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Mercedes Pérez-de-la-Parte3, Juan Carlos Sáenz-Dı́ez2,
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Abstract
Decision-making in technological systems, such as communication networks, manufacturing facilities and supply chains,
constitutes a common requirement able to lead companies galore to success or failure. This article presents a decision-
making methodology, where the feasible structural configurations to be analysed are chosen heuristically in the frame of
a single optimization problem. For stating the optimization problem and solving it efficiently, appropriate formalisms
would be used. Compound Petri nets, a particular kind of parametric Petri nets, and alternatives aggregation Petri nets,
are two Petri net–based formalisms able to integrate in the same model different alternative structural configurations.
Moreover, even having different characteristics that might make them useful for different applications, both formalisms
present common features, such as including a set of exclusive entities and the possibility of developing compact Petri net
models, by the removal of redundant information. This article is also focused on the transformation algorithm between
compound Petri nets and alternatives aggregation Petri nets. This algorithm is devoted to transform a model described
by one of the formalisms into an equivalent model, that is, with the same behaviour, represented using the other formal-
ism. Finally, several application examples are given for illustrating the steps of the transformation algorithm.
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Introduction

Decision support systems

Decision support systems constitute tools of great help
to the management of systems that show complex
behaviour, arisen from the interrelations between the
constituent subsystems. The main topic of this article
contributes to the development process of efficient deci-
sion support systems under certain assumptions.

Since the 1960s, in the 20th century, the decision
support systems have been an active research field. It
has focused on the information management systems
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based on computers, which help in the decision-making
process.

The decision support systems can be found in very
diverse applications including the following: (a) medical
diagnosis, (b) business management, (c) airports, as
well as manufacturing and (d) supply chain planning.
These systems are particularly useful in environments
that change swiftly.

The type of system that will be considered in this
article for decision-making is the discrete event system
(DES).1 The formal representation that has been used
in this article for the DESs is the paradigm of the Petri
nets (PNs).2–5

Our civilization has experienced a significant techno-
logical development and a generalization in the use of
computers in the most diverse sectors. These facts have
implied that a large number of technological systems
can be modelled as DESs. Among them, it can be found
manufacturing systems, supply chains, and communica-
tion networks (Recalde et al., 2003).6

Furthermore, the usual decisions involved in this
type of systems, which have been analysed in the scien-
tific literature include the following: (a) the design and
(b) the control. In this context, control is understood as
the process that allows a given system to show the
desired behaviour.

For more details, the following references can be
reviewed: Ramadge and Wonham,7 Lee and DiCesare,8

Moody and Antsaklis,9 Ghaffari et al.,10 Bai et al.11

and Piera and Music.12

Constraint satisfaction and optimization problems

A problem of decision-making, expressed in a formal
language, might lead to the statement of a constraint
satisfaction problem. This situation will happen, in case
that, for solving the problem; it is enough to find a solu-
tion satisfying a given set of equalities and inequalities.
On the other hand, it might be required that in addition
to finding a feasible solution, it can maximize or mini-
mize one or several quality parameters of the feasible
solutions. In this case, the problem is an optimization
one.13

From now on, in this article, the optimization prob-
lem will be considered as the most general problem. It
has to be considered that a solution of an optimization
problem is one of a constraint satisfaction problem, as
well. In particular, the constraint satisfaction problem
is the one obtained by removing the objective or cost
function from the former.

Simulation and choice of feasible solutions

A classic methodology for solving an optimization prob-
lem based on a DES consists of simulation. This

methodology requires the specification of certain condi-
tions of the model of the system, with the purpose of set-
ting values to the unknowns associated with its
controllable parameters. In this article, the term ‘unde-
fined’ will be applied to any characteristic of the PN
model or the original system, where unknowns can be
found. In fact, these unknowns are associated with the
freedom degrees that require a decision-making process
for defining or operating the system. According to this
idea, an undefined structure of a system implies that the
physical constitution of the system, not necessarily its
behaviour, presents freedom degrees. An undefined
parameter consists of a controllable parameter of the
PN model prior to a decision that specifies a value for it.

A feasible solution of the problem should be chosen,
and the evolution of the system under the desired con-
straints should be analysed. After performing a certain
number of selections and their corresponding simula-
tions, the solution of the problem that has led to a
behaviour of better quality may be the final solution
for the problem.14

Usually, the analysis of all the feasible solutions
must be discarded by practical reasons. This fact can
be explained because (a) the domain of the cost or
objective function, also called solution space of the
optimization problem, may be very large and (b) the
computational cost of simulating a single solution may
be also very high.

A significant limitation of simulation as optimiza-
tion tool is the choice of the feasible solutions that will
be considered for defining the simulation constraints.

If the selection of the feasible solutions has not been
adequate and the best solutions are not chosen, the out-
come of the simulation-based optimization process
might not be a successful solution for the problem.

The process of searching for feasible solutions for
defining the constraints of simulation can be guided, in
an algorithmic procedure, by means of a probabilistic
technique, such as a metaheuristic (Baruwa et al.,
2015).15 The model of the system can be represented by
a type of parametric PN called compound PN, where
the controllable parameters of the system are repre-
sented in a symbolic way. These parameters should be
specified, as a result of the searching algorithm, by real
values corresponding to the chosen solution.

