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Summary

 

Human Serum Albumin (HSA) accounts for 60% of the total protein in blood serum and it 

is the most widely used intravenous protein in a number of human therapies. HSA, however, 

is currently extracted only from blood because of a lack of commercially feasible 

recombinant expression systems. HSA is highly susceptible to proteolytic degradation in 

recombinant systems and is expensive to purify. Expression of HSA in transgenic chloroplasts 

using Shine-Dalgarno sequence (SD), which usually facilitates hyper-expression of 

transgenes, resulted only in 0.02% HSA in total protein (tp). Modification of HSA regulatory 

sequences using chloroplast untranslated regions (UTRs) resulted in hyper-expression of HSA 

(up to 11.1% tp), compensating for excessive proteolytic degradation. This is the highest 

expression of a pharmaceutical protein in transgenic plants and 500-fold greater than 

previous reports on HSA expression in transgenic leaves. Electron micrographs of 

immunogold labelled transgenic chloroplasts revealed HSA inclusion bodies, which provided 

a simple method for purification from other cellular proteins. HSA inclusion bodies could be 

readily solubilized to obtain a monomeric form using appropriate reagents. The regulatory 

elements used in this study should serve as a model system for enhancing expression of 

foreign proteins that are highly susceptible to proteolytic degradation and provide 

advantages in purification, when inclusion bodies are formed.

 

Received 5 August 2002; 
revised 24 October 2002; 
accepted 30 October 2002.
*Correspondence

 

 (fax +1 407 823 0956; 
e-mail daniell@mail.ucf.edu)

 

Keywords: 

 

 chloroplast genetic 

engineering, biopharmaceuticals, 

genetically modified crops, molecular 

farming, recombinant human blood 

proteins.

 

Introduction

 

Availability of recombinant human proteins has revolutionized

the use of therapeutically valuable proteins in clinical medicine.

Plants offer a suitable alternative to microbial or animal expres-

sion of biopharmaceutical proteins because of their inexpensive

production costs and absence of human pathogens. However,

there are some limitations. In particular, expression of human

proteins in nuclear transgenic plants has been disappointingly

low, e.g. human serum albumin 0.02% of total soluble pro-

tein (tsp), human Interferon-

 

β

 

 0.000017% of fresh weight,

human epidermal growth factor 0.001% of tsp and erythro-

poietin 0.0026% of tsp (Daniell 

 

et al

 

., 2001d). Therefore, it

is important to increase levels of expression in order to exploit

plant production of pharmacologically important proteins.

As an alternative to nuclear expression, the chloroplast

transgenic approach has been developed as an effective tool

for the expression of biopharmaceutical proteins in plants

(Daniell and Dhingra, 2002; Daniell 

 

et al

 

., 2001a,b; DeGray

 

et al

 

., 2001; Guda 

 

et al

 

., 2000; Staub 

 

et al

 

., 2000). After the

first demonstration of a protein based polymer expression

with varied medical applications (Guda 

 

et al

 

., 2000), trans-

genic chloroplasts have been shown to express very small

antimicrobial peptides without fusion proteins (DeGray 

 

et al

 

.,

2001), assemble functional oligomers with disulphide bonds

of the cholera toxin 

 

β

 

-subunit (Daniell 

 

et al

 

., 2001b), and

express a monoclonal antibody with coordinated expression

and assembly of heavy and light chain with proper folding

and formation of disulphide bridges (Daniell 

 

et al

 

., 2001a),

suggesting that adequate redox environment or required
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chaperonins are present within chloroplasts. Expression of

functional human somatotropin in transgenic tobacco chlo-

roplasts established that chloroplasts are capable of proper

folding of human proteins with disulphide bonds (Staub

 

et al

 

., 2000). The ability to express multiple genes in a single

transformation event (Daniell and Dhingra, 2002; De Cosa

 

et al

 

., 2001), accumulation of exceptionally large quantities

of foreign proteins (De Cosa 

 

et al

 

