrium of government spending in municipality

i arises.

To investigate endogenous and exogenous fiscal policy interactions of local government spend-

ing such as those predicted by the model Equations (4.6), (4.7), (4.8) among Spanish munici-

palities, the following DSDM with both spatial fixed and time-period fixed effects is estimated:

Yt = µ+ ιNαt + τYt−1 + ρWYt + ηWYt−1 +Xtβ +WXtθ + εt (4.9)

where Yt denotes a N × 1 vector consisting of observations for the government expenditure

per capita for every municipality i = 1, . . . , N at a particular point in time t = 1, . . . , T , Xt

and WXt are N ×K matrices of exogenous aggregate socioeconomic and economic covariates

with associated own β and neighbor’s θ response parameters contained in K × 1 vectors that

are assumed to influence government expenditure. τ , the response parameter of the lagged

dependent variable Yt−1 and εt = (ε1t, ..., εNt)
′

is a vector of i.i.d disturbances whose elements

have zero mean and finite variance σ2. The variables WYt and WYt−1 denote contemporaneous

and lagged endogenous interaction effects among the dependent variable. ρ is called the spatial

autoregressive coefficient. W is a N × N matrix of known constants describing the spatial

arrangement of the municipalities in the sample. µ = (µ1, ..., µN )
′

is a vector with region fixed

effects, αt = (α1, ..., αT )
′

denotes time specific effects and ιN is a N × 1 vector of ones. Region

fixed effects control for all region-specific time invariant variables whose omission could bias the

estimates, while time-period fixed effects control for all time-specific, space invariant variables

whose omission could bias the estimates in a typical time series (Baltagi, 2001; Elhorst, 2010).

The DSDM in Equation (4.9) is an attractive starting point for spatial econometric modelling

because, as special cases, it nests alternative specifications which are widely used in the literature:

the Dynamic Spatial Lag Model (DSLM) and the Dynamic Non-Spatial Model (DLM). As can

be checked, the DSDM can be simplified to the DSLM by shutting down exogenous interactions

θ = 0:

Yt = µ+ ιNαt + τYt−1 + ρWYt + ηWYt−1 +Xtβ + εt (4.10)

and to the DLM by shutting down both, exogenous and endogenous interactions such that

θ = ρ = η = 0:

Yt = µ+ ιNαt + τYt−1 +Xtβ + εt (4.11)
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where εt ∼ i.i.d.

4.4 Data and Hypothesis

The sample used to investigate government space-time dynamics covers a total of 1, 230 mu-

nicipalities above 5, 000 inhabitants and accounting for 75% of the Spanish population and the

study period runs from 2000 to 2012. The data for this study are drawn from different data

sources. Table (4.3) below summarizes the set of political, economic and demographic factors

used in the study, its mean, standard deviation and the data source. Column 4 of Table (4.3)

shows the expected effect of a wide range of controls and spending drivers based on a review of

international and Spanish local government finance studies.

Table 4.3: Descriptive Statistics.

Variable Mean Standard deviation Expected Effect Source

Outcome Variable

log Government expenditure pc 6.43 0.35 MPF
log Education expenditure pc 1.85 2.08 MPF
log Housing expenditure pc 3.78 1.399 MPF
log Waste expenditure pc 3.42 1.42 MPF
log Water expenditure pc 2.07 1.98 MPF
log Security expenditure pc 3.51 1.33 MPF
log Culture expenditure pc 2.79 1.86 MPF

Explanatory Factors

A. Political Factors

Political Power 55.06 0.13 ? MI
Ideology 5.59 1.95 - Deusto Polls
Regional Alignment 0.31 0.46 ? MI
National Alignment 0.44 0.50 ? MI

B. Economic Factors

log Tax pc 4.96 1.66 + MPF
log Transfers pc 5.81 0.66 + MPF
Unemployment Rate (%) 7.42 4.41 ? AE La Caixa
log GDP pc 9.70 0.43 + Klein Institute

C. Demographic Factors

log Population Density 4.49 1.55 - INE
Net Migration (%) 1.80 2.92 ? INE
People % above 65y 19.73 7.16 ? INE

Notes: MPF denotes the Ministry of Public Finance, MI the Interior Ministry and INE the National Statistics Institute.
The data used to define the municipal public spending have been obtained from the consolidated budgets of settlements
of Local Bodies, published by the Ministry of Finance. Total expenditure corresponds to Operating Expenses, as
defined by Chapters 1 (Personal), 2 (Purchase of current goods and services) and 4 (Current transfers) of the economic
classification of expenditure. Education expenditures, includes the operating expenditure policy 32, Housing includes
the operating expenditure expenditure policy 15, Waste includes the operating expenditure program group 162, Water
includes expenditure operating the program group 161, Security includes operating expenses policy of spending 13,
and finally Culture includes expenditure operational expenditure policy 33. Order EHA/3565/2008. MHAP (BOE,
297/10-12)
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Outcome Variables: Government Expenditure (per capita). In the baseline analysis, the

dependent variable is the logarithm of current government expenditure per capita. Additionally,

the sign and strength of spatial spillovers for a variety of government spending categories is

analyzed. The concrete expenditure functionalities are the expenditures in (i) education, (ii)

housing, (iii) waste and collection of residuals, (iv) water supply, (v) citizen security and (vi)

cultural and recreational services.

Covariates: The municipal government expenditure is modeled as a reduced form function of

a variety of factors that can be broadly categorized as (i) political factors, (ii) economic factors

and (iii) demographic factors.

A) Political Factors.

The management of local public administration is the result of a combination of political

factors (Borge, 1995; Volkerink and de Haan, 2001; Astworth and Mesquita, 2006). There are

two approaches in the theoretical debate over the influence of government strength on the fiscal

situation of public authorities. Roubini and Sachs (1989a,b) suggest that weak governments

can impose notable costs and show that government weakness in OECD countries increases

government spending, deficit and debt. This hypothesis is known in the literature as the weak

government hypothesis. At the local level, studies of Ashworth et al. (2005) and Borge (2005)

find that strong local governments spend less. Nevertheless, other authors employing theoretical

models show that divided governments may have a moderating influence on fiscal policy (Alesina

and Rosenthal, 1994). In the case of Spain the evidence is contradictory. Bastida et al. (2013)

employing a Herfhindal Index conclude that greater political concentration increases government

spending. However, the sign is not robust to the specific functional spending category considered.

Meanwhile, Garćıa-Sánchez et al. (2012) using a variety of budgetary solvency indicators find

that political strength is positively related to budgetary solvency. In a similar vein, Solé-Ollé

(2003) finds that higher electoral margins allow local politicians to implement higher taxes,

which may help to balance the budget for a given level of expenditure. In order to proxy political

power concentration, the share of seats (%) in the local council is computed by applying the

electoral D’hondt rule operating in Spain to the votes obtained by the different parties and

taking into account the distinct minimum requirements to obtain representation. In view of the

discrepancies among previous studies, there is no a priori expectation regarding the effect of

political strength on per capita government expenditures.
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Partisan ideology measures the impact of ideological differences on fiscal policy outputs.

Traditionally, Spain has had two main national left-wing parties: PSOE (socialists) and IU

(communists), one national right-wind party (PP) and a national center party (UPyD). However,

there are many parties regional parties, some to the left and some to right of the political

spectrum, as well as candidates who run as independents, mostly in small municipalities. The

ideology variable is computed for a great number of parties with an index ranging from 0 (left)

to 10 (right) taken from Deusto polls Database and from a review of political party manifestos.

Whenever information on independents was unavailable, a value of 5 was assigned to the party.

Various authors have argued that the alternation in power between the different political parties

could induce significant changes in the size of public budgets given that left and right wing parties

differ with respect to their handling of government resources (Imbeau et al., 2001; Santolini,

2008). It is commonly argued that left-wing parties favor income redistribution and an active

role of the state which in turn may increase public spending while right-wind parties aim at

budget reductions (Tellier, 2006). Bastida et al. (2013) find that the effect of ideology on

aggregate municipal spending varies depending on the concrete spending functionality while

Garćıa-Sánchez et al. (2012) find evidence supporting the view that leftist parties spend more.

Given the definition of the ideological variable, a negative effect is expected.

Regarding the alignment effect, it has been argued that municipalities aligned with upper-tier

grantor governments (controlled by the same party) will receive more grants than those that are

unaligned, and consequently will spend more (Grossman, 1994). Solé-Ollé and Sorribas-Navarro

(2008) suggest that partisan alignment has a positive effect on the amount of grants received by

Spanish municipalities whereas Bastida et al. (2013) do not find a significant effect of grants on

government spending. In order to test the hypothesis that regional and national alignment has a

positive impact on municipal expenditure dummy variables for regional and national alignment

are employed. These dummies take value of 1 if the municipal and higher-level government party

are of the same party and 0 otherwise.

B) Economic Factors.

According to the traditional theory on sub-national government spending, the economic variables

believed to influence local expenditures are real per capita personal income, per capita real

intergovernmental revenue and per capita real unemployment compensation. Although the set

of economic controls included in the model is theoretically well grounded (see, Bails and Tieslau

2000) it ultimately depends on data availability. The economic factors included are the log per

capita transfers, log per capita tax revenue, log GDP per capita and the unemployment rate
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in the municipality. From a theoretical point of view, GDP per capita is expected to have a

positive impact on per capita government spending as in Solé-Ollé (2006). Nonetheless, Bastida

et al. (2013) find a non-significant effect of GDP per capita on expenditure. Regarding the

effect of transfers, the empirical literature finds the effect of grants on government spending to

be positive (Hines and Richard, 1995). Indeed, many studies show that spending is stimulated

by much more than theory predicts. This has been labeled as the flypaper-effect since the money

the government sends out ‘sticks where it hits’. Another relevant control is the per capita level

of tax revenues since a reduction in taxes generally leads to a reduction in government spending

(Gabe and Bell, 2004). In this regard, Bastida et al. (2013) find a weakly significant effect of

taxes and transfers. Finally, according to Carruthers and Ulfarsson (2008), unemployment may

reflect weak municipal labor markets, which are expected to influence spending negatively. On

the other hand, Bails and Tieslau (2000) find that the higher the level of unemployment, the

higher the level of local spending. For the Spanish case, Bastida et al. (2013) find a negative

effect of unemployment on government expenditure. Thus, a positive effect of GDP, transfers

and taxes is expected, but not a priori expectations are placed on the effect of unemployment.

C) Demographic Factors.

Population density is likely to affect government spending through economies of scale. At this

regard Bastida et al. (2013) find a negative effect. This result goes in line with Solé-Ollé

(2006) and Hortas-Rico and Salinas (2014) who, using a variety of measures, found that there

is a negative relationship between population density and government expenditure per capita.

Therefore, a negative effect of population density is expected. Additionally, several authors

have observed that the age composition of the population is one of the main factors explaining

varying demand across authorities and changing demand over time (Poterba, 1994;. 1997).

The demographic features have to do with the interest groups problem given that different

groups of population will pressure politicians to meet their needs. The literature has used many

demographic variables to account for these interest groups: the rate of young, the rate of old

population and the rate of immigrants. A positive net migration rate means that there are

more people entering the municipality than leaving it, while a negative value means more people

leaving than entering it. In order to control for such characteristics the share of population

above 65 years and the net migration rate are introduced in the empirical specification. Solé-

Ollé (2006) finds an insignificant effect of the share of young and a negative and significant

effect of the share of old population. On the other hand, Bastida et al. (2013) include the share

of young finding an insignificant effect. Thus, it is unclear how these variables may infuence
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government per capita spending.

4.5 Econometric Methodology

The set of econometric issues to perform inference in this context are (i) the spatial weight

matrix selection and effect specification (ii) the identification of the parameters and (iii) the

model estimation and interpretation.

4.5.1 Model Selection

An important issue in spatial econometrics and model selection is that of the selection of the

spatial connectivity matrix W to be used by the researcher. There are several studies investi-

gating the robustness of results to different specifications of W and which one is to be preferred.

The most widely used criterion to select the W matrix has been the log-likelihood. Neverthe-

less, this approach has been criticized because it only finds a local maximum among competing

models (Harris et al., 2011). In relation to this criticism LeSage and Pace (2009) propose the

Bayesian posterior model probability as an alternative model selection criterion. In a recent

study, Herrera et al. (2014) show that the Bayesian criteria outperforms J-tests and entropy

measures in small samples. The underlying idea of Bayesian W selection is to consider a finite

set of alternative models M = M1,M2, ..,MN based on different spatial weight matrices, while

holding the other model aspects constant (i.e, the explanatory variables). Denote by Θ the

vector of parameters 3 + 2 ∗K parameters of the DSDM where K is the number of regressors.

Then, the joint probability of the set of N models, parameters and observations correspond to:

p (M,Θ, y) = π (M)π (Θ|M)L (y|Θ,M) (4.12)

where π (M) is the prior probability assigned to the model4, π (Θ|M) reflects the priors of

the vector of conditional parameters to the model and L (y|Θ,M) is the likelihood of the data

conditioned on the parameters and models. As shown in Equation (4.13) below we use the Bayes

rule to derive the posterior probability of model i:

p
(
M i,Θi|y

)
=
p
(
M i,Θi, y

)
p (y)

=
π
(
M i
)
π
(
Θi|M i

)
L
(
y|Θi,M i

)
p (y)

(4.13)

4In order to make each model equally likely a priori, the same prior probability 1/N is assigned to each model
Mi under consideration.
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Integrating with respect Θi one can obtain the marginal likelihood, the key metric used to

compare the various models based on different spatial weight matrices.

p (y|Mi) =

∫
p
(
y|Θi,Mi

)
p
(
Θi|Mi

)
dΘi (4.14)

In this exercise, non-informative diffuse priors for the model parameters (τ, η, β, θ, σ) are used.