Several methods can be applied for guiding the search
process, such as genetic algorithms, simulated annealing,
ant colony and tabu search. These algorithms explore
the solution space searching for solutions that might lead
to optimal values of the cost function.16

The probabilistic nature of these methods allows
escaping from local optima in their search for the glo-
bal optimum. Nevertheless, metaheuristics do not guar-
antee that the optimum of the problem is going to be
found in a given application of the methodology.
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The problem of designing a new system

The DES, whose design or operation is the objective of
the stated decision problem, might, in particular, pres-
ent freedom degrees in its structure. This situation is
very common in processes, where the system is under a
process of design; hence, the lack of definition may
cover many parts of the system itself. For example,
there may exist a variety of alternative structural con-
figurations for the system. Any of these structures can
lead to very different models and, as a consequence, to
systems of wide diversity.

This situation might arise in a design process, where
different structural solutions can be taken into account.
For example, it is possible to consider the design of a
manufacturing system, where different suppliers may
provide with different solutions for every subsystem:
raw materials supply, manufacturing lines or cells,
machining centres, assembly stations, quality control,
reject line, storage and so on.

In this case, it is possible to build up diverse alterna-
tive solutions for the manufacturing system by means
of a combination of the diverse subsystems provided by
the different suppliers.

The design problem, sometimes, might produce a
number of structural alternatives as a consequence of
the combinatorial process arisen from the consideration
of the different solutions for the subsystems.17

The combinatorial process for constructing the feasi-
ble solutions of the decision problem may lead to a very
large solution space, a situation called combinatorial
explosion. This fact, in its own, justifies the requirement
of particular search strategies to find promising solu-
tions among the set of feasible solutions, impossible to
explore exhaustively.

On the other hand, the structural freedom degrees
can arise in other situations than in design of DESs, for
example, in a control process. An example of the former
is the choice in real time of a manufacturing strategy.
This choice may imply changes in material and infor-
mation routes, in product lot and conveying sizes and
so on.

Anyway, the PN models developed for processes,
where there is a diversity of alternative structural con-
figurations, may present the following: (a) diverse sizes
for the incidence matrices and (b) different values
for their elements, associated with the alternative
structures.

Classic solving approach: divide and conquer

A common approach for coping with the optimization
of this type of systems consists of (a) selecting some of
the feasible structural configurations and (b) perform-
ing simulations or specific optimization processes for
each case. Following this point of view, eventually, it is

possible to characterize every alternative structural con-
figuration by a quality parameter resulting from the
behaviour of the system.

In optimization problems, where there are not any
undefined structural parameters, there is a single struc-
tural configuration for the system.18 This kind of prob-
lem is a classic one, where an optimal solution can be
found by means of the optimization methodology
described in the following. The stages of the solution
process for the optimization problems are as follows:
(a) choosing a subset of promising solutions from the
solution space, (b) simulating their behaviour calculat-
ing a quality parameter, (c) comparing these para-
meters and (d) selecting the best solution.

The classic approach to solve a similar problem with
alternative structural configurations consists of the fol-
lowing: (a) a first step of selecting the most promising
structures and (b) launching an optimization process.
This process, as described in the previous paragraphs,
is performed by the association of the DES with every
chosen alternative structure.

Proposed solving methodology: unity makes strength

Alternatively, this article proposes a solving strategy
for optimization problems with alternative structural
configurations. This methodology is based on the appli-
cation of the classic methodology to a case, where there
is an absence of structural parameters. Instead of stat-
ing so many optimization problems as alternative struc-
tures, a single optimization process will be stated for
the whole decision-making process. The possibility for
doing so is based on the use of the appropriate formal-
isms. These proposed formalisms are included in the
model itself, the complete set of alternative structural
configurations: (a) compound PNs and (b) alternatives
aggregation Petri nets (AAPNs).

As a first advantage of this strategy, it can be stated
that it reduces the limitations in the process of intuitive
selection of the structural alternatives of the system.

Furthermore, the optimization in a single process
prevents the dead ends associated with the optimization
processes related to specific non-successful structures.
Both the proposed methodology and the classic
approach often require making different types of deci-
sions. These decisions are related not only to the struc-
ture of the system but also to other controllable
non-structural parameters, such as timing and initial
markings.

The main drawback of this proposed strategy is the
fact that the PN model uses to be larger and more com-
plex than a single model constructed for a unique alter-
native structural configuration. However, the amount
of information required to describe the single PN
model may be smaller than the information required to
describe the set of PN models associated with different
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alternative structures. This reduction depends mainly
in the similarity of the diverse alternative structures.
The mentioned similarity is common in certain situa-
tions such as the design of DESs.19,20

The comparison between the performance of both
the proposed and the classic methodologies is favour-
able to the former in case there are similarities among
the alternative structural configurations.

This article deals with two formalisms, based on the
paradigm of the PNs. Both formalisms have been cre-
ated for modelling, in a compact way, a DES with
structural freedom degrees. This compactness of the
model allows developing optimization procedures that,
in certain cases, will be more efficient than the classic
methodology.