., 2001), successful engi-

neering of tomato chromoplasts for high level transgene

expression in fruits (Ruf 

 

et al

 

., 2001), coupled to hyper-

expression of vaccine antigens (Daniell 

 

et al

 

., 2001b), and the

use of plant derived antibiotic free selectable markers (Daniell

 

et al

 

., 2001c), augur well for oral delivery of edible vaccines

and biopharmaceuticals that are currently beyond the reach

of those who need them most. In addition, chloroplast

genetic engineering is an environmentally friendly approach,

offering containment of transgenes and a solution to gene

silencing and position effect encountered in nuclear trans-

genic plants (Bogorad, 2000; Daniell and Dhingra, 2002;

Daniell 

 

et al

 

., 2002; Daniell, 2002).

HSA is the most widely used intravenous protein and is pre-

scribed in multigram quantities to replace blood volume in

trauma and in various other clinical situations (Peters, 1995).

HSA is a monomeric globular prepro-protein whose mature

form consists of a single polypeptide chain of 585 amino

acids (66.5 kDa with 17 disulphide bonds). The annual world

need exceeds 500 tons, representing a market value of more

than $1.5 billion. To date, albumin has been produced prima-

rily by the fractionation of blood serum. Lack of glycosylation

facilitates production of functional HSA in prokaryotic

systems. Although the 

 

HSA

 

 gene and cDNA have been

expressed in a wide variety of microbial systems, including

 

E. coli

 

 (Latta 

 

et al

 

., 1987), 

 

Bacillus subtilis

 

 (Saunders 

 

et al

 

.,

1987), 

 

Saccharomyces cerevisiae

 

 (Quirk 

 

et al

 

., 1989), 

 

Kluy-

veromyces

 

 (Fleer 

 

et al

 

., 1991) or 

 

Pichia pastoris

 

 (Ohtani 

 

et al

 

.,

1998), no system is yet commercially feasible. Sijmons 

 

et al

 

.

(1990) made the first reported attempt to express HSA in

transgenic plants, but very low expression levels were

attained (0.02% tsp). HSA could not be detected if expressed

in the cytoplasm, suggesting that the protein is not stable in

this compartment, due to high susceptibility to proteolytic

degradation. A 10-fold increase in HSA accumulation has

been reported recently by nuclear transformation of potato

plants and targeting the HSA to the tuber apoplast (Farran

 

et al

 

., 2002). Estimates by industry, however, suggest that the

cost-effective yield for pharmaceutical production is 0.1 mg

of HSA per gram of fresh weight (Farran 

 

et al

 

., 2002).

In addition, good recombinant systems are still not availa-

ble for many human proteins that are expensive to purify or

highly susceptible to proteolytic degradation. It is known that

traditional purification of biopharmaceuticals using columns

accounts for 30% of the production cost and 70% of the

set up cost (Petrides 

 

et al

 

., 1995). Proteolytic degradation

is another serious concern for industrial bioprocessing. The

increasing production of proteins in heterologous hosts

through the use of recombinant DNA technology has brought

this problem into focus; heterologous proteins appear to

be more prone to proteolysis (Enfors, 1992). Recombinant

proteins are often regarded by a cell as foreign and therefore

degraded much faster than most endogenous proteins

(Rozkov 

 

et al

 

., 2000). Proteolytic stability of recombinant

proteins is a significant factor influencing the final yield.

This study attempts to develop a more efficient method of

recombinant HSA production, which may be used as a model

system to enrich or purify biopharmaceutical proteins from

transgenic plants, which are highly susceptible to proteolytic

degradation.