In particular, the normal-gamma conjugate prior is used for the parameters β, θ, τ, η and σ while

a uniform proper prior ranging between 0 and 1 is employed for ρ such that:5

π(β) ∼ N (c, T )

π

(
1

σ2

)
∼ Γ (d, v)

π (ρ) ∼ U [0, 1]

(4.15)

Prior hyper-parameters c and T are set to zero and to a very large number (1e+12) respectively,

which results in a diffuse prior for β, θ, τ , η. To impose diffuse priors for σ hyper-parameter

d and v are set to zero. These priors are implemented following LeSage (2014b) recommenda-

tions, as they do not require subjective information on the part of the practitioner. To carry

out W selection several matrices based on the k-nearest neighbors (k = 1, 2, .., 25) computed

from the great circle distance between the centroids of the various regions are considered. Addi-

tionally, inverse distance matrices with different cut-off values above which spatial interactions

are assumed negligible are designed. As an alternative, inverse power distance and exponential

distance decay matrices whose off-diagonal elements are defined by wij = 1
dαij

for α = 1, . . . , 3

and wij = exp(−θdij) for θ = 0.005, . . . , 0.03 are considered. As can be observed, the different

matrices described above are based in all cases on the geographical distance between the sample

regions, which in itself is strictly exogenous. This is consistent with the recommendation of

Anselin and Bera (1998) and allows us to avoid the identification problems raised by Manski

(1993). All the spatial weight matrices employed in this analysis are row-normalized. An exam-

ple of the differences involved by the use of different spatial weight matrices in the context of

interactions between municipalities can be seen in Figure (4.2) below. As can be observed, the

network of interactions becomes denser when increasing the number of neighbors or the distance

over which interactions are set to zero. Table (4.4) shows that, depending on the concrete effect

specification there are different optimal spatial weight matrices. For the specification with only

5Note that the use of beta priors or uniform priors taking into account the possibility of negative spatial
auto-correlation values U ∼ [−1, 1] did not alter the results of the spatial weight matrix selection.
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Figure 4.2: Spatial Weight Matrices.
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municipal fixed effects, the highest probability model is Wij = exp(−0.01dij) with p = 57%.

In the model with municipal and time-period effects the Bayesian Posterior suggests to use the

4-nearest neighbors with p = 99%. In order to discriminate between these alternative spatial

interaction matrices likelihood ratio tests is applied to check what specification of the effects is

to be preferred. The results of LR-tests in both cases favor the inclusion of time-period fixed

effects, which ultimately suggests the employment of a 4 nearest-neighbor’s spatial connectivity

matrix. LR test statistic for the 4-nearest neighbors W specification is 150.99, p-value = 0.00,

while for W = exp (−0.01dij) the LR-statistic is 33.3, p-value=0.00.

Table 4.4: Bayesian Posterior Model Probabilities.

Spatial Matrix Definition Spatial Fixed and Time Effects Spatial Fixed Effects
Model Model

Cut-off 15 km 0.00 0.00
Cut-off 30 km 0.00 0.00
Cut-off 50 km 0.00 0.00
Cut-off 75 km 0.00 0.00
Cut-off 100 km 0.00 0.00
Cut-off 150 km 0.00 0.00
Cut-off 250 km 0.00 0.00
Cut-off 350 km 0.00 0.00
1/dα, α = 1 0.00 0.00
1/dα, α = 1.25 0.00 0.00
1/dα, α = 1.5 0.00 0.00
1/dα, α = 1.75 0.00 0.00
1/dα, α = 2 0.00 0.00
1/dα, α = 2.25 0.00 0.00
1/dα, α = 2.5 0.00 0.00
1/dα, α = 2.75 0.00 0.00
1/dα, α = 3 0.00 0.00
exp− (θd) θ = 0.005 0.00 0.00
exp− (θd) θ = 0.01 0.00 0.57
exp− (θd) θ = 0.015 0.00 0.43
exp− (θd) θ = 0.02 0.00 0.00
exp− (θd) θ = 0.03 0.00 0.00
K-nearest neighbors (K = 1) 0.00 0.00
K-nearest neighbors (K = 2) 0.00 0.00
K-nearest neighbors (K = 3) 0.00 0.00
K-nearest neighbors (K = 4) 1.00 0.00
K-nearest neighbors (K = 5) 0.00 0.00
K-nearest neighbors (K = 6) 0.00 0.00
K-nearest neighbors (K = 7) 0.00 0.00
K-nearest neighbors (K = 8) 0.00 0.00
K-nearest neighbors (K = 9) 0.00 0.00
K-nearest neighbors (K = 10) 0.00 0.00
K-nearest neighbors (K = 15) 0.00 0.00
K-nearest neighbors (K = 20) 0.00 0.00
K-nearest neighbors (K = 25) 0.00 0.00

Notes: Bayesian Markov Monte Carlo (MCMC) routines for spatial panels required to compute Bayesian
posterior model probabilities do not exist yet. Thus, all cross-sectional arguments of James LeSage
routines are replacced by their spatial panel counterparts, for example a block-diagonal NT×NT matrix,
diag(W, ...,W ) as argument for W .
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4.5.2 Parameter Identification

Identification of the DSDM is a great concern in the spatial econometrics literature. Anselin

(2010) and Elhorst (2012) recommend imposing zero restrictions on the model parameters to

avoid the identification problems. Elhorst (2012) gives an overview of the main restrictions that

have been considered in the literature to get rid of this identification problem. The restrictions

considered by Elhorst (2012) consist in imposing (i) θ = 0 to exclude exogenous interaction

effects (WXt), (ii) ρ = 0 to exclude contemporaneous endogenous interaction effects (WYt);

( iii) η = 0 to exclude lagged endogenous interaction effects (WYt−1), and (iv) η = −τρ. The

disadvantage of imposing the restriction θ = 0 is that the ratio between the indirect effect and

the direct effect becomes the same for very explanatory variables. The disadvantage of imposing

the restriction ρ = 0 is that the short-term indirect effects depend on θ only. This loss of

flexibility makes the model less suitable for empirical research focusing on short-term effects.

By contrast, if the restriction η = 0 is imposed, no prior restrictions are imposed on the effects

estimates, even though still some flexibility of the model gets lost. Finally, the disadvantage of

imposing the restriction is η = −τρ is that the ratio between the indirect effect and the direct

effect of a particular explanatory variable remains constant over time.

Importantly, in a recent study, Lee and Yu (2015) provide sufficient rank conditions under

which the parameters of the DSDM of Equation (4.9) can be identified when estimating the

model by QML. For a DSDM with fixed municipal and time-period effects these conditions are

summarized below. Given (η + ρτ, β + ρθ) 6= 0, ρ is identified if the columns of M1 are linearly

independent:

M1 = (IT ⊗ Jn)
[
Y ∗T−1,WY ∗T−1,W

2Y ∗T−1, X
∗
T ,WX∗T ,W

2X∗T
]

(4.16)

Given ρ, the rest of parameters are identified if M2 has full column rank where:

M2 = (IT ⊗ Jn)
[
Y ∗T−1,WY ∗T−1, X

∗
T ,WX∗T

]
(4.17)

where Y ∗T−1 = YT−1 −
(

1
T ιT ι

′
T ⊗ IN

)
E [YT−1], X∗T = (IT ⊗ Jn) [XT , XT−1], Jn = In − 1

n ιT ι
′
T .

These parameter identification conditions imply that M1 should have a column rank of 3∗K+3

and M2 of 2∗K+ 2. This condition is checked before estimations. In this specific case, the rank

conditions required that rank (M1) = 36 and rank (M2) = 24 which is fortunately satisfied in

this analysis.
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4.5.3 Model Estimation and Interpretation.

The estimator employed in this research to explore the relationship between the set of vari-

ables and municipal spending is the BCQML for dynamic spatial panels developed by Lee and

Yu (2010b,c). As shown in Yu et al. (2008) and Lee and Yu (2010b,c) the estimation of

Equation (4.9) including both time effects and individual effects will yield a bias of the order

O
(
max

(
n−1, T−1

))
for the common parameters. By providing an asymptotic theory on the

distribution of this estimator, they show how to introduce a bias correction procedure that will

yield consistent parameter estimates provided that the model is stable, (i.e, τ + ρ+ η < 1). As

Elhorst et al. (2013) explain, the estimation of a dynamic spatial panel becomes more complex

in the case the condition τ + ρ+ η < 1 is not satisfied. If τ + ρ+ η turns out to be significantly

smaller than one the model is stable. On the contrary, if its greater than one, the model is

explosive and if the hypothesis τ +ρ+η = 1 cannot be statistically rejected, the model is said to

be spatially co-integrated. Under explosive or spatially co-integration model scenarios, Yu et al.

(2012), propose to transform the model in spatial first differences to get rid of possible unstable

components in Yt. This important condition is verified when the estimations are carried out.

Many empirical studies use point estimates of one or more spatial regression models to

test the hypothesis as to whether or not spatial spillover effects exist. However, LeSage and

Pace (2009) have recently pointed out that this may lead to erroneous conclusions and that a

partial derivative interpretation of the impact from changes to the variables of different model

specifications provides a more valid basis for testing this hypothesis. Within the context of the

DSDM of equation (4.9), the matrix of partial derivatives of Yt with respect the k-th explanatory

variable of Xt in municipality 1 up to municipality N at a particular point in time t is:

∂Yt

∂Xk
t

=
[
(I − ρW )−1

] [
µ+ ιNαt + β(k) + θ(k)W

]
(4.18)

Interestingly, in the previous model it is possible to compute own ∂Yit+T /∂X
k
it and cross-partial

derivatives ∂Yit+T /∂X
k
jt that trace the effects through time and space. Specifically, the cross-

partial derivatives involving different time periods are referred as diffusion effects, since diffusion

takes time. Conditioning on the initial period observation and assuming this period is only

subject to spatial dependence (Debarsy et al., 2012) the data generating process can be expressed

as:

Yt =
K∑
k=1

Q−1
(
β(k) + θ(k)W

)
X

(k)
t +Q−1 (µ+ ιNαt + εt) (4.19)
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where Q is a lower-triangular block matrix containing blocks with N matrixes of the form:

Q =



B 0 . . . 0

C B 0

0 C
. . .

...
...

. . .

0 . . . C B


(4.20)

with C = − (τ + ηW ) and B = (IN − ρW ). One implication of this, is that by computing C

and B−1 it is possible to analyze the -own and cross-partial derivative impacts for any time

horizon T . Generally, the T -period ahead (cumulative) impact on government spending from a

permanent change at time t in k -th variable is given by:

∂Yt+T

∂Xk
t

=

T∑
s=1

[
(−1)s

(
B−1C

)s
B−1

] [
µ+ ιNαt + β(k) + θ(k)W

]
(4.21)

When T goes to infinity, the previous expression collapses to the long run effect, which is given

by:
∂Yt

∂Xk
t

= [(1− τ) I − (ρ+ η)W ]−1
[
µ+ ιNαt + +β(k) + θ(k)W

]
(4.22)

According to Elhorst (2014), the properties of this partial derivatives are as follows. First, if

a particular explanatory variable in a particular region changes, per capita government expen-

diture will change not only that municipality but also in other municipalities. Hence, a change

in a particular explanatory variable in municipality i has a direct effect on that municipality,

but also an indirect effect on the remaining municipalities. Finally, the total effect, which is

object of main interest, is the sum of the direct and indirect impacts. Following LeSage and

Pace (2009) the direct effect are measured by the average of the diagonal entries whereas the

indirect effect is measured by the average of non-diagonal elements.
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4.6 Results

4.6.1 Baseline Results

Table (4.5) shows the results of the estimation of the DSDM using the 4-nearest neighbors W

matrix. Column 1 reports the own-municipality coefficient estimates while column 2 shows the

estimated parameters related to the effect of changes in the regressors of neighboring municipali-

ties. Before continuing, it is important to evaluate some features of the model estimation. First,

as can be observed in Column 1, the coefficients estimates of the dependent variable lagged in

time Yt−1 and in space WYt are both positive and significant, while the coefficient of the depen-

dent variable lagged in space and time WYt−1 is negative and significant. This result confirms

that the dynamic spatial panel data modeling framework used in this analysis is suitable for

studying the evolution of municipal government spending per capita. Importantly, these results

suggest the existence of simultaneous positive benefit spillovers and complementarity in local

public goods provision. However, the fact that WYt−1 is negative and significant indicates a

negative diffusion spillover effect which suggests that once municipality i the provision at time

t− 1 the optimal reaction of local government would be to free-ride on neighboring regions and

thereby reduce own expenditure.

These results are consistent with two alternative scenarios in Equation (4.7). First, note

that simultaneous complementarity requires Ri
G̃jt

> 0 and that monotonicity and concavity

conditions for C and G in t and t − 1 imply that the multiplication of the terms in the de-

nominator RiGit − pitR
i
Cit

and RiGit−1
− pit−1R

i
Cit−1

yield a positive value. Hence, the empirical

results are supported by the theoretical model whenever conditions (i) If Ri
G̃jt−1

< 0 then

Rj
G̃jt−1

< 0 and |A| < |B| or (ii) If Ri
G̃jt−1

> 0 then Rj
G̃jt−1

> 0 and |A| > |B| hold, with

A =
RiGit−1

Ri
G̃jt−1(

RiGit
−pitRiCit

)(
RiGit−1

−pit−1RiCit−1

) and B =
Ri
G̃jt

Rj
G̃jt−1(

RiGit
−pitRiCit

)(
Rj
G̃jt
−pjtRj

C̃jt

) .

To find out whether the model under consideration is stable, the sum of the parameters

τ +ρ+η is calculated and a two-sided Wald-test is carried out to investigate the null hypothesis

of τ+ρ+η = 1. The last rows of the Table (4.5) report the parameter sum and the corresponding

p-values of the F-test. Importantly, the model is stable and does not suffer from spatial co-

integration (i.e, τ + ρ + η = 0.72 with p-value 0.00). Columns 3, 4 and 5 of Table (4.5) report

the simulated effects. As observed, simultaneous direct effects shown in column (3) are slightly

different from the estimates of the response parameters shown in column (1) of Table (4.5). This

discrepancy is caused by the feedback effects that arise as a result of impacts passing through
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to other municipalities and back to the municipality itself. As regards the indirect (spillover)

effects of the controls considered, only taxes and regional alignment display a weakly significant

effect.

Table 4.5: Estimation Results and Short Run Effects.

