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Supplementary Figure 1: Sketch (top) and dimensions (bottom) of the cavity studied in 

Fig. 2B-I of the main text. The cavity consists of a Si cylinder (       , shown in green) 

of radius          µm immersed in a SiC host (shown as grey background). The location 

of the sphere in the main cavity is indicated by a black dot. The blue curves correspond to 

the second order polynomials                
  that fit to the specified dimensions. 

The resulting area is       . 



 

Supplementary Figure 2:  Sketch (left) and dimensions (right) of the cavity studied in Fig. 

2B-II of the main text. The cavity consists of a Si cylinder (       ) (shown in green) of 

radius          µm immersed in a SiC host (shown as grey background). The location of 

the sphere in the main cavity is indicated by a black dot.  The area contained between the 

two blue circles conforming the main cavity also equals        . 

 

Supplementary Figure 3: Sketch (left) and dimensions (right) of the cavity studied in Fig. 

2B-III of the main text. The cavity consists of a Si cylinder (       ) (shown in green) of 

radius          µm immersed in a SiC host (shown as grey background). The location of 

the sphere in the main cavity is indicated by a black dot. The area of the main cavity also 

equals       . 



 

 

Supplementary Figure 4: Sketch (top) and dimensions (bottom) of the cavity studied in 

Fig. 2B-IV of the main text. The cavity consists of a Si cylinder (       ) (shown in green) 

of radius          µm immersed in a SiC host (shown as grey background). The location 

of the sphere in the main cavity is indicated by a black dot. The blue curves correspond to 

the second order polynomials                
  that fit to the specified dimensions. 

The resulting area is also       .  



 

Supplementary Figure 5: Simulation results for (a) resonance frequency, normalized to 

the SiC plasma frequency, and (b) quality factor of the cavities represented in Fig. 2C of the 

main text for different amounts of loss at the SiC plasma frequency.  The figure illustrates 

how the eigenfrequencies of all cavities collapse to the plasma frequency as losses 

decrease, while the quality factor diverges. 

  



 

 

 

Supplementary Figure 6: Colormaps of the electric field magnitude distributions of 

resonant eigenmodes, obtained using numerical simulation, in four cavities consisting of a 

Si (       ) square of side            , immersed in a SiC host of different shapes. 

The external boundaries of the cavities are shematically depicted in Figs. S1-S4, and they 

are identical to the ones employed in Fig. 2 of the main text. All cavities are bounded by 

perfectly electric conducting (PEC) walls. The eigenfrequencies and quality factors of these 

eigenmodes are shown in Supplementary Figure 7. 

 



 

Supplementary Figure 7: Simulation results for (a) resonance frequency, normalized to 

the SiC plasma frequency, and (b) quality factor of the cavities represented in 

Supplementary Figure 6 for different amounts of loss at the SiC plasma frequency. The 

figure illustrates how the eigenfrequencies of all cavities collapse to the plasma frequency 

as losses decrease, while the quality factor diverges. 

  



 

(a) (b) 
 

Supplementary Figure 8: (a) Sketch of a generic 3D cavity of volume   bounded by the 

surface      with normal vector      , filled with a dielectric material with relative 

permittivity       .  (a) Sketch of a generic 3D cavity bounded by the surface      with 

normal vector      , whose volume is composed by the union of two dielectric regions 

        with relative permittivity         and        , respectively. Region     is 

assumed to be a simply connected volume completely immersed within    with surface     

and normal vector     . 

  



 

Supplementary Figure 9:  Sketch of a cavity consisting of two concentric spheres, with 

internal and external radii equal to a and b, respectively, and with internal and external 

permittivities equal to    and  , respectively.   

 

 

Supplementary Figure 10: (Left) Cavity characterized by volume   and surface 

   supporting and eigenmode with fields       at the eigenfrequency   . (Right) 

Perturbed cavity with volume         and volume         supporting and 

eigenmode with fields     at the eigenfrequency  . 

 

 



 

 

 

 

Supplementary Figure 11: Sketch (left) and dimensions (right) of the cavity studied in 

Fig. 3A-I of the main text. The cavity consists of a Si sphere (       ) (shown in red) of 

radius          µm immersed in a SiC host (shown as grey background). The location of 

the sphere in the main cavity is indicated by a black dot.    



 

 

Supplementary Figure 12: Sketch (left) and dimensions (right) of the cavity studied in Fig. 3A-

II of the main text. The cavity consists of a Si sphere (       ) (shown in red) of radius 

         µm immersed in a SiC host (shown as grey background). The location of the 

sphere in the main cavity is indicated by a black dot.   

 

 

Supplementary Figure 13: Sketch (left) and dimensions (right) of the cavity studied in Fig. 3A-

III of the main text. The cavity consists of a Si sphere (       ) (shown in red) of radius 

         µm immersed in a SiC host (shown as grey background). The cavity also 

contains several additional cubic dielectric particles (shown in blue) with permittivity    

 . The location of the sphere in the main cavity is indicated by a black dot.   

 



 

Supplementary Figure 14:  Sketch (left) and dimensions (right) of the cavity studied in Fig. 3A-

IV of the main text. The cavity consists of a Si sphere (       ) (shown in red) of radius 

         µm immersed in a SiC host (shown as grey background). The location of the 

sphere in the main cavity is indicated by a black dot.   