 

Results and discussion

 

Two chloroplast transformation vectors were designed with

different 5

 

′

 

 regulatory sequences to direct HSA expression

and maximize protein accumulation in transgenic chloro-

plasts. Basic pLD vector, developed in this laboratory for chlo-

roplast transformation, was used (Daniell 

 

et al

 

., 1998; Daniell

 

et al

 

., 2001b; De Cosa 

 

et al

 

., 2001; Guda 

 

et al

 

., 2000; Kota

 

et al

 

., 1999). In the plasmid pLDAsdHSA (Figure 1a), the 

 

aadA

 

gene, which confers spectinomycin resistance, and the 

 

HSA

 

gene are expressed as a polycistron from the plastid 

 

Prrn

 

promoter. The Shine-Dalgarno (SD) consensus sequence

GGAGG was placed upstream of both genes. High levels

of foreign protein expression in chloroplasts (3–21% of tsp)

have been shown for different proteins using this 5

 

′

 

 sequence

(Daniell 

 

et al

 

., 2001b; DeGray 

 

et al

 

., 2001; Kota 

 

et al

 

., 1999).

In the pLDApsbAHSA vector (Figure 1a), the 204 bp tobacco

chloroplast DNA fragment containing the promoter and the

 

psbA

 

 5

 

′

 

UTR was inserted immediately upstream of the 

 

HSA

 

coding sequence and downstream of the 

 

aadA

 

 gene. It is

well known that foreign genes under the control of the

 

psbA

 

 promoter and untranslated region are expressed at

very high levels (Daniell 

 

et al

 

., 1990). This enhancement of

translation may be due to elements in the 5

 

′

 

UTR (Eibl 

 

et al

 

.,

1999). Vectors were bombarded into tobacco leaves as

described previously (Daniell, 1997) and, after 5 weeks,

several primary shoots appeared from each bombarded leaf

as a result of independent transformation events. Putative

transformed shoots were identified by growth on 500 

 

µ

 

g/mL

of spectinomycin.
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Integration of the foreign gene cassettes into the chloro-

plast genome was confirmed by PCR screening of primary

shoots. The strategy employed lands one primer on the native

chloroplast genome adjacent to the point of integration and

the second primer on the 

 

aadA

 

 gene. This PCR product can

not be obtained in nuclear transgenic plants or spontaneous

mutants, thus both possibilities could be eliminated. It was

found that 90% of total shoots obtained were true chloro-

plast transformants. Confirmed transformants were sub-

jected to a second round of spectinomycin selection to

achieve homoplasmy. They were rooted in the presence of

spectinomycin and then transferred to pots for further char-

acterization. Southern blot analysis was performed to select

homoplasmic T

 

0

 

 lines and confirm stable maintenance of

integrated transgenes in the T

 

1

 

 generation (Figure 1b–d). The

flanking region probe (P1) identified a 7.45 kb fragment in

the untransformed control plant, as expected (Figure 1c). In the

chloroplast transgenic lines, only transformed genome copies

are observed as evidenced by the 10.5 and 10.7 kb hybridizing

fragments for pLDAsdHSA and pLDApsbAHSA transgenic lines,

respectively. To confirm that the 10.5 and 10.7 kb fragments

contained the 

 

HSA

 

 gene, the same blot was reprobed with

the 

 

HSA

 

 P2 probe. As expected, hybridization was detected

only in the chloroplast transgenic lines (Figure 1d). Absence

of other hybridizing fragments eliminates nuclear and

chloroplast integration events in the same transgenic line.

HSA quantities in transgenic tobacco chloroplasts were

determined by ELISA. More than a 360-fold difference in HSA

accumulation was observed between plants transformed

with the two different vectors (Figure 3a): 0.02% vs. 7.2% tp

in pLDAsdHSA and pLDApsbAHSA transgenic lines, respec-

tively. Chloroplast constructs with the SD sequence have

been demonstrated to direct CTB expression very effi-

ciently (up to 4% of tsp; Daniell 

 

et al

 

., 2001b). Similar con-

structs, but inserted in other areas of the plastid genome,

have also been successful (3–21% tsp; DeGray 

 

et al

 

., 2001;

Kota 

 

et al

 