Coefficient Neighbor’s Direct Indirect Total
Estimate Estimate Effect Effect Effect

A. Political Factors

Political Power 0.015* -0.023 0.005 -0.016 -0.011
Ideology 0.000 0.002 0.000 -0.001 -0.001
Nat Align -0.003* 0.003 -0.002*** 0.001 -0.001
Reg Align 0.001 0.004 0.001 0.005* 0.006*

B. Economic Factors

log GDP pc 0.050 -0.013 0.010*** -0.002 0.008*
Unemployment -0.003 0.000 -0.003 0.000 -0.003
log Tax pc 0.004 0.014** 0.005*** 0.010* 0.015**
log Transfers pc 0.024*** -0.007** 0.021*** -0.003 0.018***

C. Demographic Factors

log Pop density -0.134*** 0.037 -0.130*** 0.021 -0.109**
Migration -0.070*** 0.015*** -0.074*** 0.010 -0.063***
Population > 65 -0.001 0.001 0.001 0.001 0.002

Spatial Lag 0.108***
Time Lag 0.642***
Space-Time Lag -0.029**

Log Likelihood 18565.72
R2 0.95
τ + ρ+ η 0.72***
Identification Yes

Notes: * Significant at 10% level, ** significant at 5% level, *** significant at 1% level. Inferences
regarding the statistical significance of these effects are based on the variation of 1000 simulated pa-
rameter combinations drawn from the variance-covariance matrix implied by the BCQML estimates.

In order to investigate how different factors affect government spending it is convenient to

examine the information obtained with the simulation of the effects of the different control

variables.

First, as regards the total effect of political factors such as political power and ideology,

it can be seen that these controls are not statistically significant. These results are robust to

different definitions of the variables. The use of Herfhindal Indexes for the political power and

dummy variables for the ideology proxy, instead of the scaled variable from 0 to 10, did not

changed the results. A plausible explanation for these findings could be that local governments

are focused on solving people’s needs with small influence of ideology or relative power on
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aggregate spending as explained by Travers (2009).6 Local government’s ideological alignment

with regional dominating parties also presents an insignificant effect on government spending

as obtained previously in Bastida et al. (2013) while the effect of alignment between local and

national parties is positive and weakly significant. As hypothesized above, this positive and

significant relationship could be due to the receipt of additional funding and grants.

Most of the economic controls, on the other hand, present the expected effects. The findings

suggest that a higher level of per capita GDP increases per capita government spending. The

direct simultaneous effect in Table (4.5) of GDP per capita is significant at the 1% significance

level, the spillover effect is insignificant and the total effect is positive and significant at the 10%

level. As to the effect of unemployment rate its overall impact on per capita government spending

is observed to be not significant. The results for the effects of per capita taxes suggest that

both the direct and indirect effects are relevant in increasing government spending. However,

the effect of taxes is mainly driven by a strong spillover effect which accounts for the 66%

of the total simultaneous effect. This implies that an increase in the taxes per capita in all

other regions has a greater effect on own government spending than own tax movements. In

a similar vein, transfers per capita received from upper government tiers, generate a strong

positive and significant direct effect, a negative significant indirect effect and a net total positive

and significant effect as expected. Interestingly, the quantitative result for transfers supports

the fly-paper hypothesis, given that the elasticity of local government expenditures is greater

with respect to transfers than to increases in per capita GDP.

The results for demographic factors show a significant and negative total effect of population

density and net migration. The negative impact found for the population density goes in line with

previous findings obtained by Solé-Ollé (2006) and Hortas-Rico and Salinas (2014) suggesting

the existence of agglomeration economies that help to reduce per capita expenditure. The net

migration rate, on the other hand, displays a negative and significant total effect. This result

suggests that the increase in local spending per capita failed to keep pace with the intense

migration process occurred in Spain during the sample period. Note, however, that this result

also could reflect the fact that municipalities with a more dynamic private sector, where public

intervention is not so relevant, are precisely those that receive more immigrants. Finally, as to

the share of population above 65 years old, a statistically insignificant effect is observed.

6A more in depth analysis of the effect of ideology on each of the different functional categories reveals that
right-wing governments tend to reduce average spending in education but raise spending in public safety and
water provision while it does not affect housing, culture or residual collection. The results have not been included
for the sake of brevity but are available upon request.
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To study the dynamic responses of government spending to changes in the different determi-

nants, the model is used to perform impulse-response analysis following Debarsy et al. (2012).

Impulse-response functions in a dynamic spatial panel context contain both, temporal dynamic

effects and spatial diffusion effects which correspond to exogenous changes that propagate across

space. Figures (4.3) and (4.4) below display the adjustment path of government spending to

transitory and permanent changes (respectively) for the various groups of variables considered

for DSDM, DSLM and DLM specifications. As can be observed, the different model specifica-

tions tend to generate quantitative and qualitatively similar results for most of the regressors

with the sole exception of the net migration effect. This divergent result could be due to omitted

variable bias of the non-spatial specification. Differences between the impulse responses obtained

with the DSDM and the DSLM are caused by exogenous diffusion effects while differences in the

impulse-response functions between the DSLM and DLM, where spatial interactions do not ex-

ist, should be attributed to endogenous diffusion effects. As it is observed by comparing DSLM

and DSDM impulse-responses, the omission of exogenous interactions effects underestimates the

dynamic trajectory of government spending to regional alignment, taxes, population density and

migratory shocks.

Table (4.6), reports the long results of the simulated direct, indirect and total effects which

are displayed in columns 1, 2 and 3 respectively. As can be seen, most of the variables introduced

in this analysis generate qualitatively similar short term and in the long term effects. Never-

theless, the most striking difference between the obtained results for long-run relationships is

that of indirect (spillover) effects are now significant at the 5% level for most of the covariates.

This result could be due to the fact that the transmission of shocks from neighboring municipal-

ities needs some time to produce a visible effect. The positive differences between the relative

relevance of indirect effects in the long run and the short run imply that, apart from the first

period where interaction effects are mainly pure spatial feedbacks effects, space-time feedbacks

passing from one municipality to another seem to be relevant in order to explain municipal

government spending movements. Moreover, long-term effects associated with changes in any

of the variables are considerably higher than those observed simultaneously which is consistent

with macroeconomic theory.
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Figure 4.3: Impulse Responses.
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Figure 4.4: Accumulated Impulse Responses.
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Table 4.6: Long Run Effects.

Direct Indirect Total
Effect Effect Effect

A. Political Factors

Political Power 0.018 -0.062 -0.044
Ideology -0.001 -0.004 -0.005
Nat Alignment -0.009*** -0.003 -0.012
Reg Alignment 0.006 0.030* 0.036*

B. Economic Factors

log GDP pc 0.037*** -0.004 0.033*
Unemployment -0.011 -0.011 -0.023
log Tax pc 0.021*** 0.069** 0.090***
log Transfers pc 0.086*** 0.066*** 0.152***

C. Demographic Factors

Population density -0.521*** -0.398* -0.918***
Net Migration -0.0296*** -0.0232*** -0.0528***
Population > 65 0.004 0.007 0.012

Notes:*Significant at 10% level, ** significant at 5% level, *** significant at
1% level. Inferences regarding the statistical significance of these effects are
based on the variation of 1000 simulated parameter combinations drawn from
the variance-covariance matrix implied by the BCQML estimates.

4.6.2 Relative Importance Analysis

Previous estimates inform us about the sign and significance of the relationship between the

different covariates and the level of government per capita spending. Nevertheless, when the

exogenous regressors are correlated among themselves, simulated effects may not accurately

adress the relative contributions of the regressors driving government spending disparities. As

one of the aims of this study is to explore the relative importance of the various factors explaining

government spending, the relative contribution of the various factors is calculated with the LMG

method (Lindeman et al., 1980; Groemping, 2007). This metric performs a R2 decomposition by

averaging the marginal contributions of independent variables over all orderings of variables and

using sequential sums of squares from the linear model, the size of which depends on the order of

the regressors in the model.7 GENIZI and CAR measures (Genizi, 1993; Zuber and Strimmer,

2010, 2011) are also employed to assess the robustness of the results. The R2 decomposition

results are shown in Table (4.7) below.

7This is a powerful technique that allows to take into account all the possible data generating causal schemes.
This proposal has not found its way in econometric analysis for two main reasons. Firstly, its properties are
not well understood and it is computationally challenging given that it requires the researcher to estimate 2p−1

models where p is the number of regressors. Given that all model orders with the same length can be summarized
in one summand, the computational burden is reduced from p! summands to 2p−1. In this specific case where
p = 25, 16.777.216 models are estimated.

169



As shown in Table (4.7), the different metrics generated similar results in the decomposition

of the relative importance of the factors determining government spending. Therefore, in the

discussion below the average of the different metrics is employed. First, it can be observed that

the level of spending in the past year explains a 73.07% of the spending level in the present.

This result reinforces contributions of political science, considering incrementalism as the most

plausible hypothesis to explain municipal budget’s evolution. In a second place, it is observed

that spatial spillovers and spatio-temporal diffusion explain a 3.33 % and 1.58 % respectively.

For its part, the set of controls explains 22.01% of government spending. This 22.01% can also

be decomposed into own and neighbor’s determinants relative importance. Specifically, 80.99%

of government spending levels are associated to own municipal outcomes while only the 19.01%

of the evolution of government spending is related to neighboring attributes.

Table 4.7: Model R2 Decomposition.

Control Variable Final Expected LMG CAR GEN Average
Effect Effect (%) (%) (%) (%)

Spatial Spillover + ? 3.19 3.50 3.30 3.33
Time Lag + ? 71.18 76.15 71.88 73.07
Space-Time Lag - ? 1.88 0.90 1.957 1.58
Controls 23.74 19.44 22.862 22.01

X 78.37 86.05 78.58 81.00
WX 21.63 13.95 21.42 19.00

Total 100 100 100 100

Notes: The values correspond to percentage (%) contributions to R2 = 0.95 of the fitted
model of government spending.

Table (4.8) below shows that within the 22.01% of explanatory power related to the set of

covariates, the group of economic factors explain 54.89% of government expenditure variability

among Spanish municipalities during 2000-2012, while demographic factors explain 43.05%.

Among these variables, the most relevant drivers of government spending are GDP per capita

and the population density, explaining a 36.78% and 36.03% respectively. On a second level of

importance, it is observed that the transfers received from upper tier government levels account

for a 9.2% of government variability while taxes per capita account for a 6.7%. As observed

above, the set of political variables do not seem to be a relevant driver of aggregate government

spending in Spanish municipalities given that they do not explain more than a 2% of government

expenditure municipal disparities.
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Table 4.8: Government Spending Drivers Decomposition.

Final Expected LMG CAR GEN Average
Effect Effect (%) (%) (%) (%)

A. Political Factors 2.04 1.89 2.25 2.06

Political Power NS ? 1.12 1.03 1.21 1.12
Ideology NS - 0.04 0.02 0.052 0.04
Reg. Alignment NS ? 0.70 0.66 0.80 0.72
Nat. Alignment + ? 0.156 0.17 0.18 0.17

B. Economic Factors 54.84 54.99 54.83 54.89

log GDP pc + + 37.87 36.85 35.63 36.78
Unemployment NS ? 1.95 2.21 2.21 2.12
log Tax pc + + 6.39 5.93 7.79 6.71
log Transfers pc + + 8.62 9.99 9.18 9.26

C. Demographic Factors 43.11 43.11 42.90 43.04

log Pop density - - 35.77 37.55 34.67 36.03
Net Migration - ? 5.40 5.05 6.37 5.60
Population > 65 NS ? 1.94 0.49 1.86 1.43

Notes: The values denote the percentage (%) of the contributions to the R2 implied by the set
of controls.

4.6.3 Spillovers Effects by Functional Category

The results reported above are based on analysis of a sample of 1,230 municipalities, using

total per capita expenditure as the dependent variable. In this section, as a further test for

the presence of spatial spillovers in public spending, the previous exercise is carried out for dif-

ferent population sizes and different functional categories. Specifically, two additional samples

including municipalities with populations over 10,000 inhabitants and 20,000 are considered.

Therefore, the model selection for the W matrix and the fixed and time effects specification

is performed for each of the population samples and spending categories. Table (4.9) below

shows the optimal W for the different population thresholds. As observed, the optimal spa-

tial connectivity structures are dependent on the various functional categories and samples of

municipalities.

Employing the set of optimal spatial weight matrixes obtained above and re-estimating the

model for a variety of public spending functionalities and test the existence of spatial spillovers

among neighboring municipalities yields the results reported in the Table (4.10) below.

As shown in Table (4.10), for the sample including all municipalities with population above

5,000 inhabitants there is robust evidence on the existence of simultaneous significant and pos-

itive spillover in all the spending items considered. Overall, these findings support previous

evidence in Bastida et al. (2013), who also find positive and significant spillovers for the various
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Table 4.9: Optimal W by Spending Category.

Type of Spending Population > 5K Population > 10K Population > 20K

Total Wij = W (KNN = 4) Wij = exp (−0.03dij) Wij = exp (−0.03dij)
Education Wij = exp (−0.015dij) Wij = exp (−0.02dij) Cut-off 250 km
Culture Wij = exp (−0.02dij) Wij = exp (−0.02dij) Wij = 1/d1.5

ij

Water Wij = exp (−0.03dij) Wij = exp (−0.005dij) Wij = exp (−0.03dij)
Security Wij = W (KNN = 10) Wij = W (KNN = 10) Wij = W (KNN = 8)
Housing Wij = exp (−0.015dij) Wij = exp (−0.015dij) Cut off 75 km
Residuals Wij = W (KNN = 10) Wij = 1/d1.5

ij Wij = 1/d1.25
ij

Notes:These results correspond to the specification of the DSDM with spatial and time-period fixed effects.
Wij = W (KNN) denotes k-nearest neighbors matrices.

Table 4.10: Spillover Strength by Municipality and Spending Category.

Population Population Population
> 5.000 > 10.000 > 20.000

Spillover ρ η ρ η ρ η

Total 0.108*** -0.029** 0.299*** -0.126*** 0.049*** -0.048***
Education 0.332*** -0.241*** 0.230*** -0.173*** 0.183*** -0.165***
Culture 0.356*** -0.384*** 0.295*** -0.203*** 0.143*** -0.200***
Water 0.216** -0.004 0.006 -0.018 0.039 -0.107**
Security 0.073*** -0.037* 0.100*** 0.002 0.032 0.043
Housing 0.501*** -0.495*** 0.325*** -0.357*** 0.096*** -0.127***
Residuals 0.043** 0.044** 0.014 0.056*** 0.006 0.069

Notes: *Significant at 10% level, ** significant at 5% level, *** significant at 1% level. The results are
obtained using the optimal W matrix for each population sample and spending functionality
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spending categories in their exercise. Nevertheless, two novel results stemming from this analy-

sis are that (i) the intensity of government spending spillovers of this study are higher than in

Bastida et al. (2013) and that (ii) the effect of an increase in spending in t−1 in a municipality

j, causes a decrease in spending on t in the municipality i.

