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A. The optimizing programs of the model and other technical details.

Households

Following Smets and Wouters (2007), the preferences of the ith representative household are

defined by a non-separable utility function specification, which for period t reads
�
(ct(i)− hct−1)

1−σc

1− σc

�
exp

�
σc − 1

1 + σl
(lt(i))

1+σl

�
,

where σc, σl > 0 are the risk aversion and the inverse of Frisch elasticity, respectively; 0 < h < 1

is the consumption (external) habit parameter, ct(i) is the household-level current consumption of

bundles of goods, ct−1 is lagged aggregate consumption of these bundles, and lt(i) is the household-

specific supply of labor.

The sources of household income are labor and capital earnings, equity return and the interest

service of government bonds. The nominal wage is set by households as they have market power to

supply a differentiated labor service. Thus, the representative household determines the nominal

wage Wt(i) constrained by its labor demand schedule. Labor income is (Wt(i)/P
c
t ) lt (j), where the

real wage is measured in consumption bundles at the Consumer Price Index (CPI), P c
t . Capital

income is rkt ut(i)kt−1(i) where r
k
t is the market real rental rate, ut(i) is the variable capital utilization

rate and kt−1(i) is the stock of capital installed in the previous period. Another source of income is

equity ownership. Let dt denote the average real dividend and vt the average real equity value. The

representative household gets (nst/nt−1) dtxt−1(i) as the total dividends from her ownership of the

share xt−1(i) of incumbent firms, and (nst/nt−1) dtn
E
t (i) from the entries of the previous period that

do not fail in its first period of life. There is also some revenue from business destruction, which

corresponds to both the liquidation value of the exit share, (nxt /nt−1) lvtxt−1(i), where lvt is the real

liquidation value per business unit, and the liquidation of new goods that shut down after the first

period of life, (nxt /nt−1) lvtn
e
t(i). Gross income turns into net income when subtracting the amount

of real tax payments, tt(i).

Net income is spent on purchases of bundles of consumption goods, ct(i), on investment on capital

goods, it(i), on portfolio investment on incumbents, vt (xt(i)− (n
s
t/nt−1) xt−1(i)), on net purchases

of real government bonds,
�
exp
�
εbt
�
(1 + rt)

�
−1

bt(i)− bt−1(i), where rt is the real rate of return and

εbt is a risk-premium AR(1) shock, and on the cost of creating new goods, exp (εet) f
e + ectn

e
t+1(i),

where εet is an AR(1) entry cost shock, f e is the unit real cost of a license fee required by the

government to begin the production of a new variety and ect is a variable entry cost to be defined

below. In addition, there is some expenditure on covering the adjustment cost of variable capital

utilization, a(ut(i))kt−1(i) where a(ut(i)) is the adjustment cost variable described in Smets and

Wouters (2007). As a result, the budget constraint of the representative household in period t
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becomes,

Wt(i)
P ct

lt (i) + rkt ut(i)kt−1(i) +
�

nst
nt−1

(dt + vt) +
nxt
nt−1

lvt
�
(xt−1(i) + net(i))− tt(i) =

ct(i) + it(i) + a(ut(i))kt−1(i) + vtxt(i) +
bt(i)

exp(εbt)(1+rt)
− bt−1(i) +

�
exp (εet) f

E + ect
�
net+1(i). (A1)

Capital accumulation is costly as in Smets and Wouters (2007). Thus, the equation of motion for

capital is,

kt(i) = (1− δk) kt−1(i) + exp
�
εit
� 	
1− S

�
it(i)

it−1(i)

�

it(i), (A2)

where δk is the constant rate of capital depreciation rate, S(it(i)/it−1(i)) is the investment adjust-

ment cost function with the steady-state properties S (1) = S′ (1) = 0 and S ′′ (1) = ϕk > 0, and εit

is an stochastic AR(1) shock to the price of investment relative to consumption goods.

Following Erceg et al. (2000), households can set the nominal wage of their specific labor service

supplied, subject to a market signal that arrives with a constant probability as in Calvo (1983).

Let 0 < ξw < 1 represent the probability that the household is not able to set the optimal wage. In

that case, the adjustment of the nominal wage would follow this indexation rule

Wt(.) = Wt−1(.)
�
(1 + πct−1)

ιw(1 + πc + εWt )
1−ιw
�
,

in which πct−1 is the lag of the rate of CPI inflation, πct−1 =
�
P c
t−1/P

c
t−2

�
− 1, the steady-state CPI

rate is πc, there is an ARMA(1,1) stochastic component introduced through the wage-push shock

εwt , and 0 < ιw < 1 is the parameter that determines the indexation share that mirrors lagged

CPI inflation. As wage setters, households face the labor demand constraint á la Dixit and Stiglitz

(1977)

lt (i) =

�
Wt (i)

Wt

�
−θw

lt, (A3)

where Wt =
�
 1
0
Wt (i)

1−θw di
� 1

1−θw
and lt =

�
 1
0
lt(i)

θw−1
θw di

� θw
θw−1

are, respectively, the aggregate

indices of nominal wages and labor with a constant elasticity of substitution θw > 0. Assuming a

constant discount factor per period, β < 1, the optimizing program of the household consists of

maximizing

Et

∞�

j=0

βj

��
(ct+j(i)− hct−1+j)

1−σc

1− σc

�
exp

�
σc − 1

1 + σl
(lt+j(i))

1+σl

��

subject to the budget constraint (A1), the capital accumulation constraint (A2), and the labor

demand constraint (A3), for current period t and the expected expressions in all future periods.

The first order conditions are computed with respect to the choice variables ct(i), ut(i), kt(i), bt(i),

Wt(i), xt(i), and net+1(i). It should be noticed that the desired number of entries are decided one

period in advance, which may capture time-to-build requirements. The behavioral equations for

consumption, investment, and wage inflation are equivalent to those derived and described in Smets
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and Wouters (2003), with just some differences in the wage inflation dynamics: we do not have a

labor supply shock and the indexation rule is written in response to both CPI inflation and the

cost-push shock on wages.1 The first order conditions on the portfolio choices of equity, xt(i), and

goods creation, net(i), both unusual in DSGE models, are, respectively,

−λtvt + βEtλt+1
�
nst+1
nt
(dt+1 + vt+1) +

nxt+1
nt

lvt+1
�
= 0, (A4)

βEtλt+1

�
nst+1
nt
(dt+1 + vt+1) +

nxt+1
nt

lvt+1

�
− λt (exp (ε

e
t) f

e + ect) = 0, (A5)

where λt is the Lagrange multiplier of the budget constraint in period t. The first order condition

of bonds implies λt
�
exp
�
εbt
�
(1 + rt)

�
−1
= βEtλt+1, which can be inserted in (A4) to give the

equilibrium condition for equity investment

vt =
1

exp
�
εbt
�
(1 + rt)

Et

	
nst+1
nt

(dt+1 + vt+1) +
nxt+1
nt

lvt+1



, (A6)

that implies an average equity value equal to the discounted sum of the expected returns when sur-

viving,
�
nst+1/nt

�
(dt+1 + vt+1), and the expected return when dying,

�
nxt+1/nt

�
lvt+1. Remarkably,

the equilibrium equity value depends (positively) on the rate of business survival, nst+1/nt, as the

weight for the return on surviving equity, and on the expected next-period liquidation value, Etlvt+1,

as the anticipated return from the fraction of goods that are expected to have their production shut

down.

Establishments (firms)

There are both single-good and composite-good establishments (firms) in the goods market.

Single-good establishments combine labor and capital within a firm-specific production technology

to supply heterogeneous consumption goods that are sold in a monopolistically competitive market

to the composite-good firm. Single-good producers are price setters constrained by nominal rigidities

and demand conditions. The composite-good firm aggregates all the varieties of consumption goods

to make them available as consumption bundles in a fully-competitive market.

