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Abstract 

The growing interest in e-mobility and the increasing installation of renewable energy-based 

systems are leading to rapid improvements in lithium-ion batteries. In this context, battery 

manufacturers and engineers require advanced models in order to study battery performance 

accurately. A number of Li-ion battery models are based on the representation of physical 

phenomena by electrochemical equations. Although providing detailed physics-based 

information, these models cannot take into account all the phenomena for a whole battery, 

given the high complexity of the equations. Other models are based on equivalent circuits and 

are easier to design and use. However, they fail to relate these circuit parameters to physical 

properties. In order to take the best of both modeling techniques, we propose an equivalent 

circuit model which keeps a straight correlation between its parameters and the battery 

electrochemical principles. Consequently, this model has the required simplicity to be used in 

the simulation of a whole battery, while providing the depth of detail needed to identify 

physical phenomena. Moreover, due to its high accuracy, it can be used in a wide range of 

environments, as shown in the experimental validations carried out in the final section of this 

paper. 

 

Keywords: Li-ion battery; equivalent circuit model; equivalent electric circuit; storage 

system; electrical microgrid. 
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Nomenclature 

Symbol Meaning Unit 

a Thermodynamic activity  
A Area m2 
Ak Interaction parameters form Redlich-Kister 

equation 
J·mol ̶ 1 

C Capacity (battery) or capacitance (capacitor) Ah or F 
CPE Constant phase element Ω 
D Diffusion coefficient m2·s ̶ 1 
E Energy Wh 
EA Activation energy J·mol ̶ 1 
F Faraday constant s·A·mol  ̶ 1 
i Battery current (discharging) A 
j Imaginary unit or flux of ions m·s ̶ 1 
k Reaction rate constant m·s ̶ 1 
l Length m 
Q Charge Ah 
r Radial coordinate of electrode particle m 
R Gas constant J·mol  ̶ 1· K  ̶ 1 
R Resistance Ω 
Rp Radius of the electrode particles m 
SOC  State of charge  
t Time s 
T Battery temperature K 
v Voltage V 
vINT Non-ideal interactions between charged 

particles 
V 

x Molar fraction  
Y Admittance S  
z Excess electric charge  
Z Impedance Ω 
α Apparent cathodic transfer coefficient  
γ Activity coefficient  
ε Relative permittivity  
ε0 Vacuum permittivity F·m ̶ 1 
μ Chemical potential J·mol ̶ 1 
η Efficiency  
ρ Density kg·m ̶ 3 
τ Time constant s 
θ Available hole in host material  
Ψ Exponent of CPE  
ω Frequency rad·s ̶ 1 

 

Subscript Meaning 

act Activation process 
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arc Parallel connection of Rct and CPEdl 
bat Battery 
c Coulombic 
ch Charge 
ct Charge transfer process 
dif Diffusion process 
dis Discharge 
dl Double layer 
e Energy 
elec Electrode 
eq At equilibrium conditions 
F Faradaic process 
i Referred to each chemical species 
j Referred to anode or cathode 
Li Lithium 
mem Membrane 
O Oxidant species 
ohm Ohmic phenomena 
R Reducing species 
SEI Solid-electrolyte interface 
α Host material with intercalated lithium 
β Unoccupied host material 

 

Superscript Meaning 

̶  δ Partial negative charge 
0 At reference conditions 
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1.- Introduction 

Due to the current need to decarbonize our energy sources, there is a specific focus on 

renewable energy plants, decentralized electricity generation, microgrids and e-mobility [1, 

2]. The energy storage system is a crucial element in these plants, making it possible to 

balance energy generation and consumption and thus improving the interaction with the 

electricity grid [3, 4]. Among the different energy storage technologies available, lithium-ion 

batteries are becoming more popular due to their decreasing price and functional 

characteristics of power and energy density and long cycle life [5–7]. 

In this scenario of increasing use and constant technological improvement of Li-ion 

batteries, a battery model is a valuable tool for many research and development activities [8]. 

Tasks such as battery design, energy storage system sizing, and controller and power 

converter design are more likely to succeed when based on a suitable battery model. Battery 

models can be classified into electrochemical models and equivalent-circuit models. 

Electrochemical models use both the mathematical expressions of physical phenomena and 

the material microstructure to predict battery performance [9–11]. They are generally used to 

study a specific battery parameter and make it possible to analyze phenomena such as the 

relaxation of insertion cells [12], phase change and the effect of the porous structure of 

electrodes [13] and the optimization of electrode porosity and thickness [14]. Although they 

are used to improve battery design and manufacture, complex equations need to be solved, a 

high computational power is required, and they fail to predict the performance of a whole 

battery system, given the unfeasibility of taking every battery component and process into 

account. Equivalent-circuit models are comprehensive models that are able to predict the 

overall behavior of the battery. These models are focused on estimating the state of charge 

(SOC) and battery impedance. The approach used to estimate the SOC depends on the model 

application. When a model is designed for offline simulations, the SOC is estimated by 

ampere-hour counting [15 – 17], which integrates the battery current over time. Online battery 

models can measure the actual battery current and voltage, then closed-loop algorithms such 

as Kalman filter, Extended Kalman filter, Hauss-Hermite quadrature filter, H∞ filter, particle 

filter and least squares methods are used to avoid the integral error [18 – 21]. Each algorithm 

offers advantages and disadvantages regarding robustness against model and measurement 

inaccuracies, the credibility of results and computational requirements.  

With regard to impedance estimation, there are also two main approaches. On the one 

hand, a machine-learning algorithm can be used to calculate the battery impedance. These 
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algorithms run for a training period in which they try to minimize the error between predicted 

and measured battery performance. The most typical learning algorithms used in these models 

are based on artificial neural networks [22 – 25]. These models provide excellent results 

regarding accuracy, which can be maintained throughout the battery lifetime by parameter 

correction. However, they often fail to associate the battery behavior with the underlying 

physical phenomena, since they are not based on physics but on mathematical optimization. 

On the other hand, the battery impedance can be designed by simplifying the physical 

equations in order to speed up the computer simulation while keeping the accuracy as high as 

possible [26–29]. In this case, the impedance parameters represent the primary physical 

processes which determine the battery performance. There is a wide range of impedance 

designs based on physical battery operation. A straightforward representation of the battery 

impedance is a series connection of a resistance to an ideal voltage source. However, this 

representation is seldom used due to its poor accuracy. Instead, many authors use the Randles 

Model, in which a number of RC circuits are added to the series resistance in order to 

represent dynamic battery phenomena [30–34]. Although these models can achieve better 

accuracy in the prediction of high-dynamic performance, this accuracy is generally lower 

when the slow relaxation processes need to be taken into account. 