Importantly, when looking at the sample with municipalities above 10,000 inhabitants it

is observed that in most cases simultaneous positive spillovers exist. The only exceptions are

found in the case of spending in solid waste residuals and water. Finally, in the sample of

municipalities with population sizes above 20,000 only education, culture and housing categories

generate significant spatial spillovers. In the water provision, residue disposal and public safety

categories, the spillover effects are no longer statistically significant. This result could be due to

the higher degree of joint provision and outsourcing of these services vs others.

Finally, previous results allow for a comparison with similar studies performed in other coun-

tries. This should be undertaken with caution, however, as there are significant differences in

the structural characteristics and provisional responsibilities at local level, and in the classifi-

cation of expenditures. The evidence for the effect of local expenditure in culture is somewhat

mixed. While Lundberg (2006) and Akai and Suhara (2013) find a negative spatial relationship

in Sweden and Japan, Werck et al. (2008) and Stastna (2009) find a positive effect of expen-

ditures for Belgium and the Czech Republic. Therefore, the sign of the empirical results on

cultural expenditure spillovers in Spain is in line with the findings of the two latter studies.

Other authors such as Case et al. (1993) and Ermini and Santolini (2007, 2010) find the effect

of spending in education generates positive spillovers in the US and insignificant effects in Italy,

respectively. Therefore the evidence obtained on the behavior of educational spending is similar

to that of the US. The other category for which comparisons can be made, is that of the security

expenditures. At this regard, Ermini and Santolini (2007, 2010) find a negative spillover, while

Hanes (2002) finds a positive spillover effect. Thus, the pattern of local interaction effects in

public safety spending for Spain resembles that reported for Italy.
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4.7 Conclusions

This paper has examined the empirical effect of political, economic and demographic factors in

local government expenditure. This issue is analyzed in a sample of 1,230 Spanish municipalities

with population over 5,000 in the period 2000-2012. The analysis relies on the estimation of a

dynamic spatial panel data model using recently developed spatial econometric techniques that

take into account the relevance of spatial and time effects in budgetary processes.

The results obtained in this analysis support political science contributions such as the incre-

mental hypothesis as it is observed that temporal inertia is the key driver of budget processes.

This result suggest that previous contributions on the literature of local governments interactions

in Spain that omitted serial dynamic effects suffer from miss-specification and the estimated co-

efficients may be biased. Specifically, time lags explain a 73% of government spending variability

among municipalities. However, another finding is that of positive and significant spillovers in

total government spending per capita, although its relative relevance, about 3.3%, is consid-

erably lower when compared to that of the time inertia. Given that the slope of the reaction

function of government spending when neighboring jurisdictions change its spending is positive,

it is possible to conjecture that this effect may be due to the existing complementarities in local

public good provision.

Among the set of regressors included in the model to explain the evolution of government

spending it is found that political factors are not relevant as they do not explain more than

a 0.44% of government spending variability. On the other hand, economic and demographic

factors explain a 12.07% and 9.46% of government spending respectively. In particular, the

most relevant variables explaining spending disparities are the GDP and the population density.

GDP explains 8.01% while population density explains a 7.92%. Finally, in order to test the

robustness of the results, other functional categories and different type of municipalities are

considered. The empirical findings suggest there are strong positive spatial spillovers in water

and housing public provision. These are relatively stronger when compared to other categories

such as security or waste management.

The results of this paper pose some policy implications. First, the positive estimated effect of

taxes and grants suggests that with greater financial capacity local governments can play a more

active role in financing local public good provision, thereby acting as agents of socio-economic

development. Second, the estimated positive spatial spending spillover suggests that local gov-

ernments tend to increase by 10.8 euro cents their spending per capita in response to a rise of
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1 euro in spending in neighboring municipalities. This result implies that local governments in

Spain could rapidly engage in races to the top or bottom, increasing fiscal policy instability.

Furthermore, the existence of positive spatial spillovers suggests that some form of fiscal policy

coordination should be placed in order to internalize decentralized actions and minimize inef-

ficiencies. Additionally, the fact that government spending reacts more strongly to upper-tier

level government transfers than to equivalent local output increases, suggests that some degree of

fiscal illusion exists in Spanish municipalities. If revenue sources are not completely transparent

and are not fully perceived by taxpayers, then, the cost of local government spending is seen to

be less expensive than it actually is, providing incentives to overspending. Although the share of

local expenditure accounts for a small fraction in the overall national budget, this issue should

not be overlooked. Thus, additional efforts on increasing transparency and accountability are

needed to improve the functioning of local budgeting.
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Directions of Future Research

Given that the results and conclusions of the various studies carried out in this thesis are pro-

vided at the end of each chapter, this section reviews possible extensions of the work performed

here. What follows, therefore, are some brief remarks on different possible lines for future re-

search to address some of the current challenges in dynamic spatial panel modeling.

1. Spatial Heterogeneity and Apparent Contagion

One of the key implications of the work performed here is that spatial spillovers and

contagion dynamics play a significant role in many economic circumstances. However,

there is room for improvement in the proper identification of the size of spatial spillovers.

A first challenge facing future research in the field of spatial econometrics is to find ade-

quate means to separate spatial heterogeneity from spatial dependence. As Anselin (2010)

points out, the task of establishing a distinction between true and apparent contagion is

truly daunting. The essence of the problem is that, in many cases, spatial data allow the

identification of clusters and patterns but often fail to provide sufficient information to

identify the processes leading up to the observed patterns. As a result, it is sometimes

impossible to distinguish between the case where the clusters just reflect structural pa-

rameter instability over space or constitute a true contagious process. This is because

of spatial diffusion tends to yield positive spatial auto-correlation, but the reverse is not

necessary.

A promising approach to solve this issue that requires investigation in future research,

is the endogenous identification of the various spatial regimes and clusters in the economic

data, which should precede any analysis involving spatial spillover effects. As suggested by

Billé et al. (2015), geographically weighted regressions and locally iterative geographically
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weighted regressions could be used as diagnostic tools for the initial determination of

whether a spatial unit belongs to a concrete cluster or spatial regime. Similarly, spatial

filtering techniques (Getis and Griffith, 2002) and AMOEBA techniques (Alstadt and

Gettis, 2006) may be helpful to isolate spatially heterogeneous components in the sample

data.

The additional information on spatial regimes could help the researcher to split the

apparent contagion into two parts: that due to the presence of spatial heterogeneity

and that (which is true contagion) due to endogenous and exogenous interactions. This

type of analysis would confer greater robustness to the results obtained in Chapter 1 and

Chapter 2, by enabling consideration of the possible presence of structural breaks in space.

In particular, it would help to confirm findings indicating that volatility spillovers reduce

economic growth rates, and the interpretation of spillovers arising from technological

capital, employment growth and infrastructures enhancing a virtuous cycle towards a

knowledge-based-economy.

From a policy-making perspective, moreover, it might be interesting to investigate

more thoroughly the heterogeneous effects of regional policy variables such as Structural

Funds as a driver of RLI or economic growth rates. Instead of averaging over theK×N×N

dimensional matrices of direct, indirect and total effects, as throughout this thesis, explo-

ration of heterogeneity of such effects will provide new insights on the efficiency of regional

policy and the optimality Structural Funds allocation, because feedback effects are not the

same across all regions. Therefore, the contagion dynamics for the rest of the system are

potentially highly heterogeneous. This interesting issue needs further attention in applied

research and policy design given that, by exploring effect heterogeneity, for instance, the

researcher could find that providing funds to regions of medium development generating

strong spillover effects towards low developed neighbors is more effective (in redistributive

terms) than directly targeting less developed regions. In this regard, empirical research

taking into account the existence of spillovers suggests that productivity growth of the

targeted regions (Fiaschi et al., 2011) has positively benefited from Structural Funds, but

that the size of spillover effects is very small in peripheral and under-developed regions

(Dall’erba and Le Gallo, 2008). However, to the best of our knowledge, only Le Gallo

et al. (2005) have explored spatial diffusion heterogeneity. By following this strand of

research, in principle, it could be possible to evaluate whether policies aimed at reducing
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spatial disparities should be based on spatial inequality criteria or spatial competitiveness,

which is the dichotomy currently pervading EU regional policy design (Capello, 2015).

2. Identifying the sources of interactions in W

A second issue to further investigate is related to the form of dependence between sample

units. Along this thesis, exogenous and non-time varying geographical distance matrices

based on different functional forms are used to model the interaction between neighboring

regions. However, space and geography are only one part of the interface that connects

economic events. Indeed, space is more than geography and the issue of how something

happening in spatial unit i at time t ends up affecting spatial unit j at time t+ n should

be examined in terms of overall connectedness (Fiaschi and Parenti, 2015).

For a W matrix to capture the key channels of interactions that give rise to connectiv-

ity between sample units, it is worth taking a closer look at the performance of hybrid W

matrices, containing a richer set of information based on a variety of distance measures.

This is because interregional spillovers might be something more than a function of spa-

tial proximity (Fingleton and Le Gallo, 2008). Corrado and Fingleton (2012) suggest to

use relative economic distances (i.e, in an economic distance space, big towns and cities

are less remote than their geographical separation would imply, whereas small locations

are often isolated from one another). However, it would be even more realistic to ana-

lyze spillover process based on a combination of spatial distance, the intensity of trade

relations, the de-synchronization of cyclical output phases, institutional and cultural or

linguistic similarities. Interesting applications in this line are Eff Anthon (2008) and Plai-

gin (2009) among others. Nevertheless, this raises the issue of working with endogenous

spatial matrices.

A possible way to overcome the potential endogeneity problem is to construct the

global W matrix by averaging over matrices based on spatial distance s and other type

distance matrices z = 1, . . . , Z, the latter ones, including only information that is out of

the sample period (i.e, at period t = 0) so that:
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W =


wij = 0 if i = j

wij =

[
φs

(
f(dsij)∑
j
f(dsij)

)]
+

[∑
z

φz

(
g(dzij)∑
j
g(dzij)

)]
if i 6= j

(4.23)

where f is a functional form of the geographical distance metric dsij, g is a functional form

of the other distance metrics dzij, φs measures how much weight the researcher attributes

to geography in the hybrid W matrix and φz measures is the weight assigned to each

non-geographical matrix such that
∑

z φz + φs = 1.

Importantly, by proceeding in this way there is no need to consider the endogeneity

of the various components Wz, as the use of start of period values minimizes feedbacks

from other model variables ensuring the overall exogeneity of W . The alternative is to

allow for endogenous and time varying W matrices. However, if a weighting matrix in a

spatial model is endogenous, typical model specifications will no longer be appropriate.

Similarly, regression parameter estimators which do not account for the endogeneity of

the weighting matrix will typically be inconsistent. At this regard, interesting insights for

future research are provided by Kelejian and Piras (2014) who suggest the employment

of IV estimators, while Lee and Yu (2015) suggest the use of QML estimators if the W is

time-varying but exogenous.

The specification of alternative W matrices may affect the findings of the spatial econo-

metric analysis in this thesis. For example, as regards the forms of interaction between

regional labor markets in Chapter 3 the use of alternative matrices other than geogra-

phy can provide interesting information. In relation to the design of appropiate matrices

to capture labor-market connectivity, some distance metrics appear to be promising for

future research. An interesting option is to use matrices based on travel times between

regions, which may better at capturing infrastructure connectivity impediments: road

times and conditions, speed limits, mountainous areas, public transport schedules, etc

(Vega and Elhorst, 2014). Nevertheless, the issue of travel times raises the question of

what travel time to use, as it is dependent on the transportation mean under consideration

(cars, trains, ships, airplanes). Additionally, it is not clear whether researchers should use

averages of them if for instance, most of the commuting between two regions is based on

a concrete mean of transport. However, the use of row-normalized weights implies that

weights are interpreted as the fraction of all spatial influence on unit i attributable to unit
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j. The use of relative time distances in the context of travel times makes comparisons is

problematic. To see this, consider the following contiguity spatial scheme with units i, j

and k:

W =


0 wij wik

wji 0 wjk

wki wkj 0

 =


0 20 60

20 0 70

60 70 0



The effect of row-normalization will yield:

W =


0 0.25 0.75

0.22 0 0.78

0.46 0.54 0


The resulting interaction scheme after row-normalization has the drawback of diluting

the interpretation of time-distance decay, because of the time-distance effect of unit k

on unit i, 0.75, is not the same as that of unit i on unit k, 0.46. A procedure that has

not been explore in this thesis is that of max-eigenvalue normalizations, which provides

a normalization with the advantages of (i) ensuring that the resulting spatial weights are

all between 0 and 1 so that we can still interpret them as relative influence intensities

while at the same time and (ii) preserving data relations between all rows. Nevertheless,

it should be noted that this normalization approach has the shortcoming of not working

well in the context of dynamic panels (Lee and Yu, 2010).

It might also be useful to explore the possibilities of alternative W matrices with a view

to examining the sources of spatial interaction among municipalities, and thereby extend

the conclusions obtained in Chapter 4. Two hypotheses could be tested as alternatives

to that of the presence of spatial spillovers. One is the political yardstick-competition

hypothesis, the other is the social interaction hypothesis. The key prediction of the

yardstick-competition hypothesis is that weak local governments will have a stronger ten-

dency to mimic the policies implemented by neighboring municipalities. In order to test

for this possibility, and following the approach used by Elhorst and Freret (2009), it would
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be necessary to adjust the BC-QML estimator for dynamic spatial panels developed by

Lee and Yu (2010) in order to accommodate two spatial regimes in the endogenous vari-

able. However, an alternative relying on the development of hybrid W matrices would

involve extending the notion of neighborhood to those municipalities that have similar

degrees of concentration of political power. Alternatively, the social interaction hypoth-

esis of Santolini (2009), which suggests that interactions are stronger if municipalities

are governed by parties of the same ideology, could be explored in depth by constructing

spatial weight matrices based on a mix of ideological and economic distances.