Compound and AAPNs

The two formalisms that will be considered in this arti-
cle are the compound PNs and the AAPNs. The trans-
formation between both formalisms allows defining the
equivalence conditions among models described with
these different formalisms. It also allows comparing the
performance of both formalisms applied to the same
optimization problem. Two early versions of transfor-
mation algorithms between these two formalisms, for-
ward and backward, were presented by Latorre-Biel
and Jiménez-Macı́as;21 however, in this article, a new,
improved and complete version of the transformation
algorithm, from a compound PN to an AAPN, as well
as the mathematical foundations of the complete algo-
rithm is presented and detailed.

On the other hand, the differences among both form-
alisms, the compound PNs and the AAPNs, can be
used in diverse applications or in different stages of the
same application. In this last step, it is very convenient
to resort to a transformation algorithm, such as the one
presented in this article. This operation might profit
from one of the formalisms in a certain stage of the res-
olution of the decision-making problem and from the
other formalism in a subsequent stage.

The structure of this article is described in this para-
graph. In section ‘Modelling of a DES with an unde-
fined structure’, several previous concepts about
modelling of systems with structural undefinition,
including the compound PNs and the AAPNs, will be
presented. Section ‘Transformation algorithm from a
compound PN to an AAPN’ is focused on the transfor-
mation algorithm to obtain an equivalent model repre-
sented by means of an AAPN, from a given model,
described using the formalism of the compound PNs.
Some examples to illustrate the application of this tech-
nique are presented in section ‘Examples of applica-
tion’, while section ‘Application of the models to a
decision-making process’ summarizes the steps for the
application of the proposed decision-making process.

Finally, section ‘Conclusion and future research’ deals
with the conclusions and future research lines.

Modelling of a DES with an undefined
structure

A compound PN is a formalism based on the paradigm
of the PNs. It allows modelling a DES with an unde-
fined structure by introducing parameters in its inci-
dence matrices. Although an undefined PN can be
defined as a PN with undefinition in any of its compo-
nents (structure, marking, time, interpretation etc.), the
article deals with two types of PNs with structural
undefinition: compound PNs and AAPNs.

Definition 1. Compound PN. A compound PN Rc can
be defined as a 7-tuple Rc= hP, T, Pre, Post, m0, Sa,
Svalai, where

1. P and T are a set of places and transitions,
respectively, such that P 6¼[ and T 6¼[.

2. Pre and Post are the pre-incidence and post-
incidence matrices, respectively.

3. m0 is the initial marking.
4. Sa={a1, a2, ., an} is a set of controllable

undefined parameters.
5. Svala is the set of feasible combinations of values

for the controllable undefined parameters.
Svala={cv1, cv2, ., cvm} verifies that the assign-
ment (a1, a2, ., an)= cvi should be performed
as a consequence of a decision, which discards
the other elements belonging to Svala that have
not been chosen.

6. |Sstra|. 1, that is to say, in order the PN to be a
compound PN and not only a parametric PN, it
is necessary that it includes at least a controlla-
ble undefined structural parameter.

h

Notice that the condition 5 of the Definition 1
implies that the choice of a certain structure given by
cvstrj2Svalstra={cvstr1, cvstr2, ., cvstrm} is a conse-
quence of a decision. Summarizing, it can be found that
Svalstra is a set of exclusive entities that reflects the
nature, in turn exclusive, of the different structural
alternatives for the DES with an undefined structure.

The compound PN allows to profit from the similari-
ties or shared information among the alternative struc-
tural configurations of the DES. However, the existence
of a number of undefined structural parameters, as well
as of a large set of combinations of values for them,
might lead the simulation of the model of the system to
require a significant usage of computer resources.

In order to provide with another formalism that can
be built up, without including parameters in the
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incidence matrices, by means of different modelling
procedures, the AAPNs have been created. The
AAPNs present a conceptual proximity with the
coloured PNs.

The first element of an AAPN bears the exclusive
nature of the structural alternatives modelled by the
net.

Definition 2. Choice variables. A set of choice variables is
defined in the following way

SA = a1, a2, . . . , asj9!ai = 1, where i 2 N�,f
1� i� s ^ aj = 08j 6¼ i, 1� j� sg

Moreover, the assignment ai=1 is the result of a
decision.

h

As a consequence, the role that Svalstra plays in a
compound PN, in the case of an AAPN is carried out
by SA.

Definition 3. AAPN. An AAPN, RA, can be defined as the
following 9-tuple

RA = P, T , Pre, Post,m0, Sa, Svala, SA, fAh i

where

1. P and T are a set of places and transitions,
respectively, which verify P 6¼[ and T 6¼[.

2. Pre and Post are the pre-incidence and post-
incidence matrices, respectively.

3. m0 is the initial marking.
4. Sa={a1, a2, ., an} is a set of controllable

undefined parameters. In an AAPN, it might
happen that Sstra=[.

5. Svala is the set of feasible combinations of values
for the controllable undefined parameters.

6. SA is a set of choice variables, such that
|SA|. 1.

7. fA: T! f(a1, ., an) is a function that assigns to
every transition t a Boolean function of choice
variables.

h

In the previous definition, the role played by fA guar-
antees that every choice variable can be associated with
a set of transitions. This choice variable would be eval-
uated before the evolution of the system begins, once
that a decision has allowed activating one of the choice
variables.