In order to improve current models, a new equivalent-circuit model in which the 

parameters are firmly related to the underlying physical phenomena is proposed in this paper. 

The simplifications of the physical equations make it possible to integrate it in advanced 

electrical system models and to simulate the battery during real operation. Therefore, the 

model can also be used to size a battery for a particular electrical system and to improve the 

battery SOC control strategy. Thanks to the proposed impedance design, the accuracy of the 

model is guaranteed even at high-frequency operation, which allows the analysis of the 

interaction between the battery and the power converter connected to it. Moreover, the 

parameters design proposed in this model and their relationship with the physical phenomena 

can be used to identify the reason for particular battery shortcomings and to optimize the 

design and manufacturing of Li-ion batteries. This approach is also useful for a battery user, 

since the model allows the intelligent use of the battery, extending its lifetime and maximizing 

its characteristics. A fitting procedure is also proposed to fit the model parameters to the 

performance of a particular battery. By way of example, this fitting procedure is applied to a 

commercial graphite-NMC battery, and the model is then experimentally validated for three 

different operating modes. These validations cover the entire battery operating range 
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according to the manufacturer's specifications, that is, temperature between 0 ºC and 60 ºC, 

discharge current lower than 5C and charge current lower than 2C. 

The aging modeling is not explicitly addressed in this paper, given that the time scale of 

phenomena analyzed (fractions of a second to several days) is too short for aging effects to be 

noticeable. Even though, batteries at different aging states can be characterized and modeled 

with the proposed methodology. This analysis would require the battery parameters to be 

fitted at each state of health of the battery. 

The paper is organized as follows. A theoretical compilation of the electrochemical 

phenomena involved in the battery performance is presented in Section 2, explicitly covering 

the equilibrium potential, ohmic phenomena, double layer behavior, kinetics of the chemical 

reaction, ion transport and solid–electrolyte interface. Then, in order to represent these 

electrochemical phenomena as an equivalent-circuit model, some simplifications are proposed 

in Section 3 to design the battery model. The commercial battery used to illustrate the model 

and to validate its accuracy is described in Section 4. In Section 5, the proposed methodology 

to fit the model parameters, which consists in three types of experiments that can be easily 

performed in a typical electrical laboratory, is explained and applied to the aforementioned 

battery. A summary table with the value of each parameter involved in the battery model is 

also provided in this section. Finally, in Section 6, the performance of the model is 

experimentally validated for different operating temperatures, power outputs, and frequencies. 

The suitability of the proposed model to predict the battery performance is also 

experimentally tested in a real microgrid installed at the Public University of Navarre (UPNA) 

with satisfactory results. 

 

2.- Physico-chemical phenomena that determine the battery 

performance 

2.1. Equilibrium potential of insertion electrodes 

The electrochemical reaction at the electrode−electrolyte interphase can be expressed as 

follows:  

][ δδ θθ −+→
←

−+ −++ LieLi  

where the expression [Li+δ– θ– δ] represents the intercalated species, denoted hereafter by 

subscript α.  
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The following relationship can be established based on thermodynamic principles: 

αβ µµµ −+= 0· LiUF  (1) 

Note that the chemical potential µi (i=α, intercalated, or β, deintercalated species) is not 

dependent on the composition of the host material. The chemical potential of a species i in 

any condition can be related to the potential in other temperature and concentration conditions 

through activity coefficient (γi) and the molar fraction (xi) [34]. In a Li-ion battery, the forces 

caused by the interaction between positively-charged Li-ions and negatively-charged host 

material cause the non-ideal behavior [35]. Therefore, activity ai, is defined as follows, being i 

= α or β: 

iii xa ·γ=  (2) 

Therefore, the chemical potential can be calculated from the reference value (µi
0), which is 

tabulated, through Eq. (3): 

( )iii aTR ·ln·0 += µµ  (3) 

Substituting Eq. (3) in (1): 
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being U0 the equilibrium potential corresponding to the reference chemical potentials µα0 and 

µβ0. The deviation from ideal behavior, represented by the last term of Eq. (4), is due to the 

pseudo binary interactions between Li ions and the host matrix during intercalation and 

deintercalation processes. In the specific case where γi = 1, Eq. (4) is called Nernst Equation. 

Since γi is related to Gibbs energy [36, 37], the Redlich-Kister equation can be used to 

obtain the following expression, where the summation term represents the non-ideal 

interactions (vINT): 
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Thus, the equilibrium potential of a cell is: 
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aceq UUv −=  (7) 

By substituting Eq. (6) in (7) an expression of the equilibrium voltage can be obtained: 

( )
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2.2. Ohmic phenomena 

Ohmic losses represent the voltage drop due to the transfer of electrons in the electric circuit 

and the movement of ions through the electrolyte and membrane.These phenomena are 

determined, on the one hand, by the electronic conductivity of the electrodes and current 

collectors (usually copper and aluminum) and, on the other hand, by the ionic conductivity of 

the electrolyte and membrane. Since the electrolyte does not store energy, its properties are 

unchanged for any value of SOC. However, the variation in the electrode lithium content 

leads to a conductivity change, making the ohmic phenomena SOC dependent. With regard to 

temperature, there are opposite effects over electronic and ionic conductivity. The electronic 

conductivity is lower for increasing temperature, whereas the ionic conductivity increases 

with higher temperature. Given that the effect of ionic conductivity is more significant than 

that of electronic conductivity [38], ohmic losses decrease when the temperature increases. 

 

2.3. Polarizable electrodes 

2.3.1. Double layer effect 

The current managed by a battery can be divided into a faradaic (iF) and a capacitive 

component, also called non-faradaic or double layer current (idl): 

dlF iii +=  (9) 

In the previous equation, iF is the current generated by the redox reaction, while idl is a 

consequence of differences in the Fermi levels of the electrode and electrolyte. These 

differences induce a slight current flow in one direction or the other, thereby creating an 

electric field in the area of the electrolyte closest to the electrode. Meanwhile, the excess 

charge in the electrode metal material is located on the contact surface. The relationship 
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between charge (z) and the potential gradient in the electrode 









2

2

dl
Ud j  is represented by 

Poisson Equation [39]: 

∑ 







−−=

TR
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··

·exp···
·
1 0

0
2

2

εε
 (10) 

where the sum refers to the local species. Eq. (10) can be solved [39], giving an expression for 

this distributed capacitance, also known as double layer capacitance, Cdl: 
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 (11) 

2.3.2. Kinetics of chemical reaction: Butler–Volmer Equation 

The kinetics of a chemical reaction can be expressed by the well-known Butler–Volmer 

Equation: 

( ) ( )( ) ( ) ( ) ( )( )[ ]eqelecReqelecSEIF vvftCvvftCkAFi −−−−−= ··1·exp,0···exp,0··· 0
0 αα  (12) 

where ASEI stands for the area of the electrode–electrolyte interphase, veq is the equilibrium 

electrode potential, velec the electrode potential when subject to a current and α the apparent 

cathodic transfer coefficient. 