3. Spatial Panel Vector Auto-regressions

One frontier in applied spatial econometric models is that of the estimation of dynamic

multivariate spatial systems where every variable might be endogenous and where bidi-

rectional relationships of causality are the interesting point of the modeling exercise.

Currently, the economic analysis is restricted to models with only one dependent vari-

able, which precludes the researcher to model the wide set of endogenous interactions

and transmission channels between variables that arise in many multivariate contexts.

This issue is potentially relevant in the modeling of growth and labor markets where not

only different variables affect to each other but also where changes in the variables of one

region affect other regions variables. Thus, future research aiming at modeling dynamic

multivariate spatial systems, beyond the context of dynamic spatial panels and implicit

equations such as those employed for economic growth in Chapter 1 or unemployment

in Chapter 3, should take into account the existence of endogenous and simultaneous

relationships among the set of variables and regions and shift its attention to the context

of a Spatial Panel Vector Autoregression models (SPVAR).

In the time-series literature, vector autoregression analysis (VAR), originally devel-

oped by Sims (1980), has been recently augmented to include panel data VAR models

(PVAR) (Canova and Cicarelli, 2013; Koop and Korobilis, 2016). These studies explore

growth spillovers and financial contagions but no structural analysis has been carried out

yet, because, in a multi-country/regional environment, such analysis would require spec-

ification of the way in which pulses propagate not only across variables, but also across
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spatial units. Indeed, to date, no structural multi-country/region analysis of labor mar-

ket shock diffusion has been undertaken, and there are also few studies of non-structural

SPVARs. Mutl (2009) explores the estimation of SPVAR-SEM processes; Beenstock and

Felsenstein (2007) use a three-stage procedure to analyze Israel’s regional housing sector;

Di Giacinto (2011) uses ML to estimate the keynesian multiplier in Italian regions; and

Mayor and Patuelli (2014) analyze deterioration in predictive ability as the forecast hori-

zon increases. In Di Giacinto (2010) and Beenstock and Felsenstein (2007), estimation

and identification issues are discussed. They demonstrate that the inclusion of spatially

and temporally correlated disturbances is problematic because the structural parameters

are not fully identified. Furthermore, another challenging issue when employing PVARs

or SPVARs is the huge number of parameters and the low number of degrees of freedom.

As an example, in a very small PVAR model describing the labor market functioning

with just 3 variables in a sample of 3 countries or regions and 2 lags (with no constant),

the model already contains 182 parameters. Moreover, the use of recursive structural

shock identification schemes typically employed in time-series, might not be enough to

disentangle the sources of regional labor market fluctuations as they impose unrealistic

assumptions. This is because when using recursive identification schemes, the recursivity

is applied not only to the variables (which is by itself problematic), but also to the

spatial units. As shown below, this procedure will impose unrealistic patterns on the

different variables of the various regions by implying that shocks 1, 2 and 3 of region 1

are transmitted to all variables of both region 2 and region 3 and that region 2 transmits

shocks to all variables of region 3, whereas, shocks originated in region 3 are confined to

its boundaries. This type of spatial causal chain is unidirectional and very difficult to

justify in light of the bi-directionality of effects that prevails in the spatial econometrics

literature.

To solve these challenges in multivariate space-time labor market or growth model,

three elements are worth mentioning. The first one is the employment of a mix of zero

and sign restrictions since it is the most promising line of research to identify labor mar-

ket structural shocks with independence of whether the spatial context is considered or

not in the PVAR. Zero and sign restrictions impose different types of information on the

model. Zero restrictions specify that some variables are not affected by a shock, while sign

restrictions incorporate information on how some macroeconomic indicators are expected
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Recursive Identification S-PVAR

Shocks
Variables S1,1 S2,1 S3,1 S1,2 S2,2 S3,2 S1,3 S2,3 S3,3

x1,1 x 0 0 0 0 0 0 0 0
x2,1 x x 0 0 0 0 0 0 0
x3,1 x x x 0 0 0 0 0 0
x1,2 x x x x 0 0 0 0 0
x2,2 x x x x x 0 0 0 0
x3,2 x x x x x x 0 0 0
x1,3 x x x x x x x 0 0
x2,3 x x x x x x x x 0
x3,3 x x x x x x x x x

Notes:“0” denotes a zero response of the variable to the shock while “x” means
the response of the variable is left unrestricted. The shock Si,j stands for the
shock i originated in region/country j On the other hand, xh,k denotes the effect
of Si,j on variable h of region/country k.

to react to a structural disturbance (Rubio-Ramı́rez et al., 2010). Until recently, the

standard methodologies used for imposing such restrictions were difficult to implement

simultaneously. Examples of early attempts to jointly implement zero and sign restric-

tions in the context of non spatial macro-econometrics are Mountford and Uhlig (2009),

Baumeister and Benati (2010), Benati (2013). Binning (2013) and Arias et al. (2014)

later developed algorithms combining sign and zero restrictions. Nevertheless, unlike pre-

vious methods and studies, the algorithm by Arias et al. (2014) has been proven to draw

from the correct posterior of the structural parameters. An example of how to extend

the core of the theoretical model presented in Chapter 3 including wages, migration, un-

employment, participation rates and the demographic structure disentangling structural

shocks from each other is shown below.

Zero and Sign Restrictions Labor Market VAR

Shocks

Variables Labor Labor Migration Wage Bargaining Demographic
Supply Demand Aging

Wages - + x + x
Unemployment + - x + x
Participation + + x x x
Migration Rate x x + x x
Population > 55 0 0 - 0 +

Notes: “+” denotes a positive response of the variable to the shock, while “-” denotes a negative
response of the variable to the shock. Also “0” denotes a zero response of the variable to the shock,
while “x” means the response of the variable is left unrestricted.
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Second, the employment of variables expressed in relative rates (either with respect to

the country or to the EU average) may substantially simplify the identification of shocks

and propagation patterns in the case of S-SPVARs. This is because if, for example, a

shock produces an increase in labor supply in a given region, it will also, in relative

terms, reduce labor supply in other regions within the system. However, working with

variables expressed in relative terms may not always be satisfactory. In many situations,

the researcher may be interested in working directly with the original data values. In this

case, the problem of specifying the way in which the shocks are transmitted from one

spatial unit to another can be solved (i) by employing non-neighborhood zero restrictions

if two spatial units are not neighbors and (ii) by leaving the propagation pattern among

neighbors unidentified. Note that this approach goes in line with the spirit of the spatial

priors for VAR models developed by LeSage and Krivelyova (2002). However, additional

efforts in prior-shrinkage design to overcome the curse of over-parametrization are crucial

and will become increasingly necessary as the number of parameters in SPVARs grows

with the square of the product of spatial units and variables. This issue, moreover,

requires careful handling, given that the employment of priors affects the identification

performance through sign-restrictions (Baumeister and Hamilton, 2014).

In this line, the design of suitable space-time Granger tests extending the work of

Hurlin (2004a,b) to determine causal relations in space and time might help to identify

which variables should be left as exogenous controls, as this may have a considerable

impact on the results stemming from variance decompositions exercises, counter-factual

analysis, etc. which are the key sources from which policy conclusions can be derived.

4. Integrated Spatial Bayesian Model Averaging

A final and important issue that has not been considered yet in the context of spa-

tial econometrics is that of taking into account the whole set of sources of uncertainty to

perform inference. These sources of uncertainty are: (i) regressors (X), (ii) spatial weight

matrices (W) and (iii) spatial spillover/functional forms (S). Along this thesis, Chapters

1, 2 and Chapter 4, explored the issue of model uncertainty with respect W . In Chapter 3,

the issue was moved an step further by taking into account uncertainty with respect both,
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W and S. On the other hand, studies of LeSage and Fisher (2008), Crespo-Cuaresma

and Feldkircher (2013) and Crespo-Cuaresma et al. (2014) have previously performed

Spatial Bayesian Model Averaging (SBMA) and explored the issue of model uncertainty

with respect X and W . This shows the existence of an unfilled gap in order to take

into account of uncertainty with respect the three different dimensions from which un-

certainty emerges in a spatial context. The later two studies adapt the (MC3) algorithm

developed by Madigan and York (1995) and Fernandez, Ley and Steel (2001a, b) to the

context of spatial models. Nevertheless, it is possible to add some additional Metropolis-

Hasting steps in the MC3 sampler in order to perform inference over the three dimensions

of uncertainty. Pseudo-code for implementing a more general algorithm consists on the

following steps:

[Step 1] Draw a initial set of regressors X, a W and a functional form s to form a

model M. Compute p (M |y,X,W, s) and define neighborhood of model nbd (M |y,X,W, s)

which consists in M itself and models with +/-1 regressors not included in it, holding fixed

W and s

[Step 2] Compare M with an alternative M ′ ∈ nbd (M) and reject M ′ if α =

p(M ′|y,X′,W,s)
p(M |y,X,W,s) < 1, otherwise, accept it.

[Step 3] Flip a three-faced coin and use the outcome 1 to 3 to determine the following

changes in M :

if [o = 1] Add an explanatory variable chosen at random from those not included in the

model (birth step), X ′ 7→ X ′′+

if [o = 2] Eliminate an explanatory variable chosen at random from those currently (death

step) X ′ 7→ X ′′−

if [o = 3] Eliminate one variable randomly and replaced it randomly from the set of vari-

ables not included (move step) X ′ 7→ X ′′

[Step 4] Flip a two-faced coin and use the outcome 1 to 2 to determine the following

changes in M :

if [o = 1] Chose at random another W ′ 6= W , to form M(y,X ′′,W ′, s. Accept it if

α = p(M |y,X′′,W,s)
p(M |y,X′′,W ′,s) > 1
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if [o = 2] Stay with W

[Step 5] Flip a two-faced coin and use the outcome 1 to 2 to determine the following

changes in M :

if [o = 1] Chose at random another s′ 6= s, to form M (y,X ′′,W ′, s′). Accept it α =

p(M |y,X′′,W,s′)
p(M |y,X′′,W ′,s) > 1

if [o = 2] Stay with s

[Step 6] Go back to Step 2 and repeat the process n times, with n very large.

Defining a spatial model as an object M s,z
i where s = 1, . . . , S is the number of spatial

functional forms, Wz = 1, . . . , Z is the set of candidate W matrices and i ∈
[
1, 2k

]
is the

total number of possible combinations of regressors, employing the previous algorithm

will allow to compute key bayesian inference metrics:

(i) The Posterior Mean

E (β|y,X) =
S∑
s=1

Z∑
z=1

2k∑
i=1

E (βi|M s,z
i , y,X) p (M s,z

i |y,X) (4.24)

(ii) The Posterior Variance

V ar (β|y,X) =
∑S

s=1

∑Z
z=1

∑2k
i=1 V ar (βi|M s,z

i , y,X) p (M s,z
i |y,X) + (4.25)∑S

s=1

∑Z
z=1

∑2k
i=1 (E (βi|M s,z

i , y,X)− E (β|y,X))2 p (M s,z
i |y,X)

(iii) Posterior Inclusion Probability

PIP = p (βk ≥ 0|y,X) =
S∑
s=1

Z∑
z=1

2k∑
i=1

p (βik|M s,z
i , y,X) p (Mi|y,X) (4.26)

This type of integrated spatial model averaging analysis is promising given that it

can be applied to further extend our knowledge about issues where uncertainty on the

regressors, interaction schemes or spillover processes is relatively high. This is the case

of growth processes, unemployment disparities, the efficiency of local governments, urban

inequalities, social conflicts or other research topics.
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Pisa No. 198.

Fingleton, B. and Le Gallo, J. (2008): Estimating Spatial Models with Endogenous

Variables, a Spatial Lag and Spatially Dependent Disturbances: Finite Sample Properties.

Papers in Regional Science, 87, 319-339.

Getis, A. and Griffith, D. (2002): Comparative Spatial Filtering in Regression Analy-

sis. Geographical Analysis, 34, 130-140.

195



Hurlin C. (2004a): Testing Granger Causality in Heterogeneous Panel Data Models

with Fixed Coefficients. Mimeo, University of Orleans.

Hurlin C. (2004b): A Note on Causality Tests in Panel data Models with Random

Coefficients. Mimeo. University of Orleans.

Kelejian, H.H and Piras, G. (2014): Estimation of Spatial Models with Endogenous

Weighting Matrices, and an Application to a Demand Model for Cigarettes. Regional

Science and Urban Economics, 46, 140-149.

Koop, G. and Korobilis, D. (2016): Model Uncertainty in Panel Vector Autoregressive

Models. European Economic Review, 81, 115-131.

Lee, L.F. and Yu, J. (2010): A Spatial Dynamic Panel Data Model with both Time

and Individual Effects. Econometric Theory, 26, 564-594.

Lee, L.F. and Yu, J. (2015): Estimation of Spatial Panel Data Models with Time

Varying Spatial Weights Matrices. Economics Letters, 128, 95-99.

LeSage, J.P. and Krivelyova, A. (2002): A Spatial Prior for Bayesian Vector Autore-

gressive Models. Journal of Regional Science, 39, 297-317.

LeSage, J.P. and Fisher, M. (2008): Spatial Growth Regressions: Model Specification,

Estimation and Interpretation. Spatial Economic Analysis, 3, 275-304.

Le Gallo, J. Baumont, C., Dall’erba, S. and Ertur, C. (2005): On the Property of

Diffusion in the Spatial Error Model. Applied Economics Letters, 12, 533-536.

Madigan, D. and York, J. (1995): Bayesian Graphical Models for Discrete Data. In-

ternational Statistical Review, 63, 215-232.

Mayor, M. and Patuelli, R. (2014): Spatial Panel Data Forecasting over Different

Horizons, Cross-Sectional and Temporal Dimensions. Mimeo.

Mountford, A. and Uhlig, H. (2009): What are the Effects of Fiscal Policy Shocks?.

Journal of Applied Econometrics, 24, 960-992.

Mutl, J. (2009): Panel VAR Models with Spatial Dependence. Economics Series,

n.237, Institute for Advanced Studies.

Plaigin, C. (2009): Exploratory Study on the Presence of Cultural and Institutional

Growth Spillovers. Working Paper N09-03 Research Series, Université Libre de Bruxelles.
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Appendix A

Frequentist Spatial Panel Estimation

This appendix section presents the algorithmic procedures associated with the employ-

ment of the different estimators employed along this research.