It is interesting to consider that the set of undefined
structural parameters of RA is a subset of the undefined
parameters: Sstra 4Sa. If Sstra=[, then RA is called a
simple AAPN, while in case that Sstra 6¼[, then RA is a
compound AAPN.

As a consequence of the previous considerations, it
can be seen that the evolution rules for an AAPN
change slightly from the dynamics of a generalized PN.

In particular, before the AAPN begins its evolution,
a decision must be made concerning which choice vari-
able should be activated. This decision assigns ‘0’,
meaning not chosen, to all the other choice variables.

Definition 4. Enabled transition of an AAPN. Let us consider
an AAPN RA associated with a set of choice variables
SA={a1, a2, ., as}; let us consider the following
decision

ai = 1) ai = 08j 2 N� such that 1� j� n ^ j 6¼ i

A certain transition tj2T of an AAPN is said to be
enabled if

mi � Pre pi, tj

� �
8pi 2 8 tj ^ fA tj

� �
= 1

h

In other words, transition tj belonging to the PNs
enabled when the number of tokens in place pi is at least
as large as the weight of the arc connecting pi with tj,
for every place pi which are input places to the transi-
tion tj, and the function of choice variables associated
with this transition leads to a true value if evaluated.

It should be noticed that it is not necessary to evalu-
ate fA(tj) in every step of the evolution of the AAPN. It
is possible to evaluate every function of choice variables
associated with the transitions before starting the simu-
lation and to remove every transition associated with a
function of choice variables with value False.

On the other hand, the transitions that are associated
with a function of choice variables, whose value is True,
should be preserved, but the function can be removed.

Transformation algorithm from a
compound PN to an AAPN

Let us consider the following compound PN Rc= hP,
T, Pre, Post, m0, Sa, Svalai:

Step 1. Define a set of choice variables from
Svalstra(R

c)={cvstr1, cvstr2, ., cvstrm} in the form
SA={a1, a2, ., am|d! ai=1, 1 � i � m, aj=0" j
6¼ i, 1 � j � m}, where |SA|= |Svalstra(R

c)|=m.
Step 2. Create a bijection among the elements of
Svalstra(R

c) and the choice variables of SA.
Step 3. Replicate every transition ti in the set
ft1

i , t
2
i ,., tm

i g, where m=|SA| and
1. Pre(pj, t

q
i ), Post(t

q
i , pk) � (v1

q, v
2
q,., vm

q ) con-
taining the values for every structural para-
meter associated with the combination of
values for the undefined parameters cvstrq.
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2. The choice variable aq is associated with the
transition t

q
i as a Boolean condition for con-

trolling the enabling of the transition.
Step 4. Transform the AAPN resulting from the
application of step 3 removing the isolated transi-
tions and places.
Step 5. Application of a reduction rule to quasi-
identical transitions, associated with different choice
variables, thus obtaining an AAPN with a reduced
set of transitions.

h

The step 5 of the previous algorithm requires to
define the concept of quasi-identical transitions, see
Figure 1, and to formulate the reduction rule.

Definition 5. Quasi-identical transition. Let t1, t2, .,
tn2T(RA) be a set of transitions of an AAPN. A pair
of transitions belonging to T(RA) is said to be quasi-
identical if they verify the following properties:

1. "ti, tj2T(RA)d ai, aj2SA such that ai is associ-
ated with ti, and aj is associated with tj, where
tj 6¼ tj.

2. "ti, tj2T(RA) if it is removed the association
with ai and aj) ti and tj are identical transi-
tions.22

h

Proposition. Reduction rule for quasi-identical transitions. Let
RA be an AAPN and SA its associated set of choice
variables.

Let t1, t2, ., tn2T(RA) be n quasi-identical transi-
tions of the AAPN, such that "ti2T(RA), where 1 � i
� n, ai is associated with ti, with ai2SA (see Figure 1).

Let t be, without associated choice variables, an
identical transition to t1, t2, ., tn. If the function of
choice variables a1+ a2+ ���+ an, where + is the logic
operator ‘OR’, is associated with t, then it is possible to
state that t is equivalent to t1, t2, ., tn.

Proof. In order to analyse the behaviour of both equiva-
lent subnets, one related to transition t, see Figure 2,
and other associated with the set of quasi-identical tran-
sitions t1, t2, ., tn, see Figure 1, it is necessary, first of
all, to select arbitrarily one of the choice variables to be
activated. As a result of this selection, the choice vari-
able aq2SA will be activated, with 1 � q � n.

By definition of choice variables, the rest of the
choice variables ai2SA, i 6¼ q, 1 � i � n, will verify that
ai=0.

This fact implies that in the evolution of the AAPNs,
where the set of identical transitions t1, t2, ., tn exists,
only tq can be enabled, hence, the rest of them can be
removed (see Figure 3).

On the other hand, the function of choice variables
a1+ a2+ ���+ an associated with t will verify that
a1+ a2+ ���+ an=0+ ���+0+ aq+0+ ���+0=1
(see Figure 4).