  



 

Supplementary Figure 15: Colormaps of the electric and magnetic field magnitude 

distributions of the degenerate modes excited in the cavity depicted in Fig. 3A-I of the main 

text. The eigenfrequencies and quality factors of these eigenmodes are shown in Fig. 3B, 

cavity I, of the main text.   

 

Supplementary Figure 16: Colormaps of the electric and magnetic field magnitude 

distributions of the degenerate modes excited in the cavity depicted in Fig. 3A-II of the 

main text. The eigenfrequencies and quality factors of these eigenmodes are shown in Fig. 

3B, cavity II, of the main text.   



 

Supplementary Figure 17: Colormaps of the electric and magnetic field magnitude 

distributions of the degenerate modes excited in the cavity depicted in Fig. 3A-III, of the 

main text. The eigenfrequencies and quality factors of these eigenmodes are shown in Fig. 

3B, cavity III, of the main text. 

 

 

Supplementary Figure 18: Colormaps of the electric and magnetic field magnitude 

distributions of the degenerate modes excited in the cavity depicted in Fig. 3A-IV, of the 

main text. The eigenfrequencies and quality factors of these eigenmodes are shown in Fig. 

3B, cavity IV, of the main text.   



 

Supplementary Figure 19: Sketch of the cavity and colormaps of the electric and 

magnetic field magnitude distributions of the two degenerate modes excited close to the 

SiC plasma frequency. The cavity is identical to that studied in Fig. 3A-I of the main text, 

except that the internal spherical particle is replaced by a cylindrical particle (shown in red) 

of radius 1.828 µm and height 0.5 µm, whose top and bottom faces are covered with 

perfect-magnetic-conducting (PMC) layers (shown in blue). The radius of the cylinder has 

been fixed at the first zero of the Bessel function of the first kind and order 1,           , 

so that it supports zero magnetic field on its lateral wall. The eigenfrequencies and quality 

factors of these eigenmodes are shown in Supplementary Figure 23, cavity I.   

  



 

Supplementary Figure 20: Sketch of the cavity and colormaps of the electric and 

magnetic field magnitude distributions of the two degenerate modes excited close to the 

SiC plasma frequency. The cavity is identical to that studied in Fig. 3A-II of the main text, 

except that the internal spherical particle is replaced by a cylindrical particle (shown in red) 

of radius 1.828 µm and height 0.5 µm, whose top and bottom faces are covered with 

perfect-magnetic-conducting (PMC) layers (shown in blue). The radius of the cylinder has 

been fixed at the first zero of the Bessel function of the first kind and order 1,           , 

so that it supports zero magnetic field on its lateral wall. The eigenfrequencies and quality 

factors of these eigenmodes are shown in Supplementary Figure 23, cavity II.   

 

 

  



 Supplementary Figure 21: Sketch of the cavity and colormaps of the electric and 

magnetic field magnitude distributions of the two degenerate modes excited close to the 

SiC plasma frequency. The cavity is identical to that studied in Fig. 3A-III of the main text, 

except that the internal spherical particle is replaced by a cylindrical particle (shown in red) 

of radius 1.828 µm and height 0.5 µm, whose top and bottom faces are covered with 

perfect-magnetic-conducting (PMC) layers (shown in blue). The radius of the cylinder has 

been fixed at the first zero of the Bessel function of the first kind and order 1,           , 

so that it supports zero magnetic field on its lateral wall. The eigenfrequencies and quality 

factors of these eigenmodes are shown in Supplementary Figure 23, cavity III.  

  



  

 

 

Supplementary Figure 22: Sketch of the cavity and colormaps of the electric and 

magnetic field magnitude distributions of the two degenerate modes excited close to the 

SiC plasma frequency. The cavity is identical to that studied in Fig. 3A-IV of the main text, 

except that the internal spherical particle is replaced by a cylindrical particle (shown in red) 

of radius 1.828 µm and height 0.5 µm, whose top and bottom faces are covered with 

perfect-magnetic-conducting (PMC) layers (shown in blue). The radius of the cylinder has 

been fixed at the first zero of the Bessel function of the first kind and order 1,           , 

so that it supports zero magnetic field on its lateral wall. The eigenfrequencies and quality 

factors of these eigenmodes are shown in Supplementary Figure 23, cavity IV.   

  



 

 

 

 

Supplementary Figure 23: Simulation results for (a) resonance frequency, normalized to 

the SiC plasma frequency, and (b) quality factor of the cavities represented in 

Supplementary Figures 19-22 for different amounts of loss at the SiC plasma frequency.  

The figure illustrates how the eigenfrequencies of all cavities collapse to the plasma 

frequency as losses decrease, while the quality factor diverges. In this case, the differences 

on the eigenfrequencies for finite losses are smaller than those reported in the cavities 

contaning a spherical particle (Fig. 3 of the main text), whereas the differences on the 

quality factor are smaller. Both effects are associated to the strong fringing fields excited in 

the PMC top and bottom layers of the cylindrical paticle.  