Estimation of Static Spatial Panels

In Chapters 1 and 2, SDM, SDEM, SLM, SEM and SLX specifications including spatial

fixed-effects and time-period fixed effects are estimated in order to analyze the relationship

between volatility and growth. These specifications are nested in the General Nesting

Spatial Model (GNSM):

Yt =µ+ ιnαt + ρWYt +Xtβ1 +WXtβ2 + εt

εt =λWεt + υt
(A.1)

where Yt denotes a n× 1 vector consisting of observations for dependent variable of each

spatial unit i = 1, . . . , n at a particular point in time t = 1, . . . , T , Xt and WXt are n×K

matrix of own and neighbors exogenous covariates with associated β1 and β2 response

parameters contained in K × 1 vectors that are assumed to influence the dependent

variable. υt = (υ1t, . . . , υnT )
′

is a vector of i.i.d disturbances whose elements have zero

mean and finite variance σ2. The variable WYt denote contemporaneous endogenous

interaction effects among the dependent variable while Wεt denotes spatially correlated

disturbances. The parameter ρ is called the spatial autoregressive coefficient while λ is

the spatial error diffusion parameter. W is a n× n matrix of known constants describing

the spatial arrangement of the spatial units in the sample. µ = (µ1, . . . , µN)
′

is a vector

with individual fixed effects, αt = (α1, . . . , αT )
′

denotes time specific effects and ιn is a

n× 1 vector of ones.
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Equation (A.1) converges to the various specifications employed in Chapters 1 and 2

depending on the restrictions imposed over the different parameters of the SAC model. In

particular, it converges to a SDM specification if λ = 0 to a SLX specification if ρ = λ = 0

and to SLM specification if λ = 0 and β2 = 0, to a SDEM specification if ρ = 0 and finally,

to a SEM specification if ρ = 0 and β2 = 0.

As noted by Lee and Yu (2010a), estimation of spatial panel data models with in-

dividual effects is likely to suffer from the incidental parameter problem when the time

dimension is fixed because of the introduction of fixed effects increases the number of

parameters. They conclude that direct maximum likelihood optimization will yield bias

parameter estimates and using asymptotic theory they analytically derive the size of these

biases. If the model contains spatial fixed effects (µ), but not time-period fixed effects

(αt), the parameter estimate of σ2 will be biased if n is large and T is fixed. If the model

contains spatial fixed effects (µ) and time-period fixed effects (αt) all the parameter esti-

mates will be biased if n is large and T is large. By contrast if T is fixed, the time-period

effects can be regarded as a finite number of additional regression coefficients similar to

the role of the parameter β. As a solution to this problem and in order to estimate

previous static spatial panels consistently, Lee and Yu (2010a) propose to apply a bias

correction procedure to the direct maximum likelihood estimation of the model. As an

alternative estimation method, they propose to apply a data transformation procedure

and establish the consistency and asymptotic distribution of the QML estimator of that

approach.

The assumptions made for the maximum likelihood estimation of the spatial panels

described above are:

A1. W is a n × n non-stochastic spatial weight matrix with zeros in the diagonal. This

assumption helps the interpretation of the spatial effect as self influence shall be excluded

in practice.

A2. The disturbances υt follow a normal distribution υt ∼ N [0, σ2] and E|υ4+η
t | <∞ for

some η > 0. This provides regularity conditions.

A3. R (ρ) = In − ρW and D (λ) = In − λW are invertible for all ρ, λ ∈ P where P is a

compact interval and ρ, λ fall in the interior of P .

A4. The elements of X are non-stochastic and bounded uniformly in n and T . Also the

limit 1
nT

∑T
t=1 X̃

′
tR(ρ)′D(λ)X̃t exists and is non-singular.
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A5. W is uniformly bounded (UB) in both row and column sums in absolute value. Also

R (ρ)−1 is UB. This assumption limits the spatial correlation to a manageable degree.

A6. n is large, and T can be finite or large.

As in Chapter 1 and Chapter 2, inferences are based on the SDM in what follows, the

derivation of the estimator used to process the data will focus on this concrete spatial

specification. Let X = [x,Wx], let the vector of parameters of the SDM be ζ = [ρ, β1, β2]

and η = (ζ, σ), then the direct approach for a SDM with just fixed effects, consists on the

optimization of the following function:

lnL (η, µ) =
nT

2
ln
(
2πσ2

)
+ T ln |R (ρ) | − 1

2σ2

T∑
t=1

υ̃′t (ζ, µ) υ̃t (ζ, µ) (A.2)

where υ′t (ζ, µ) = R (ρ)Yt −Xtβ − µ. We can estimate directly µ and have the estimator

of η via the concentrated log likelihood with µ concentrated out:

lnL (η) =
nT

2
ln
(
2πσ2

)
+ T ln |R (ρ) | − 1

2σ2

∑
t

υ̃′t (ζ) υ̃t (ζ) (A.3)

where υ̃t (ζ) = R (ρ) Ỹt − X̃tβ where Ỹt = Yt − Ȳt, Ȳt = 1
T

∑
t Yt and X̃t = Xt − X̄t with

X̄t = 1
T

∑
tXt denote the time-demeaned endogenous and exogenous variables. The first

order and second order derivatives of Equation (A.3) are given by:

∂ lnL (η)

∂η
=


1
σ2

[∑
t X̃
′
tυ̃t (ζ)

]
1
σ2

[∑
t

(
WỸt

)′
υ̃t (ζ)− σ2trGn (ρ)

]
1

2σ4 [
∑

t υ̃
′
t (ζ) υ̃t (ζ)− nσ2]

 (A.4)

and

∂2 lnL (η)

∂η∂η′
= −


1
σ2

[∑
t X̃
′
tX̃t

]
∗ ∗

1
σ2

[∑
t

(
WỸt

)′
X̃t

]
1
σ2

[∑
t

(
WỸt

)′ (
WỸt

)
+ TtrG2 (ρ)

]
∗

1
σ4

[∑
t υ̃
′
t (ζ) X̃t

]
1
σ4

[∑
t

(
WỸt

)′
υ̃t (ζ)

]
0

(A.5)

−


02k×2k 02k×1 02k×1

01×2k 0 0

01×2k 0 − nT
2σ4 + 1

σ6

∑
t υ̃
′
t (ζ) υ̃t (ζ)


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where G (ρ) = WR (ρ)−1 and tr denotes the trace of a matrix. The parameter estimates

obtained optimizing Equation (A.3) are given by:

β̂ (ρ) =

[∑
t

X̃ ′tX̃t

]−1 [∑
t

X̃ ′tR (ρ) Ỹt

]
(A.6)

and

σ̂2 (ρ) =
1

nT

[∑
t

R (ρ) Ỹt − X̃tβ (ρ)

]′ [∑
t

R (ρ) Ỹt − X̃tβ (ρ) Ỹt

]
(A.7)

Note that, operationally, it is first necessary to obtain ρ. This is accomplished by recur-

sively running the following OLS regressions to get estimates of υ̃o,t and υ̃l,t:

Ỹt = X̃tβo + υ̃o,t

WỸt = X̃tβl + υ̃l,t
(A.8)

Then, one can compute the maximum likelihood estimate of ρ optimizing the concentrated

likelihood of Equation (A.9) feeded with the estimates of υ̃o,t and υ̃l,t.

lnL = C − nT

2
ln

[∑
t

(υ̃o,t − υ̃l,t)′ (υ̃o,t − υ̃l,t)

]
+ T ln |R (ρ) | (A.9)

which is equivalent to the following expression:

lnL = C − nT

2
ln [(S (ρ))] + T ln |R (ρ) | (A.10)

where C is a constant not depending on ρ and S (ρ) =
∑

t

υ′o,tυo,t−2ρυo,tυl,t+ρ
2υ′l,tυl,t

nT
. Unfor-

tunately, this maximization problem can only be solved numerically, since a closed-form

solution for ρ does not exist. However, since the log-likelihood function of Equation (A.10)

is concave in ρ the solution is unique. For the models with just fixed effects, the only

parameter that is biased is σ. In order to correct for this bias, the correction just requires

to apply the factor T
T−1

to the original estimate such that:

σ2
bc = σ̂2 T

T − 1
(A.11)

Conversely, for static spatial panels including only time-period effects the parameter es-
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timate of σ̂2 obtained by the direct approach can be corrected by:

σ2
bc = σ̂2 n

n− 1
(A.12)

For static spatial panels including both spatial fixed and time-period effects the direct

approach also requires a bias correction procedure. The log likelihood function with both

µ and αt concentrated out is:

lnL (η) =
nT

2
ln
(
2πσ2

)
+ T ln |R (ρ) | − 1

2σ2

∑
t

υ̃′t (ζ) Jnυ̃t (ζ) (A.13)

where υ̃t (ζ) = R (ρ) Ỹt − X̃tβ, β = [β1, β2] and Jn = In − 1
n
ιnι
′
n is the deviation from the

group mean transformation over spatial units. The first and second order derivatives are

given by:

∂ lnL (η)

∂η
=


1
σ2

[∑
t X̃t

′
Jnυ̃t (ζ)

]
1
σ2

[∑
t

(
WỸ

)′
Jnυ̃t (ζ)− TtrG (ρ)

]
1

2σ4 [
∑

t υ̃
′
t (ζ) Jnυ̃t (ζ)− nσ2]

 (A.14)

and

−∂
2 lnL (η)

∂η∂η′
=


1
σ2

[∑
t X̃
′
tJnX̃t

]
∗ ∗

1
σ2

[∑
t

(
WỸt

)′
JnX̃t

]
1
σ2

[∑
t

(
WỸt

)′
Jn

(
WỸt

)
+ (T − 1) tr (JnG

2 (ρ))

]
∗

1
σ4

[∑
t υ̃
′
t (ζ) JnX̃t

]
1
σ4

[∑
t

(
WỸt

)′
Jnυ̃

′
t (ζ)

]
0

 (A.15)

+


02k×2k 02k×1 02k×1

01×2k 0 0

01×2k 0 − nT
2σ4 + 1

σ6

∑
t υ̃t (ζ) Jnυ̃t (ζ)


The parameter estimates obtained optimizing Equation (A.13) are given by:

β̂ (ρ) =

[∑
t

X̃ ′tJnX̃t

]−1 [∑
t

X̃tJ
′
nR (ρ) Ỹt

]
(A.16)
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and

σ̂2 (ρ) =
1

nT

[∑
t

R (ρ) Ỹt − X̃tβ (ρ)

]′
Jn

[∑
t

R (ρ) Ỹt − X̃tβ (ρ)

]
(A.17)

As in the previous case with just spatial fixed effects, numerical procedures are employed

to obtain the maximum likelihood estimate of ρ. In particular, the quick procedure

developed by Pace and Barry (1997) to exploit sparsity of the W matrix is used. This

approach consists on evaluating the log-likelihood using a q × 1 vector of values for ρ in

the interval [ρmin, ρmax] such that:


lnL (ρ1)

lnL (ρ1)

. . .

lnL (ρq)

 = κ+ T


ln |R (ρ1) |

ln |R (ρ2) |
...

ln |R (ρq) |

−
(
nT

2

)


ln (S (ρ1))

ln (S (ρ2))
...

ln (S (ρq))

 (A.18)

Note that given a sufficiently fine grid of q values for the log-likelihood, interpolation can

supply intervening points to any desired accuracy. Usually, the interval [ρmin, ρmax] is

[-1,1].

Finally, the bias correction applied to the direct ML estimates of the SDM with both

spatial fixed and time-period fixed effects takes the following form:


β1,bc

β2,bc

ρbc

σbc

 =


1K

1K

1

T
T−1

 ◦

β̂1

β̂2

ρ̂

σ̂


(
− 1

n

)(
− 1

nT

∂2 lnL (η)

∂η∂η′

)−1


0k

0k
1

1−ρ̂
1

2σ̂2

 (A.19)
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Estimation of Dynamic Spatial Panels

In Chapters 3 and 4 Dynamic Spatial Durbin Model (DSDM) specification with both fixed

and time effects are estimated employing the Bias-Corrected Quasi-Maximum Likelihood

(BCQML) estimator developed by Lee and Yu (2010b). The model reads as:

Yt = µ+ ιnαt + τYt−1 + ρWYt + ηWYt−1 +Xtβ +WXtθ + υt (A.20)

The assumptions made for the estimation of the dynamic spatial panel above are:

A1. W is a n × n non-stochastic spatial weight matrix with zeros in the diagonal. This

assumption helps the interpretation of the spatial effect as self influence shall be excluded

in practice.

A2. The disturbances υt are i.i.d across i an with zero mean and variance σ2, and

E|υ4+η
t | <∞ for some η > 0. This provides regularity conditions.

A3. R (ρ) is invertible for all ρ ∈ P where P is a compact interval and ρ falls in the

interior of P .

A4. The elements of X are non-stochastic and bounded uniformly in n and T . Also the

limit 1
nT

∑T
t=1 X̃

′
tR
′RX̃t exists and is non-singular.

A5. W is uniformly bounded (UB) in both row and column sums in absolute value. Also

R (ρ)−1 is UB. This assumption limits the spatial correlation to a manageable degree.

A6.
∑∞

h=1 abs
(
Ahn
)

is UB where abs (An)ij = |An,ij| where A = (In − ρW )−1 (τIn + ηW ).

This assumption rules out the case of space-time co-integration.

A7. n is a non-decreasing function of T and T goes to infinity.