Due to the fact that t and tq are identical transitions,
and they are both associated with an activated choice
variable or function of choice variables, their behaviour
is the same. This reasoning can be repeated for any of
the other transitions of the set t1, t2, ., tn with the
same results. As a consequence, t1, t2, ., tn and t are
equivalent.

Figure 1. Subnet associated with the set of quasi-identical
transitions t1, t2, ., tn.

Figure 3. Subnet associated with the set of choice variables
t1, t2, ., tn after the activation of the choice variable aq.

Figure 2. Subnet associated with the transition t.
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Examples of application

Example 1

Let us consider the compound PN depicted in Figure 5.
In this first example, a compound PN will be trans-

formed into an equivalent AAPN by means of the
application of the steps of the algorithm described in
the previous section.

The set of undefined parameters of the original com-
pound PN contains only five structural parameters
Sa(R

c)=Sstra(R
c)={a1, a2, a3, a4, a5}. On the other

hand, the set of feasible combinations of values for the
undefined structural parameters has three elements:
Svalstra(R

c)={(0,2,0,0,0), (0,1,1,1,0), (1,2,0,1,2)}:

Step 1. Svalstra(R
c)={(0,2,0,0,0), (0,1,1,1,0),

(1,2,0,1,2)}, |Svalstra(R
c)|=3= |SA|.

Hence, it is possible to create the following set of
choice variables

SA = a1, a2, a3j9!ai = 1,f
1� i� 3, aj = 08j 6¼ i, 1� j� 3g

Step 2. Create a bijection between the elements of
Svalstra(R

c) and SA (see Figure 6).
Step 3. Replicate every transition ti in the set
ft1

i , t
2
i ,., tm

i g, where 3= |SA| and 1 � i � 3.
1. Pre(pj, t

q
i ), Post(tq

i , pk) � (v1
q, v

2
q,., vm

q ) con-
taining the values for every structural para-
meters associated with the combination of
values for the undefined parameters cvstrq.

In order to calculate the weight of the arcs of every
replicated transitions, the structural parameters associ-
ated with every cvstrq2Svalstra(R

c)={cvstr1, cvstr2, .,
cvstrm} with 1 � q � 3 will be considered. On the other
hand

Sstra = a1, a2, a3, a4, a5ð Þf g
cvstr1 = 0, 2, 0, 0, 0ð Þ,
cvstr2 = 0, 1, 1, 1, 0ð Þ, cvstr3 = 1, 2, 0, 1, 2ð Þ

The values of the defined structural parameters
defined of Rc are given by the following expression (see
Figure 7)

Sstrb = f(b6,b7,b8,b9)g,
where (b6,b7,b8,b9)= 1, 1, 1, 0ð Þ

Figure 6. Bijection between SA and Svalstra(Rc).

Figure 7. Naming of the structural parameters of Rc.

Figure 4. Subnet associated with the transition t after the
activation of the choice variable aq.

Figure 5. Compound Petri net.

Latorre-Biel et al. 7



Transition t1 is replicated in ft1
1, t

2
1, t

3
1g. In this case,

i=1

q= 1) v1
q, v

2
q, . . . , vm

q

� �

= a1,a2,a3,a4,a5,b6,b7,b8,b9ð Þ
= 0, 2, 0, 0, 0, 1, 1, 1, 0ð Þ
j= 1) Pre pj, t

q
i

� �
=Pre(p1, t1

1)=b6 = 1

k = 2) Post t
q
i , pkð Þ=Post(t1

1, p2)=a2 = 2

k = 3) Post t
q
i , pkð Þ=Post(t1

1, p3)=a3 = 0

q= 2) v1
q, v

2
q, . . . , vm

q

� �

= a1,a2,a3,a4,a5,b6,b7,b8,b9ð Þ
= 0, 1, 1, 1, 0, 1, 1, 1, 0ð Þ
j= 1) Pre pj, t

q
i

� �
=Pre(p1, t2

1)=b6 = 1

k = 2) Post t
q
i , pkð Þ=Post(t2

1, p2)=a2 = 1

k = 3) Post t
q
i , pkð Þ=Post(t2

1, p3)=a3 = 1

q= 3) v1
q, v

2
q, . . . , vm

q

� �

= a1,a2,a3,a4,a5,b6,b7,b8,b9ð Þ
= 1, 2, 0, 1, 2, 1, 1, 1, 0ð Þ
j= 1) Pre pj, t

q
i

� �
=Pre(p1, t3

1)=b6 = 1

k = 2) Post t
q
i , pkð Þ=Post(t3

1, p2)=a2 = 2

k = 3) Post t
q
i , pkð Þ=Post(t3

1, p3)=a3 = 0

The process is repeated with the replication of transi-
tion t2ft1

2, t2
2, t3

2g and t3 in ft1
3, t

2
3, t

3
3g:

2. As a second stage in the step 3 of the trans-
formation algorithm, the choice variable aq is
associated with the transition t

q
i as a Boolean

condition that controls the enabling of the
transition 1 � i � 3.

The result of step 3 of the algorithm, consisting of
the replication of every transition, can be seen in
Figure 8.

It can be seen in the resulting AAPNs that it lacks
undefined structural parameters in contrast with the
original compound PN.