., 1999), demonstrating that high protein expres-

sion levels can be achieved by using this construct in an

operon with a SD sequence. Thus, low levels of HSA expres-

sion in the pLDAsdHSA transgenic plants could not be due to

the effect of regulatory signals in the construct. Differences in

the amounts of HSA could be due to post-transcriptional,

translational or post-translational effects. To study differences

in HSA expression, transcript abundance was examined by

Northern blots, which were performed using the 3

 

′

 

psbA

 

region as the probe (Figure 2). The 

 

5

 

′

 

psbA/HSA

 

 monocistron

transcript is much more abundant than the 

 

aadA/SD/HSA

 

dicistron, but such differences do not show a linear correla-

tion with the 360-fold difference in HSA accumulation

between both transgenic lines. Such a lack of correlation

between transcript abundance and protein accumulation has

been reported from several laboratories when the 

 

psbA

 

5

 

′

 

UTR is used (Mayfield 

 

et al

 

., 1995; Staub and Maliga, 1993,

1994), suggesting an important role of the 

 

psbA

 

 5

 

′

 

UTR in

enhancement of translation. Eibl 

 

et al

 

. (1999) also showed

that deletion of the terminal sequences of the 

 

psbA

 

 5

 

′

 

UTR

decreased the ability of the UTR to enhance translation. Thus,

efficient translation in the pLDApsbAHSA transgenic line

might be an important factor in establishing high levels of

HSA accumulation.

There are several studies demonstrating that 

 

psbA

 

 5

 

′

 

UTR

confers light-dependent translation not only to the 

 

psbA

Figure 1 Integration of transgene cassettes into the chloroplast genome 
and study of homoplasmy. (a) Regions for homologous recombination are 
underlined in the native chloroplast genome. HSA is driven in all cassettes 
by the Prrn promoter upstream of the aadA gene for spectinomycin 
resistance with additional promoters and control elements as described 
in the text. Arrows within boxes show the direction of transcription. 
Numbers to the right indicate the predicted hybridizing fragments when 
total DNA digested with BamHI is probed with probe P1. (b) The 0.81 kb 
fragment (P1) flanking the cassette and 0.75 kb fragment containing 
HSA coding region (P2) were used as probes for the Southern blot 
analysis. (c, d) Southern blot analysis. 1: untransformed DNA; DNA from 
plants transformed with: 2,3: pLDAsdHSA; 4,5: pLDApsbAHSA. Plants for 
the first (T0) and second (T1) generation were analysed. 2,4: T0 generation. 
3,5: T1 generation. Blots were probed with P1 (c) and P2 (d). AadA: 
aminoglycoside 3′-adenylyl transferase; kb: kilobases; P: promoter; Prrn: 
16SrRNA promoter; SD: Shine-Dalgarno.
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gene (Zerges, 2000) but also to other heterologous proteins

(Eibl 

 

et al

 

., 1999; Staub and Maliga, 1993, 1994). Expression

of 

 

HSA

 

 under the 

 

psbA

 

 5

 

′

 

UTR control is therefore expected

to be light dependent. Changes in HSA accumulation after

different periods of illumination were monitored by ELISA

(Figure 3b). HSA quantity was observed to be maximum up

to 50 h of continuous illumination (11.1% of tp) in mature

leaves and a 2–4-fold decrease was observed after the 8 h

dark period. Such differences in HSA accumulation were so

pronounced that it was detected by staining gels with

Coomassie Brilliant Blue (Figure 3c). Staub and Maliga (1993,

1994) and Eibl et al. (1999) showed that although translation

is arrested in the dark, the 5′psbA/uidA mRNA turnover was

very low. This observation was confirmed for HSA by North-

ern blot analysis, which showed no major differences

between light and dark amount of 5′psbA/HSA transcripts

(Figure 2, lanes 3, 4). Therefore, differences in HSA accumu-

lation between dark and light could not be due to differences

in the rate of transcription or transcript stability, but due to

the arrest of translation in the dark and the turnover of HSA

in the chloroplast.