 

2.4. Ion transport 

Diffusion phenomena are described by Fick’s laws of diffusion, which relate the diffusive 

flux to the concentration. The first law, Eq. (13), states the relationship assuming steady state; 

while the second law, Eq. (14), predicts how diffusion causes the concentration to change 

with time. 

xDj ∇−= ··ρ  (13) 

xD
t
x

∆=
∂
∂ ·  (14) 

Fick’s diffusion coefficient D depends on the temperature, as expressed by the following 

equation: 
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
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Diffusion phenomena have two main effects on the performance of a Li-ion battery. On the 

one hand, the ion diffusion through the crystal lattice in the electrodes creates a difference 

between the ion concentration at the electrode–electrolyte interphase, and the average 

electrolyte concentration, Lic . Given the fact that the electrochemical reaction takes place on 

the interphase, veq and vact are defined by the concentration on this surface. This ion 

concentration gradient produces a concentration voltage drop during battery operation. On the 

other hand, ion diffusion through the membrane also has a significant impact on the battery 

performance, particularly during low-temperature operation [37]. This process induces a 

voltage drop in the battery with characteristic dynamics, which is different from the electrode 

diffusion and needs to be separately modeled.  

 

2.5. Solid–electrolyte interface 

The solid–electrolyte interface (SEI) is a passive layer created between the electrolyte and the 

graphite anode, whose existence is crucial for the reversibility of Li-ion batteries. Without this 

SEI, the electrode and electrolyte would spontaneously react, and the battery would be 

destroyed. Even though the SEI is built during the first battery charge and separates the anode 

from the electrolyte during the whole battery life, there are irreversible side reactions during 

the discharge process which lead to partial decompositions. During the battery charge, this 

SEI needs to be re-formed, consuming Lithium ions and electrons [40]. 

 

3. Equivalent-circuit model 

The starting point of this section is the physical laws described above. Assumptions and 

simplifications are proposed for the representation of these laws as an equivalent-circuit 

model. Finally, all the parts are grouped, and the comprehensive model is built. 

3.1. Capacity, efficiency, and state of charge 

The capacity of a battery is defined as the maximum charge which can be drawn from the 

battery when it is fully charged [41,42]. Meanwhile, there are two parameters which refer to 

efficiency, which are energy efficiency (ηe) and coulombic efficiency (ηc). Both efficiencies 
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ηe and ηc are correlated by the charging and discharging battery voltage. Due to non-ideal 

processes, the charging voltage is higher than the discharging voltage, therefore ηe < ηc. ηe is 

an essential parameter for battery users since it determines the power losses and the heat flow 

to be dissipated. The importance of ηc lies in the irreversibility of the side reactions. These 

reactions involve coulombic inefficiency, irreversible loss of active material and formation of 

passive compounds, leading to battery aging. This parameter is also important for the battery 

modeling, since it is part of the SOC calculation through the Coulomb-counting method, as 

shown in Eq. (16): 

∫−=
t

t

c dt
C

itSOCSOC
0

·)( 0
η

 (16) 

The most significant physical phenomena that provoke a decrease in ηc is the SEI 

formation, which occurs during the battery charging [40]. Based on Subsection 2.5, where the 

SEI decomposition is explained to depend on the discharging current and temperature, the 

discharging process is assumed to determine the battery coulombic efficiency. ηc decreases 

for reduced T, since the SEI elasticity is lower, leading to increased rupture. Even though the 

relationship between side reactions rate and temperature is known to follow Arrhenius law, 

given that the battery temperature range is limited, the relationship between ηc and T is 

modeled as a linear function, as shown in Eq. (17). With this assumption, a simplification in 

the model is achieved while maintaining its high accuracy. On the other hand, the relationship 

between ηc and current has not been widely characterized and modeled in the literature. Given 

that ηc is related to cycle aging, we take into account a result obtained in [43]. The authors of 

this paper conclude that lithium-ion batteries age faster for higher currents. Therefore, ηc is 

expected to decrease for increasing current and, for the sake of simplicity, a linear trend is 

also assumed, as shown in Eq. (17). Finally, there are few studies about the relationship 

between ηc and SOC. In one of the most recent and reliable papers concerning this issue [44], 

an experimental method is developed to obtain a measurement error in ηc lower than 10 ppm. 

These authors are not able to measure any SOC dependency using this experimental 

procedure. Therefore, no dependency of ηc with SOC is considered in the following equation: 

iT icTccc ·· ,,0, ηηηη ++=  (17) 

 

3.2. Equilibrium voltage 
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The equilibrium voltage (veq) of a lithium-ion battery is the voltage acquired by the battery 

after all the dynamic processes reach the steady state. It is determined by the equilibrium 

voltage of each of its electrodes, which, as stated in Eq. (8), depends on the amount of 

intercalated lithium ions. The fraction of intercalated ions in a lithium battery with carbon 

anion and nickel–manganese–cobalt oxide cathode was studied in [45]. As explained in this 

paper, a charged battery has a LiC6 anode (xα,a=1) and a Li0.3(Ni1/3Mn1/3Co1/3)O2 cathode 

(xα,c=0.3). Meanwhile, a discharged battery has a LiC72 anode (xα,a=0.083) and a 

Li(Ni1/3Mn1/3Co1/3)O2 cathode (xα,c=1). Taking into account that the SOC is the relationship 

between the charge stored in the battery and the maximum storable charge, a linear 

relationship between molar fraction and SOC can be inferred. The above-mentioned limits 

correspond to SOC = 1 and SOC = 0 respectively. Thus, these relationships can be written as: 

SOCx a ·917.0083.0, +=α  (18) 

SOCx c ·7.01, −=α  (19) 

Since the measurement of anode and cathode voltage in a full operating cell cannot be 

achieved, some simplifications of Eq. (8) are needed in order to calculate veq. The equivalent 

terms of this equation are grouped, making it possible to fit the parameters of the expression 

from experimental data. For this purpose, the reference potential is defined as U0
bat=U0

c–U0
a. 

