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Abstract

The unpredictable nature of renewable energies is drawing attention to lithium-ion batteries. In order to make full
utilization of these batteries, some research works are focused on the management of existing systems, while others
propose sizing techniques based on business models. However, in order to optimise the global system, a comprehensive
methodology that considers both battery sizing and management at the same time is needed. This paper proposes a
new optimisation algorithm based on a combination of dynamic programming and a region-elimination technique that
makes it possible to address both problems at the same time. This is of great interest, since the optimal size of the
storage system depends on the management strategy and, in turn, the design of this strategy needs to take account of the
battery size. The method is applied to a real installation consisting of a 100 kWp rooftop photovoltaic plant and a Li-ion
battery system connected to a grid with variable electricity price. Results show that, unlike conventional optimisation
methods, the proposed algorithm reaches an optimised energy dispatch plan that leads to a higher net present value.
Finally, the tool is used to provide a sensitivity analysis that identifies key informative variables for decision makers.

Keywords: Energy storage system, Lithium-ion battery, Optimal energy dispatch scheduling, Dynamic programming
method, Energy arbitrage, Renewable energy

Nomenclature

Variables

α Calendar ageing coefficient –

β Cycle ageing coefficient –

a fitting parameter –

b Fitting coefficient –

C Capacity Ah

Cost Economic cost EUR

g Inflation p.u.

GHI Global horizontal irradiance W m−2

i Current A

IR Interest rate p.u.

J Objective function EUR

k Counter –

Life Lifetime years

N Number of time steps –

n Integer number –

NPV Net present value EUR

P Power W

∗Corresponding author

PC Price EUR

Q Electric charge Ah

R Resistance Ω

Rev Annual profit EUR

SOC State of charge p.u.

SOH State of health p.u.

t Time h or years

v Voltage V

Subscripts

0 Independent or initial

1 Linear term

2 Quadratic term

bat Battery

cell Battery cell

cyc Cycle

C Capacity

DC Direct current

DOD Depth of discharge

elec Electricity

exp Exponential

grid Electricity grid
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inv Inverter

I Current

i Internal

j Either among various options

loss Losses

max Maximum value

min Minimum value

N Nominal value

O&M Operation and maintenance

OC Open circuit

pan PV pannel

peak Peak value

PV Photovoltaic

R Resistance

T Temperature

v Voltage

Superscripts

∗ Maximum available

1. Introduction

The energy sources used to produce electricity are ex-
periencing a rapid change from traditional fossil fuels to
renewable energies [1]. A distinctive feature of renewable
energy is its unpredictability, which can cause a number of
problems to the electricity grid, such as network overload-
ing during periods with high renewable generation [2, 3],
being one of the major concerns highlighted by consul-
tants and specialists. Network areas with high photo-
voltaic (PV) production need to manage a high power flow
during periods of high irradiance, yet they are underused
during the rest of the day. Power curtailment has been
studied as a solution to this problem in the European Re-
search project Insight E [4], however its main disadvantage
is that a significant proportion of the renewable energy
available is discarded as a result of this curtailment. In
order to reduce the amount of discarded energy, other en-
ergy services, such as energy arbitrage, peak shaving and
demand side management, can be implemented as alterna-
tive options to curtailment. All these services require the
use of an energy storage system (ESS). The rapid reduc-
tion in the price of Li-ion batteries is focussing interest on
these alternatives.

A cost benefit analysis of PV–battery plants published
in 2013 [5] concluded that the addition of a battery to a PV
system would be profitable if the battery cost were between
USD 400 and USD 500 per kWh (EUR 326 to EUR 407
per kWh), something which is now a reality. In fact, the

price of the Tesla Powerwall 2 (14 kWh) small-scale, sta-
tionary battery with integrated power converter is already
USD 490 per kWh excluding taxes (EUR 400 per kWh)
[6]. Prices for large-scale battery systems are monitored
by institutions such as the U.S. Department Of Energy
(DOE) which reported a drop from around USD 1,000 per
kWh in 2008 (EUR 815 per kWh) to USD 268 per kWh in
2015 (EUR 218 per kWh). It also set a target of USD 125
per kWh by 2022 (EUR 102 per kWh), as summarised by
the IEA in a report published in 2016 [7]. Even though the
current reduction in the battery price is significant, con-
siderable investment is still required for the installation of
an ESS in a renewable-energy plant. Therefore, its opti-
mal sizing and management need to be studied in order to
achieve a competitive power plant.