  



 

Supplementary Figure 24: Sketch (left) and dimensions (right) of the cavity studied in Figs. 4I 

to 4V of the main text. The cavity consists of a Si sphere (       ) (shown in red) of 

radius          µm immersed in a SiC spherical host (shown as grey background) of 

different radii: 4I -        µm, 4II -        µm, III -        µm, IV -          µm 

and V -         µm. The location of the sphere in the main cavity is indicated by a black 

dot.   

 

 

Supplementary Figure 25: Sketch (left) and dimensions (right) of the cavity studied in 

Fig. 4-VI of the main text. The cavity consists of a Si sphere (       ) (shown as a red 

sphere) of radius          µm immersed in a SiC host (shown as grey background). The 

location of the sphere in the main cavity is indicated by a black dot.   

 



 

 

Supplementary Figure 26: Sketch of the simulation setup. The simulation setup consists 

of the 4 different 2D cavities studied in Fig. 2 of the main text (shown in dark grey), but 

with no PEC wall, and immersed within a vacuum circle (shown in light grey) terminated 

into a scattering boundary condition. (Please note that the dark solid line at the outer 

boundary of the vacuum circle is NOT the PEC wall, but it is a scattering boundary used in 

our simulator to imitate unbounded vacuum space scenario). The 2D cavities are excited 

with a 2D magnetic current line of 1 V (shown as a blue dot) perpendicular to the 2D plane, 

and positioned at the center of the dielectric cylinder (shown in green). The field intensity is 

monitored at the position indicated by the red cross, which is at 0.9 μm of the magnetic 

current source. 

  



 

Supplementary Figure 27: Electric field intensity spectra at the probe position, 

normalized to its maximal value, for the 4 different 2D cavities studied in Fig. 2 of the main 

text, but with no PEC wall, and immersed in an unbounded vacuum space. The simulation 

setup is reported in Supplementary Figure 26. 

 

Supplementary Figure 28: Electric field distribution at the plasma frequency for the 4 

different 2D cavities studied in Fig. 2 of the main text, but with no PEC wall, immersed in 

an unbounded vacuum space, and excited with a 2D magnetic current moment positioned at 

the center of the dielectric cylinder. The simulation setup is reported in Supplementary 

Figure 26. 



 

 

 

Supplementary Figure 29: Sketch of the simulation setup. The simulation setup consists 

of the 4 different 3D cavities studied in Fig. 3 of the main text (shown in dark grey), but 

with no PEC wall, and immersed within a vacuum sphere (shown in light grey) terminated 

into a scattering boundary condition. (Please note that the dark solid line at the outer 

boundary of the vacuum sphere is NOT the PEC wall, but it is a scattering boundary used 

in our simulator to imitate unbounded vacuum space scenario).  The cavities are excited 

with a current moment of 1 A∙m (shown as a blue arrow) positioned at the center of the 

dielectric sphere (shown in green). The field intensity is monitored at the position indicated 

by the red cross, which is at 0.5 µm on top of the current moment.  

  



 

Supplementary Figure 30: Electric field intensity spectra at the probe position, 

normalized to its maximal value, for the 4 different 3D cavities studied in Fig. 3 of the main 

text, but with no PEC wall, and immersed in an unbounded vacuum space. The simulation 

setup is reported in Supplementary Figure 29. 

 

Supplementary Figure 31: Electric field magnitude distribution at the plasma frequency 

for the 4 different 3D cavities studied in Fig. 3 of the main text, but with no PEC wall, 

immersed in an unbounded vacuum space, and excited with a current moment positioned at 

the center of the dielectric sphere. The simulation setup is reported in Supplementary 

Figure 29. 



Supplementary Note 1: Eigenfrequencies invariant under equi-areal transformations

�
Here we demonstrate the existence of 2D cavities supporting an eigenmode whose eigenfrequency is invariant

under equi-areal transformations. These eigemodes are studied in Fig. 2 of the main text. To begin with, let us
consider a 2D cavity of area A = Ah + Ai, composed of the union of a 2D dielectric particle and a 2D epsilon-
near-zero (ENZ) host. The particle has cross-sectional area Ai and perimeter Li, and it is characterized by relative
permittivity εi. We assume that the particle is immersed in an ENZ host (εh ' 0) of cross-sectional area Ah
externally bounded by perfectly electric conducting (PEC) walls (see Fig. 2A). Applying Faraday's law on the
boundaries of the ENZ host only we get

˛
∂Ah

E · dl =

˛
∂A

E · dl−
˛
∂Ai

E · dl = iωµ0

ˆ
Ah

H · ẑ dS (1)

The boundary condition n̂×E = 0 imposes that the circulation of the electric �eld on ∂A is zero. Following and
analysis similar to that in Ref. [5], we start by noting that the magnetic �eld within the ENZ host must be constant,

H = ẑHh
z , in order to ensure a �nite electric �eld E = i (ωε0εh)

−1∇×H = i (ωε0εh)
−1∇Hh

z × ẑ. Therefore, the
characteristic equation that must be satis�ed in order to support an eigenmode at the plasma frequency can be
written as follows:

ω =
i

µ0

Li
Ah

ZS (2)

where

ZS =

¸
∂Ai

E · dl
Hh
z Li

(3)