Single-good establishments

In period t, the representative establishment type ω produces a quantity yt (ω) of this good using

the Cobb-Douglas production technology,

yt (ω) = exp (ε
a
t ) z (ω) k

α
t (ω) (exp (γt) lt (ω))

1−α , (A7)

1The wage inflation equation is displayed below in this technical appendix as part of the semi-loglinear set of

dynamic equations of the model.
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where 0 < α < 1 is the capital share parameter, lt (ω) and kt (ω) are respectively the demand for

labor and capital at firm ω, εat is a labor-augmenting and economy-wide AR(1) technology shock,

z(ω) is a firm-specific productivity level, and γ is the long-run rate of economic growth. While

the shock εat is homogeneous to all firms, there is firm heterogeneity in productivity. Thus, the

representative establishment gets z (ω) as its specific time-invariant productivity, which is taken as

an individual draw from a Pareto distribution characterized by its lower bound zmin and the shape

parameter κ.2

Regarding market conditions, single-good firms operate in a monopolistically competitive market

as in Dixit and Stiglitz (1977). Hence, the amount of firm-specific output, yt (ω), is demand-

determined in response to its relative price Pt (ω) /P
c
t and to the aggregate demand for bundles of

consumption goods, yt, as follows,

yt (ω) =
�
Pt(ω)
P ct

�
−θp

yt, (A8)

where θp > 1 is the constant elasticity of substitution across goods.

In addition, single-good establishments face rigidities on price setting determined by a fixed

probability scheme as in Calvo (1983). Let 0 < ξp < 1 denote the probability of not being able to

set the optimal price. In such a case, the price adjustment would follow the indexation rule

Pt(.) = Pt−1(.)
�
(1 + πt−1)

ιp(1 + π + εPt )
1−ιp
�
,

in which πt−1 is the lagged rate of producer price inflation (measured at the average steady-state

firm-level productivity �z), π denotes the steady-state rate of producer price inflation, εPt is an

exogenous ARMA(1,1) price-push shock, and 0 < ιp < 1 is the coefficient of the indexation share

that responds to lagged inflation.

In order to analyze optimal pricing, let us assume that the representative establishment ω in

period t receives the Calvo market signal to set the optimal price. Then, it will choose Pt (ω) to

maximize the expected stream of real dividends conditional to the lack of future optimal pricing

∞�
j=0

βt,t+jst,t+j (ω) ξ
j
p

��
Pt(ω)Π

p
t,t+j

P ct+j

�1−θp
yt+j − wt+jlt+j (ω)− rkt+jkt+j (ω)

�
,

where βt,t+j, st,t+j (ω) and Π
p
t,t+j denote, respectively, the stochastic discount factor, the probability

of survival and the price indexation factor all of them between periods t and t + j. In addition,

wt+j = Wt+j/P
c
t+j is the aggregate real wage in any period t+ j.3 The stochastic discount factor in

2The probability distribution function and the cumulative distribution function of z (ω) are respectively g(z (ω)) =

κzκmin/z (ω)
κ+1 and G(z (ω)) = 1 − (zmin/z (ω))

κ. The shape parameter κ must be higher than (θp − 1) to have a

well-defined average productivity.
3The price indexation factor between t and t + j consistent with the indexation rule is computed as follows

Πpt,t+j =
j�

k=0

�
(1 + πt+k)

ιp(1 + π + εPt+1+k)
1−ιp

�
.
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equilibrium is βt,t+j =
j�

k=1

�
eε

b
t+j (1 + rt+j)

�
−1

and the probability of continuation between periods

t and period t+ j is given by the accumulated survival rate

st,t+j (ω) =





1 if j = 0
j�

k=1

�
nst+j (ω) /nt+j−1 (ω)

�
if j = 1, 2, 3, ...




.

The optimal choices of the firm must be subject to the expected schedule of Dixit-Stiglitz demand

constraints,

exp
�
εat+j
�
z (ω) kαt+j (ω) (exp (γ (t+ j)) lt+j (ω))

1−α =
�
Pt(ω)Π

p
t,t+j

P ct+j

�−θp
yt+j, for j = 0, 1, 2, ...

The first order conditions with respect to the price, Pt (ω), labor demand, lt (ω), and capital demand,

kt (ω), are,

Eξ
t

∞�

j=0

βt,t+jst,t+j (ω) ξ
j
p




(1− θp)
�
Pt(ω)Π

p
t,t+j

P ct+j

�−θp yt+jΠ
p
t,t+j

P ct+j

+mct+j (ω) θp

�
Pt(ω)Π

p
t,t+j

P ct+j

�−θp−1 yt+jΠ
p
t,t+j

P ct+j


 = 0,

−wt + (1− α)mct (ω) exp (ε
a
t ) exp ((1− α) t) (kt (ω) /lt (ω))

α = 0,

−rkt + αmct (ω) exp (ε
a
t ) exp ((1− α) t) (lt (ω) /kt (ω))

1−α = 0,

where Eξ
t is the rational expectation operator conditional to the lack of optimal pricing, and

mct+j (ω) is the Lagrange multiplier of the demand constraint in period t+ j (i.e., the firm-specific

real marginal cost). The ratio Pt (ω) /P
c
t+j can be decomposed in the following way

Pt (ω) /P
c
t+j =

�
Pt (ω) / �Pt+j

��
�Pt+j/P

c
t+j

�
=
�
Pt (ω) / �Pt+j

�
�ρt+j,

by introducing �Pt+j as the Producer Price Index (PPI): the average price across all firms that

have the steady-state average productivity �z (and they differ due to their specific Calvo pricing

histories). We also introduce �ρt+j as their relative price in period t + j obtained as the ratio

between the referential PPI and the CPI

�ρt+j = �Pt+j/P
c
t+j .

Using such decomposition in the pricing first order condition, the optimal price Pt (ω) becomes

Pt (ω) =
θp

θp − 1



Eξ
t

�
∞

j=0 βt,t+jst,t+j (ω) ξ
j
pmct+j (ω)

�
�Pt+j

�θp �
Πp
t,t+j�ρt+j

�
−θp yt+j

Eξ
t

�
∞

j=0 βt,t+jst,t+j (ω) ξ
j
p

�
�Pt+j

�θp−1 �
Πp
t,t+j�ρt+j

�
−θp+1 yt+j


 , (A9)

where the real marginal cost is firm-specific due to the constant firm-level productivity z (ω)

mct+j (ω) =
w1−αt+j

�
rkt+j
�α

αα (1− α)(1−α) exp
�
εat+j
�
z (ω)

.
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Since

)mct+j =
w1−αt+j

�
rkt+j
�α

αα (1− α)(1−α) exp
�
εat+j
�
�z

we can write an analogous expression to (A9) for the optimal price, �P ∗t , set by the firm that operates

with the steady-state average productivity �z

�P ∗t =
θp

θp − 1



Eξ
t

�
∞

j=0 βt,t+jst,t+j (ω) ξ
j
p)mct+j

�
�Pt+j

�θp �
Πp
t,t+j�ρt+j

�
−θp yt+j

Eξ
t

�
∞

j=0 βt,t+jst,t+j (ω) ξ
j
p

�
�Pt+j

�θp−1 �
Πp
t,t+j�ρt+j

�
−θp+1 yt+j


 . (A10)

Comparing (A9) and (A10) and noticing that mct+j (ω) = )mct+j
�z

z(ω)
yields

P ∗t (ω) =
�z

z (ω)
�P ∗

t (A11)

In loglinear terms, the optimal price equation (A10) for the firm with average preductivity brings

the following relative price

*�P
∗

t −
*�P t = (1− βγsξp)Et

∞�

j=0

�
βγsξp

�j
�
+)mct+j − *�ρt+j +

j�

k=1

�
πt+k − ιpπt−1+k − (1− ιp) ε

p
t+k

�
�
.

(A12)

Next, let us recall the Dixit-Stiglitz price aggregator with Calvo-style stickiness and the indexation

rule

�Pt =

	�
1− ξp

� � �P ∗

t

�1−θp
+ ξp

�
(1 + πt−1)

ιp(1 + π + εPt )
1−ιp �Pt−1

�1−θp
1/(1−θp)
,

which can be log-linearized, using (πt − π) =
*�P t −

*�P t−1 for the rate of PPI, to obtain

*�P
∗

t −
*�P t =

ξp
1−ξp

((πt − π)− ιp (πt−1 − π)− (1− ιp) ε
p
t ) . (A13)

Combining (A12) and (A13) results in the inflation equation

(πt − π)− ιp (πt−1 − π)− (1− ιp) ε
p
t =

(1−βsξp)(1−ξp)
ξp

∞�

j=0

�
βγsξp

�j
�
+)mct+j − *�ρt+j +

j�

k=1

�
(πt+k − π)− ιp (πt−1+k − π)− (1− ιp) ε

p
t+k

�
�
,

where, by doing (πt − π) − βγsξpEt (πt+1 − π), simplifies to the hybrid New Keynesian Phillips

curve

(πt − π) = ιp
(1+βγsιp)

(πt−1 − π) + βγs
(1+βγsιp)

Et (πt+1 − π)

+
(1−βγsξp)(1−ξp)

ξp(1+βγsιp)

�
+)mct − *�ρt

�
+ (1−ιp)

(1+βγsιp)

�
εpt − βEtε

p
t+1

�
.