Two approaches are usually proposed to design ESSs
with renewable systems. Firstly, the economic approach
focuses on the profitability of the investment required to
set up an ESS. The target of these studies is to analyse
the economica feasibility of an ESS in a a particular en-
vironment [8]. In this respect, the levelised cost of energy
(LCOE) of a PV system is studied in [9], where the au-
thors propose a variable termed levelised cost of dispatch
(LCOD), which is slightly different from the LCOE. Other
authors analyse the role of the incentives applied to renew-
able energies [10] or the influence of the electricity tariff on
the profitability of the system [11]. Moreover, Lombardi
and Schwabe propose a business model based on shared
economy to increase the profitability of an ESS. Finally,
other authors particularise the case studied for either a
domestic [12] or commercial photovoltaic system [13]. All
these studies are primarily focused on economic aspects.
However, given the fact that their aim is not the man-
agement of the ESS, the battery operation is significantly
simplified. Many of these works model the electrical per-
formance of the battery by constant efficiency, and the
ageing behaviour is either not considered or is included by
a simple charge–discharge cycle counting method. This
is particularly problematic, since ageing behaviour is of
high importance for the profitability of the ESS, as high-
lighted by a number of research works on the use of bat-
teries for the grid integration of renewable-energy plants
such as microgrids [14], wind power plants [15] and pho-
tovoltaic plants [16]. Due to all these simplifications, the
system performance cannot be taken into account, being
these studies not suitable for either online battery man-
agement or optimal battery sizing.

The second approach to the design of renewable-based
ESS focusses on battery management. Some authors cen-
tre their attention on the effect that the battery has on
the electricity grid [16] and propose different grid services
to be provided by an ESS [17], analysing variables such
as PV self-sufficiency [18] or the self-consumption of do-
mestic PV systems [19]. Other authors propose different
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optimisation methods for the management of ESSs where,
yet again, no particular attention is paid to battery age-
ing, even though the consideration of these phenomena has
been proven to enhance the functionality of a battery [20].
One of the most common methods is linear programming,
which is used to design the battery charging strategy [21]
or the management of grid-connected [5] and residential
[22] PV–battery systems. Linear optimisation is compu-
tationally efficient, but the models involved need to be
linearised, which can be a source of inaccuracy in the re-
sults [23]. A number of non-linear algorithms have been
proposed when higher accuracy is required [24]. Some re-
search works propose neural networks [25] and non-linear
optimisation techniques [26] to optimise the battery en-
ergy dispatch. However these authors are not particularly
concerned with optimising the battery size or with ageing
considerations. The algorithms mentioned only deal with
the battery management.

It can therefore be seen that there is a lack of com-
prehensive algorithms able to make a complete analysis
of a PV–battery system by taking into account relevant
factors such as non-linear battery ageing, technical con-
straints and economical variables. In this paper, we pro-
pose an integrated approach to this problem, addressing
both the battery sizing and management at the same time.
This approach is of great interest, since the optimal size
of an ESS depends on its power requirements determined
by the management strategy, while optimal battery man-
agement depends on its size. With this aim, we propose
a novel optimisation algorithm based on a combination
of dynamic programming and a region-elimination tech-
nique. This algorithm can deal with non-linear models
of both the battery electrical performance and its ageing
behaviour, thus improving the accuracy and reliability of
the results. It is a flexible algorithm that can easily be
used with different system models. In order to show its
applicability, specific advanced, non-linear models are in-
troduced and used in this paper. The algorithm is headed
towards its direct applicability, considering the case study
of a rooftop grid-connected industrial PV system where
real-life measurements of irradiance and electricity prices
are included. As shown in this paper, the improvement
achieved by the proposed global optimisation is quantified
as 22% compared to the sequential consideration of battery
size and management. Finally, the main concepts studied
by the above-mentioned economic analyses are compiled
in a sensitivity analysis of the case study.