ZS represents the surface impedance of the internal particle, i.e., the line integral of the electric �eld divided
by the surface current. It can be readily checked that the surface impedance (3) is completely determined by the
geometrical and material properties of the particle, i.e., ZS is independent on the geometry of the cavity in which it
is immersed, as long as it is fully immersed in an ENZ host. To prove this point, we recall that, in this 2D problem
with a ẑ-linearly polarized magnetic �eld, the electric �eld is the determined by the gradient of the magnetic �eld,
E = i (ωε0εi)

−1∇Hz (ρ) × ẑ. Therefore, the electric �eld within the particle, and hence the line integral in (3)
are determined by the magnetic �eld distribution within the particle Hz (ρ). Moreover, since the magnetic �eld is
linearly polarized, its spatial distribution is given by the solution to the scalar Helmholtz equation

�

∇2Hz (ρ) +
ω2

c2
εiHz (ρ) = 0 (4)

The solution to this wave equation must also satisfy the boundary condition imposed by the continuity of the
�elds on the boundary of the particle:

Hz (ρ) = Hh
z on ∂Ai (5)

�
In other words, the magnetic �eld within the rod is given by the solution to the internal Dirichlet problem

for the Helmholtz equation (4) with boundary condition (5). In general, the distribution of the magnetic �eld on
the surface of the particle depends on the properties of the space external to the particle. In this manner, the
boundary condition (5) is in general a continuous function that depends on the properties of the space external to
the cavity. However, when the 2D particle is immersed in a 2D ENZ medium, the magnetic �eld at the boundary
of the particle is contstant, Hz (ρ) = Hh

z , independently of any other characteristic of the space external to the
particle. In other words, the magnetic �eld within the rod is given by the solution to the internal Dirichlet problem
of the Helmholtz equation, applied to the case in which the function at the boundary is a constant. Consequently,
the spatial distributions of the �elds within the particle are independent of the external shape of the ENZ host.



As for their magnitude, since the equations involved are linear, the �eld inside the particle will be proportional
to the �eld outside. Therefore, it is evident from (3) that the surface impedance is completely determined by the
geometrical and material properties of the particle, and it is independent of the cavity. Subsequently, it is clear from
(2) that the existence of an eigenmode at the plasma frequency is completely determined by the properties of the
particle, encapsulated in the surface impedance, ZS , and the cross-sectional area of the ENZ host, Ah. Therefore,
the existence of an eigenmode is independent of the shape of the external boundary of the cavity as long as its area
is kept constant. This includes changes in the topology of the cavity such as including holes. The only requirement
is that the internal particle and the overall area of the ENZ host are not a�ected by the geometrical transformation.

�
As a speci�c example, let us consider a a cylindrical particle of radius ri. In this case, it is convenient to write

the magnetic �eld within the cylinder as a series of cylindrical harmonics

Hi
z =

∞∑
n=−∞

iω Cn Jn (kiρ) einφ (6)

where the Cn elements are complex constants determining the magnitude of the magnetic �eld and ki = k0
√
εi is

the propagation constant within the cylinder. Jn (x) is the cylindrical Bessel function of the �rst kind and order
n. Recall that the magnetic �eld in the ENZ region is constant. Therefore, in order to satisfy the continuity of
the magnetic �eld on the surface of the cylinder only the n = 0 mode, with no azimuthal variation, can be excited.
Exceptions occur in those cases in which the magnetic �eld in the ENZ host is zero, which are considered in the
next section. Thus, by imposing the continuity of the tangential �elds for a non-zero magnetic �eld the line integral
of the electric �eld on the surface of the cylinder can be written as follows:

˛
∂Ai

E · dl = −iHh
z ηi (2πri)

J ′0 (kiri)

J0 (kiri)
(7)

where ηi = η0/
√
εi is the medium intrinsic impedance within the cylinder. Consequently, the surface impedance is

given by

ZS = −i ηi
J ′0 (kiri)

J0 (kiri)
(8)

Next, the characteristic equation that determines the existence of an eigenmode at the plasma frequency is found
by introducing (8) into (2)

ω =
c
√
εi

2πri
Ah

J ′0 (kiri)

J0 (kiri)
(9)

�
The theory above has been numerically validated by using a commercial electromagnetic solver (see Methods).

Speci�cally, we have included numerical examples of several 2D ENZ cavities containing a dielectric cylinder (Fig.
2 of the main text, and Supplementary Figures 1-5), as well as several 2D cavities in which the internal particle
consists of a dielectric cylinder with square cross-section (Supplementary Figures 6-7).



Supplementary Note 2: Spatially �electrostatic� �elds in epsilon-near-zero media:

�
Here we demonstrate that epsilon-near-zero ENZ media support exp(−iωt) time-varying spatially electrostatic

�eld distributions (i.e., H = 0→ ∇×E = 0). To begin with, we can inspect time-harmonic Maxwell curl equations
in a host medium of relative permittivity εh:

∇×H = −iωε0εhE (10)

∇×E = iωµ0H (11)

It is clear from (10) that, when εh = 0, the medium can support non-zero time-varying electric �elds even
when the magnetic �eld is zero H = 0. Naturally, it follows from (11) that the electric �eld must be irrotational
∇×E = 0.