Composite-good firms
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Composite-good firms act as packers of single goods and sell the final bundles of consumption

goods in a competitive flexible-price market. The representative composite-good firm produces

bundles of consumption using the production technology that combines each of the nt single varieties

produced at the establishments as follows,

yt =

	, nt

0

yt(ω)
θp−1

θp dω


 θp

θp−1

, (A14)

where the elasticity of substitution of across single goods in the aggregate production function (θp) is

the same as the elasticity of substitution between individual goods in household consumption. The

amount of consumption bundles produced is not indexed for any specific firm because symmetric

equilibrium holds across all the identical composite-good firms. Thus, the corresponding price of

one consumption bundle can also be expressed in economy-wide terms as obtained from the Dixit-

Stiglitz aggregator,

P c
t =

	, nt

0

Pt (ω)
1−θp dω


 1

1−θp

. (A15)
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B. Short-run and long-run equilibria in the DSGE model with endogenous entry

and exit

Set of log-linearized (64) dynamic equations for fluctuations around the detrended steady state

in the short-run equilibrium:

Law of motion for total number of establishments:

*nt = *nst + δn (*net − *nt−1) , (B1)

where δn = nx/n is the steady-state exit rate. Decomposition between surviving and exiting

establishments:

*nt−1 = (1− δn) *nst + δn*nxt . (B2)

Entry decision:

*net+1 = *nt + ς−1
�
v
ec
*vt − fe

ec
εet
�

(B3)

Liquidation value:

*lvt = εxt . (B4)

Exit decision:

*nxt = *nt−1 + κ
�
1−δn
δn

�
*zcrt . (B5)

Productivity cutoff point:

*zcrt =
�
βγs+ κ(1−βγs)(�ρ−Ω)

Ω

�
Et*zcrt+1+

(1− βγs)Et

�
+)mct+1 −

(�ρ−Ω)
Ω

�
*yt+1 −

�
Rt − Etπ

c
t+1 + εbt

��
− �ρ−(�ρ−Ω)θp

Ω
*�ρt+1
�
+ (�ρ−Ω)

βsΩ

�
*lvt − βγsEt

*lvt+1
�
,

(B6)

with Ω = )mc �z
zcr

evaluated in steady state. Relative prices as a function of number of goods:

*�ρt = 1
θp−1
*nt. (B7)

Variety effect from producer price inflation to consumer price inflation:

πct = πt − *�ρt + *�ρt−1. (B8)

Output decomposition between intensive and extensive margin of fluctuations:

*yt = *nt + *�ρt + *�yt. (B9)

Equity accumulation equation (portfolio investment):

*vt = βγv1Et*vt+1+βγv2Et
*dt+1+βγ (v1 + v2)Et*nst+1+βγv3Et

�
*nxt+1 + *lvt+1

�
−
�
Rt −Etπ

c
t+1 + εbt

�
−*nt,
(B10)
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where v1 =
v

(1−δn)(d+v)+δnlv
, v2 =

d
(1−δn)(d+v)+δnlv

and v3 =
δnlv/(1−δn)

(1−δn)(d+v)+δnlv
.

Firm-level average dividend:

*dt = *�yt + θp*�ρt − (θp − 1) +)mct. (B11)

New-Keynesian Phillips curve from Calvo (1983)-type sticky pricing with indexation:

πt − π = ιp
(1+βγsιp)

(πt−1 − π) + βγs
(1+βγsιp)

Et (πt+1 − π)

+
(1−βγsξp)(1−ξp)

ξp(1+βγsιp)

�
+)mct − *�ρt

�
+ (1−ιp)

(1+βγsιp)

�
εpt − βγsEtε

p
t+1

�
. (B12)

Real marginal cost:

+)mct = (1− α)*wt + α*rkt − εat . (B13)

Consumption equation featuring habits and non-separability between consumption and labor in the

utility function:

*ct = h/(1+γ)
1+h/(1+γ)

*ct−1 + 1
1+h/(1+γ)

Et*ct+1 + (σc−1)wθw/((θw−1)c)
σc(1+h/(1+γ))

�
*lt −Et

*lt+1
�
− 1−h/(1+γ)

σc(1+h/(1+γ))

�
rt − r + εbt

�
.

(B14)

Taylor-type monetary policy rule:

Rt−R = µR (Rt−1 −R)+(1−µR)
�
µπ (πt − π) + µy (*yt − *ypt )

�
+µdy

�
(*yt − *ypt )−

�
*yt−1 − *ypt−1

��
+εRt .

(B15)

Goods market equilibrium:

*yt = c
y
*ct + i

y
*it + rkk

y
*ut + εg

y
εgt +

(δn/(1−δn))ec
y

�
*net+1 + *ect

�
. (B16)

Production technology for the average-productivity establishment:

*�yt = α
*�kt + (1− α)

*�lt + εat . (B17)

Fisher equation:

rt = Rt −Etπ
c
t+1. (B18)

Wage inflation equation with Calvo (1983) sticky wages and indexation:

πwt − πw = ιw
�
πct−1 − πc

�
+ βEt

�
πwt+1 − πw

�
− βιw (π

c
t − πc)

+ (1−βξw)(1−ξw)
ξw

(-mrst − *wt) + (1− ιw)
�
εWt − βEtε

W
t+1

�
. (B19)

where the log-linearized household marginal rate of substitution is,

-mrst = σl*lt +
�

1
1−h/(1+γ)

*ct − h/(1+γ)
1−h/(1+γ)

*ct−1
�
, (B20)
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and the real wage dynamics are determined by the log-linear expression implied by its definition

(wt = Wt/P
c
t ),

*wt = *wt−1 + πwt − πct . (B21)

Labor market equilibrium condition:

*lt = *nt +*�lt. (B22)

Capital market equilibrium condition:

*kst = *nt +
*�kt. (B23)

As in Smets and Wouters (2007), the log-linearized investment equation is,

*it = i1*it−1 + (1− i1)Et
*it+1 + i2*qt + εit, (B24)

where i1 =
1

1+β(1+γ)−σc
, and i2 =

i1
(1+γ)2ϕk

, and the value of capital goods (Tobin’s q) is given, in

log-linear terms by the arbitrage condition,

*qt = q1Et*qt+1 + (1− q1)Et*rkt+1 −
�
rt − r + εbt

�
, (B25)

where q1 =
(1−δk)

(rk+1−δk)
. The equilibrium rental rate of capital can be found in the input demand

equations of the representative firm

*rkt = *wt −

�
*�kt −*�lt

�
. (B26)

Also, following Smets and Wouters (2007), the loglinear expression for capital accumulation is,

*kt = k1*kt−1 + (1− k1)*it + k2ε
i
t, (B27)

where k1 =
1−δk
1+γ

and k2 = (1− k1) /i2.

The supply of capital can be adjusted in the intensive margin (utilization rate) as well as the

extensive margin,

*kst = *ut + *kt−1, (B28)

and the log-linearized variable capital utilization rate is,

*ut =
�
1−σa
σa

�
*rkt . (B29)

Entry congestion cost

*ect = ς
�
*net+1 − *nt

�
. (B30)

Entry rate dynamics(semi-loglinear approximation)

et − e =
e

ς

�
v
ec
*vt−1 − fe

ec
εet−1
�
+ (*nst − *nt−1) . (B31)
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Exit rate dynamics (semi-loglinear approximation)

xt − x = κ (1− x) *zcrt (B32)

The potential (natural-rate) block is obtained repeating all the equations (B1)-(B32) with p super-

script to denote the values reached under no rigidity on both price and wage adjustments, with

the exceptions of the New Keynesian Phillips curve (B12) that is replaced by the constant price

mark-up condition,

*�ρpt = +)mc
p

t , (B12p)

and the wage inflation curve (B19) that is replaced by the constant wage mark-up condition,

-mrspt = *wp
t . (B19p)

Endogenous variables (64):

The following 64 variables: *nt+1, *net+1, *nxt , *nst , *ect, *zcrt , *lvt, *vt, *dt, *�ρt, *yt, *ct, *it, *ut, *qt, *kt, *kst , *lt,
*�yt,
*�lt, *�kt, +)mct, rt − r, Rt −R, πt − π, πct − πc, πwt − πw, *rkt , *wt, -mrst, et, xt and the same set with p

superscript to bring the variables corresponding to the potential block.