Besides, non-ideal interactions vINT,c and vINT,a are assumed to be similar and grouped in a 

single term, and interactions with an order higher than seven are disregarded. Therefore, the 

following equation is obtained, where vINT is a seven-order polynomial function: 

( )
( ) INT

ac

ac
bateq v

xx
xx

F
TRUv +











−
−

+=
,,

,,0

1·
·1

·ln·
αα

αα  (20) 

 

3.3. Fast-dynamic processes 

3.3.1. Ohmic phenomena 

The ohmic phenomena detailed in Subsection 2.2 are typically represented by an SOC- and 

temperature-dependent series resistance (Rohm) because of their proportionality to the square 

of the battery current: 

SOCRTRRR SOCohmTohmohmohm ·· ,,0, ++=  (21) 



14 
 

Since the Lithium-ion concentration in the electrodes is linearly related to SOC (Eq. (18, 19)), 

the relationship between Rohm and SOC is also assumed to be linear, as shown in Eq. (21). 

Even though Rohm is known to follow Arrhenius law, a linear relationship is assumed to model 

this effect, which leads to a reasonably small deviation for the operating temperature range 

(0ºC – 60ºC). This simplification has two main advantages for the battery modeling. On the 

one hand, a faster computation is achieved and, on the other hand, the thermal coefficient 

Rohm, T can be calculated with a smaller test map. 

 

3.3.2. Charge transfer through the SEI 

The current division into its faradaic and capacitive components shown in Eq. (9) is modeled 

here. For the capacitive current, the double-layer capacitor expressed in Eq. (11) could be 

used. However, this ideal element is not able to accurately represent real systems distributed 

over a finite region. Instead, a constant phase element (CPEdl) has been herein chosen, as 

shown in Fig. 1. The admittance of a constant-phase element can be expressed by two 

frequency-independent coefficients A0 and Ψ as shown in Eq. (22) [39]: 

( )Ψ= ω·0 jAYCPE  (22) 

This element behaves as an ideal capacitor when Ψ=1 and as an ideal resistor when Ψ=0. It is 

thought to arise, when Ψ≠0 or 1, from the presence of inhomogeneity in the 

electrode−material system [47]. 

The faradaic current iF is determined by the reaction kinetics at the electrodes and 

represented in the model by a current source, as shown in Fig. 1. The Butler–Volmer 

equation, Eq. (12), is valid to calculate faradaic current produced by insertion reactions [48, 

49]. Some minor modifications are required to use the molar fraction xα instead of 

concentrations Ci as the independent variable. Two distinct scenarios for iF are analysed in 

Fig. 1: Equivalent-circuit representation for the fast-dynamic processes of a Li-ion battery. For 

small-signal model, the current source iF is substituted by a resistance Rct as shown in Eq. (28). 

i R
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dl
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order to get simplifications of the Butler–Volmer equation. On the one hand, the widely-used 

simplification for large current shown in Eq. (23) is the expression implemented in the final 

model. The activation overpotential is defined as vact=velec – veq: 

( ) 5.0
,,

·
··2

·
·0

0 ······ ca

v
TR

Fn
TR

E

F xxeekAFi
actA

αα









−
=  (23) 

On the other hand, Eq. (12) is linearized to get the small-signal model which will be useful 

for the parameter fitting process explained in Section 5. For small vact the Butler-Volmer 

Equation can be approximated as [50]: 

( )[ ]actactF vfvfii ··11··1·0 αα −−−−=  (24) 

actF vfii ··0=  (25) 

being 

( ) αα
RO CCkFAi ···· 10

0
−=  (26) 

Thus, the relationship between iF and vact can be considered linear if the current is not too 

high. The linearization is valid if n·F·|vact|<<R·T, which some authors take as |vact|<5 mV 

[51]. This relationship is expressed by the so-called charge-transfer resistance Rct: 

0··
·

iFn
TR

i
vR

F

act
ct ==  (27) 

Assuming α=0.5 and an Arrhenius trend in k0, the following expression for Rct is obtained: 

( ) 





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= TR

E

SEIca
ct

A

eT
kAFn

R
xx

R ·
0
0
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,,

··
···

·
·
1

αα

 (28) 

In this small-signal scenario, the charge transfer process through the SEI is characterized 

by parameters CPEdl and Rct. Zarc is the impedance of the parallel connection of these two 

parameters. If τ=(A0·Rct)1/Ψ, Zarc can be expressed as: 

( )Ψ+
=

τω··1 j
RZ ct

arc  (29) 

Given that Rct depends on SOC and T, τ also has a dependency on these two variables. An 

exponential relationship between τ and SOC and a quadratic expression to relate τ and T are 

empirically proposed for the temperature range analyzed in this model. Therefore, τ is defined 

as: 
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SOCceba ··+=τ  (30) 

being c a constant parameter and a a temperature-dependent coefficient as shown in Eq. (31): 

2
210 ·· TaTaaa ++=  (31) 

 

3.4. Diffusion processes 

3.4.1. Membrane diffusion 

The diffusion of lithium ions through the membrane, described by Fick’s laws (Eq. (13) and 

(14)), is a distributed process. Several simplifications have been proposed in the literature for 

this process to be included in a computational model, most of which consist of a distributed 

RC network [52]. With the aim of enhancing the functionality of the model, we use a single 

RC branch to model the membrane diffusion process, as represented in Fig. 2 (a). While 

Cdif, mem can be assumed to have a constant value, Fick’s laws state an Arrhenius-type behavior 

for Rdif, mem, as shown in Eq. (32): 












−
=

memdif

memdif
memdifmemdif TT

b
KR

,,0

,
,, ·exp  (32) 

This diffusion process is SOC independent since the properties of the electrolyte and 

membrane are unchanged with variable SOC. 

 

3.4.2. Electrode diffusion  

Similarly, electrode diffusion is modeled by an RC branch with parameters Rdif, elec and 

Cdif, elec., as shown in Fig. 2 (b). The SOC calculation shown in this figure is consistent with 

Eq. (16). The variable SOCsur is the state of charge corresponding to the lithium molar 

fraction at the electrode surface. This difference between SOC and SOCsur results in a battery 

voltage drop. In order to propose an expression for Rdif, elec and Cdif, elec, spherical electrode 

particles with radius Rp and radial diffusion, as shown in Fig. 3, are assumptions that allow an 

important reduction of model complexity while keeping a high level of accuracy. This leads to 

the so-called single particle model, which is widely used in the literature with different 

modifications [53–55]. Let D be the diffusion coefficient and r the radial coordinate of 

electrode particles. Eq. (14) can be reduced to one dimension: 
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







∂
∂

∂
∂

=
∂
∂

r
xr

rr
D

t
x LiLi ·· 2

2  (33) 

The average volumetric Lithium concentration, which is determined by SOC, can be obtained 

from: 

( )
3

0

2

··
3
4

···4

p

Ra

Li
Li

R

drrxr
x

π

π∫=  (34) 

The current density over the particle surface can be assumed to be uniform [53]. Besides, 

xLi during a constant-current discharge has a parabolic profile for the radial coordinate as 

shown in Fig. 3 [56], and can be parametrized as follows: 

2
210 ··)( raraarxLi ++=  (35) 

The boundary conditions are: 

00 1
0

=⇒=
∂
∂

=
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r

Li  (36) 

p

Li
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Li

RD
jaj

r
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p
··2

· 2 −=⇒−=
∂
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=

 (37) 

In this context, when the steady state has been reached, Eq. (34) and (35) can be combined to 

provide the following expression: 







 += 52303 ·

5
·

3
··4··

3
4· pppLi RaRaRx ππ  (38) 

2
20 ·)( ppLi RaaRx +=  (39) 

Li+ 

r 

xLi 

Rp 

xLi (Rp) 

Fig. 3: Single-particle model used for the electrode diffusion.  

