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The limit cycle of the van der Pol oscillator, ẍ + ε(x2 − 1)ẋ + x = 0, is studied in the plane (x, ẋ) by applying the homotopy
analysis method. A recursive set of formulas that approximate the amplitude and form of this limit cycle for the whole range of the
parameter ε is obtained. These formulas generate the amplitude with an error less than 0.1%. To our knowledge, this is the first
time where an analytical approximation of the amplitude of the van der Pol limit cycle, with validity from the weakly up to the
strongly nonlinear regime, is given.
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1. Introduction

A dynamical system whose time evolution x(t) is determined
by the differential equation,

ẍ(t) + ε(x2 − 1)ẋ(t) + x(t) = 0, t ≥ 0, (1)

with ε a real parameter, and the dot denoting the time
derivative is called the van der Pol oscillator [1]. For ε >
0, and due to the nonlinear term ε(x2 − 1)ẋ, the system
accumulates energy in the region |x| < 1 and dissipates this
energy in the region |x| > 1. This constraint implies the
existence of a stable periodic motion (limit cycle [2]) when
ε > 0. If the nonlinearity is increased, the dynamics in the
time domain runs from near-harmonic oscillations when
ε → 0 to relaxation oscillations when ε → ∞, making it
a good model for many practical situations [3, 4]. The closed
curve representing this oscillation in the plane (x, ẋ) is quasi
circular when ε → 0 and a sharp figure when ε → ∞.
For ε < 0, the dynamics is dissipative in the region |x| < 1
and amplificative for |x| > 1. Under these conditions, the
periodic motion is still possible but unstable. In this case,
the limit cycle can be derived from that one with ε > 0
taking into account the symmetry (ε, x(t)) → (−ε,−x(−t)).

Therefore, it is enough to study the case ε > 0 to obtain also
the behavior of the system for ε < 0.

Different standard methods (perturbative, nonperturba-
tive, geometrical) [1–7] have been used to study the limit
cycle of the van der Pol equation, in the weakly (ε → 0)
and in the strongly (ε → ∞) nonlinear regimes. However,
investigations giving analytical information of this object in
the intermediate regime of ε are lacking in literature. In this
paper, it is our aim to fill in this gap by applying to (1)
the homotopy analysis method (HAM) introduced by Liao
[8, 9] in the nineties. This method has been shown to be
very useful to solve different nonlinear problems [10–20]. In
particular, it has been applied in [21] to Liénard equation,
ẍ+ε f (x)ẋ+ x = 0, which is the generalization of the van der
Pol system when f (x) is an arbitrary function. As the interest
in that work [21] was the amplitude and the frequency of the
periodic motions, the calculations were performed with the
time variable being explicit. As here we are only interested
in the amplitude and form of the limit cycles, the time
dependence of the solutions can be omitted, and we can work
directly in the phase space (x, ẋ). Our results for the van der
Pol limit cycle are presented in Section 2. In Section 3 it is
explained how these results have been obtained from our
specific application of the HAM to the van der Pol equation.
Some conclusions are given in the last Section.
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Figure 1: Comparison of the “experimental” amplitude aE(ε) (dotted curve) with (a) amplitude a(ε)ε→ 0 given by formula (3) (solid line)
and (b) amplitude a(ε)ε→∞ given by formula (4) (solid line).

Table 1: The value aE represents the amplitude a of the van der Pol
limit cycle obtained with five decimal digits by integrating directly
(1) with a fourth order Runge-Kutta method for the indicated
values of ε.

ε 0.1 0.5 1.0 1.5 2.0 2.5

aE 2.00010 2.00249 2.00862 2.01522 2.01989 2.02235

ε 3.0 3.5 4.0 5.0 10 50

aE 2.02330 2.02337 2.02296 2.02151 2.01428 2.00295

2. The Amplitude of the van der Pol Limit Cycle

Nowadays, the amplitude a of the van der Pol limit cycle
can be easily computed with a classical Runge-Kutta method.
The results of this computational calculation aE are shown
in Table 1. Let us observe that aE(ε) > 2 for ε > 0, with
the asymptotic values: aE(ε → 0) = aE(ε → ∞) = 2. An
upper bound rigorously established in [22] for the amplitude
a is 2.3233. However, as it was also signaled in that work, the
maximum of aE is 2.02342, and it is obtained for ε = 3.3. In
view of this result, Odani [22] conjectured that the amplitude
of the limit cycle of the van der Pol equation is estimated by
2 < a(ε) < 2.0235 for every ε > 0.