Exogenous variables (9):

- technology shock: εat = ρaε
a
t−1 + ηat with ηat ∼ N

�
0, σ2ηa

�

- risk-premium shock: εbt = ρbε
b
t−1 + ηbt with ηbt ∼ N

�
0, σ2

ηb

�

- monetary policy shock: εRt = ρRε
R
t−1 + ηRt with ηRt ∼ N

�
0, σ2ηR

�

- fiscal policy shock: εgt = ρgε
g
t−1 + ρgaη

a
t + ηgt with ηgt ∼ N

�
0, σ2ηg

�

- investment shock: εit = ρiε
i
t−1 + ηit with ηit ∼ N

�
0, σ2ηi

�

- price-push shock: εpt = ρpε
p
t−1 − µpη

p
t−1 + ηpt with ηpt ∼ N

�
0, σ2ηp

�

- wage-push shock: εwt = ρwε
w
t−1 − µwη

w
t−1 + ηwt with ηwt ∼ N

�
0, σ2ηw

�

- entry cost shock: εet = ρeε
e
t−1 + ηet with ηet ∼ N

�
0, σ2ηe

�

- liquidation value shock: εxt = ρxε
x
t−1 + ηxt with ηxt ∼ N

�
0, σ2ηx

�

Set of non-linear equations that define the detrended steady state (long-run equilibrium)

There are 21 endogenous variables: n, ne, nx, ns, r, rk, v, d, )mc, �ρ, �y, �k, �l, y, c, i, w, ec, lv, zcr,
and �z. The non-linear steady-state system to solve is;

�z = zmin

�
κ

κ− (θp − 1)

� 1

θp−1

, (SSB1)

ne

n
=
1−
�
zmin
zcr

�κ
�
zmin
zcr

�κ , (SSB2)

ns

n
=
�
zmin
zcr

�κ
, (SSB3)
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nx

n
= 1−

�
zmin
zcr

�κ
, (SSB4)

r = β−1 (1 + γ)σc − 1, (SSB5)

rk = β−1 (1 + γ)σc + δk − 1, (SSB6)

v =
β(1+γ)1−σc(n

s

n
d+nx

n
lv)

1−β(1+γ)1−σc n
s

n

, (SSB7)

lv =
β(1+γ)1−σc(n

s

n )
1−β(1+γ)1−σc(n

s

n
)

�
1− �z

zcr
�mc

1−�mc

� d
n
, (SSB8)

fe + ec = v (SSB9)

lv = (1− τ )fe, (SSB10)

y = c + i+ εg + (ec)ne, (SSB11)

ec = Θ

�
ne

n

�ς

, (SSB12)

y = n�ρ�y, (SSB13)

�ρ = n
θp

θp−1 , (SSB14)

d = (�ρ)−θp y (�ρ− )mc) , (SSB15)

�y = �z
�
�k
�α ��l

�1−α
, (SSB16)

)mc = θp−1
θp
�ρ, (SSB17)

1

�z

�
w

1− α

�1−α�
rk

α

�α

= )mc, (SSB18)

w = θw
(θw−1)

�
c− h (1 + γ)−1 c

� �
n�l
�σl

, (SSB19)

�k =
�
α)mc�z
rk

� 1

1−α

, (SSB20)

i = (γ + δk)n�k. (SSB21)
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C. Average productivity.

The probability density function, g (z), and the cumulative distribution function, G (z), of the

Pareto distribution that delivers firm-specific productivities are, respectively,

g (z) =





κ(zmin)
κ

zκ+1
, if z ≥ zmin

0, if z < zmin





G (z) =





z

zmin

g (z) dz = 1−
�
zmin
z

�κ
, if z ≥ zmin

0, if z < zmin




.

The average productivity across all firms (with CES aggregation á la Dixit-Stiglitz) is

�zt =
�
(nxt /nt−1) (�zxt )θp−1 + (nst/nt−1) (�zst )θp−1

�1/(θp−1)
, (C1)

where �zxt is the average productivity across exiting firms, and �zst is the average productivity across

surviving firms.

Following Hamano and Zanetti (2017), �zst is obtained from the Dixit-Stiglitz aggregation scheme

bounded in the open interval between critical productivity zcrt and +∞

�zst =
�

1

1−G (zcrt )

,
∞

zcrt

zθp−1g(z)dz

� 1

θp−1

,

where using g (z) defined above yields

�zst =
�

1

1−G (zcrt )

,
∞

zcrt

κ (zmin)
κ zθp−1−κ−1dz

� 1

θp−1

.

The critical productivity zcrt determines the split-up of firms between survival and exit in the

cumulative distribution function, which identifies the survival rate as 1 − G (zcrt ) =
�
zmin
zcrt

�κ
. This

can be introduced in the expression of �zst to obtain

�zst =
��

zmin
zcrt

�
−κ , ∞

zcrt

κ (zmin)
κ zθp−1−κ−1dz

� 1

θp−1

.

Taking the fixed elements outside the integral, we have

�zst = (κzκmin)1/(θp−1)
��

zmin
zcrt

�
−κ , ∞

zcrt

zθp−1−κ−1dz

� 1

θp−1

.

The rule for the integral of an exponential function implies

�zst = (κzκmin)1/(θp−1)
��

zmin
zcrt

�
−κ

zθp−1−κ

θp − 1− κ
|∞zcrt

� 1

θp−1

,
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which leads to

�zst = (κzκmin)1/(θp−1)
��
1−

�
zmin
zcrt

�κ�−1 �
0−(zcrt )

θp−1−κ

θp−1−κ

�� 1

θp−1

,

or, alternatively

�zst = (κzκmin)1/(θp−1)
��

zmin
zcrt

�
−κ �

(zcrt )
θp−1−κ

κ−(θp−1)

�� 1

θp−1

,

which simplifies initially to

�zst = κ1/(θp−1)
��

(zcrt )
θp−1

κ−(θp−1)

�� 1

θp−1

,

and finally to

�zst = zcrt

�
κ

κ−(θp−1)

� 1

θp−1

. (C2)

Analogously to the case of surviving firms, the average productivity for the set of firms that

decide to exit in period t is bounded between minimum productivity, zmin, and the time-varying

cut-off productivity, zcrt , as follows

�zxt =
	

1

G (zcrt )

, zcrt

zmin

zθp−1g(z)dz


 1

θp−1

.

Using the pdf specification g (z) gives

�zxt =
	

1

G (zcrt )

, zcrt

zmin

κ (zmin)
κ zθp−1−κ−1dz


 1

θp−1

.

The critical productivity zcrt determines the split-up of firms between survival and exit in the

cumulative distribution function, which identifies the exit rate as G (zcrt ) = 1−
�
zmin
zcrt

�
−κ

. This can

be substituted in the expression of �zxt to obtain

�zxt =



�
1−

�
zmin
zcrt

�
−κ
�
−1 , zcrt

zmin

κ (zmin)
κ zθp−1−κ−1dz




1

θp−1

.

Taking the fixed elements outside the integral, we have

�zxt = (κzκmin)1/(θp−1)


�
1−

�
zmin
zcrt

�
−κ
�
−1 , zcrt

zmin

zθp−1−κ−1dz




1

θp−1

.

The rule for the integral of an exponential function implies

�zxt = (κzκmin)1/(θp−1)


�
1−

�
zmin
zcrt

�
−κ
�
−1

zθp−1−κ

θp − 1− κ
|z
cr
t
zmin




1

θp−1

.

which leads to

�zxt = (κzκmin)1/(θp−1)


�
1−

�
zmin
zcrt

�
−κ
�
−1 �

(zcrt )
θp−1−κ−(zmin)

θp−1−κ

θp−1−κ

�



1

θp−1

.
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or, alternatively

�zxt = (κzκmin)1/(θp−1)


�
1−

�
zmin
zcrt

�
−κ
�
−1 �

(zmin)
θp−1−κ−(zcrt )

θp−1−κ

κ−(θp−1)

�



1

θp−1

. (C3)

Using both (C2) and (C3), respectively for �zst and �zxt , in the average productivity expression

(C1), it is reached

�zt =


 (n

x
t /nt−1)

�
κzκmin

�
(1− (zmin/z

cr
t )

κ)
−1
�
(zmin)

θp−1−κ−(zcrt )
θp−1−κ

κ−(θp−1)

���

+(nst/nt−1) (z
cr
t )

θp−1
�

κ
κ−(θp−1)

�


1/(θp−1)

.