Electrolyte Electrode 
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From the combination of Eq. (37), (38) and (39), the value of surface Li-ion concentration for 

a constant current and temperature discharge is inferred: 

c
SEI

p
LipLi i

DAF
R

xRx η··1·
··5

)( +=  (40) 

xLi(Rp) is a vital model parameter, given that it determines the battery equilibrium voltage and 

faradaic current. In the same way as Lix  is related to SOC through Eq. (18) and (19), xLi(Rp) 

determines the value of SOCsur. 

In order to express Rdif, elec as a function of T, the Arrhenius behavior of D is included and 

Eq. (40) can be rewritten as: 

0·
···5·

)(

0

TT

E

c

pLiLi

A

e
DAF

R
i

Rxx −−=
− κ

η
 (41) 

Considering that Lix  and )( pLi Rx  are related to SOC and SOCsur respectively, Eq. (42) can be 

fitted to Rdif, elec: 












−
==

−

elecdif

elecdif
elecdifelecdif

c

sur

TT
b

KR
i

SOCSOC
,,0

,
,, ·exp

·η
 (42) 

Finally, an empirical expression is proposed for the temperature dependency of Cdifelec. 

Given that polynomial expressions are easy to handle in a computer simulation, a second 

order polynomial is chosen, as shown in Eq. (43): 

CdifelecCdifelecCdifelecelecdif cTbTaC ++= ·· 2
,  (43) 

 

3.5. Final configuration of the model 

The above-modeled phenomena are grouped, and the complete electric model of the Li-ion 

battery is configured as shown in Fig. 4. This equivalent-circuit model has three main 

components: a voltage source for the equilibrium voltage veq as described in Eq. (8), the 

representation of the fast-dynamic processes shown in Fig. 1 and the representation of 

membrane diffusion process shown in Fig. 2 (a). Besides, the circuit presented in Fig. 2 (b) is 

used for the calculation of the parameter SOCsur. 
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In this model, ηc is calculated through Eq. (17) and used to figure out the value of SOC as 

stated in Eq. (16). This data is included in the electrical circuit shown in Fig. 2 (b), thereby 

obtaining the value of SOCsur by means of circuit simulation. Besides, the value of xα on both 

electrode surfaces is calculated trough Eq. (18) and (19) using SOCsur as the state of charge. 

Finally, Eq. (20) is used to figure out the value of veq. 

The dynamic phenomena included in the model are ohmic and charge-transfer behavior, as 

detailed in Subsection 3.3. The ohmic phenomena, represented by Rohm, depend on SOC and 

T, as stated in Eq. (21). The faradaic current is calculated as a function of xLi(Rp) and T, as 

described by the Butler–Volmer equation, particularized by Eq. (23). Moreover, CPEdl is, as 

shown in Eq. (22) and (30), a function of T and SOC. Concerning membrane diffusion, 

represented in Fig. 4 by Rdif,mem and Cdif,mem, the temperature dependency is confined to the 

parameter Rdif,mem, as explained in Section 3.4.1, see Eq. (32).  

 

4.- Battery description and experimental setup 

The experimental work presented hereinafter has been conducted at the UPNA Renewable 

Energies Laboratory with the Li-ion battery shown in Fig. 5 (a). The rated voltage of this 

battery pack is 133 V and its capacity 40 Ah. It is built by the series connection of 36 pouch-

type cells, with graphite anodes and NMC cathodes, with a maximum current of 200 A during 

discharging and 80 A during charging. The temperature which guarantees the safe operation 

of the battery ranges from 0 ºC to 60 ºC. With the study of such a battery pack, all the 

components of the battery (connections, safety elements, and so forth.) are included, which 

increases the pertinence of the model to predict the performance of the entire battery system.  

– 

veq(SOCsur,T) 

i R
ohm

(SOC, T) 

– 

CPE
dl
(SOC, T) 

+ 

C
dif,mem

 
+ 

v 

iF(SOCsur, T) 

idl 

Rdif,mem(T) 

Fig. 4: Battery equivalent-circuit model. 
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The cells of this battery are grouped into six modules, each comprising six cells, as can be 

seen in Fig. 5 (a). Moreover, the battery has measurement and communication circuits to be 

controlled by a BMS, even though a BMS has not been used for the experiments presented 

herein. We were, therefore, able to do experiments under extreme operating conditions and to 

equalize the cells whenever needed. The studied battery is housed in a climate chamber, as 

shown in Fig. 5 (b). Outside the climate chamber, there are a DC power supply (SPS400 x 

75k12D, Amrel), two electronic loads (PLA4K-400-360-I and PLA7.5K-600-400), a data 

logger (WT1800, Yokogawa). These elements are used to measure current, voltage and 

ambient temperature. A digital oscilloscope (TDS 5034, Tektronix), and the battery 

communication software are also available to measure the voltage and temperature of each 

cell. The current profile supplied or drawn from the battery is externally programmed from a 

PC through a digital signal processor (DSP, DS 1104, dSpace). A frequency response 

analyzer (FRA, Amrel) is also used in combination with the electronic load in order to 

perform electrochemical impedance spectroscopy (EIS) tests.  