Furthermore, the association of the choice variables
with the replicated transitions models the exclusiveness
of the different alternative structural configurations.
This exclusiveness requires making a decision before
the evolution of the PN begins:

Step 4. Removal of the isolated places and
transitions.

The isolated places and transitions lack of arc connect-
ing them to other nodes of the net. For this reason, they
do not intervene in the flow of tokens that describes the

evolution of the system. As a consequence, the isolated
places and transitions can be removed from the AAPN
without altering its behaviour.

The first stage of step 4 consists of identifying and
removing from the AAPN all the arcs with weight zero.
The result can be seen in Figure 9.

As a next step of step 4, the isolated places and tran-
sitions should be identified and removed. In this exam-
ple, there are two isolated transitions: t1

3 and t2
3. In order

to conclude step 4, the isolated transitions should be
removed. The result can be seen in Figure 10.

Step 5. Apply the reduction rule to the quasi-
identical transitions, obtaining an AAPN with a
reduced set of transitions.

In the reduction rule for quasi-identical transitions, it
can be seen that a set of quasi-identical transitions can
be reduced to a single transition associated with a cer-
tain function of choice variables.

In order to find quasi-identical transitions, it is nec-
essary to search for identical transitions in the general-
ized PN obtained by removing the choice variables of
the AAPN.

In the identical transitions, the input and output arcs
should connect the transitions with the same places and
should be weighted with the same values. On a further
step, it should be checked whether the associated choice
variables verify the condition of the reduction rule.

In the present example, two pairs of quasi-identical
transitions have been found: t1

1 and t3
1 on one side and

Figure 8. Graphical representation of Rc after replicating the
transitions.

Figure 9. Alternatives aggregation Petri nets after removing
the zero-weighted arcs.

8 Advances in Mechanical Engineering



t2
2 and t3

2 on the other. The application of the reduction
rule allows the substitution of the first pair for the tran-
sition t1

r , which is associated with the function of choice
variables a1+ a3. Moreover, the second pair of quasi-
identical transitions can be replaced by t2

r , associated
with the function a2+ a3. The result of this last step of
the algorithm is depicted in Figure 11.

Example 2

In the following, a compound PN in both representa-
tions can be seen: a graphical one in Figure 12 and
another matrix-based one based on the incidence matrix
in Figure 13.

The set of structural parameters of the compound
PN Rc is as follows

Sstrg Rcð Þ= a1,b2,b3,a4,a5,b6f g
= Sstra Rcð Þ [ Sstrb Rcð Þ, where
= Sstra Rcð Þ= a1,a4,a5f g and Sstrb Rcð Þ
= fb2,b3,b6g

On the other hand, the set of feasible values for the
structural parameters of Rc can be written as follows

Svalstrb Rcð Þ= 1, 1, 1ð Þf g
Svalstra Rcð Þ= 1, 0, 1ð Þ, 0, 1, 0ð Þ, 2, 0, 1ð Þ, 0, 1, 2ð Þf g

Finally, it is possible to determine the set of feasible
values for every undefined structural parameter of Rc

Svala1 Rcð Þ= 0, 1, 2f g
Svala4 Rcð Þ= 0, 1f g
Svala5 Rcð Þ= 0, 1, 2f g

The first partition of Svalstra(R
c) has order 2 and can

be represented as follows

Y
1

Svalstra Rcð Þð Þ= S1valstra Rcð Þ, S2valstra Rcð Þf g

Svalstra Rcð Þ= S1valstra Rcð Þ [ S2valstra Rcð Þ
Svalstra Rcð Þ= 1, 0, 1ð Þ, 0, 1, 0ð Þ, 2, 0, 1ð Þ, 0, 1, 2ð Þf g
S1valstra Rcð Þ= 1, 0, 1ð Þ, 0, 1, 0ð Þf g
S2valstra Rcð Þ= 2, 0, 1ð Þ, 0, 1, 2ð Þf g

In order to know the number of undefined structural
parameters associated with every subset of the parti-
tion, it is necessary to analyse every parameter of
Svalstra(R

c).
On one hand, the first subset of the partition will be

considered

S1vala1
Rcð Þ= 0, 1f g

S1vala4
Rcð Þ= 0, 1f g

S1vala5
Rcð Þ= 0, 1f g

Figure 10. Alternatives aggregation Petri net after the
application of step 4.

Figure 11. Alternatives aggregation Petri net, equivalent to the
compound Petri net Rc.

Figure 12. Compound PN.

Figure 13. Matrix-based representation of the compound Petri
net.

Latorre-Biel et al. 9



As a consequence, there will be three undefined
structural parameters associated with this subset of the
partition, since any of them can take values from a set
with more than one element

S1stra Rcð Þ= fa1
1,a1

4,a
1
5g

On the other hand, the second subset of the partition
will lead to the following

S2vala1
Rcð Þ= 0, 2f g

S2vala4
Rcð Þ= 0, 1f g

S2vala5
Rcð Þ= 1, 2f g

In this case, there will be another new three unde-
fined structural parameters associated with this subset
of the partition, since any of them can take values from
a set with more than one element

S2vala Rcð Þ= fa2
1,a2

4,a
2
5g

As a result, it is possible to see how this partition of
Svalstra(R

c), P1(Svalstra(R
c)), from a compound PN with

three undefined structural parameters leads to a repre-
sentation with six undefined structural parameters. This
representation can be a set of compound alternative PN
or an AAPN. The AAPN that results from the replica-
tion of the transitions of the compound PN Rc accord-
ing to this partition is represented in Figure 14(a) and
its incidence matrix is shown in Figure 14(b).