Survival and exit rates as functions of critical productivity, nst/nt−1 = (zmin/z
cr
t )

κ and nxt /nt−1 =

1− (zmin/z
cr
t )

κ, can be introduced to obtain

�zt =


 (1− (zmin/z

cr
t )

κ)
�
κzκmin

�
(1− (zmin/z

cr
t )

κ)−1
�
(zmin)

θp−1−κ−(zcrt )
θp−1−κ

κ−(θp−1)

���

+(zmin/z
cr
t )

κ (zcrt )
θp−1

�
κ

κ−(θp−1)

�


1/(θp−1)

,

which simplifies massively to

�zt = zκmin

�
κ

κ−(θp−1)

�1/(θp−1)
.
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D. Data and measurement equations

The following table summarizes the data definitions and the measurement equations used for

the model estimation:

Series definition U.S. Data Model measurement equation

Quarterly change in per-capita Real

GDP, Yt/Lt

100log
�

Yt/Lt
Yt−1/Lt−1

�
γ+*yt−*yt−1

Quarterly change in per-capita Real

Personal Consumption Expenditures, Ct/Lt

100log
�

Ct/Lt
Ct−1/Lt−1

�
γ+*ct−*ct−1

Quarterly change in per-capita Real

Fixed Private Investment, It/Lt

100log
�

It/Lt
It−1/Lt−1

�
γ+*it−*it−1

Quarterly change in real compensation

per Hour in nonfarm business sector, Wt/ �Pt

100log
�

Wt/ �Pt

Wt−1/ �Pt−1

�
γ+ *wt−*wt−1

Hours per worker (in natural logarithm)

in nonfarm business sector, htEMPt/LFt

log (htEMPt/LFt) l+*lt

Quarterly change in GDP Price Deflator, �Pt 100log
�

�Pt
�Pt−1

�
π+(πt − π)

Quarterly shadow Federal Funds Rate, RQE
t RQE

t /4 r + π+(Rt −R)

Establishment entry rate (effective), et 100
�
Ne
t

Nt
− 1
�

e+ e(*net−*nt−1 + *nst−*nt−1)
Establishment exit rate, xt 100

�
Nx
t

Nt
− 1
�

x+ x(*nxt−*nt−1)

Actual data series used as observables in the estimation are plotted within the next Figure:
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Figure 1: Observable series from the US economy (1993:2-2016:2).
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E. The loglinearized equation for short-run fluctuations of critical productivity, zcr

The exit condition at the margin is defined in the text as follows,

Et

∞�
j=1

βt,t+jst,t+j (ω) d
cr
t+j (ω) = lvt, (E1)

which can be rewritten in log-linear terms to read,Using the Dixit-Stiglitz demand constraints, and

the first order conditions of labor demand and capital demand, the left-hand side of (E1) is

Et

∞�
j=1

βt,t+jst,t+j (ω)

��
Pt+j (ω)

P c
t+j

�
−θp

yt+j

	
Pt+j (ω)

P c
t+j

−mccrt+j (ω)


�
,

where mccrt+j (ω) is computed at the critical productivity zcrt fixed in period t for all future periods

because firm-level productivity is time invariant. Relative prices, �ρt+j = �Pt+j/P
c
t+j can be introduced

to obtain

Et

∞�
j=1

βt,t+jst,t+j (ω)



�
Pt+j (ω)

�Pt+j

�ρt+j

�
−θp

yt+j

�
Pt+j (ω)

�Pt+j

�ρt+j −mccrt+j (ω)

�
 . (E2)

The relationship between the firm-specific price and the price at the average productivity is Pt+j (ω) =

�z
z(ω)
�Pt+j for any t+ j period.4 Using this result in (E2) yields

Et

∞�
j=1

βt,t+jst,t+j (ω)

�� �z
z (ω)

�ρt+j
�
−θp

yt+j

	 �z
z (ω)

�ρt+j −mccrt+j (ω)


�
. (E3)

Meanwhile, the average real marginal cost of any t+ j period is defined at the steady-state average

productivity, �z, which implies, mccrt+j (ω) = )mct+j
�z

zcrt (ω)
, and once inserted in (E3) gives,

Et

∞�
j=1

βt,t+jst,t+j (ω)

�� �z
z (ω)

�ρt+j
�
−θp

yt+j

	 �z
z (ω)

�ρt+j − )mct+j
�z

zcrt (ω)


�
. (E4)

The loglinear approximation to (E1) is

(1− βγs)Et

∞�
j=1

(βγs)j
�
*βt+j + *st+j (ω) + *dcrt+j

�
= *lvt (E5)

Applying log-linearizing techniques to (E4) results in the following linear expression for the expected

stream of dividends

Et

∞�
j=1

(βs)j *dcrt+j = βγs
1−βγs

�mc �z
zc

�ρ−�mc �z
zc
*zcrt (ω)+Et

∞�
j=1

(βγs)j
�
*yt+j +

�
�ρ

�ρ−�mc �z
zcr
− θp

�
*�ρt+j −

�
�mc �z

zc

�ρ−�mc �z
zcr

�
+)mct+j

�
.

(E6)

Inserting (E6) in (E5) yields

βγs�mc �z
zc

�ρ−�mc �z
zc
*zcrt (ω)+

(1− βγs)Et

∞�
j=1

(βγs)j
�
*βt+j + *st+j (ω) + *yt+j +

�
�ρ

�ρ−�mc �z
zcr
− θp

�
*�ρt+j −

�
�mc �z

zc

�ρ−�mc �z
zcr

�
+)mct+j

�
= *lvt

4We will prove this property for period t in subsection F of this appendix.
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and solving for *zcrt (ω), it is obtained

*zcrt (ω) =
(�ρ−�mc �z

zcr )
βγs�mc �z

zcr

*lvt −
(1−βγs)(�ρ−�mc �z

zcr )
βγs(�mc �z

zcr )
Et

∞�
j=1

(βγs)j




�
�mc �z

zcr

�ρ−�mc �z
zcr

�
+)mct+j − *βt+j

−*st+j (ω)− *yt+j −
�

�ρ

�ρ−�mc �z
zcr
− θp

�
*�ρt+j


 .

(E7)

Taking (E7) one period ahead and computing *zcrt (ω)− βγsEt*zcrt+1 (ω) gives

*zcrt (ω) = (�ρ−Ω)
βsΩ

�
*lvt − βsEt

*lvt+1
�
+ βγsEt*zcrt+1 (ω) (E8)

+(1− βγs)Et

�
+)mct+1 −

(�ρ−Ω)
Ω

�
*yt+1 + *βt+1 + *st+1 (ω)

�
− �ρ−(�ρ−Ω)θp

Ω
*�ρt+1
�
,

with Ω = )mc �z
zcr

and where the stochastic discount factor and the expected survival rate in loglinear

terms are

Et
*βt+1 = −(Rt − Etπ

c
t+1 + εbt) (E9)

Et*st+1 (ω) = Et*nat+1 (ω)− *nt (ω) = −κEt*zcrt+1 (ω) , (E10)

recalling the inverse relation between the survival rate and the critical productivity, nat+1 (ω) /nt (ω) =

(zmin/z
cr
t )

κ . Plugging both (E9) and (E10) in (E8), we get

*zcrt (ω) = (�ρ−Ω)
βsΩ

�
*lvt − βγsEt

*lvt+1
�
+
�
βγs+ κ(1−βγs)(�ρ−Ω)

Ω

�
Et*zcrt+1 (ω)

+ (1− βγs)Et

�
+)mct+1 −

(�ρ−Ω)
Ω
*yt+1 + (�ρ−Ω)

Ω

�
Rt − Etπ

c
t+1 + εbt

�
− �ρ−(�ρ−Ω)θp

Ω
*�ρt+1
�
. (E11)

Since *zcrt (ω) depends in (E11) exclusively in current and expected future economy-wide variables,

the average critical productivity, *zcrt =

 nt
0
*zcrt (ω) dω will have log fluctuations from steady state of

identical magnitude to the firm-specific critical productivity *zcrt (ω)

*zcrt = *zcrt (ω) ,

and the dynamics of the aggregate exit rate would be as follows

*nxt − *nt−1 = κ
�
1−δn
δn

�
*zcrt .
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F. Aggregation

Producer Price Index (PPI) and Consumer Price Index (CPI).