The approach presented in this paper offers three main
differences compared to other published works: (i) the
optimisation algorithm, based on the combination of dy-
namic programming with a region-elimination technique,
addresses the overall optimisation of sizing and manage-
ment of the ESS taking system nonlinearities into account,
which assures a global optimal solution for the PV–battery
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Figure 1: System diagram of the PV+ plant.

system, (ii) it is applied to a real rooftop industrial PV
system, in contrast to the typical domestic and microgrid
applications, an scenario that is gaining importance due
to the increasing installation of PV power in industrial
estates, and (iii) the sensitivity analysis presented in the
final part of the paper as an application of the proposed
methodology provides results that are particularly useful
to a number of decision makers.

This paper is organized into six sections. Firstly, in
Section 2, the case study used to particularise the proposed
optimisation algorithm, along with the models of each sys-
tem is explained. Then, Section 3 gives an insight into the
mathematical equations required for the programming of
the optimisation algorithm. Subsequently, the optimisa-
tion algorithm is compared in Section 4 with other battery
management algorithms proposed in the literature show-
ing the most noteworthy results in a comparative table.
Section 5 then presents an application of this optimisa-
tion method, which is a sensitivity analysis that quantifies
the influence of different parameters in battery profitabil-
ity. Finally, Section 6 summarizes the conclusions of the
paper.

2. Case study

2.1. General description of the case study

The optimisation method proposed in this paper is ap-
plied to a medium-sized PV plant with a peak power of
100 kW connected to the 13.2 kV distribution network
of an industrial estate located in Navarra, in the north of
Spain. As shown in Figure 1, the PV system comprises the
PV array and the PV inverter. The PV array is formed
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by the connection of npan = 470 PV panels made by the
company Yingli Solar (YL250P–29b, with a peak power
of Ppan = 250 Wp). The peak power of the PV array is
the DC power generated with optimal solar radiation and
standard ambient temperature, which is only achieved for
a few hours throughout the year:

Ppeak = npan · Ppan = 117.5 kWp (1)

A common design strategy is to oversize the output power
of the PV array in relation to the PV inverter, so that it
is not possible to generate the whole Ppeak during the few
hours with maximum irradiance. As an advantage, the
price of the inverter is lower and it has enhanced efficiency
at the more common lower irradiance levels. An accepted
sizing rule is for the nominal power of the PV inverter to
be set to PPV,inv = 0.85 ·Ppeak ≈ 100 kW [27]. The power
converter used is the IS 3PLAY, made by the company
Ingeteam, with a rated power of 100 kW. The control al-
gorithm of the PV inverter is the maximum power point
tracker (MPPT) designed to maximize the power gener-
ated by the PV modules. The maximum power that could
be generated by the PV array is denoted as P ∗

PV . In a
normal situation, the MPPT achieves this PV power, and
PPV = P ∗

PV . However, as the saturation of the distri-
bution network is a concern in industrial estates, a feed-in
power limitation is considered. As an interesting limit pro-
posed in various countries, the selected value is 60% of the
inverter nominal power. Therefore, when a power higher
than the maximum feed-in power (Pgrid,max) is injected
into the grid, the PV inverter power is limited, as shown
in Figure 1 and the extra available power is not generated
(PPV ≤ P ∗

PV ). Pgrid is assumed to be unidirectional from
the plant to the grid, since regulations in most countries
do not permit the supply of grid power to the generation
plant. Measured meteorological data during the year 2016
in Spain are taken from the free-access database Meteon-
avarra [28]. The data were recorded by a weather station
named Bardenas, with an annual solar radiation of around
1,700 kWh m−2. The mentioned technical characteristics
of the case study are summarised in Table 1.