 

5.- Experimental design to obtain the model parameters 

5.1. Test procedure 

The process to obtain the parameters for the battery model shown in Fig. 4 is detailed in this 

section. With the aim of ensuring test uniformity of the experiments, the following 

initialization protocol is followed. Prior to each experiment, the battery is kept in idle state for 

12 hours with a SOC of around 0.8. The cells are subsequently equalized to obtain a voltage 

(a) (b) 

Six-cell 
modules 

Heat sinks DC output 

Comunication 
bus 

Cell voltage and 
temperature 
measurement 

Cell equalization 
circuits 

Coolant 
air input 

Climate 
chamber 

Tested 
battery 

Climate chamber 
control 

Data 
registers 

Frequency 
Response 
Analyzer 

Digital 
osciloscope 

Electronic 
loads 

Source and 
load control Power 

source 

Fig. 5: Laboratory equipment: the studied battery, with the top cover open (a) and battery test 

bench with the battery inside the climate chamber (b). 
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dispersion of less than 20 mV. Then, the battery is charged following a CC−CV protocol with 

i=1C until the current decreases in the CV zone to i=0.05C. This point is considered as the 

beginning of the test. For the sake of comparability with other studies, C-rate is used as 

battery current unit through the whole paper. It is defined as the current that, continuously 

extracted from a fully charged battery, provokes the complete battery discharge. Given that 

the battery tested in this paper has a capacity of 40 Ah, i=1C means i=40 A. 

Three types of experiments are conducted in this paper: type a, b and c. Type a 

experiments consist of a full constant-current discharge followed by a CC−CV standard 

charge in which i=1C. Type b experiments consist of a stepped charge and discharge, with 

current steps of a few minutes and i=1C. Between the current steps, there are resting periods 

with a duration of 60 minutes. Finally, type c experiments comprise electrochemical 

impedance spectroscopy (EIS). The tests mentioned above are conducted with different 

ambient temperatures covering the whole range of the battery operating temperatures (0 ºC – 

60 ºC). 

Based on these experiments, a five-stage fitting method is developed to calculate the 

parameters of the equivalent circuit. The first stage concerns the calculation of the battery 

capacity (Subsection 5.2). Secondly, veq(SOC) is fit in Subsection 5.2. The parameters 

characterizing the battery impedance are then calculated in Subsection 5.3. In Subsection 5.4, 

the diffusion parameters of the membrane are fit to experimental data and, finally, the 

diffusion process in the electrodes is studied in Subsection 5.4. 

 

5.2. Capacity, efficiency and equilibrium voltage 

The first variable to be measured was battery capacity C. For this purpose, a type a 

experiment with negligible influence of the battery impedance is used. The influence of the 

impedance is minimized for low currents and high temperatures. Therefore, for the test used 

for capacity measurement, i=0.5C, and T=47.5±0.5 ºC. A value of C=41 Ah is obtained. ηc is 

the second parameter to be fitted. To do so, all the tests of type a are used, with different 

values of i and T. The result is shown in Fig. 6 (a). Note that T is the battery operating 

temperature, which is usually higher than ambient temperature due to the heat generation 

associated with battery operation and the heat dissipation processes. Due to this issue, there is 

a point in Fig. 6 (b) whose temperature exceeds 60 ºC, the maximum ambient temperature. 

The values for the parameters of Eq. (17) are summarized in Table 1. 
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Type b experiments were then used to obtain the coefficients of Eq. (20), in which veq is 

defined. The slow diffusion phenomena are stabilized during the resting periods, allowing the 

accurate measurement of veq, as shown in Fig. 6 (b). The charging and discharging 

measurements are almost superimposed, proving that the veq curve has no hysteresis in NMC 

batteries. The fitted parameters are shown in Table 1. 

 

5.3. Battery impedance 

 The impedance of a battery is characterized by Rohm and Zarc, defined in Eq. (29). In order to 

determine its value, type c experiments (EIS) were carried out on a number of values of SOC 

and T. The frequency analyzed in the EIS experiments ranges from 100 mHz to 10 kHz. Since 

ohmic and charge transfer phenomena are measurable in this frequency range, the electric 

circuit shown in Fig. 7 (a) can be fitted to the measured data.  

Fig. 7 (b) shows the Nyquist diagram of the battery at 24.1 ºC and SOC = 0.6. For the 

parameter fitting, Rohm is firstly calculated, which is the impedance of the battery at high 

frequency (around 600 Hz) and corresponds to the x-intercept of its impedance arc. In the 

example shown in Fig. 7 (b) Rohm = 33.13 mΩ. The relationship between the real and 

imaginary part of the admittance in a depressed arc (Yarc) is linear, as presented by Barsoukov 

and Macdonald [57]. A value for Ψ, Eq. (29), can be obtained from the linear fit shown in 

Fig. 7 (c). Moreover, Rct can be obtained from the x-intercept of this fitted line, since 

( ) 0Im =arcY  and ( )
ctRarcY 1Re =  when 0→ω  ( 0→s ). τ is the last parameter to be calculated. Its 

value can be obtained from the relationship proposed in [57] between vectors BPu =  and 

b) a) 

Fig. 6: Experimental data and curve fitting. ηc obtained from experiments of type a (a) 

and voltage during a type b experiment (b). 
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PQv = , where point B=(Rohm,0), Q=(Rohm+Rct,0) and P is a generic point in the Nyquist 

diagram: 

( ) ( )[ ]τω lnln·ln +Ψ=
u
v

 (44) 

Therefore, if a linear polynomial is fitted to the relationship between ln |v/u| and ln (ω), as 

shown in Fig. 7 (d), the y-intercept is an estimator of τ. 

This fitting process is repeated for all the type c experiments. Rohm values obtained from 

the individual EIS experiments and a fitting of Eq. (21) are shown in Fig. 8 (a). The parameter 

values, summarized in Table 1, are the result of this fitting. On the other hand, the parameters 

from Eq. (28) are fitted to the data shown in Fig. 8 (b). Thereby, the value of EA = 77 kJ mol−1 

is obtained, consistent with previous studies which propose EA = 41 kJ mol−1 for a graphite 

electrode [58] or EA ≈ 40 kJ mol−1 for 18650 Li-ion batteries [59]. These parameters are 

represented in the model by iF, defined in Eq. (23). 

a) b) 

Rohm(SOC, T) 

CPEdl(SOC, T) 

Rct(SOCsur, T) 

idl 

c) d) 

Fig 7: Fitting of EIS experiments: Equivalent circuit (a), Nyquist diagram with 

T=24.1 ºC and SOC=0.6 (b), linear fit to Yarc (c) and linear fit of ln |v/u| vs. ln (ω) (d). 
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The element CPEdl is defined by parameters τ and Ψ, as detailed in Eq. (29) and (30). Its 

measured values and the fitting of Eq. (30) are shown in Fig. 8 (c). Likewise, calculated Ψ and 

average value are represented in Fig. 8 (d). The values of the parameters are summarized in 

Table 1. 

 

5.4. Diffusion phenomena 

The two battery components with greatest influence in the diffusion process are the membrane 

and the electrodes, as explained in Subsection 3.4. The vertical voltage shift arising from 

diffusion phenomena (see Fig. 9) is proposed to be attributed to diffusion in the membrane, 

while the horizontal shift is attributed to diffusion in electrodes. This differentiation is 

because electrode diffusion provokes a concentration gradient in electrodes and therefore a 

difference between the actual battery SOC and the variable SOCsur. 