�
The existence of exp(−iωt) time-varying spatially electrostatic modes can also be derived as a limiting case of the

usual solution of time-harmonic Maxwell curl equations. Without loss of generality, the electric and magnetic �elds
can be written as the sum of transversal magnetic (TM) and transversal electric (TE) �elds, i.e., E = ETM +ETE

and H = HTM + HTE . In addition, each term can be written by using a multipolar decomposition in terms of
Tesseral harmonics: [6]

ETM = −i
∑
{q}

{
n (n+ 1)

ATMnmlĴn (kr) +BTMnmlŶn (kr)

(kr)
2 Tnml (r̂) +

ATMnmlĴ
′
n (kr) +BTMnmlŶ

′
n (kr)

kr
ψnml (r̂)

}
(12)

HTM =
1

η

∑
{q}

ATMnmlĴn (kr) +BTMnmlŶn (kr)

kr
ϕnml (r̂) (13)

ETE =
∑
{q}

ATEnmlĴn (kr) +BTEnmlŶn (kr)

kr
ϕnml (r̂) (14)

HTE =
i

η

∑
{q}

{
n (n+ 1)

ATEnmlĴn (kr) +BTEnmlŶn (kr)

(kr)
2 Tnml (r̂) +

ATEnmlĴ
′
n (kr) +BTEnmlŶ

′
n (kr)

kr
ϕnml (r̂)

}
(15)

�
where {q} = {n,m, l} is a multi-index de�ned so that the sum runs over all spherical multipoles:

∑
{q}

=

∞∑
n=1

n∑
m=0

∑
l=e,o

(16)

In such a decomposition, the radial dependency of the �eld is described via the Schelkuno� form of the spherical
Bessel functions, Ĵn (kr) and Ŷn (kr), where, for example, Ĵn (x) =

√
πx/2 Jn+1/2 (x) with Jn (x) being the Bessel

function of the �rst kind and order n [6]. On the other hand, the angular dependency is described by Tesseral
harmonics Tnml (r̂) and linear combinations of its derivatives, ψnml (r̂) and ϕnml (r̂), given by:

Tnm(e
o)

(r̂) = r̂Pmn (cosθ)

(
cosmφ

sinmφ

)
(17)

ψnml (r̂) = θ̂ ∂θTnml (r̂) + φ̂
∂φTnml (r̂)

sinθ
(18)

ϕnml (r̂) = ψnml (r̂)× r̂ (19)



When the host medium is ENZ (ε→ 0, so η →∞ and k → 0), the TM �elds (20)-(21) reduce to

ETM = −i
∑
{q}

{
n (n+ 1)

[
1

(2n+ 1)!!

(
kn−1ATMnml

)
rn−1 − (2n− 1)!!

(
BTMnml
kn+2

)
1

rn+2

]
Tnml (r̂)

+

[
n+ 1

(2n+ 1)!!

(
kn−1ATMnml

)
rn−1 + n (2n− 1)!!

(
BTMnml
kn+2

)
1

rn+2

]
ψnml (r̂)

}
(20)

�

HTM =
1

ωµ0

∑
{q}

[
1

(2n+ 1)!!

(
kn+1ATMnml

)
rn − (2n− 1)!!

(
BTMnml
kn

)
1

rn−1

]
ϕnml (r̂) (21)

�
It is apparent from (20) that in order to ETM to be �nite but non-zero it is required ATMnml � k−n+1 and

BTMnml � kn+2. However, it is also clear from (13) that this implies a zero magnetic �eld HTM = 0. In this manner,
the multipolar decomposition rati�es the existence of spatially electrostatic �elds in ENZ media. In addition, this
decomposition gives some hints on how to excite these �elds. In general, sources of TM multipoles and their linear
combinations generate time-varying spatially electrostatic �elds in ENZ media.

�
On the other hand, the TE �elds (22)-(23) in ENZ media can be written as follows:

ETE =
∑
{q}

[
1

(2n+ 1)!!

(
knATEnml

)
rn − (2n− 1)!!

(
BTEnml
kn+1

)
1

rn+1

]
ϕnml (r̂) (22)

HTE =
i

ωµ0

∑
{q}

{
n (n+ 1)

[
1

(2n+ 1)!!

(
knATEnml

)
rn−1 − (2n− 1)!!

(
BTEnml
kn+1

)
1

rn+2

]
Tnml (r̂)

[
n+ 1

(2n+ 1)!!

(
knATEnml

)
rn−1 + n (2n− 1)!!

(
BTEnml
kn+1

)
1

rn+2

]
ψnml (r̂)

}
(23)

In this case, in order to obtain a �nite but non-zero elecric �eld ETE requires ATEnml � k−n and BTMnml � kn+1.
However, by contrast with the TM modes, this does not implies a zero mangetic �eld HTE .