A closed formula for the amplitude a as function of ε is
unknown. By inspecting Table 1, one could propose as a good
solution the constant amplitude

a = 2 (2)

for the whole range of the parameter ε. Knowing that the
experimental upper bound for a is 2.02342, that is, 2 <
a(ε) < 2.02342 for every ε > 0, the error made with this
approximation, (a(ε)− a)/a(ε), would be about 1%.

If more precision is needed, the different analytical
expansions in ε that have been found for the amplitude
in the weakly and in the strongly nonlinear regimes can
be considered. Evidently, the error becomes very large in
the regions where these approximations are not valid. In
[21, 23, 24], a recursive perturbation approximation is used

to find the formula for the amplitude when ε → 0. This is,
up to order O(ε8),

a(ε)ε→ 0 = 2 +
1

96
ε2 − 1033

552960
ε4 +

1019689
55738368000

ε6. (3)

This expansion agrees for small ε with the computational
calculation aE presented in Table 1. For 0 < ε < 2, the error
is less than 1%, for ε ≈ 4, the error is bigger than 10%, and
for ε ≈ 6, the formula has lost its validity, and the error is
bigger than 50%. In [25], the asymptotic dependence of the
amplitude on ε is given for sufficiently large ε > 0,

a(ε)ε→∞ = 2 + 0.7793ε−4/3. (4)

Compared with aE, this formula generates the amplitude
with an error bigger than 15% for ε < 2. The formula starts
to have validity for ε ≈ 10 with an error around 1%, that
passes to be less than 0.1% when ε > 50. In Figures 1(a) and
1(b), formulas (3) and (4) are, respectively, plotted versus ε
in their regions of validity.

We propose here two formulas, aR1(ε) and aR2(ε), that
approximate the amplitude of the van der Pol limit cycle for
every ε > 0: the first one with an error less than 0.1% and the
second one with an error less than 0.05%. These formulas
have been obtained by applying the HAM to the van der Pol
equation. The details of the derivation of these formulas are
given in Section 3.

The first formula is

aR1(ε) = 2 +
1.737ε2

(8π + 9ε)(4 + ε2)
, (5)

that derives from expression (38). The error obtained,
|a(ε) − aR1(ε)|/a(ε), with this formula is less than 0.1%
for every ε > 0. Figure 2(a) shows aR1 in comparison with
the “experimental” amplitude aE. The maximum of aR1 is
2.02317, and it is taken for ε = 3.3.
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Figure 2: (a) Amplitude aR1(ε) given by formula (5) (solid curve) and experimental amplitude aE(ε). (b) Amplitude aR2(ε) given by formula
(6) (solid curve) and experimental amplitude aE(ε) (dotted curve), and ε given in logarithmic scale.

The second formula is

aR2(ε) = 2 +
0.74958ε2

(8π + 9ε)(4 + ε2)

+
ε2(75.3562 + 43.0023ε + 28.1589ε2 + 8.3479ε3)

(8π + 9ε)2(4 + ε2)2 ,

(6)

that derives from expression (41). The error obtained, |a(ε)−
aR2(ε)|/a(ε), with this formula is less than 0.05% for every
ε > 0. The maximum of aR2 is 2.02346, and it is taken for ε =
3.29482. The plot of aR2 in comparison with the amplitude aE
obtained computationally can be seen in Figure 2(b). Let us
observe that it can be guessed from Figure 2(b) that aR2(ε) >
aE(ε) for every ε > 0.

The expansion of expression (6) for small ε gives

aR2(ε)ε→ 0 = 2 + 0.01491ε2 + O(ε3). (7)

For large ε, we obtain

aR2(ε)ε→∞ = 2 + 0.18648ε−1 + O(ε−2). (8)

Let us note the different scaling of this last expression (with
behavior ε−1) with respect to expansion (4) (with behavior
ε−1.33). Taking into account that these approximations start
to be valid when ε > 100, it can be easily seen that this
difference is negligible, in fact less than 0.01%. Nevertheless,
we have tried to modify formula (6) to obtain the correct
scaling ε−1.33 of expression (4) but the increase of the error
in other regions of the parameter ε does not recommend this
possibility.