The diffusion resistances (Rdif, mem and Rdif, elec) are the first parameters adjusted with the 

iterative fitting process explained hereafter. Only the part of the tests where all the studied 
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phenomena are ºstabilised is used in order to achieve a good fitting of these resistances. Type 

a experiments include discharge curves with different values of i and T, which will be used to 

fit Rdif, mem. Since vOC, Rohm and Rct are already known; the dotted curve from Fig. 9 can be 

calculated. As the first iteration step, the whole voltage drop measured in the central part of 

the discharge process will be assumed to be caused by Rdif, mem. As next step of the fitting 

process, the first approximate value of Rdif, elec is calculated using the last part of the discharge 

process, where this resistance has its largest effect due to the shape of the discharge curve. 

This diffusion process in the electrodes is described by Eq. (40). At the end of the constant-

current discharges from type a experiments, diffusion phenomena are stabilized, the value of 

SOC at these points is known and, therefore, SOCsur can be calculated using the equivalent 

circuit shown in Fig. 2 (b). The first approximate value of Rdif, elec is obtained, and the process 

can be repeated taking the calculated parameters into account until accurate values for Rdif, mem 

and Rdif, elec are obtained. The values obtained for these variables after three iterations are 

shown in Fig. 10 (a) and (c). The expression of Rdif, mem as a function of T, defined in Eq. (33), 

is fitted to these data as shown in Fig. 10 (a). Similarly, Eq. (42) is fitted to the values of 

Rdif, elec as shown in Fig. 10 (c). The values obtained for the parameters are summarized in 

Table 1. 

After the fitting of both diffusion resistances, the fitting of their associated capacitances is 

tackled. Capacitance Cdif, mem can be studied with the stabilization process after each charge 

and discharge pulse in type b experiments. The diffusion time constant is calculated for 

different SOC and T, the values for Cdif, mem shown in Fig. 10 (b) are obtained, and the 

independence of Cdif, mem in relation to the SOC is confirmed. Neither has operating 

temperature (T) a noticeable effect on the value of Cdif, mem. Therefore, Cdif, mem is assumed to 

have the constant value shown in Table 1. 

Fig. 9: Schematic representation of the voltage drops arising from each diffusion 

phenomenon during a constant-current battery discharge. 
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The last parameter to be fitted is Cdif,elec, which governs the slowest phenomenon taken into 

account in this model. The final parts of the type a experiments (the constant voltage part of 

CC-CV charges) are used to characterize its time constant. Considering that the electrode 

diffusion is in steady state when the charge mode is changed from CC to CV, its time constant 

can be measured during the CV phase. The value of Cdif, elec for each test can be calculated, as 

shown in Fig. 10 (d). The fitting of Eq. (43) to these data provide the parameters shown in 

Table 1.  

 

a) b) 

c) 

Fig. 10: Calculated parameters (markers) and fitting curves (solid lines) obtained 

for the diffusion processes: Rdif, mem (a), Cdif, mem (b), Rdif, elec (c) and Cdif, elec (d). 
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6.- Comparison of experimental and simulated results 

6.1. Full charge and discharge cycles 

The first set of experiments proposed to validate the good performance of the battery model 

consists in full charge–discharge cycles with different current and temperature values through 

the entire operating range (10 ºC, 35 ºC, and 55 ºC). Discharge currents of 1C, 3C, and 5C are 

analyzed, as shown in Fig. 11 (a), (b), and (c) respectively. The battery is charged following 

the standard CC‒CV procedure advised by the manufacturer, with a CC current of 1C, as 

shown in Fig. 11 (d). The measured voltage is represented in this figures with markers, while 

the solid line represents the voltage predicted by the model. In the discharge tests (Fig. 11 (a), 

(b), and (c)) the battery voltage is revealed to decrease for decreasing temperatures, given that 

Phenomena Eq. Parameter Value Unit 

Capacity  C 41 Ah 

Coulombic 
efficiency 19 

ηc,0 0.9922  

ηc,T 2.08·10-4 ºC-1 

ηc,i −4.2·10-5 A-1 

Equilibrium 
voltage 

20 U0
bat 108.4 V V 

5 

A0 54.96  

A1 –9.33  

A2 15.6  

A3 –4.732  

A4 –7.13  

A5 –8.117  

A6 33.19  

A7 –20.19  

Faradaic 
current 25 

EA 41 kJ·mol−1 

A·k0
0 1.95·10−9 m2s−1 

Ohmic 
phenomena 23 

Rohm,0 73.58 mΩ 

Rohm,T −0.1292 mΩ K−1 

Rohm,SOC −2.849 mΩ 

 

Table 1. Model parameters. 

Phenomena Eq. Parameter Value Unit 

 29 Ψ 0.673  

Charge 
transfer 

33 

a0 0.0174 s 

a1 −8.7·10−4 s ºC−1 

a2 1.23·10−5 s ºC−2 

42 
b 0.00994 s 

c −7.18  

Membrane 
diffusion 

34 

Kdif,mem 0.021 A−1 

bdif,mem 19.7 ºC 

T0,dif,mem −13 ºC 

 Cdif, mem 3466 F 

Electrode 
diffusion 

44 

Kdif,elec 1.37·10-5 A−1 

bdif,elec 468.2 ºC 

T0, dif,elec −74.9 ºC 

45 

aelec 119.3 A·s·K−3 

belec −6·10−4 A·s·K−1 

celec 7.67·106 A·s 
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ohmic and charge transfer losses are increased. Especially remarkable is the voltage decrease 

measured with T=10 ºC. It limits the maximum battery discharge to around 65% of its 

nominal charge when i=1C or i=3C (Fig. 11 (a) and (b)). Likewise, the charge experiments 

shown in Fig. 11 (d) demonstrate a reduced CC charge provoked by a low temperature, which 

means an increased time for battery charge. It is also provoked by an increase in the ohmic 

and activation losses.  

The model herein proposed accurately predicts the battery performance facing any of these 

constant-current requirements at any of the studied operating temperatures. A visual analysis 

of the graphs presented in Fig. 11 reveals that the model fails to predict the exact shape of the 

voltage curves for the most extreme situations (T=10 ºC or i=5C). However, each of the root 

mean square errors (RMSEs) obtained with the model simulations (see Table 2) is lower than 

3 V, which is considered a reasonable accuracy for the modeling of a battery with a rated 

voltage of 133 V. 