Supplementary Note 3: Spatially �electrostatic� eigenmodes

�
Here we demonstrate the existence of eigenmodes with spatially �electrostatic� �eld distributions, whose eigen-

frequencies are independent with respect to geometrical deformations of the external boundaries of the cavity. These
eigemodes are numerically studied in Fig. 3 of the main text. To this end, let us consider �rst a generic 3D cavity
of volume V bounded by the surface Sout with outward normal unit vector n̂out(see Supplementary Figure 8a). We
de�ne an eigenmode with eigenfrequency ω as a �eld distribution E (r, ω) which is a solution to the time-harmonic
wave equation

∇×∇×E (r, ω)− ω2

c2
ε (r, ω) E (r, ω) = 0 (24)

subject to the boundary condition:
�

n̂out ×E (r, ω) = 0 (25)

�
Next, let the cavity be constructed by the union of two regions, V = V1 + V2, with homogenous permittivities

ε (r, ω) = ε1 (ω) for r ∈ V1, and ε2 (r, ω) = ε2 (ω) for r ∈ V2 (see Supplementary Figure 8b). In addition, we select
V1 as a simply connected volume (i.e., the particle) bounded by the surface Sin with outward normal unit vector n̂in.
We assume that the particle V1 is completely immersed within V2 (i.e., the background host). In this manner, the
eigenmodes of the cavity at the eigenfrequency ω correspond to the electric �eld distributions E (r, ω) = E1 (r, ω)
for r ∈ V1 and E (r, ω) = E2 (r, ω) for r ∈ V2 that satisfy the wave equations

�

∇×∇×E2 (r, ω)− ω2

c2
ε2 (ω) E2 (r, ω) = 0 (26)

∇×∇×E1 (r, ω)− ω2

c2
ε1 (ω) E1 (r, ω) = 0 (27)

�
Subject to the boundary conditions imposed by: (1) The boundary condition in the external surface of the cavity

Sout:
�

n̂out ×E2 (r, ω) = 0 (28)

�
(2) The continuity of the �elds at Sin

n̂in ×E2 (r, ω) = n̂in ×E1 (r, ω) (29)

n̂in ×H2 (r, ω) = n̂in ×H1 (r, ω) (30)

ε2 (ω) n̂in ·E2 (r, ω) = ε1 (ω) n̂in ·E1 (r, ω) (31)

n̂in ·H2 (r, ω) = n̂in ·H1 (r, ω) (32)

�
We assume further that the substance homogeneously �lling V1 is characterized by a positive relative permittivity

ε1 (ω) = εi > 0, whose frequency-dispersive properties can be neglected over the bandwidth of interest. On the
other hand, the substance �lling V2 is characterized by a dispersive permttivity that equals zero at the frequency ωp,
i.e., ε2 (ω = ωp) = 0 (the plasma frequency or the epsilon-near-zero (ENZ) frequency). For instance, ε2 (ω) might



be characterized by a Drude frequency-dispersion pro�le: ε2 (ω) = 1− ω2
p/ω

2. In this manner, at the frequency ωp
the system of wave equations (26)-(27) subject to the boundary conditions (28)-(32) reduces to

�

∇×∇×E2 (r, ωp) = 0 (33)

∇×∇×E1 (r, ωp)−
ω2
p

c2
εiE1 (r, ωp) = 0 (34)

with

n̂out ×E2 (r, ωp) = 0 (35)

n̂in ×E2 (r, ωp) = n̂in ×E1 (r, ωp) (36)

n̂in ×H2 (r, ωp) = n̂in ×H1 (r, ωp) (37)

n̂in ·E1 (r, ωp) = 0 (38)

n̂in ·H2 (r, ωp) = n̂in ·H1 (r, ωp) (39)

�
In this manner, if we �nd the geometries for which there is a solution to the above system of equations and

boundary conditions, we can determine the set of cavities for which there is an eigenmode at the plasma frequency.
In principle, there are many possible solutions. Here, we take advantage of the results of the previous section (i.e.,
the fact that ENZ media support spatially �electrostatic� �eld distributions) and focus on the set of eigenmodes that
have spatially �electrostatic� �eld distributions in V2. In other words, we can write the electric �eld distribution in
V2 as the gradient of a scalar potential, E2 (r, ωp) = −∇ϕ2 (r), with ∇2ϕ2 (r) = 0, accompained by a zero magnetic
�eld H2 (r, ωp) = 0. Thus, the existence of an eigenmode in the cavity for which the �eld distribution in V2 is
spatially �electrostatic�, is determined by the existence of solutions to the following system of di�erential equations:

�

∇2ϕ2 (r) = 0, E2 (r, ωp) = −∇ϕ2 (r) (40)

∇×∇×E1 (r, ωp)−
ω2
p

c2
εiE1 (r, ωp) = 0 (41)

�
subject to the the boundary conditions

�

n̂out ×E2 (r, ωp) = 0 (42)

n̂in ×E2 (r, ωp) = n̂in ×E1 (r, ωp) (43)

n̂in ×H1 (r, ωp) = 0 (44)

n̂in ·E1 (r, ωp) = 0 (45)

n̂in ·H1 (r, ωp) = 0 (46)