The battery storage system consists of a Li-ion battery
pack and a bidirectional battery power converter used to
connect it to the AC grid. The battery pack is built by
the series and parallel connection of a number of Li-ion
cells that needs to be determined in a trade-off between
a low price and a long battery lifetime. Two services are
provided by the battery in this scenario. On the one hand,
the energy generated by the PV modules can be increased,
since the shaved peaks are stored and delivered when the
grid is not overloaded, which is a service to the utility
grid manager. On the other hand, the stored electricity
is sold when its price is at its highest, providing greater
economic revenue to the PV plant owner. It is interesting
to make the analysis under realistic, variable electricity
prices. However, as mentioned above, some grid services

Table 1: Main technical specifications of the case study.

Characteristic Value

PV panel Yingli Solar YL250P–29b
PV peak power 117.5 kW
PV inverter Ingeteam IS 3PLAY
PV inverter rated power 100 kW
Battery converter FeCon BAT50
Battery converter power 50 kW
Feed in limitation 60% of the inverter power
Grid voltage 13.2 kV
Annual solar radiation 1,700 kWh m−2

are not properly remunerated, based on current market
rules. Therefore, the real electricity price in Spain dur-
ing 2016 is scaled up to an average price of EUR 0.14 per
kWh maintaining the current variability of market prices.
A price of EUR 250 per kWh for the battery system is
considered, which includes the cost of the battery bidi-
rectional power converter. This price is lower than the
system cost in the current market, but can be a realistic
approach for the near future. The optimisation method
proposed in this paper aims to maximise the economic rev-
enue of the PV system. Therefore the Net Present Value
(NPV) is chosen as the figure of merit for comparability
between different results, which is defined by Dufo López
and Bernal-Agust́ın [29] as follows:

NPV =− Costbat +

Life∑
k=1

Rev · (1 + gelec)
k

(1 + IR)k
−

CostO&M
(1 + gO&M )k

(1 + IR)k
(2)

where Life is the battery lifetime expressed in years, Rev
is the annual profit achieved by the inclusion of the bat-
tery system, Costbat is the battery cost and CostO&M=
EUR 1 per kWh per year is the annual operation and main-
tenance costs, whose value is proposed by Dufo López and
Bernal-Agust́ın [29]. The values of the remaining variables
from Equation 2, which are economic magnitudes, are:
gelec=3% is the inflation for electricity prices, gO&M=2%
inflation for O&M costs and IR=4% is the interest rate
[29].

Given the importance of the model accuracy in obtain-
ing representative results, robust and reliable models are
used for the PV arrays, PV and battery inverters and Li-
ion battery pack. The models used are detailed in the
following subsections.

2.2. PV system modelling

The conversion of solar irradiance to electric power is
modelled using the PVLIB toolbox, which is a set of open-
source modelling functions for simulating the performance
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Table 2: Value of the parameters for the power converters models.

Parameter Value Unit

P
V

in
v
er

te
r b0 298 W

b1 2.01 · 10−3 –
b2 1.64 · 10−7 W−1

B
a
tt

.
co

n
v
er

te
r

C
h

a
rg

e b0 112 W
b1 3.36 · 10−3 –
b2 2.22 · 10−7 W−1

D
is

ch
. b0 137 W

b1 3.28 · 10−3 –
b2 2.46 · 10−7 W−1

of photovoltaic energy systems provided by Sandia Na-
tional Laboratories [30]. The inputs for this toolbox are
the PV plant location, global horizontal irradiance, tem-
perature, size of the PV array and orientation of the mod-
ules. To perform the simulation, PVLIB calculates the
relative position of the sun and, using horizontal irradi-
ance data and an atmosphere model, divides this global
irradiance into its direct and diffuse components. With
these variables, the ambient temperature, the module ori-
entation and the array size, the PV cell temperature and
I–V characteristics are calculated, and subsequently the
output power.