The average of firm-specific prices Pt (ω) can be computed using the Dixit-Stiglitz weighted

average of the outcome of its current and past Calvo-type lotteries

�Pt (ω) =


 (1− ξp)P

∗

t (ω)
1−θp + (1− ξp)ξp

�
ΠP
t−1,tP

∗

t−1 (ω)
�1−θp

+(1− ξp)ξ
2
p

�
ΠP
t−2,tP

∗

t−2 (ω)
�1−θp + ...



1/(1−θp)

(F1)

where P ∗

t−j (ω) is the optimal price set j periods ago and ΠP
t−j,t is the price indexation factor applied

from period t− j to period t. Recalling the optimal pricing of the representative establishment (see

section A of this Appendix), we obtained a relative optimal price P ∗

t (ω) =
�z

z(ω)
�P ∗

t determined by

relative firm-level productivities, which can be generalized for any t− j period as follows

P ∗

t−j (ω) =
�z

z (ω)
�P ∗t−j. (F2)

Inserting (F2) for j = 0, 1, 2, ..., in (F1) yields

�Pt (ω) =



(1− ξp)

�
�z

z(ω)
�P ∗

t

�1−θp
+ (1− ξp)ξp

�
ΠP
t−1,t

�z
z(ω)
�P ∗t−1
�1−θp

+(1− ξp)ξ
2
p

�
ΠP

t−2,t
�z

z(ω)
�P ∗

t−2

�1−θp
+ ...




1/(1−θp)

,

where �z
z(ω)

can be extracted from the bracketed term to reach

�Pt (ω) =
�z

z (ω)



(1− ξp)

�
�P ∗t
�1−θp

+ (1− ξp)ξp

�
ΠP
t−1,t

�P ∗

t−1

�1−θp

+(1− ξp)ξ
2
p

�
ΠP
t−2,t

�P ∗

t−2

�1−θp
+ ...




1/(1−θp)

. (F3)

The PPI is the average price set by establishments that operate with the average productivity, that

is computed through the Dixit-stiglitz aggregator as follows

�Pt =

	
(1− ξp)

�
�P ∗t
�1−θp

+ (1− ξp)ξp

�
ΠP

t−1,t
�P ∗t−1
�1−θp

+ (1− ξp)ξ
2
p

�
ΠP
t−2,t

�P ∗t−2
�1−θp

+ ...


1/(1−θp)
,

(F4)

and which can be inserted in (F3) to yield

�Pt (ω) =
�z

z (ω)
�Pt, (F5)

implying implies the same proportional relationship for average prices as the one we found in (A11)

for optimal prices. Next, we will also find a relationship between the PPI and the CPI. The Dixit-

Stiglit aggregator for the CPI is

P c
t =

	, nt

0

P
1−θp
t (ω) dω


 1

1−θp

,
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where inserting (F4) for the average price of firms with productivity ω, we have

P c
t =

�, nt

0

� �z
z (ω)

�Pt

�1−θp
dω

� 1

1−θp

. (F6)

The elements that are not firm specific can be moved outside the integral in (F5) to reach

P c
t =

	
�z1−θp �P 1−θpt

, nt

0

z (ω)θp−1 dω


1/(1−θp)
. (F7)

The average productivity observed in period t is

�zt =
	
n−1t

, nt

0

z (ω)θp−1 dω


1/(θp−1)
,

which implies

(�zt)θp−1 nt =
, nt

0

z (ω)θp−1 dω (F8)

Combining (F8) and (F7) gives

P c
t = �z �Pt

�
(�zt)θp−1 nt

�1/(1−θp)
,

which simplifies to the following expression for the consumer price index

P c
t =

�z
�zt
�Ptn

1/(1−θp)
t ,

and using the property of constant average productivity, �zt = �z, we have

P c
t = �Ptn

1/(1−θp)
t .

Aggregate labor demand,

 nt
0
lt(ω)dω.

Firm-level labor demand is consistent with the first order condition of the firm

wt = mct(ω)
(1− α) yt(ω)

lt(ω)
,

that brings the amount of firm-specific labor demand

lt(ω) = mct(ω)
(1− α) yt(ω)

wt

. (F9)

For the firm that produces using the steady-state average productivity �z, the amount of labor

demand is

�lt = )mct
(1− α) �yt

wt
. (F10)

Making the ratio between (F9) and (F10) yields

lt(ω) =
mct(ω)

)mct

yt (ω)

�yt
�lt. (F11)
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The definition of the real marginal cost impliesmct(ω) =
�z

z(ω)
)mct whereas the Dixit-Stiglitz demand

constraint brings yt(ω) =
�
Pt(ω)
�Pt

�
−θp
�yt which can be jointly used in (F11) to obtain

lt(ω) =
�z

z(ω)

�
Pt (ω)

�Pt

�
−θp

�lt. (F12)

Next, the average price with average productivity and any firm-specific price are proportional to

their relative productivities (as jointly implied by F3 and F4)

�Pt =
z(ω)

�z Pt (ω) ,

that we plug in (F12) to reach

lt(ω) =

� �z
z(ω)

�1−θp
�lt. (F13)

The aggregate labor demand consistent with (F13) is

, nt

0

lt(ω)dω =

, nt

0

� �z
z (ω)

�1−θp
�ltdω,

that is equivalent to , nt

0

lt(ω)dω =

, nt

0

�z1−θp�ltz (ω)θp−1 dω,

and moving outside the integral terms

, nt

0

lt(ω)dω = �z1−θp�lt
, nt

0

z (ω)θp−1 dω. (F14)

Recalling the definition of average firm-level productivity in period t

�zt =
	
n−1t

, nt

0

z (ω)θp−1 dω


1/(θp−1)
,

and using it in (F14) yields , nt

0

lt(ω)dω = �z1−θp�lt (�zt)θp−1 nt,

or, alternatively, , nt

0

lt(ω)dω =

��zt
�z

�θp−1

nt�lt.

Using the property of constant average productivity, �zt = �z, we have

, nt

0

lt(ω)dω = nt�lt.
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Aggregate demand for capital,

 nt
0

kt(ω)dω.

From the first order conditions of the representative firm, the capital demand is

kt(ω) = mct(ω)
αyt(ω)

rkt
.

Using analogous steps to those taken for the aggregate labor demand, firm-specific capital demand

is related to the demand under average productivity as follows

kt(ω) =

� �z
z(ω)

�1−θp
�kt, (F15)

and the aggregate capital demand becomes

, nt

0

kt(ω)dω =

��zt
�z

�θp−1

nt�kt.

Using the property of constant average productivity, �zt = �z, we have

, nt

0

kt(ω)dω = nt�kt.