�
Let us inspect the conditions under which there is a solution for this system of di�erential equations/boundary

conditions. First, (44)-(46) impose some restrictions on the internal particle. In particular, the particle must
support a �eld distribution that has zero (normal and tangential) magnetic �eld, and zero normal electric �eld at
its boundary. However, if we can �nd a particle with those properties, it will be shown later that a cavity composed
by such particle and a ENZ host supports an eigenmode at the plasma frequency independently of the geometry
of the ENZ host. Moreover, one can readily identify a few examples with canonical geometries. These include:
(1) Homogeneous dielectric spheres with radii ri so that Ĵn(kiri) = 0 for n = 1, 2, 3..., (2) Homogeneous dielectric
cylinders of arbitrary height h, but whose bottom and top faces are covered with perfect-magnetic-conducting
(PMC) layers, and with radii ri so that Jn(kiri) = 0 for n = 1, 2, 3... In principle, it should be possible to �nd other
suitable particles via numerical optimization. Similarly, the same conditions could be satis�ed in 2D systems, for
example with in�nitely long cylinders with radius ri so that Jn(kiri) = 0 for n = 1, 2, 3...

�
Therefore, let us assume that the cavity contains one of the aforementioned particles. Consequently, the over-

all cavity will support an eigenmode at ωp as long as there is a solution to Laplace's equation ∇2ϕ2 (r) = 0,
with E2 (r, ωp) = −∇ϕ2 (r), subject to the boundary conditions n̂out × E2 (r, ωp) = 0 and n̂in × E2 (r, ωp) =
n̂in × E1 (r, ωp), where n̂in × E1 (r, ωp) is imposed by the internal particle. Note that speci�cying the tangential
components of the electric �eld is equivalent to �x the tangential derivatives of the potential, and that this is equiv-
alent to �xing the potential itself (see, e.g., [7] p. 36). This property appears commonly in electrostatic problems
with dielectric bodies, where the continuity of the tangential components of the electric �eld at the interface between
two dielectric bodies, n̂ × E, is expressed as the continuity of the potential itself ϕ [7]. Therefore, the eigenmode
will exist if there is a solution to Laplace´s equation in V2 subject to the Dirichlet boundary condition imposed
by the external surface of the cavity, and the �eld distribution in the surface of the internal particle. Indeed, it is
a classical result that the solution to the Dirichlet problem for Laplace's equation exists and is unique when the
boundary is su�ciently smooth and the prescribed potential on the boundary is continuous (see, e.g., [8] p. 89).
This ensures that there is a solution for almost any physically realizable cavity.

�
To �nalize the proof, it can be readily checked that this solution, whatever it is, will not change the electro-

magnetic �eld prescribed on the surface of the dielectric partice. In particular, (1) The solution of the electrostatic
problem is de�ned so that it preserves the tangential component of the electric �eld. (2) Even if the solution has
a nonzero normal component of the electric �eld, n̂in · E2 (r, ωp) 6= 0, the normal component within the particle
will continue to be zero, since ε2 (ωp) n̂in · E2 (r, ωp) = 0 = εin̂in · E1 (r, ωp), with εi 6= 0. (3) By de�nition, this
electrostatic �eld distribution since it is irrotational cannot generate any magnetic �eld on Sin.

�
In summary, it can be concluded that if we design a dielectric particle so that it enables the excitation of a

spatially �electrostatic� �eld distribution in the ENZ host with the eigenfrequency the same as the plasma frequency
of the ENZ host, then the cavity composed by the combination of this particle and ENZ host will always have an
eigenmode at the plasma frequency, independently of the geometry of the ENZ host. Therefore, the cavity can be
deformed resulting in signi�cant changes of its shape, size and topology. As long as the geometry of the ENZ host
supports a solution to the Dirichlet problem of Laplace's equation, the cavity will support an eigenmode at the
plasma frequency. The theory has been numerically validated by using a commercial electromagnetic solver (see
Methods). Speci�cally, we have included numerical examples of several ENZ cavities containing a dielectric sphere
(Fig. 3 of the main text, and Supplementary Figures 11-18), as well as several cavities in which the internal particle
consists of a dielectric cylinder whose top and bottom faces have been covered with PMC layers (Supplementary
Figures 19-23).



Supplementary Note 4: Canonical Example: Core-shell spherical cavity

�
Speci�c examples help to understand the behavior of some of the modes present in cavities of arbitrary geometry.

To this end, let us consider a cavity consisting of two concentric spheres, with internal and external radii of a and b,
respectively, and with internal and external permittivities of ε1 and ε2, respectively (see Supplementary Figure 9).
Due to its spherical symmetry, the modes excited in the cavity correspond to the spherical harmonics (12)-(15). The
characteristic equations that determine the eigenfrequencies of each spherical harmonic can be found by imposing
the boundary condition n̂ × E = 0 on the surface of the cavity, and enforcing the continuity of the �elds on the
surface between the two concentric spheres. This exercise leads to the following characteristic equations:

�

Ŷ ′n(k2b)Ĵ
′
n(k2a)− Ĵ ′n(k2b)Ŷ

′
n(k2a)

Ŷ ′n(k2b)Ĵn(k2a)− Ĵ ′n(k2b)Ŷ n(k2a)
=
η1
η2

Ĵ ′n(k1a)

Ĵn(k1a)
, for TM modes (47)