In summary, let us remark the exceptional fit of the
“experimental” points aE by the amplitudes aR1 and aR2 gen-
erated with formulas (5) and (6), respectively, (see Figures
2(a) and 2(b)). Moreover, by inspection of Figure 2(b), let us
finish this section by posing the following.

Conjecture. The amplitude aR2(ε) obtained with formula (6)
is an upper bound for the amplitude a(ε) of the van der Pol
limit cycle, that is,

aR2(ε) > a(ε) > 2 for every ε > 0. (9)

3. The HAM and the van der Pol Equation

The generalization of the van der Pol equation, ü + ε(u2 −
1)u̇ + u = 0, is called the Liénard equation. In coordinates
(u, v), it reads

ü(t) + ε f (u)u̇(t) + u(t) = 0, t ≥ 0, (10)

where we consider that f (u) is an even function. The HAM
has been applied to this equation in [21] working explicitly in
the time domain. We proceed now to apply the HAM to this
system by following a different strategy, namely, by omitting
the time variable of (10).

3.1. HAM Applied to Liénard Equation. If we define the
variable v = u̇, and suppose that v is a function of u,
the acceleration ü can be rewritten as v′v, where the prime
denotes the derivative respect to u. The result is a new
equation with the time variable eliminated:

vv′ + ε f (u)v + u = 0. (11)

When f (u) is even [26, 27], the limit cycles of this equation
are closed trajectories of amplitude a in the (u, v) plane, with
−a ≤ u ≤ a and v(a) = v(−a) = 0.

After the rescaling (u, v) = (ax, ay) to the new variables
(x, y), the limit cycles are transformed in solutions of the
equation

yy′ + εy f (ax) + x = 0, −1 ≤ x ≤ 1,

y(−1) = y(1) = 0,
(12)

where the prime is now denoting the derivative with respect
to x.

From [26, 27], we know that an approximate solution of
the positive branch solution of (12), for any value of ε > 0, is

ỹ(x) =
√

1− x2 +
ε
ã

⎧

⎪

⎨

⎪

⎩

0 if − 1 ≤ x <
x0

ã
,

F(ã)− F(ãx) if
x0

ã
≤ x ≤ 1,

(13)
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where F′(x) = f (x), x0 is a negative root of f (x): f (x0) = 0
with x0 < 0, and ã is a positive root of F(x0)− F(x): F(x0) =
F(ã) with ã > 0. The number of possible stable limit cycles
in the strongly nonlinear regime (for large ε) is obtained
from the number of positive roots of F(x0) − F(x) when x0

runs over the set of all the negative roots of f (x0) = 0. We
take the positive roots ã selected by the algorithm explained
in [26, 27] as the corresponding approximate amplitudes.
Let us observe that the initial approximate limit cycle ỹ(x)
is justified because it recovers the exact circular form when
ε → 0, and also, when ε → ∞, it becomes exactly the two-
piecewise limit cycle proposed and plotted in [26]. Moreover,
it must be noticed that ỹ(x) makes sense only when ε > 0,
and then the results obtained from this initial guess only will
have validity for ε > 0.

After eliminating the time variable, the nonlinear differ-
ential equation yy′+εy f (ax)+x = 0 is of order one. Then, to
construct the homotopy [8, 9], we build a linear differential
equation of order one for the whole range [0, 1] of what is
called the homotopy parameter p.

We define an auxiliary linear operator L by

L[φ(x; p)] = ∂

∂x
φ(x; p), (14)

with the property

L
[

C1
] = 0, (15)

where C1 is a constant function (the kernel of operator L),
and p is a (homotopy) parameter explained below.

From (12) we define a nonlinear operator

N [φ(x; p),A(p)] = φ(x; p)
∂φ(x; p)
∂x

+ εφ(x; p) f (A(p)x) + x,
(16)

and then construct the homotopy

H[φ(x; p),A(p)] = (1− p)L
[

φ(x; p)− ỹ(x)
]

+ hpN
[

φ(x; p),A(p)
]

,
(17)

where h is a nonzero auxiliary parameter. Setting H[φ(x; p),
A(p)] = 0, we have the zero-order deformation equation

(1− p)L[φ(x; p)− ỹ(x)] + hpN [φ(x; p),A(p)] = 0, (18)

subject to the boundary conditions

φ(−1; p) = 0, φ(1; p) = 0, (19)

where p ∈ [0, 1] is an embedding parameter. When the
parameter p increases from 0 to 1, the solution φ(x; p) varies
from y0(x) = ỹ(x) to y(x), and A(p) varies from a0 to a.
Assume that φ(x; p) and A(p) are analytic in p ∈ [0, 1] and
can be expanded in the Maclaurin series of p as follows:

φ(x; p) =
+∞
∑

n=0

yn(x)pn, A(p) =
+∞
∑

n=0

anp
n, (20)

where

yn(x) = 1
n!