Proteins from transformed plants were separated to study

the pattern of HSA accumulation within transgenic chloro-

plasts. Western blots confirmed differences in HSA quantities

among transgenic lines (Figure 3d). In pLDApsbAHSA trans-

genic lines, HSA is partially solubilized with the standard

buffer used for total protein extraction. This observation

suggests formation of HSA aggregates inside transgenic

chloroplasts in the pLDApsbAHSA transformants. Electron

microscopy and immunogold labelling therefore were per-

formed in transformed and untransformed plants to further

investigate this. As expected, electron micrographs of leaf

tissues showed formation of large aggregates or inclusion

bodies within transgenic chloroplasts of pLDApsbAHSA mature

transformed plants (Figure 4b–d). It is interesting to note that

chloroplasts containing inclusion bodies increased in size to acco-

mmodate large accumulation of HSA (compare Figures 4a,d).

However, the phenotype of these plants appeared normal

(Figure 5). The amount of HSA in pLDAsdHSA transgenic

chloroplasts was so low that it was not possible to detect

immunogold labelling above the background. No significant

changes in chloroplast size were observed in these plants.

Inclusion bodies have been often observed in the cytosol of

prokaryotes and eukaryotes when heterologous proteins are

overexpressed. The occurrence of this feature in the chloro-

plast was first reported by Ketchner et al. (1995). It is widely

known that protein aggregation into inclusion bodies mostly

involves intermolecular associations of partially folded inter-

mediates (Mitraki and King, 1989). High protein concentra-

tions usually lead to conditions that frequently exceed the

normal solubility limit. Even the most abundant protein in

photosynthetic cells, RuBisCO, forms inclusion bodies in

some cases. Many autotrophic bacteria and all cyanobacteria

package much of the RuBisCO into inclusion bodies actively

involved in the fixation of CO2, known as carboxysomes (Shiv-

ely and English, 1991). Our hypothesis, based on the process

of formation of inclusion bodies, is that in contrast to pLDAs-

dHSA transgenic lines, HSA synthesized under the psbA

5′UTR forms large aggregates mainly due to the high local

concentration of the protein.

Formation of inclusion bodies is one of the strategies for

reducing the proteolysis of unstable recombinant proteins

(Enfors, 1992). The majority of recombinant proteins studied

have been shown to be highly resistant to proteolysis inside

inclusion bodies. Although there is protection from proteases

within inclusion bodies, some proteolysis can also take place

directly on the aggregated protein (Carrio et al., 1999). HSA

Figure 2 Transcription patterns of transgenic plants. A Northern blot 
analysis was performed with total RNA extracted from leaves of potted 
plants. The 3′ of the psbA gene was used as probe. 1: untransformed 
plant; 2: transformed with pLDAsdHSA; 3: transformed with 
pLDApsbAHSA after illumination or 4: in the dark. Ethidium bromide-
stained rRNA was used to assess loading. Identified transcripts are 
indicated to the right. A scheme of transcription patterns expected for 
the different cassettes integrated into the chloroplast genome is shown 
at the bottom of the figure. Horizontal arrows above genes show 
anticipated transcripts. Arrows within boxes show the orientation of 
genes within the chloroplast genome. Read through transcripts are not 
shown in this figure. rRNA: ribosomal RNA.
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also appears to be susceptible to some proteolytic degradation

within transgenic chloroplasts. However, the net balance

between synthesis and degradation is highly favourable,

especially after several hours of continuous illumination.

Properly folded HSA can be recovered from inclusion bod-

ies after denaturation for complete solubilization and in vitro

refolding. Proper refolding of HSA from inclusion bodies is a

routine procedure that has been previously demonstrated in

several studies with E. coli (Latta et al. (1987) and Saccharo-

myces cerevisiae (Dodsworth et al., 1996; Quirk et al., 1989).