One way to estimate Equation (A.20) is to directly estimate all the parameters in-

cluding the time effects and individual effects in the model which will yield a bias of

the order O (max (n−1, T−1)) for the common parameters that can be corrected with a

bias-correction procedure. However, in this research the transformed approach which

consists on a transformation of the data that eliminates the time-period fixed effects

in order to avoid the bias O (n−1) is used. Recall the definition of the deviation from

the individual mean transformation where Jn = In − 1
n
ιnι
′
n and Wιn = ιn so that
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JnW = JnW
(
Jn + 1

n
ιnι
′
n

)
= JnWJn because JnWιn = 0. Hence we have:

JnYt = τ (JnYt−1)+ρ (JnW ) (JnYt)+η (JnW ) (JnYt−1)+(JnXt) β
′
1+(JnW ) (JnXt) β

′
2+(Jnµ)+(Jnυt)

(A.21)

which does not involve the time effects αt and the term Jnµ can be regarded as the

transformed individual effects. Thus, we can estimate θ = (τ, η, β, ρ, σ), β = (β1, β2) and

Jnµ basing on the transformed equation where relevant variables are pre-multiplied by

Jn. A special feature of the transformed Equation (A.21) is that the variance matrix of

Jnυt is equal to σ2Jn so that the elements of Jnυt are correlated. Also, Jn is singular with

rank (n− 1) as Jn is an orthogonal projector with trace (n− 1). Hence, there is linear

dependence among the elements of Jnυt. An effective procedure to estimate the model

requires to eliminate such dependence. As proposed by Lee and Yu (2010b) this can be

done with the eigenvalues and eigenvectors decomposition of Jn . Let
[
Fn,n−1,

ιn√
n

]
be the

orthonormal matrix of eigenvectors of Jn where Fn,n−1 is the matrix of eigenvalues of ones

and ιn√
n

corresponds to the eigenvalue zero. The transformation of JnYt to Y ∗t = Fn,n−1JnYt

is of dimension n− 1 gives:

Y ∗t = ρW ∗Y ∗t + τY ∗t−1 + ηW ∗Y ∗jt−1 +X∗t β1 + β2W
∗X∗t + +µ∗i + υ∗t (A.22)

where W ∗ = F ′n,n−1WFn,n−1, Y ∗t = Fn,n−1JnYt = F ′n,n−1Yt, X
∗
t = Fn,n−1Xt, X

∗
t =

Fn,n−1Xjt, µ
∗ = F ′n,n−1Jnµ = F ′n,n−1µ and υ∗t = F ′n,n−1υt is an n − 1 dimensional distur-

bance with zero mean an variance matrix σ2In−1. The log-likelihood function of Equation

(A.22) is given by:

lnL (θ, µ∗) = −(n− 1)T

2
ln 2π−(n− 1)T

2
lnσ2−T ln |I(n−1)−ρW ∗|− 1

2σ2

∑
t

ln
(
υ∗
′

t (θ) υ∗t (θ)
)

(A.23)

where υ∗
′
t (θ) =

(
I(n−1) − ρW ∗)Y ∗t − δZ∗t − µ∗, Z∗t =

[
Y ∗t−1,W

∗Y ∗t−1, X
∗
t ,W

∗X∗t
]

and δ =

(τ, η, β). Notice that |In−1−ρW ∗| = 1
1−ρ |In−ρW | and that υ∗

′
t (θ) =

(
I(n−1) − ρW ∗)Y ∗t −

δZ∗t − µ∗ can be expressed as:

υ∗
′

t (θ) =
(
I(n−1) − ρW ∗)Y ∗t − δZ∗t − µ∗ (A.24)

= F ′n,n−1 (In − ρW )Yt − δZt − µ
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because F ′n,n−1Wιn = F ′n,n−1ιn = 0. Thus, taking into account that F ′n,n−1Fn,n−1 = Jn we

can express the variance of the disturbances as:

υ∗t
′ (θ) υ∗t (θ) = [(In − ρW )Yt − δZt − µ]′ Jn [(In − ρW )Yt − δZt − µ] (A.25)

Therefore, it is possible can re-write the log-likelihood in Equation (A.23) as:

lnL (θ, µ) = − (n−1)T
2

ln 2π − T ln (1− ρ)− (n−1)T
2

lnσ2 (A.26)

+T ln |In − ρW | − 1
2σ2

∑
t ln
(
υ
′
t (θ) Jnυt (θ)

)
where Jn is the inverse of σ−2V ar (Jnυt). Therefore, data is transformed from Yt to

Y ∗t = F ′n,n−1Yt and then Equation (A.23) is maximized by searching over the parameter

space. This is equivalent to the estimation of the spatial dynamic panel data model with

only individual effects with (n-1) cross-section units and T time periods. Alternatively,

one can maximize Equation (A.27) instead. However, although the components of υt are

i.i.d in the model, the elements υ∗t even if they are uncorrelated might not be independent.

Concentrating µ out from previous expression yields:

lnL (θ) = − (n−1)T
2

ln 2π − (n−1)T
2

lnσ2 − T ln (1− ρ) + T ln |In − ρW | (A.27)

− 1
2σ2

∑
t

(
υ̃
′
t (θ) Jnυ̃t (θ)

)
where υ̃t (θ) = (In − ρW ) Ỹt− Z̃tδ and Jnυ̃t (θ) = Jn

[
(In − ρW ) Ỹt − Z̃tδ − αtιn

]
because

Jnιn = 0. The previous log likelihood function divided by the effective sample size (n−1)T

yields the corresponding quasi-likelihood function:

Q (θ) = 1
(n−1)T

E lnL (θ) = −1
2

ln 2π − 1
2

lnσ2 − 1
n−1

ln (1− ρ) (A.28)

− 1
n−1

ln |R(ρ)| − 1
2σ2

1
(n−1)T

E
∑

t

(
υ̃
′
t (θ) Jnυ̃t (θ)

)
The first and second order derivatives from which parameter estimates of θ̂ can be obtained
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are given by:

1

(n− 1)T

∂ lnL (θ)

∂θ
=

1

(n− 1)T


1
σ2

∑
t

(
JnZ̃t

)′
υ̃t (θ)

1
σ2

∑
t

(
JnWỸt

)′
Jnυ̃t (θ)− TtrGn (ρ) + T

1−ρ
1

2σ4

∑
t υ̃t (θ) Jnυ̃t (θ)− (n− 1)σ2

 (A.29)

where G (ρ) = WR (ρ)−1 and tr denotes the trace of a matrix and:

1
(n−1)T

∂2 lnL(θ)
∂θ∂θ′

= − 1
(n−1)T

(A.30)
1
σ2

∑
t Z̃
′
tJnZ̃t

1
σ2

∑
t Z̃
′
tJnWỸt

1
σ4

∑
t Z̃
′
tJnυt

∗ 1
σ2

∑
t

((
WỸt

)′
JnWỸt

)
+ Ttr

(
G2 (ρ)2)− T

(1−ρ)2
1
σ4

∑
t

(
WỸt

)′
Jnυt

∗ ∗ − (n−1)T
2σ4 + 1

σ6

∑
t υ̃t (θ) Jnυ̃t


Lee and Yu (2010b) by means of a rigorous asymptotic distribution analysis show that

the QML estimator has the bias B given by:

B = − 1

T
Σ−1 (θ)α (θ) (A.31)

that needs to be corrected so that θ1
bc = θ̂ −B where size of the bias B is given by:

Σ−1 (θ) =
1

σ2

 E[H] 0

0 0

+


0 0 0

0 1
n−1

[
tr (G′nJnGn) + tr (GnJn)2] 1

σ2(n−1)
tr (JnGn)

0 1
σ2(n−1)

1
2σ4

+O

(
1

T

)
(A.32)

where H = 1
(n−1)T

∑
t

(
Zt, GnZ̃tδ

)′
Jn

(
Z̃t, GnZ̃tδ

)
and the term α (θ) is:

α (θ) =


1

n−1
tr
((
Jn
∑∞

h=0A
h
)
R (ρ)

)−1

1
n−1

tr
(
W
(
Jn
∑∞

h=0A
h
)
R (ρ)−1)

02k

1
n−1

τtr
(
W
(
Jn
∑∞

h=0 A
h
)
R (ρ)−1)+ 1

n−1
ηtr
(
GW

(
Jn
∑∞

h=0A
h
)
R (ρ)−1)+ 1

n−1
trJnGn


(A.33)
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Appendix B

Bayesian Spatial Panel Estimation

This subsection explains the use Bayesian estimation methods along this thesis, which

draws heavily from previous work of Lesage and Pace (2009) and Lesage (2014a). Ap-

plication of Bayesian estimation methods to spatial econometrics models presents some

advantages with respect maximum likelihood. First, they solve the problem of inference

in maximum likelihood computed using numerical hessians, which are not always very

good. Second, they can be used to relax the assumption of constant variance normal

disturbances. Third, they can be used to formally solve model comparison problems.

Specifically, they can be used to (i) compare models based on different weight matrices

W , (ii) different explanatory variables X or (iii) different specifications (SAR, SEM, SLX,

SDM, SDEM).

Along the different chapters of this research, Bayesian Estimation have been applied in

order to perform model selection and comparison with respect the spatial weight matrix

W . Note, however, that in Chapter 3, this methodology has been used to select among

spatial specifications and with respect the W matrix. The choice of the W matrix is

important because it determines the rest of the analysis. Therefore, taking a Bayesian

perspective on model uncertainty about the W matrix in the context of static and dynamic

spatial panel data modeling simplifies considerably the task of selecting an appropriate

model.

An implication of Bayesian econometrics is that inferences drawn on how suitable is

the use of alternative W matrices, depends on prior distributions assigned to the model

parameters. Often, Bayesian analysis tries to avoid situations where the conclusions

depend heavily on subjective prior information by relying on diffuse or non-informative

prior distributions. As parameters governing the prior distributions such as the prior
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variance increase, the prior distributions become more vague or diffuse and often tend

to uniform distributions. However, as noted by Zellner (1971), uniform distributions are

improper since they can reflect a situation where no defined limits exist for the integral

of the prior distribution, leaving these undefined. Impropriety can be a problem in some

model comparison contexts and not in others. If the improper priors for the various models

are different, they will not cancel each other properly, or if the models being compared

have a different number of parameters, the ratio of model probabilities may become zero

or infinite depending on the specific model in the numerator versus denominator (Koop,

2003). Given that in each of the chapters the explanatory variables are the same and

what varies is W , Bayesian estimations performed in this research rely safely on non-

informative priors for the model parameters parameters. In Chapter 3, where dynamic

spatial models with different number of variables are estimated, the integration constant

is adjusted according to the corresponding degrees of freedom (see Lesage (2014a) routines

for a similar treatment in the context of static spatial panels and Elhorst et al. (2015) in

the context of dynamic spatial panels).

A further point that should not be overlooked, is that in the empirical analysis carried

out along this thesis, data exhibits wide variation across regions or municipalities. As

explained by Lesage and Pace (2009) in the cases where the number of sample observations

is small, the posterior distribution places more emphasis on prior parameters than the

distribution implied by the small sample of observable data and model contained in the

likelihood. Nevertheless, this is not the case in the studies performed here, where prior

experience (information) was very limited and on the contrary, a great deal of sample

data was used. Hence, the posterior distribution along the various chapters used to select

among alternative W and specifications, placed more emphasis on the model and sample

data information, embodied in the likelihood.

Bayesian Model Comparison

In this subsection, the basics of Bayesian model comparison are described. The underlying

idea of Bayesian W selection and model comparison is to consider a finite set of alternative

models M = M1,M2, ..,MN based on different spatial weight matrices holding the other

model aspects constant (i.e, the explanatory variables) and select the model Mi that is

more likely to be the true model given the data by looking at the posterior distribution.
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Denote by Θ = [β, σ, ρ] the vector of parameters of the model (in the case of static panels)

or Θ = [β, σ, τ, η, ρ] in dynamic space-time panels. Then, the joint probability of the set

of N models, parameters and observations correspond to:

p (M,Θ, y) = π (M) π (Θ|M)L (y|Θ,M) (B.1)

where π (M) is the prior probability assigned to the model, π (Θ|M) reflects the priors

of the vector of conditional parameters to the model and L (y|Θ,M) is the likelihood of

the data conditioned on the parameters and models. In order to make each model Mi

equally likely a priori, the same prior probability π (Mi) = 1/N is assigned to each model

under consideration. As shown in equation B.2 below, it is possible to use the Bayes rule

to derive the posterior probability of model i:

p
(
M i,Θi|y

)
=
p (M i,Θi, y)

p (y)
=
π (M i) π (Θi|M i)L (y|Θi,M i)

p (y)
(B.2)

Integrating with respect Θi we get the marginal likelihood, the key quantity used to

compare the various models based on different spatial weight matrixes.

p (y|Mi) =

∫
p
(
y|Θi,Mi

)
p
(
Θi|Mi

)
dΘi (B.3)

For example, for the case of two models, M1 and M2 with parameter vectors Θ1; Θ2

and data denoted by Y, it is possible to use Bayes’ theorem to calculate the posterior

probability that M1 is the correct model (conditional on the fact that the correct model

is in the set {M1,M2}. This is given by:

p (M1|y) =
p (y|M1)

p (y|M1) + p (y|M2)

p (M1)

p (M2)
(B.4)

where p (y|Mk) is the marginal likelihood of the data given Mk and p (Mk) is the prior

probability of the model Mk (k = 1; 2). Notice that in the case of a W matrix selection

between two models the sum of the posteriors adds up to 1 so that p(M1|y) + p(M2|y) =

1. Notice that in order to convert previous expressions into scalars useful for model

comparison purposes, the use of priors for the model parameters π (Θ|M) and likelihood

functions p (y|Θi,Mi) is required. These topics are discussed in the subsection of model

estimation.
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Data Transformation

An important issue in the context of Bayesian Spatial Panels estimation, is the treatment

of the data and the fixed and time-period fixed effects. Note that Bayesian Markov

Monte Carlo (MCMC) routines for spatial panels required to compute Bayesian posterior

model probabilities do not exist yet in traditional econometric software packages. As an

alternative, all cross-sectional arguments of James LeSage routines, were replaced by their

spatial panel counterparts, for example a block-diagonal NT×NT matrix, diag(W, ...,W )

as argument for W . Similarly, the T matrices Xt, Yt of size n×K and n× 1 are stacked

into a nT ×K and nT × 1 matrices respectively.