∂nφ(x; p)
∂pn

∣

∣

∣

∣

p=0
, an = 1

n!
∂nA(p)
∂pn

∣

∣

∣

∣

p=0
. (21)

Notice that series (20) contain the auxiliary parameter h,
which has influence on their convergence regions. Assume
that h is properly chosen such that all of these Maclaurin
series are convergent at p = 1. Hence at p = 1 we have

y(x) = y0(x) +
+∞
∑

n=1

yn(x), a = a0 +
+∞
∑

n=1

an. (22)

At the Nth-order approximation, we have the analytic
solution of (12), namely,

y(x) ≈ YN (x) :=
N
∑

n=0

yn(x), a ≈ AN :=
N
∑

n=0

an. (23)

The parameter h is free and can be chosen arbitrarily;
in particular, it can be a function of ε. Nevertheless, the
function ỹ(x) is the exact limit cycle solution of the Liénard
equation (12) in the limits ε → 0 and ε → ∞. This means
that the general solution y(x,h) of (18) should tend to ỹ(x)
for any p in those limits of ε, loosing its dependence on h.
Then, a reasonable property for hwould be to vanish in those
limits of ε. Hence, the solution of (18) would be the exact
solution ỹ(x) for any value of the parameter p in the limits
ε → 0 and ε → ∞. A simple function h(ε) satisfying these
properties is

h(ε) = bε
c + ε2

, with b, c ∈ R. (24)

Differentiating (18) and (19) n times with respect to p, then
setting p = 0, and finally dividing by n!, we obtain the nth-
order deformation equation

L
[

yn(x)− χnyn−1(x)
]

+ hRn(x) = 0, (n = 1, 2, 3, . . .),
(25)

subject to the boundary conditions

yn(−1) = 0, yn(1) = 0, (26)

where Rn(x) is defined by

Rn(x) = 1
(n− 1)!

∂n−1N
[

φ(x; p),A(p)
]

∂pn−1

∣

∣

∣

∣

p=0
,

χn =
{

0, n ≤ 1,

1, n > 1.

(27)

At each iteration, we have two unknowns: C1, in (15), and an.
These unknowns are obtained by considering the boundary
conditions (26) as follows.

At zero order, we obtain

y0(x) = ỹ(x). (28)
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At 1st-order, we obtain

y1(x) = h

2

[

1− x2 − y2
0(x)

]− hε
∫ x

−1
y0(t) f (a0t) dt, (29)

where we have imposed the condition y1(−1) = 0 choosing
the integration constant, C1, appropriately. At this moment
a0 is free but we can fix the value of a0 by imposing y1(1) = 0:

∫ 1

−1
y0(t) f (a0t) dt = 0. (30)

This is a nonlinear equation for a0. When f (x) is an even
polynomial of degree 2n, it is a polynomial equation of
degree n in the variable a2

0. Therefore, at this order, the
number of limit cycles is the number of positive roots of this
equation, at most n (see [27] for a longer discussion of this
point).

Then, for every one of the a0 solutions of the above
equation, that is, for every one of the limit cycles of the
system, we proceed order by order in p to obtain higher order
corrections to the amplitude a and to the shape of the limit
cycle y(x).

For example, at 2th-order, we obtain

y2(x) = y1(x)− hy0(x)y1(x)

− hε
∫ x

−1

[

y1(t) f (a0t) + ty0(t) f ′(a0t)a1
]

dt,
(31)

a1 =
−[∫ 1

−1y1(x) f (a0x) dx
]

[∫ 1
−1xy0(x) f ′(a0x) dx

] . (32)

Therefore, a first approximation to the shape of the limit
cycle is y0(x) + y1(x), and a first-order approximation to the
amplitude of the limit cycle is a = a0 + a1.