In these cases, human and recombinant refolded HSA were

compared and it was shown that the two proteins were struc-

turally equivalent, demonstrating that HSA may be recovered

from inclusion bodies and properly folded. Following the

guidelines from these protocols, HSA was extracted from

transgenic chloroplasts. Figure 6a shows a silver stained

SDS-PAGE gel in which HSA inclusion bodies could be sepa-

rated from the soluble fraction (lane 3), where most of the

cellular proteins are found. After solubilization of inclusion

bodies and subsequent refolding, HSA could be completely

converted into monomeric forms (Figure 6a, lane 5; Figure

6b, lane 5). Our estimations of HSA yields at the end of the

protocol are about 20% of the initial quantities in leaves,

although the reported protocol has been performed at the

laboratory scale and may be further optimized for industrial

production. Expression of HSA in transgenic plants has been

estimated to be cost effective with levels of expression as low

as 0.1 mg HSA/g fresh weight (Farran et al., 2002). The

recoveries after solubilizing the inclusion bodies and refolding

the HSA are about 0.25 mg HSA/g fresh weight (excluding

soluble HSA in transgenic chloroplasts), which exceeds cost

effective estimations of pharmaceutical industries.

Figure 3 Analysis of HSA accumulation in transgenic chloroplasts. (a) ELISA of HSA accumulation in leaves of potted plants at different stages of 
development. Samples were collected from untransformed plants or transformed with pLDAsdHSA or pLDApsbAHSA. Expression levels are indicated as 
a percentage of total protein. (b) Study after different hours of illumination. Samples of leaves were collected from potted plants transformed with 
pLDApsbAHSA after the 8-h dark period or at indicated hours in the light. (c) Coomassie stained gel to study HSA accumulation in tobacco leaves of 
potted plants. Total protein extracts were loaded in the gel. 1: 500 ng pure HSA; 2: molecular weight marker; 3: untransformed plant; transformed with 
4: pLDAsdHSA; 5: pLDApsbAHSA after 8 h of illumination; 6: pLDApsbAHSA after 8 h of darkness. Between 40 and 50 µg of plant protein were loaded 
per well. The positions of HSA and RuBisCO large subunit (LSU) are marked. (d) Colorimetric immunoblot detection of tobacco protein extracts from 
mature leaves in potted plants. Total protein extracts were loaded in the gel. 1: 40 ng pure HSA; 2: molecular weight marker; 3,5: untransformed plant 
extract; 4: pLDAsdHSA plant extract; 6: pLDApsbAHSA plant extract. Between 40 and 50 µg of plant protein were loaded per well. kDa: kiloDalton; LSU: 
RuBisCO large subunit.
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One of the primary goals of this study was to develop a

more efficient expression system for human serum albumin,

an important human therapeutic protein that is highly sus-

ceptible to degradation. Expression of HSA in mature plants

under the translational control of SD sequence resulted in

very low levels of HSA accumulation, probably due to exces-

sive proteolytic degradation and poor rates of translation.

However, when expressed under the control of psbA pro-

moter and 5′UTR, up to a 500-fold increase in HSA accumu-

lation was observed in mature plants compared to other

regulatory sequences tested. HSA was observed to form large

inclusion bodies, resulting even in a noticeable increase in the

size of transgenic chloroplasts and presumably offering pro-

tection to HSA from proteolytic degradation. Inclusion bodies

facilitated purification of HSA from other cellular proteins.

The HSA molecule has a chemical and structural function

rather than an enzymatic activity, therefore complex studies

are necessary to fully demonstrate the functionality of the

molecule (see Dodsworth et al., 1996; Ohtani et al., 1998;

Petersen et al., 2000; Tarelli et al., 1998; Watanabe et al.,

Figure 4 Study of HSA accumulation into inclusion bodies. (a–d) 
Electron micrographs of immunogold labelled tissues from 
untransformed (a) and transformed mature leaves with the chloroplast 
vector pLDApsbAHSA (b–d). Note presence of inclusion bodies (b–d) 
marked with an arrow in (d). Scale bars indicate µm. Magnifications are 
a × 10 000; b × 5000; c × 6300; d × 12 500.