Fig. 11: Full cycle experiments: experimental measurements (markers) and model 

prediction (solid lines). Discharges with current 40 A (a), 120 A (b) and 200 A (c) and 

charges with 40 A (d). 
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6.2. Dynamic performance 

The battery was subjected to sinusoidal currents with an amplitude of 25 A and frequencies of 

1 Hz and 100 Hz. Furthermore, a sinusoidal current with an amplitude of 12.5 A and a 

frequency of 500 Hz is included. The ambient temperature is 2 3±1 ºC, and the experiments 

are repeated with SOC = 0.8 and SOC = 0.25. The current – voltage (i–v) relationships at each 

frequency are shown in Fig. 12 for SOC = 0.8 (a) and SOC = 0.25 (b). The effect of the 

double-layer is noted on these graphs, specifically for the i – v relationship with a frequency 

of 100 Hz, since this is the frequency where charge-transfer phenomena are noticeable. 

Furthermore, the slope of the i – v curves decreases with increasing frequency due to the 

reduction of the equivalent battery resistance. A slightly higher slope of the curves with 

SOC = 0.25 is also appreciated when compared to SOC = 0.8. This effect is due to the 

a) b) 

Fig. 12: i – v relationships: experimental measurements (markers) and model prediction 

(solid lines) with SOC = 0.8 (a) and SOC = 0.25 (b). 
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Table 2. RMSE of the model during full charge and 

discharge experiments. 

RMSE (V) 10 ºC 35 ºC 55 ºC 

Discharge 40 A 2.77 1.40 0.48 

Discharge 120 A 2.63 2.94 2.69 

Discharge 200 A -- 2.46 2.18 

Charge 40 A 1.47 1.12 0.22 
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increase in Rohm and Rct measured in Subsection 5.3. The validation for this dynamic operation 

is considered satisfactory, since RMSE values are lower than 90 mV for SOC = 0.8 and lower 

than 100 mV for SOC = 0.25. 

 

6.3. Operation of the battery in a real microgrid 

The battery model is validated herein while working in a real-life operating environment 

consisting of an electrical microgrid located at the UPNA [60]. The microgrid comprises a 

hybrid wind–photovoltaic renewable generating system and a storage system based on a 

lithium-ion battery. This microgrid is used to feed a five-member family home as shown in 

Fig. 13. The PV generator has a power of 4 kWp, while the wind power generator has 6 kW. 

Likewise, the microgrid also allows for the energy exchange with the electricity grid. Due to 

the energy management strategies implemented in the microgrid, there is a daily coupling 

between the renewable power generation and the daily home consumption, while the annual 

fluctuations are absorbed by the electricity grid. In this way, the storage system guarantees a 

minimum power exchange with the electricity grid, keeping any inconvenience related to 

renewable energy generation away from the grid. 

The proposed model is validated for the battery working as the storage system for this 

microgrid. For this purpose, an experimental validation with data from 11th of April, 2014, 

between 15:00 h and 23:00 h is presented herein. There was no energy exchange with the grid 

during this time span. The power generated by the photovoltaic modules (Ppv) and by the wind 

turbine (Pwind) are shown in Fig. 14 (a). Ppv has its maximum value at the beginning of the test 

and decreases to 0 at around 20:30 h. It was also a windy day, and the notable peaks of Pwind 

Fig. 13: Schematic diagram of the electric microgrid. 
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are due to the usual gusty behavior of the wind. The power consumed in the family home 

(Pcon) is also shown in Fig. 14 (a). It has a mean value around 1.5 kW at the beginning of the 

test and reaches a peak of 2.6 kW at around 20:00 h, coinciding with the cooking of the 

evening meal. 

The power profile that needs to be assumed by the battery is equivalent to the values of v 

and i shown in Fig. 14 (b). The top graph in Fig. 14 (b) shows the battery current (i). The 

bottom graph shows the battery voltage (v), with a maximum value of 150 V and a minimum 

of 126 V. The results obtained with the model show an adequate and reliable behaviour 

compared to the voltage measured during the experiment, with an RMSE in the voltage 

prediction of 0.627 V. Therefore, it can be concluded that the model is accurate when 

simulating real-time operating environments. 

 

7.- Conclusion 

This paper reports on an equivalent-circuit model for lithium-ion batteries, the relationship of 

its parameters with the underlying physical phenomena that determine its performance, and 

the methodology to adjust the model parameters to a particular battery. Subsequently, the test 

procedure designed for the fitting process is explained and particularized for a graphite−NMC 

lithium-ion battery. The model parameters are adjusted to this commercial battery, and the 

accuracy of the model is finally validated in three scenarios. 

a) b) 

Fig. 14: Experiment and simulation of the Li-ion battery integration into the microgrid 

with data from 11th of April, 2014. Power generated by the wind turbine (Pwind), by the 

photovoltaic system (Ppv) and consumed (Pcon) (a) and battery current and voltage (b). 
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The configuration of the battery model is principally based on the following phenomena: 

equilibrium potential of the electrochemical reaction, activation potential, double-layer effect, 

ohmic phenomena, diffusion through the electrodes and membrane, and SEI partial 

disintegration and formation. These phenomena are simplified and grouped to build the 

equivalent-circuit model which can predict the battery voltage taking the current and 

temperature as input variables. This link between the physical principles and the electrical 

performance can be exploited by battery designers willing to improve the electrical behavior 

of the battery, as well as by battery users who want to get the most from their battery while 

preserving its lifetime. No catastrophic failure events — like lithium plating, SEI breakdown 

or thermal runaway — are herein modeled. Therefore, the model is valid for the regular 

temperature, voltage and current ranges of the battery that entail no catastrophic failures 

The parameter fitting strategy and the proposed tests to calculate the model parameters, 

which include constant-current charges and discharges, stepped charges and discharges, and 

electrochemical impedance spectroscopies, are detailed. These experiments are performed 

with a commercial 40 Ah, 133 V battery, and the obtained results are summarized in a table. 

Besides, three validation scenarios are presented to prove the proper performance of the 

model. The first validation experiments consist of standard constant-current charges and 

discharges with different current requirements and temperature conditions. They prove the 

ability of the model to predict the battery behavior along the whole SOC range, subject to 

high power and with various operating temperatures. The second set of validation experiments 

are standard sinusoidal current tests, which show the accuracy of the model for currents 

ranging in a wide amplitude range both for high and low frequencies. Finally, the last test 

validates the battery model in a real operating environment. With this aim, the battery is 

integrated into an electrical microgrid and validated during 10 hours, obtaining an RMSE for 

the battery voltage of 0.627 V.  

Due to the model accuracy and stability shown during this study, this model can be 

considered a useful tool for the sizing, control, and performance analysis of an electrical 

system which includes a Li-ion battery. 
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