At 3th-order, we have

y3(x) = y2(x)− hy0(x)y2(x)− h

2
y2

1(x)

− hε
∫ x

−1

[

y2(t) f (a0t) + a1ty1(t) f ′(a0t)

+
1
2
a2

1t
2y0(t) f ′′(a0t)

+ ty0(t) f ′(a0t)a2

]

dt,

(33)

a2 = −
[∫ 1

−1

[

y2(x) f (a0x) + a1xy1(x) f ′(a0x)

+
1
2
a2

1x
2y0(x) f ′′(a0x)

]

dx
]/

[∫ 1

−1
xy0(x) f ′(a0x) dx

]

.

(34)

Therefore, a second-order approximation to the shape of
the limit cycle is y0(x) + y1(x) + y2(x), and a second-order
approximation to the amplitude of the limit cycle is a =
a0 + a1 + a2.

Moreover, at every order in p the appropriate function
h(ε) is indicated by the experiment, and in some sense, h(ε)
should be seen as somewhat provisional if a better guess
could be inferred.

3.2. Results for the van der Pol Equation. For the van der Pol
system, we have f (x) = x2 − 1, F(x) = x3/3 − x, x0 = −1,
ã = 2 and

ỹ(x) =
√

1− x2 +
ε
2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if − 1 ≤ x < −1
2

,

F(2)− F(2x) if − 1
2
≤ x ≤ 1.

(35)

The expressions for y0(x), y1(x), and y2(x) can be calculated
as explained in Section 3.1. From (30) we get
∫ 1

−1
y0(t) f (a0t) dt = 9ε + 8π

64
(a2

0 − 4) = 0 =⇒ a0 = 2. (36)

From (32) we obtain

a1(h) = − 27
√

3εh
35(8π + 9ε)

. (37)

Therefore, a first approximation to the amplitude of the limit
cycle is

a(h) � 2− 27
√

3εh
35(8π + 9ε)

. (38)

As it was advanced at the beginning of this section, note that
this expression is only valid for positive ε. Choosing b = −1.3
and c = 4 in (24),

h(ε) = − 1.3ε
4 + ε2

, (39)

the formula aR1(ε) given in (5) is obtained. The values for b
and c are selected by guess and check.

From (34) we get

a2(h) = (3εh[19197
√

3ε2h− 5040(8
√

3− 21h)π

+ 2ε
(− 22680

√
3

+ h(54837 + 7700
√

3π)
)])/

19600(9ε + 8π)2.

(40)

Therefore, a second approximation to the amplitude of the
limit cycle is

a(h) � 2− 27
√

3εh
35(8π + 9ε)

+
(

3εh
[

19197
√

3ε2h− 5040(8
√

3− 21h)π

+ 2ε
(− 22680

√
3

+ h(54837 + 7700
√

3π)
)])/

19600(9ε + 8π)2.

(41)

Choosing b = −0.561 and c = 4 in (24),

h(ε) = −0.561ε
4 + ε2

, (42)

the formula aR2(ε) shown in (6) is finally obtained.
As an example, and to conclude this section, we plot

in Figure 3 the form of the van der Pol limit cycle when
y0(x), y0(x) + y1(x), and y0(x) + y1(x) + y2(x) are used
as approximated limit cycles. It is not banal to recall here
that the reconstruction of the shape of limit cycles is not
a less difficult problem than that of the calculation of their
amplitudes.
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Figure 3: Approximated shape of the van der Pol limit cycle for
ε = 5 and h(ε) given in (42). Black line: the experimental limit
cycle. Brown, blue, and red lines: the curves y0(x), y0 + y1(x) and
y0 + y1(x) + y2(x), respectively.

4. Conclusions

In this work, the conjecture (9) has been posed. This is
a consequence of the different formulas here presented for
approximating the amplitude a of the van der Pol limit cycle.
In addition to the well-known constant approximation a = 2
that generates an error less than 1%, we establish a family
of recursive formulas that are valid for the whole range of
the parameter ε. Two of them, aR1(ε) and aR2(ε), have been
explicitly given. The first one, aR1, produces an error less than
0.1%, and the second one, aR2, reduces the error to less than
0.05%. Moreover, aR2 is conjectured to be an upper bound of
a.

As far as we know, this is the first time where an analytical
approximation of the amplitude of the van der Pol limit cycle,
with validity from the weakly up to the strongly nonlinear
regime, is proposed.
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