Figure 5 Plant T1 phenotypes. 1,2: untransformed plants; 3: plant 
transformed with pLDAsdHSA; 4: plant transformed with 
pLDApsbAHSA.

Figure 6 HSA extraction from inclusion bodies. (a) Silver stained SDS-
PAGE gel showing 1: 500 ng pure HSA; 2: molecular weight marker; 
soluble fraction obtained after centrifugation of pLDApsbAHSA 
transformed plant extract (lane 3) or untransformed plant extract (lane 4); 
5: HSA after solubilization from the pellet; 6: proteins from 
untransformed plant, which followed the same process as the proteins of 
lane 5. Amounts of protein loaded per well were 10 µg in lanes 3 and 4, 
550 ng in lane 5 and 450 ng in lane 6. (b) Chemiluminiscent immunoblot 
detection of protein extracts. 1: 40 ng pure HSA; 2: HSA from a plant 
transformed with pLDApsbAHSA during the solubilization process, 
showing mono, di and trimeric forms; 3: proteins from an untransformed 
plant that followed the same process as the proteins for lane 2; 4: same 
HSA from lane 2 but in a more advanced stage of solubilization; 5: 
completely monomerized HSA after the end of the solubilization 
treatment (the sample of this lane corresponds with lane 5 in (a) ).
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2001a,b). Such functional studies using in vitro refolded HSA

are in progress.

Experimental procedures

Chloroplast expression vectors

pLDAsdHSA was constructed by inserting the HSA 1.8 kb

EcoRI/NotI fragment into the multiple cloning site of the pLD

vector (Daniell et al., 1998; Daniell et al., 2001b; De Cosa

et al., 2001; Guda et al., 2000; Kota et al., 1999). This frag-

ment contains the mature HSA coding sequence preceded by

a Shine-Dalgarno (GGAGG) and it has an ATG as the initiation

codon. These sequences were introduced by using the primer:

5′-GGAGGCAACCATGGATGCACACAAGAGTGAAGG-3′. For

the pLDApsbAHSA vector, the 204 bp sequence including the

promoter and the psbA 5′UTR, was amplified by PCR using

tobacco DNA as template. The following primers were used:

5′-CCGTCGACGTAGAGAAGTCCGTATT-3′ and 5′-GCCCAT-

GGTAAAATCTTGGTTTATTTA-3′. The fusion with the HSA

gene was made at the NcoI site placed at the 3′ end of the

psbA 5′UTR and then inserted into the pLD vector as a EcoRI/

NotI fragment. Before proceeding with the bombardment,

vectors were tested by Western blot analysis in E. coli.

Bombardment and regeneration

Sterile tobacco (cv. Petit Havana) leaves were bombarded

using the Bio-Rad PDS-1000/He biolistic device as described

previously (Daniell, 1997). Bombarded leaves were subjected

to two rounds of selection on the RMOP medium containing

500 µg/mL of spectinomycin to regenerate transformants

(Daniell, 1997). After regeneration, plants were rooted on

500 µg/mL of spectinomycin (Daniell et al., 2001b) and

transferred to pots in growth chambers. Photoperiod was

16 h light and 8 h dark.

PCR and Southern blot analysis

PCR was used to analyse integration of different cassettes in

the transformed plants as described (Daniell et al., 2001b,c;

De Cosa et al., 2001; Kota et al., 1999). For Southern blot

analysis, total DNA was extracted from leaves of transformed

and untransformed plants (Qiagen Dneasy Kit). Total DNA

(5 µg) was digested with BamHI, electrophoresed on 0.7%

agarose gels and transferred to nylon membranes (Duralon-

UV Stratagene). The template for probing flanking sequences

was a 0.81 kb BglII/BamHI fragment and for HSA a 0.75 kb

NcoI fragment. The probes were labelled with 32P-dCTP using

the oligolabelling procedure (Ready To Go, Amersham).