Regarding the treatment of the effects and depending on the specification, two differ-

ent procedures are implemented in order to match the frequentist estimation procedures

developed by Lee and Yu (2010). For models including solely regional fixed effects as in

Chapter 1, the time mean operator JT = It − (1
t
)(ιtι

′
t) is applied to the data, which is

equivalent to time-demeaning and working with Z̃ = [Ỹ ,W Ỹ , X̃,WX̃] as in the section of

Static Spatial Panel Estimators. For models including fixed and time-period fixed effects,

as it is the case of models estimated the rest of chapters, the data transformation requires

two steps. First, the spatial mean operator Jn = In − ( 1
n
)(ιnι

′
n) is applied to the endoge-

nous and exogenous variables Z = [Y,WY,X,WX]. Then, the orthonormal matrix F

of eigenvectors of Jt corresponding to eigenvalues of 1 is used to transform matrices Z,

[Z1, Z2, ..., ZT ]F of size n×T into [Z∗1 , Z
∗
2 , ..., Z

∗
T ] which removes regional and time effects

and reduces the model dimension to (n− 1)T . Similarly, in these scenarios, the W matrix

is transformed so that W̃ = FWF is of size n− 1× n− 1

In the mathematical development that follows, the procedure to perform Bayesian

Estimation for static panels as in equations B.5 and B.7 are described below:

Yt = µ+ ρWYt +Xtβ1 +WXtβ2 + υt (B.5)

where υt ∼ N [0, σ2In]. After the data transformation equation B.5 becomes:

Ỹt = R−1 (ρ)
(
X̃tβ1 +WX̃tβ2 + υ̃t

)
(B.6)

where R (ρ) = InT − ρ (IT ⊗W ), Ỹt = Yt − Ȳ , Ȳ = 1
T

∑
Yt, X̃t = Xt − X̄, X̄ = 1

T

∑
Xt

and υ̃t = υt − ῡit = υT . For a model including both spatial fixed and time-period fixed
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effects as in equation (B.7) below:

Yt = µ+ ιnαt + ρWYt +Xtβ1 +WXtβ2 + υt (B.7)

the corresponding data transformation yields:

Y ∗t = R−1 (ρ) (X∗t β1 +WX∗t β2 + υt) (B.8)

where in this case R (ρ) = I(n−1)T − ρ
(
I(n−1)T ⊗ W̃

)
. In order to avoid an excess of

notation, the corresponding star or the tilde, is deleted from now onwards, but the reader

should keep in mind that, in the next steps, the data employed has been transformed as

in Equations (B.8) and (B.6).

Bayesian Model Estimation

To perform Bayesian inference researchers need to combine prior distributions with the

likelihood of the model to estimate the parameters β1, β2, ρ and σ2. For the case of the

SDM specification of Equation (B.8) including spatial fixed and time-period fixed effects

above, the likelihood is given by:

L
(
β, σ, ρ, Y, X̃

)
=
(
2πσ2

) (n−1)T
2 |R (ρ) |exp−

[(
1

2σ2

)
(R (ρ)Y −Xβ) (R (ρ)Y −Xβ)

]
(B.9)

where X̃ = [X,WX] and β = [β1, β2] denote the (n− 1)T × 2K and 2K × 1 matrices of

variables and parameters respectively. To perform the derivations for models including

only spatial fixed effects as in Chapter 1, it is sufficient to substitute (n− 1)T by nT in

the corresponding terms of the likelihood.

The prior distributions for the model parameters employed in Chapters 1 to 3, are a

normal-inverse-gamma conjugate prior for β and σ and a uniform prior for ρ based on the

beta distribution. The prior distributions indicated using π:

π(β) ∼ N (c, T )

π

(
1

σ2

)
∼ Γ (d, v)

π (ρ) ∼ 1

Beta (a0, a0)

(1 + ρ)a0−1 (1− ρ)a0−1

22a0−1

(B.10)
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In order these prior distributions to be diffuse, c is to zero and T to a very large number

(1e+12). Diffuse priors for σ are obtained setting d = 0 and v = 0. The configuration

of the prior distribution of the spatial autoregressive is obtained by setting a0 = 1.01.

The use this type of prior is recommended in empirical applications as it does not require

subjective information on the part of the practitioner given that it relies on the defined

dependence parameter space for these models (Lesage, 2014). The only difference regard-

ing prior specification in the model estimation procedure implemented in Chapters 1 and

2, and that of Chapters 3 and 4, is that the parameter vector β is extended to include

time and space-time lags such that: β = [β1, β2, τ, η, ], which implies that a diffuse prior

π (τ, η) ∼ N (c, T ) is also applied to the time Yt−1 and space-time lag WYt−1. Bayesian

estimation methodology focuses on distributions involving data and parameters, which

has the effect of structuring estimation problems in such a way as to produce a poste-

rior distribution that can be decomposed into a sequence of conditional distributions.

The conditional distribution for β that follows from the maximum likelihood model in

Equation (B.9) is given by:

p
(
β|ρ, σ, Y, X̃,W

)
∼ N

(
b̄, σ2B

)
b̄ = A

(
X̃ ′R| (ρ) |Y + σ2T−1c

)
B = σ2A

A =
(
X̃ ′X̃ + σ2T−1

)−1

(B.11)

Thus, the conditional posterior distribution for β follows a multivariate normal distribu-

tion. On the other hand, the conditional distribution for σ given β parameters takes the

form:

p
(
σ2|β, ρ, Y,X,W

)
∝
(
σ2
)N(T−1)

2
+d+1

exp

[
−υ′υ +

2v

2σ2

]
υ = R| (ρ) |Y − X̃β (B.12)
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Finally, the posterior distribution of ρ is given by:

π
(
ρ|β, σ, Y, X̃,W

)
∝ |R (ρ) |

[
s2 (ρ)

(n−1)t−2K
2

]
π (ρ)

b (ρ) =
(
X̃ ′X̃

)
X̃ ′RY

s2 (ρ) =

(
R| (ρ) |Y − X̃β (ρ)

)(
R| (ρ) |Y − X̃β (ρ)

)
(n− 1)T − 2K

(B.13)

To carry out the estimation of the posterior distribution a sampling method is required.

This is achieved by means of Markov Chain Monte Carlo (MCMC) sampling techniques.

The underlying idea of the MCMC is that instead of working with the posterior density of

our parameters, the same goal could be achieved by examining a large random sample from

the posterior distribution. As shown by Gelfand and Smith (1990), MCMC sampling from

the sequence of complete conditional distributions for all parameters in a model produces

a set of estimates that converge in the limit with the true (joint) posterior distribution

of the parameters. The approach to perform MCMC relies on the Metropolis-Hasting

(MH) algorithm, due to Hastings (1970) which generalizes the method of Metropolis et

al. (1953). MCMC estimation schemes involve starting with an arbitrary state or initial

values for the parameters denoted by θ0 = [ρ0β0, σ0] from which we can construct a chain,

by recognizing that any Markov chain that has found its way to state θt can be completely

characterized by the probability distribution for time t + 1. This algorithm relies on a

proposal distribution f (θ|θt) for time t + 1 given that we have θt. A candidate point θ∗

is sampled from the proposal distribution and:

[1]. This point θ∗ is accepted as θt+1 = θ∗ with probability:

ψ (θt, θ∗) = min

[
1,

p(θ∗|y,X,W )f(θt|θ∗)
p(θt|y,X,W )f(θ∗|θt)

]

[2] otherwise θt+1 = θt, that is, we stay in the current value of θ.

In particular starting with θ0 = ρ0β0, σ0 the algorithm involves the repetition of the

following steps a great number of times:

Step (a) Generate draws of β from the conditional multivariate distribution p
(
β|ρ0, σ0, Y, X̃,W

)
with mean and variance as in Equation (B.11) and use the MH rule to update the chain.

This updated value for the parameter vector β is labeled β1.
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Step (b) Generate draws of σ from the conditional chi-squared distribution p
(
σ|ρ0, β1, Y, X̃,W

)
with (n (T − 1)) degrees of freedom. Notice that we rely on the updated value of the pa-

rameter vector β = β1 when evaluating this conditional density. Using the MH rule to

update the chain with respect σ, the updated parameter is labeled as σ1.

Step (c) Generate draws of ρ from the conditional distribution p
(
ρ|β1, σ1, Y, X̃,W

)
which

takes the form of p
(
ρ|β1, σ1, Y, X̃,W

)
∝ |R(ρ)| exp

(
1

2σ2 (R(ρ)y −Xβ)′(R(ρ)y −Xβ) .

This conditional distribution has not a known form. To generate samples of ρ the MH

sampling is combined with the griddy Gibbs method. The griddy Gibbs is a faster proce-

dure that consists on taking logs on Equation (B.13), constructing a vector of associated

with a grid of q values for ρ in the feasible interval using the Barry and Pace (1999)

approach. Pace and Barry (1999) proposed to accelerate the base of the estimator for

ln |R (ρ) | relying on an asymptotic 95% confidence interval,
(
V̄ − F, V̄ + F

)
constructed

using the mean V̄ of p generated independent random variables taking the form:

Vi = − (n− 1) t
m∑
k=1

x
′
iWxi
x
′
ixi

ρk

k
, i = 1, . . . , p (B.14)

where xi ∼ N (0, 1), xi independent of xj if i 6= j and

Vi = −n(T − 1)
m∑
k=1

n(T − 1)ρm+1

(m+ 1) (1− ρ)
+ 1.96

√
s2 (V1, . . . , Vp)

p
(B.15)

where s2 is the estimated variance of the generated Vi and m and p are chosen to provide

the desired accuracy. This approach to compute ln |R (ρ) |, along with the vectorized

expression of s (ρ)2 = ϕ (ρi) = υ
′
0υ0 − 2ρiυ

′

dυ0 + ρ2
iυ
′

dυd, produces a simple numerical

integration problem that can be solved using Simpson’s or Trapezoid rules. Notice that

integration is repeated in each step as the value of s (ρ)2 changes with each pass through

the MCMC sampler. As in the previous steps, MH accepts ρ∗ as a candidate point for ρ1

with probability:

ψ (ρ, ρ∗) = min

[
1,
p (ρ∗|β1, σ1, Y,X,W ) f (ρ|ρ∗)
p (ρ|β1, σ1, Y,X,W ) f (ρ|ρ∗)

]
(B.16)

otherwise ρ1 = ρ, which implies the value of ρ does not change.
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Appendix C

Relative Importance Metrics

Assigning shares of relative importance to each or to a set of regressors is one of the key

goals of researchers in applied studies and in sciences that work with observational data.

Advances in computational capabilities have led to increased applications of computer-

intensive methods like averaging over orderings that enable a reasonable decomposition

of the model variance. Along this thesis metrics of relative importance are employed in

Chapters 3 and 4.

Let the DSDM of Equation (C.1):

Yt = ρWYt + τYt−1 + ηWYt−1 +Xtβ + θWXt + υt (C.1)

be re-written in compact form as Y = ZΠ + υ where Z = [WYt, Yt−1,WYt−1, Xt,WXt]

and Π = [ρ, τ, η, β, θ]. If all regressors are uncorrelated, there is a simple and unique

answer to the relative importance question of any regressor k. In particular, by computing

(Π2)k+1 × vk+1,i, with vk+1,i denoting the regressor k and the error term variance in the

spatial unit i, gives a measure of the contribution of the regressor k to the model fit.

However, as explained by Groemping (2007) in case of correlated Z’s is no longer

obvious how the model’s variability can be decomposed. In order explore the relative

importance of the various factors explaining unemployment disparities or municipal gov-

ernment spending in Chapters 3 and 4, I study relative contribution of the various factors

with the LMG method (Lindeman et al., 1980; Groemping, 2007) and the Genizi and CAR

scores (Genizi, 1993; Zuber and Strimmer, 2010; 2011). The decomposition procedures

are detailed below:

Let the variance of the dependent variable Y be given by σ2
y, the variance of the set
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of regressors contained in Z be denoted by Σ and the covariance of Y and the covariates

by ΣyZ . Let P denote the correlations among regressors and PyZ marginal correlations

between regressors and Y , such that:

Σ = V
1
2 PV

1
2 (C.2)

and

ΣyZ = V
1
2 PyZV

1
2 (C.3)

where V = diag (V ar(Z1, . . . , V ar(Zp). Defining the correlation between the model es-

timates and Y as Ω = corr
(
Y, Ŷ

)
, then the squared multiple correlation coefficient is

expressed as:

R2 = Ω2 = PyZP−1PZy (C.4)

Then, the unexplained variance can be written as σ2
Y (1− Ω) and the explained vari-

ance of a model with Zk regresors with indices in the set S as evarS = [σ2
Y Ω]Zk,k∈S. Finally,

the sequential added explained variance when adding the regressors with indices in M to a

model that already contains the regressors with indices in S as svar =
[
σ2
yΩ
]
M∪S−[σ2

Y Ω]S.

This implies that the true coefficient of determination is given by:

R2 = Ω2 =
evar(S)

σ2
y

(C.5)

With these definitions in hand, and for a model Y = ZΠ + υ with p regressors:

R2 = Ω2 =

p∑
k=1

φmX(k) (C.6)

where m denotes the decomposition method. The LMG method assigns to each regressor

Zk the following share:

φLMGZ(k) =
1

p

p−1∑
i=0

 ∑
S⊆k+1,...,p,n(S)=i

svar ({k} |S)(
p−k
i

)
 (C.7)

where svar denotes the sequentially added explained variance as defined above. Thus the
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share φk assigned to regresor k is the average over model sizes i of average improvements

in explained variance when adding regressor k to a model of size i without k. Thus,

the LMG metric performs a R2 decomposition by averaging marginal contributions of

independent variables over all orderings of variables and using sequential sums of squares

from the linear model, the size of which depends on the order of the regressors in the

model.This proposal has not found its way in econometric analysis for two main reasons.

Firstly, its properties are not well understood and it is computationally challenging given

that it requires the researcher to estimate 2p−1 models where p is the number of regressors.

Importantly LMG measure satisfies desirable criteria for the decomposition of the

model R2: i) proper decomposition (the sum of all shares is the model variance), ii)

non-negativity (all shares have to be non-negative) and iii) inclusion (a regressor Zk

with βk 6= 0 should receive a nonzero share). Groemping (2007) argues that these are

the relevant criteria for empirical analysis while the iv) exclusion criteria βk = 0 should

receive a 0 weight, is a less convincing requirement if the study has a causal interpretation

in mind.

Finally, the weights associated to the GENIZI and CAR measures are given by:

φGENZ(k) =

p∑
p=1

[(
P

1
2

)
kp

(
P
−1
2 PZy

)
p

]2

(C.8)

and

φCARZ(k) = ω2
k (C.9)

with ω = P
−1
2 PZy.
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