�

Ŷ n(k2b)Ĵn(k2a)− Ĵn(k2b)Ŷ n(k2a)

Ŷ n(k2b)Ĵ ′n(k2a)− Ĵn(k2b)Ŷ ′n(k2a)
=
η1
η2

Ĵn(k1a)

Ĵ ′n(k1a)
, for TE modes (48)

�
where η1, k1 and η2, k2 are the medium impedance and propagation constant of the internal and external regions,
respectively. When the outer layer of the cavity is �lled with a ENZ material (ε2 → 0), the characteristic equations
can be asymptotically written as follows

� (
a
b

)2n+1 − 1

1
n+1

(
a
b

)2n+1
+ 1

n

=
ε2
ε1

(k1a)
Ĵ ′n(k1a)

Ĵn(k1a)
, for TM modes (49)

� (
a
b

)2n+1 − 1

(n+ 1)
(
a
b

)2n+1
+ n

=
1

k1a

Ĵn(k1a)

Ĵ ′n(k1a)
, for TE modes (50)

�
Note that the r.h.s. of (49) goes to zero since ε2 → 0, and hence, there is no solution for the TM modes except

at Ĵn(k1a) = 0. This condition corresponds to a zero tangential magnetic �eld, which enables the existence of
spatially electrostatic �elds characterizing TM modes in the ENZ region, while at the same time satisfying the
boundary conditions on the surface of the cavity.

�
Interestingly, when the volume of the internal sphere is much smaller than the volume of the whole cavity,

(a/b)
2n+1 � 1, the characteristic equations (49)-(50) can be approximated as follows

�

−n =
ε2
ε1

(k1a)
Ĵ ′n(k1a)

Ĵn(k1a)
, for TM modes (51)

− 1

n
=

1

k1a

Ĵn(k1a)

Ĵ ′n(k1a)
, for TE modes (52)

�
Note that in this limit the characteristic equation becomes independent of the external surface even for the TE

modes.



Supplementary Note 5: Perturbational Techniques

Here we use perturbational techniques (see, e.g., [6]) to ratify further that the eigenfrequencies of spatially electro-
static eigenmodes are preserved under geometrical transformations. To this end, let us consider a cavity of volume
V enclosed within a surface S subject to the boundary condition n̂ × E = 0 (see Supplementary Figure 10). We
assume that this cavity supports an eigenmode with �elds E0,H0 at the eigenfrequecy ω0. The cavity could be, for
example, the spherical cavity described in the previous section. Next, we generate a second cavity by modifying
the original cavity, leading to a volume V ′ = V −4V and S′ = S −4S. In general, this new cavity will support a
di�erent eigenmode with �elds E,H at an also di�erent eigenfrequency ω. Note that the �elds of the eigenmode in
the �rst cavity satisfy time-harmonic curl Maxwell equations at frequency ω0:

∇×E0 = iω0µ0H0 (53)

∇×H0 = −iω0ε0εE0 (54)

On the other hand, the �elds of the eigenmode in the second cavity satisfy time-harmonic curl Maxwell equations
at frequency ω:

∇×E = iωµ0H (55)

∇×H = −iωε0εE (56)

In this manner, we can then write:

∇ · (H×E∗0) = H · ∇ ×E∗0 −E∗0 · ∇ ×H = −iω0µ0H ·H∗0 + iωε0εE
∗
0 ·E (57)

∇ · (H∗0 ×E) = H∗0 · ∇ ×E−E · ∇ ×H∗0 = iωµ0H
∗
0 ·H− iω0ε0εE ·E∗0 (58)

Next, integrating over V ′, and applying the divergence theorem we get

˛
S′

(H×E∗0 + H∗0 ×E) · n̂dS′ = i (ω − ω0)

ˆ
V ′

(µ0H
∗
0 ·H + ε0εE

∗
0 ·E) dV ′ (59)

However, since n̂×E = 0 on S′ we have

˛
S′

(H×E∗0 + H∗0 ×E) · n̂dS′ =

˛
S′

(H×E∗0) · n̂dS′ (60)

Moreover, since n̂×E0 = 0 on S and S′ = S −∆S we get

˛
S′

(H×E∗0) · n̂dS′ = −
˛
4S

(H×E∗0) · n̂dS′ (61)

Therefore, the shift in the resonance frequency is given by
�

ω − ω0 =
i
¸
4S (H×E∗0) · n̂dS′´

V ′ (µ0H∗0 ·H + ε0εE∗0 ·E) dV ′
(62)

�
We emphasize that (62) is not an approximation. It is a exact expression of the frequency shift due to the

deformation. At the same time, (62) can only be evaluated with a complete knowledge of the eigenmode �elds
E0, H0, E, H. In general, one applies assumptions on the form of those �elds in order to estimate the frequency
shift. For example, a common approximation is to replace the perturbed eigenmode �elds E, H by the unperturbed
eigenmode �elds E→ E0, H→ H0, which is a reasonable estimate for small deformations [6]. In our case, since the
magnetic �eld of the unperturbed mode in the ENZ region is zero H0 = 0, it follows from (62) that the approximate
substitution H → H0 results in a zero frequency shift, even if the electric �eld in the volume ∆V is signi�canly
large.
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