Aggregate output, yt =

	
 nt
0
yt(ω)

θp−1

θp dω


 θp

θp−1

Aggregate output is obtained as the Dixit-Stiglitz consumption bundle for a variable number of

varieties nt

yt =

	, nt

0

yt(ω)
θp−1

θp dω


 θp

θp−1

,

where using the Cobb-Douglas production function (A7)

yt =

�, nt

0

�
eε

a
t z (ω) kαt (ω)

�
eγtlt (ω)

�1−α� θp−1

θp
dω

� θp

θp−1

,

and also the amounts of establishment-level demands for labor, (F13), and capital, (F15), it is

obtained

yt =



, nt

0

�
eε

a
t z (ω)

� �z
z(ω)

�1−θp �
�lt
�α �

eγt�lt
�1−α

� θp−1

θp

dω




θp

θp−1

(F16)

The definition of output produced at the establishment with average productivity �z, i.e. �yt =
eε

a
t �z�kαt

�
eγt�lt
�1−α

, can be inserted in (F16) to yield

yt =



, nt

0

�� �z
z(ω)

�
−θp

�yt
� θp−1

θp

dω




θp

θp−1

,
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where taking elements outside the integral, we get

yt = �yt�z−θp
	, nt

0

z(ω)θp−1dω


 θp

θp−1

(F17)

Plugging the definition of the average productivity in (F17), �zt =
�
n−1t

 nt
0

z (ω)θp−1 dω
�1/(θp−1)

,

gives

yt = �yt�z−θp�zθpt n
θp

θp−1

t ,

where using the property of constant average productivity �zt = �z results in the simpler expression

yt = �ytn
θp

θp−1

t (F18)

Finally, since the relative price is connected to the number of varieties as follows

�Pt

P c
t

= n
−1/(1−θp)
t

and (F18) can be rewritten in a way that displays n
−1/(1−θp)
t

yt = �ytntn−1/(1−θp)t ,

then we can obtain an expression that shows how aggregate output, yt, can be decomposed between

the intensive margin (output per establishment with average productivity,
�Pt
P ct
�yt) and the extensive

margin (number of establishments, nt)

yt = nt

� �Pt

P c
t

�yt
�
.
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G. The overall resources constraint

The household budget constraint is,

Wt(i)
P ct

lt (i) + rkt ut(i)kt−1(i) +
�

nst
nt−1

(dt + vt) +
nxt
nt−1

lvt
�
(xt−1(i) + net(i))− tt(i) =

ct(i) + it(i) + a(ut(i))kt−1(i) + vtxt(i) +
bt(i)

exp(εbt)(1+rt)
− bt−1(i) + (exp (ε

e
t) f

e + ect)n
e
t+1(i).

First, plugging the labor demand constraint, lt (i) = (Wt (i) /Wt)
−θw lt, and the definition of the

real wage, wt =Wt/P
c
t , it is obtained

wt (Wt (i) /Wt)
1−θw lt + rkt ut(i)kt−1(i) +

�
nst
nt−1

(dt + vt) +
nXt
nt−1

lvt

� �
xt−1(i) + nEt (i)

�
− tt =

ct(i) + it(i) + a(ut(i))kt−1(i) + vtxt(i) +
bt(i)

exp(εbt)(1+rt)
− bt−1(i) + (exp (ε

e
t) f

e + ect)n
e
t+1(i).

The aggregation across households implies

wtlt + rkt utkt−1 +
�

nst
nt−1

(dt + vt) +
nxt
nt−1

lvt
�
(xt−1 + net)− tt =

ct + it + a(ut)kt−1 + vtxt +
bt(i)

exp(εbt)(1+rt)
− bt−1 + (exp (ε

e
t) f

e + ect)n
e
t+1,

where we used aggregation schemes for nominal wages, capital utilization, the stock of capital, equity

shares and bonds. Introducing the equilibrium condition for the portfolio shares, xt−1 = nt−1 and

xt = nt, it is obtained,

wtlt + rkt utkt−1 +
�

nst
nt−1

(dt + vt) +
nxt
nt−1

lvt
�
(nt−1 + net)− tt =

ct + it + a(ut)kt−1 + vtnt +
bt

exp(εbt)(1+rt)
− bt−1 + (exp (ε

e
t) f

e + ect)n
e
t+1,

The law of motion for the number of varieties, nt = (nst/nt−1) (nt−1 + net) , serves to cancel the

equity term vtnt in order to yield

wtlt+r
k
t utkt−1+ntdt+

nxt
nst
ntlvt− tt = ct+ it+a(ut)kt−1+

bt
exp(εbt)(1+rt)

−bt−1+(exp (ε
e
t) f

e + ect)n
e
t+1,

where replacing the tax variable for the expression implied by the government constraint, εgt =

tt + exp (ε
e
t) f

enet+1 − exp (ε
x
t ) (1− τ )fe (nxt + (n

x
t /nt−1)n

e
t) +

bt
exp(εbt)(1+rt)

− bt−1, it is obtained

wtlt + rkt utkt−1 + ntdt +
nxt
nst
ntlvt = εgt + (1− τ)f e (nxt + (n

x
t /nt−1)n

e
t) + ct + it + a(ut)kt−1 + ectn

e
t+1.

Recalling the expression to obtain the liquidation value, lvt = exp (ε
x
t ) (1− τ)f e, and using nxt

nst
nt =

(nxt + (n
x
t /nt−1)n

e
t) ,we reach,

wtlt + rkt utkt−1 + ntdt = εgt + ct + it + a(ut)kt−1 + ectn
e
t+1,
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Next, introducing the input markets equilibria, lt = nt�lt, and, utkt−1 = nt�kt, yields,

wtnt�lt + rkt nt
�kt + ntdt = ct + it + a(ut)kt−1 + εgt + ectn

E
t+1.

The average dividend of firms that produce single goods, dt = �ρt�yt−wt
�lt− rkt

�kt, can be substituted

in the previous expression to obtain,

nt�ρt�yt = ct + it + a(ut)kt−1 + εgt + ectn
e
t+1.

Recalling the relation between aggregate output and firm-level output, yt = nt�ρt�yt, we have

yt = ct + it + a(ut)kt−1 + εgt + ectn
e
t+1,

and in a log-linear approximation around the detrended steady-state

*yt = c
y
*ct + i

y
*it + rkk

y
*ut + εg

y
εgt +

(δn/(1−δn))ec
y

�
*net+1 + *ect

�
.
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H. Estimated shock decomposition for US data

Using the "shock_decomposition" routine of Dynare, we have obtained and plotted the quarter-

to-quarter estimated shock decomposition of the rate of growth of US real Gross Domestic Product

(GDP) per capita, the rate of growth of the US Total Private Establishments (TPE), the US

establishment entry (births) rate, and the US establishment exit (deaths) rate.

Next, Figures 2-5 display the results with the following legend labeling: e_x is the contribution of

the liquidation value shock, e_e is the contribution of the entry cost shock, e_W is the contribution

of the wage-push indexation shock, e_P is the contribution of the price-push indexation shock, e_g

is the contribution of the fiscal/net exports spending shock, e_i is the contribution of the adjustment

cost of investment shock, e_R is the contribution of the Taylor-type monetary policy rule shock,

e_b is the contribution of the risk-premium shock, and e_a is the contribution of the technology

shock. The "initial values" share reports the contribution that is not explained by any of the nine

exogenous variables.
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Figure 2: Shock decomposition: quarterly growth rate of US real GDP per capita (1993:2 to 2016:2).
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Figure 3: Shock decomposition: quarterly growth rate of US Total Private Establishments per

capita (1993:2 to 2016:2).
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Figure 4: Shock decomposition: rate of US establishment entry (1993:2 to 2016:2).
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Figure 5: Shock decomposition: rate of US establishment exit (1993:2 to 2016:2).
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I. The sources of fluctuations in the Great Recession

The next two Tables collect the estimates of the structural parameters of the model for a sample

period that corresponds to the Great Recession (2007:1-2016:2):

Estimation of the structural parameters in the Great Recession

Priors Posteriors

Distr Mean Std D. Mean 90% HPD interval

h: consumption hab its Beta 0.70 0.15 0.57 [0.46, 0.69]

σc risk aversion Normal 1.50 0.25 0.92 [0.81, 1.02]

σl : inverse Frisch e lastic ity Normal 2.00 0.50 1.59 [0.71, 2.45]

ξp: Ca lvo price rigidity Beta 0.50 0.15 0.80 [0.75, 0.84]

ξw : Ca lvo wage rigidity Beta 0.50 0.15 0.96 [0.94, 0.98]

ιp: p rice indexation Beta 0.50 0.15 0.38 [0.18, 0.56]

ιw : wage indexation Beta 0.50 0.15 0.26 [0.11, 0.40]

ϕk : cap ita l ad j. cost elasticity Normal 4.00 1.50 2.76 [0.81, 4.74]

σa cap ita l utilization cost elasticity Beta 0.50 0.15 0.79 [0.64, 0.93]

ς : entry cost elasticity Normal 2.00 0.50 2.41 [1.69, 3.18]

X : steady-state exit rate Gamma 0.0292 0.0025 0.0296 [0.0280, 0.0311]

κ: ex it shap e Normal 5.00 1.50 3.36 [2.77, 3.95]

α:cap ita l share in production Beta 0.36 0.10 0.14 [0.10, 0.17]