As a conclusion, it is possible to state that despite
the fact that the original compound PN Rc has only
three undefined structural parameters Sstra(R

c)=
{a1, a4, a5}, the resulting AAPN obtained by a replica-
tion of the transitions based on this first partition of
Svalstra(R

c) has six undefined structural parameters

Sstra RA
� �

= S1stra Rcð Þ [ S2stra Rcð Þ= fa1
1,a2

1,a
1
4,a

2
4,a

1
5,a

2
5g

Example 3

The second partition of Svalstra(R
c) has order 2 and can

be represented as follows

Y
2

Svalstra Rcð Þð Þ= S1valstra Rcð Þ, S2valstra Rcð Þf g

Svalstra Rcð Þ= S1valstra Rcð Þ [ S2valstra Rcð Þ
Svalstra Rcð Þ= 1, 0, 1ð Þ, 0, 1, 0ð Þ, 2, 0, 1ð Þ, 0, 1, 2ð Þf g
S1valstra Rcð Þ= 1, 0, 1ð Þ, 2, 0, 1ð Þf g
S2valstra Rcð Þ= 0, 1, 0ð Þ, 0, 1, 2ð Þf g

In order to know the number of undefined structural
parameters associated with every subset of the parti-
tion, it is necessary to analyse every parameter of
Svalstra(R

c).

On one hand, the first subset of the partition will be
considered

S1vala1(R
c)={1, 2}

S1vala4(R
c)={0}) In this subset of the second par-

tition, a4 is no longer an undefined structural para-
meter but a defined one: b1

4.
S1vala5(R

c)={1}) In this subset of the second par-
tition, a5 is no longer an undefined structural para-
meter but a defined one: b1

5.

As a consequence, there will be only one undefined
structural parameter associated with this subset of the
partition, since only a1

1 can take values from a set with
more than one element

S1vala1
Rcð Þ= a1

1

� �

On the other hand, the second subset of the partition
will lead to the following:

S2vala1(R
c)={0}) In this subset of the second par-

tition, a1 is no longer an undefined structural para-
meter but a defined one: b1

1.
S2vala4(R

c)={1}) In this subset of the second par-
tition, a4 is no longer an undefined structural para-
meter but a defined one: b1

4

S2vala5(R
c)={0, 2}

This case will provide with another single undefined
structural parameter associated with the corresponding
subset of this second partition, a2

5, since it is the only
one that can take values from a set with more than one
element

1
1t

2
1t

1
2t

2
2t

- 1
1α - 2

1α 1 1 p1

1 1 - 1
4α - 2

4α p2
1
5α

2
5α 1 1 p3

a1 a2 a1 a2

W(RA) =

p1

p2 p3

a2
1
1t 2

1t

1
1α 2

1α
1
5α 2

5α

1
4α

2
4α

1
2t 2

2t a2

a1

a1

(a)

(b)

Figure 14. Graphical representation of an alternatives
aggregation Petri net: (a) obtained from first partition of
Svalstra(Rc) and (b) matrix-based representation obtained from a
first partition of Svalstra(Rc).
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S2vala Rcð Þ= a2
5

� �

As a result, it is possible to see how this second par-
tition of Svalstra(R

c), P2(Svalstra(R
c)), from a compound

PN with three undefined structural parameters leads to
a representation with only two undefined structural
parameters. This representation can be a set of com-
pound alternative PN or an AAPN. The AAPN that
results from the replication of the transitions of the
compound PN Rc according to this partition is repre-
sented in Figures 15 and 16.

As a conclusion, it is possible to state that despite
the fact that the original compound PN Rc has only
three undefined structural parameters Sstra(R

c)=
{a1, a4, a5}, the resulting AAPN obtained by a replica-
tion of the transitions based on this second partition of
Svalstra(R

c) has only two undefined structural
parameters

Sstra RA
� �

= S1stra Rcð Þ [ S2stra Rcð Þ= fa1
1,a

2
5g

It is interesting to notice that it depends on the para-
meters of the transformation algorithm (in this case the
chosen partition) that the size of the resulting model is
more or less compact.

Application of the models to a
decision-making process

The process of decision-making associated with the pre-
vious examples might be carried out in the following
way:

Step 1. Define the optimization problem to be
solved:

Step 1.1. Determine the decision variables, also
called undefined parameters of the PN model.
Step 1.2. Determine a quantitative method for
assessing the quality of a given solution. For
example, define a cost function.
Step 1.3. Determine the additional constraints of
the decision problem. For instance, the time
period of the PN and the model of a dynamic
DES that covers the statement of the problem.