Probes were hybridized to the membranes following the

QUICK-HYB protocol (Duralon-UV, Stratagene).

Northern blot analysis

Total RNA was extracted from leaves of transformed and

untransformed plants (Rneasy Plant Kit, Qiagen). RNA 2.5 µg

was electrophoresed on 1.2% agarose/formaldehyde gels

and then transferred to nylon membranes (Stratagene). A

0.21 kb XbaI/PstI fragment of the 3′psbA gene was used as

probe and labelled with 32P-dCTP using the oligolabelling

procedure (Amersham).

HSA quantification

The ELISA Human Albumin Quantification Kit (Bethyl Labora-

tories) was used. Transformed and untransformed leaves

(100 mg) from potted plants grown under a 16 h photope-

riod were ground in liquid nitrogen, resuspended in 700 µL of

50 mM NaOH and analysed following the manufacturer’s

protocol. Transgenic leaf extracts were diluted to fit in the

linear range of the provided HSA standard. Absorbance was

read at 450 nm. The DC protein assay (Bio-Rad) was used to

determine total solubilized protein.

SDS-PAGE and immunoblot analysis

Transformed and untransformed leaves (100 mg) were

ground in liquid nitrogen and resuspended in 200 µL of

protein extraction buffer (200 mM Tris-HCl pH 8.0, 100 mM

NaCl, 400 mM Sucrose, 14 mM βME, 0.05% Tween20, 0.1%

SDS, 10 mM EDTA, 2 mM PMSF). Leaf extracts were boiled

in sample buffer (Bio-Rad) and electrophoresed in a 10%

polyacrylamide gel. Separated proteins were stained with

Coomassie Brilliant Blue G-250 or transferred to a nitrocellu-

lose membrane for immunoblotting. The primary antibody

(rabbit anti-HSA, Nordic Immunology) was used at 1 : 10 000

dilution, and the secondary antibody (alkaline phosphatase

conjugated mouse antirabbit, Sigma or goat antirabbit HRP

conjugated, Southern Biotechnology) at 1 : 15 000. Alkaline

phosphatase colour development reagents, BCIP/NBT, in AP

Color Development Buffer (Bio-Rad) or the ECL kit (Amer-

sham) were used for detection.

Solubilization of inclusion bodies

Soluble proteins were removed with a first extraction in 0.2

M NaCl, 25 mM Tris-HCl pH 7.4, 2 mM PMSF and 0.1% Triton
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X-100. After centrifugation for 60 min at 20 000 g, the pellet

was solubilized for 16 h at 4 °C in 6 M Gu-HCl, 0.1 M βME and

0.25 mM Tris-HCl pH 7.4. After centrifugation for 60 min at

20 000 g, the supernatant was then slowly diluted 100-fold

in 100 mM NaCl, 50 mM Tris-HCl pH 8.5 and 1 mM EDTA for

24 h at 4 °C. Fractions were electrophoresed in a SDS-PAGE

10% gel and silver stained with Bio-Rad reagents and protocol.

Transmission electron microscopy and immunogold 

labelling

Seedlings and mature leaves from untransformed and

transgenic plants were analysed. Fixation and immunogold

labelled electron microscopy were performed as described by

Vrekleij and Leunissen (1989). Sections were first blocked,

incubated for 1 h with a goat antihuman albumin polyclonal

antibody (Nordic Immunology; dilution range from 1 : 1000

to 1 : 10 000) and then incubated for 2 h with a rabbit antig-

oat IgG secondary antibody conjugate to 10 nM gold diluted

1 : 40 in blocking solution. Sections were examined in a Zeiss

EM 10 transmission electron microscope at 60 kV.
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