θp : D ix it-Stig itz elasticity Normal 3.80 1.00 2.51 [2.22, 2.82]

µπ : inflation in Taylor rule Normal 1.50 0.25 1.53 [1.22, 1.84]

µy : output gap in Taylor ru le Normal 0.12 0.05 0.09 [0.05, 0.13]

µ∆y : output gap change in Taylor ru le Normal 0.12 0.05 0.14 [0.08, 0.19]

µR : inertia in Taylor ru le Beta 0.75 0.15 0.80 [0.72, 0.89]

γ : steady -state technology growth , % Normal 0.35 0.10 0.07 [0.02, 0.12]

π: steady-state rate o f inflation , % Normal 0.45 0.10 0.48 [0.37, 0.60]

l: steady-state log o f hours Normal 415.0 5.00 411.4 [410.1, 412.9]
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Estimation of the exogenous processes in the Great Recession

Priors Posteriors

Distr Mean Std D. Mean 90% HPD interval

σηa : Std . dev . o f technology innov. Invgamma 0.10 2.00 0.78 [0.62, 0.95]

σηb : S td dev of risk-prem ium innov. Invgamma 0.10 2.00 0.19 [0.13, 0.24]

σηR : S td dev of monetary innov. Invgamma 0.10 2.00 0.14 [0.11, 0.17]

σηg : S td dev of fi scal innov. Invgamma 0.10 2.00 1.93 [1.55, 2.30]

σηi : S td dev of investm ent innov. Invgamma 0.10 2.00 0.35 [0.23, 0.47]

σηp : S td dev of price -push innov. Invgamma 0.10 2.00 0.49 [0.29, 0.69]

σηw : Std of wage-push innov. Invgamma 0.10 2.00 1.30 [0.91, 1.66]

σηe : S td dev of entry cost innov. Invgamma 0.10 2.00 0.47 [0.27, 0.66]

σηx : Std dev of liqu idation innov. Invgamma 0.10 2.00 0.47 [0.21, 0.73]

ρa : Auto corr. o f technology sho ck Beta 0.50 0.20 0.74 [0.65, 0.84]

ρb : Auto corr. of risk-prem ium shock Beta 0.50 0.20 0.95 [0.92, 0.98]

ρR : Auto corr. of m onetary shock Beta 0.50 0.20 0.49 [0.30, 0.66]

ρg : Auto corr. of fi scal sho ck Beta 0.50 0.20 0.55 [0.36, 0.75]

ρi : Auto corr. of investm ent shock Beta 0.50 0.20 0.69 [0.49, 0.87]

ρp : Auto corr. of price-push shock Beta 0.50 0.20 0.44 [0.17, 0.74]

ρw : Auto corr. of wage-push shock Beta 0.50 0.20 0.22 [0.06, 0.35]

ρe: Auto corr. o f entry cost sho ck Beta 0.50 0.20 0.52 [0.29, 0.78]

ρx: Auto corr. o f liquidation shock Beta 0.50 0.20 0.59 [0.38, 0.79]

µp : MA(1) o f price-push shock Beta 0.50 0.20 0.53 [0.28, 0.79]

µw : MA(1) o f wage-push shock Beta 0.50 0.20 0.92 [0.85, 0.99]

ρga : cross eff ect tech.-fi scal/NX Beta 0.50 0.20 0.66 [0.39, 0.95]

We will examine here the origins of the aggregate fluctuations in the shock decomposition of the

estimated model. The sample period we look at begins in 2007:1 and ends at the end of the sample

period, 2016:2, to contain the financial crisis of 2008 and the years afterwards that belong to the

so-called Great Recession period.5

Figure 6 displays the partial quarterly contribution of each estimated shock of the model to

the actual fluctuations of US real GDP growth during the Great Recession. Technology shocks are

5There is no reference to the role of entry and exit for business cycle fluctuations during the subsample period

that belongs to the Great Moderation era (1993:2-2006:4) because it was found to be rather poor. The Bayesian

estimation of the model over this subsample period was not very successful in replicating second-moment statistics,

probably because of the little influence of net business formation for aggregate fluctuations (documented in Section

2 of the paper).
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Figure 6: Sources of US real GDP growth variability (lines marked with *) during the Great

Recession.
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Figure 7: US real GDP during the Gret Recession period (2007:1-2016:2). Quarterly shock decom-

position.
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really important for the recovery path after the financial crisis. In 2009-2011, Figures 6-7 show

that technology innovations contribute at around 1% positive for US economic growth and numbers

remain on the positive side until 2012. It could be argued that the enormous business destruction

that took place during the financial crisis of 2008 (more than 100,000 establishments closed in net

terms) led to economy-wide technological innovations a few quarters later. This can be considered

a Schumpeterian interpretation (creative destruction), supported by the estimation results showing

technology shocks help the building up of the recovery path. In the second cell of Figure 6, we can

see the severity of the adverse risk-premium shock during the financial crisis. In the third quarter of

2008 (Lehman Brothers’ bankruptcy) the contractionary effects of the risk premium shock had an

estimated impact of a 2.2% reduction of real GDP. The risk premium shock is still contractionary

until 2010, though its size and effect on US growth is diminishing over time. Interest-rate shocks

show the role of unconventional monetary policy during the Great Recession. Initially, the Fed

intervention to cut interest rates to 0% provided some stimulus in 2008, with an average quarterly

contribution to real GDP growth of +0.45%. Later, the massive asset purchase program of the Fed

(QE policies), give a second wave of monetary stimulus in 2013-2015.6 In 2014, the year in which

the Fed’d balance sheet reached its highest value (around 4 trillion dollars) the average quarterly

effect monetary shocks on real GDP growth is +0.63%.7 Fiscal policy turns influential for US real

GDP in several punctual quarters.8 In particular, there is a contractionary fiscal shock in 2011:1

that has a negative impact of -0.87% on real GDP growth. Other adverse fiscal shocks are displayed

in Figures 6-7 corresponding to the fiscal cliff turbulences occurred in 2012-1014. All the remaining

shocks play a minor role on explaining US real GDP during the Great Recession. We could just

mention the price shocks in 2010-2011 as a consequence of the increase in the cost of energy (oil

price jumped over $90 a barrel), which are found to have a negative impact on US growth of around

-0.2% per quarter.

The following Table provides the mean contribution and the standard deviation of the innova-

tions from the nine shocks of the model, comparing across the full sample period and the Great

Recession:

6The observed series of nominal interest rate may capture the effects of the QE policies because we have used the

Wu-Xia (2016) series of shadow interest rates which include negative observation.
7Actually, the expansionary effects of monetary shocks estimated in the four quarters of 2014 (in terms of growth

of real GDP per capita) are +0.68% (Q1), +0.81% (Q2), +0.51% (Q3) and +0.50% (Q4).
8As discussed in Smets and Wouters (2007), the fiscal shock may also capture changes in external demand (net

exports) that are not considered in the closed-economy setup of the model.
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Shock decomposition for US real GDP growth, △*yt
Full sample, 1993-2016 Great Recession, 2007-16

Mean Std dev Mean Std dev

Technology, ηa 0.07 0.45 0.20 0.50

Risk-premium, ηb −0.08 0.52 −0.46 0.45

Interest rate, ηR 0.09 0.31 0.06 0.39

Investment, ηi 0.00 0.06 −0.01 0.06

Fiscal/NX, ηg 0.00 0.30 −0.02 0.32

Price-push, ηp −0.01 0.13 0.05 0.14

Wage-push, ηw 0.01 0.07 0.03 0.05

Entry cost, ηe 0.10 0.17 0.13 0.12

Liquidation, ηx −0.01 0.13 −0.03 0.13

The sources of economic growth during the Great Recession are the technology shock (+0.20%

per quarter) and, in a weaker extent, the entry cost shock (+0.13% per quarter), the interest rate

shock (+0.06%), and the price-push shock (+0.05% per quarter). Meanwhile, the recession is mostly

justified on the demand-side risk premium shocks with a negative effect of -0.46% per quarter on

US real GDP growth. Fiscal shocks are quite volatile (with continuous ups and downs) because

its standard deviation is almost as high as that of the interest rate shocks, but the overall effect is

quantitatively small. Finally, entry cost shocks and liquidation shocks have opposite sign effects:

the exogenous component of entry favours economic growth (+0.13% per quarter) while the exit

shock reduces it at -0.03% per quarter.
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