Step 2. Define the search method for feasible solu-
tions in the solution space. For example, a meta-
heuristic, such as genetic algorithms, tabu search,
swarm particle, ant colony or simulated annealing.
Step 3. Launch an instance of the optimization
problem:

Step 3.1. Select one feasible solution using the
search algorithm.
Step 3.2. Simulate the behaviour of the PN model
of the system under the chosen solution and the
constraints of the problem.
Step 3.3. Calculate the quality of the simulated
solution.
Step 3.4. If it is the first solution analysed, store
it, otherwise, compare the quality of the new solu-
tion with the one of the stored solution and store
the best of them.
Step 3.5. Evaluate the stopping criterion for decid-
ing if a new solution should be evaluated (step 3.1)
or the process is terminated. The solution of the
optimization problem given by this technique is the
best solution found by the algorithm.

This algorithm does not guarantee that the solution
found is the optimum of the stated optimization prob-
lem. However, it is likely to be close to it; for this rea-
son, it can be called quasi-optimal solution. The quality
of this quasi-optimal solution will depend on the tuning
of the search algorithm, as well as on the computational
resources and time devoted to solve the problem.

Conclusion and future research

In this article, it has been shown how it is possible to
relate two formalisms that have been created for repre-
senting a DES with an undefined structure, by means of
a transformation algorithm. Both formalisms, based on
the paradigm of the PN, the compound PNs and the
AAPNs share the possibility of removing redundant
information in models built up from alternative PNs.

Nevertheless, the compactness of the model in the
case of the AAPNs is achieved by means of sets of
structural parameters and the feasible combination for
their values. On the other hand, the capacity for con-
densing information, in the case of the AAPNs, is based

Figure 15. Graphical representation of an alternatives
aggregation Petri net obtained from a second partition of
Svalstra(Rc).

Figure 16. Matrix-based representation of an alternatives
aggregation Petri net obtained from a second partition of
Svalstra(Rc).

Latorre-Biel et al. 11



on the existence of shared subnets and the possibility of
controlling the token flow in the evolution of the PN
by means of the choice variables.

Both formalisms, compound PNs and AAPNs, have
led to promising results while implementing optimiza-
tion algorithms with guided search by means of meta-
heuristics based on genetic algorithms.

However, there is a long way ahead in applying the
methodology described in this article, in a variety of
real cases, which will allow acquiring knowledge on the
practical advantages and drawbacks of any of the pre-
sented formalisms.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) received no financial support for the research,
authorship and/or publication of this article.

References

1. Cassandras Christos G and Lafortune S. Introduction to

discrete event systems. 2nd ed. New York: Springer, 2008.
2. Peterson JL. Petri net theory and the modeling of systems.

Englewood Cliffs, NJ: Prentice Hall, 1981.
3. Silva M. Introducing Petri nets. In: Di Cesare F (ed.)

Practice of Petri nets in manufacturing. London: Chap-
man & Hall, 1993, pp.1–62.

4. Balbo G and Silva M (eds). Performance models for dis-

crete event systems with synchronizations: formalisms and

analysis techniques. Zaragoza: Editorial Kronos, 1998.
5. David R and Alla H. Discrete, continuous and hybrid

Petri nets. Berlin: Springer, 2005.
6. Recalde L, Silva Suarez M, Ezpeleta J, et al. Petri nets

and manufacturing systems: an examples-driven tour.
Lect Notes Comput Sc 2003; 2003: 742–788.

7. Ramadge PJG and Wonham WM. The control of dis-
crete event systems. P IEEE 1989; 77: 81–97.

8. Lee DY and DiCesare F. FMS scheduling using Petri
nets and heuristic search. IEEE T Robotic Autom 1992;
2: 1057–1062.

9. Moody JO and Antsaklis PJ. Supervisory control of dis-

crete event systems using Petri nets. Norwell, MA:
Kluwer, 1998.

10. Ghaffari A, Rezg N and Xie X. Design of a live and
maximally permissive Petri net controller using the the-
ory of regions. IEEE T Robotic Autom 2003; 19: 137–142.

11. Bai Q, Ren F, Zhang M, et al. Using colored petri nets to

predict future states in agent-based scheduling and plan-

ning systems. J Multiagent Grid Syst: Adv Agent Mediat

Autom Negot 2010; 6: 527–542.
12. Piera MA and Music G. Coloured Petri net scheduling

models: timed state space exploration shortages. Math

Comput Simulat 2011; 82: 428–441.
13. Mujica Mota M and Piera MA. An improved time line

search algorithm for manufacturing decision-making. Int

J Prod Res 2014; 52: 1116–1132.
14. Juan AA, Faulin J, Grasman SE, et al. A review of sim-

heuristics: extending metaheuristics to deal with stochas-

tic combinatorial optimization problems. Oper Res

Perspect 2015; 2: 62–72.
15. Baruwa OT, Piera MA and Guasch A. Deadlock-free

scheduling method for flexible manufacturing systems

based on timed colored petri nets and anytime heuristic

sarch. IEEE Trans Syst Man Cybern: Syst 2015; 45(5):

831–846.
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di Genoa.
22. Berthelot G. Transformations and decompositions of

nets. In: Brauer W, Reisig W and Rozenberg G (eds)

Petri nets: central models and their properties – advances

in Petri nets, vol. 254 (Lecture notes in computer science).

Berlin: Springer, 1987, pp.359–376.

12 Advances in Mechanical Engineering