The DC to AC conversion is modelled through the
Driesse model [31], which takes into account power and
input voltage in the calculation of inverter efficiency, as
shown below:

PPV = PPV,DC − PPV,loss (3)

PPV,loss = b0 + b1 · PPV,DC + b2 · P 2
PV,DC (4)

where PPV,loss are the power losses in the PV power con-
verter (labelled as “MPPT” in Figure 1), and b0, b1 and
b2 are the empirical, voltage-dependent coefficients shown
in Table 2. This approach takes into account self con-
sumption, voltage drops and resistive losses. This inverter
model was complemented by the panels characteristics pro-
vided by the databases included in PVLIB, which increase
the reliability of the simulation results.

2.3. Battery system modelling

In order to model the battery system, models for the
power converter and battery pack are required. The bi-
directional battery converter is modelled using the equa-
tions described above for the PV inverter [32]. Based on
the Driesse model, the performance of the battery con-
verter is modelled through Equation 3 and Equation 4,
using the parameters shown in Table 2, which take differ-
ent values for either direction of the power flow.

The battery pack (see Figure 2 (a)) is modelled by the
series and parallel connection of single Li-ion cells, each
cell has an ageing behaviour that depends on the operat-
ing parameters. The battery model consists of an electric
circuit representing the battery as a SOC-dependent volt-
age source and internal series resistance Ri.This equivalent
circuit models the battery efficiency with high accuracy,
given that it takes into account is current and SOC de-
pendencies. The model reflects only static behaviour since
the time steps for optimization are 1 h. The SOC de-
fines the stored capacity relative to the actual full capacity
(C(SOH)):

SOC(t) = SOC(t0)−
∫ t

t0

ibat(t)

C(SOH)
dt (5)

The SOH is calculated with the ageing model, described
below. Note that the negative sign before the integral term
is due to the sign of the current ibat defined as battery
discharging current to be consistent with the sign of Pbat,
i.e. discharging current if ibat > 0.

In the battery storage system, Li-ion cells with NMC
cathode and graphite anode are modelled. The depen-
dence of open circuit voltage vOC on SOC is determined by
means of laboratory experiments proposed in the bibliog-
raphy, such as low current charges and discharges [33, 34]
and stepped-current charges and discharges [35], as shown
in Figure 2 (b). This characteristic curve remains virtually
constant for the whole battery lifetime [36] and is included
in the model as a lookup table. The internal resistance Ri

also depends on SOC, and has been determined with a cur-
rent pulse method every 5%SOC, with the results shown
in Figure 2 (c). As the battery ages, this parameter is
scaled up, as detailed below.

The battery ageing model is a key tool for this opti-
misation algorithm, since the battery capacity decreases
over its lifetime and depends on the calculated dispatch
power. A common approach to battery ageing is a study
of individual cells, given that they are easy to handle.
Thanks to advanced SOH battery pack monitoring sys-
tems [37], it has been shown that the ageing performance
of a pack does not significantly differ from that of a single
cell. A recent study quantifies the discrepancy as 2%, and
attributes it to temperature distribution [38]. Therefore,
a cell model is used in this paper to predict the battery
ageing. Battery ageing is divided into calendar and cycle
ageing, which are normally assumed to be independent of
each other and their effects are added together [39]. Based
on the conclusion of a recent calendar ageing study [40],
a linear time dependency of capacity fade and resistance
rise is assumed, as shown in Equation 6 and Equation 7.
For the cycle ageing modelling, the conclusions of three
studies [41–43] are applied and the dependence of capac-
ity fade and impedance rise with the number of equivalent
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Figure 2: Cell electrical model: Equivalent circuit (a), vOC–SOC relationship (b) and Ri–SOC relationship (c).

cycles Q is assumed to be also linear:

∆C(t, Q)

C(t)
= − (αC · t+ βC ·Q) (6)

∆Ri(t, Q)

Ri(t)
= αRi

· t+ βRi
·Q (7)

where t is expressed in years and Q in equivalent full cy-
cles. These expressions represent the capacity fade (∆C =
C(t)−C(t−∆t)) and impedance rise (∆Ri = Ri(t)−Ri(t−
∆t)) suffered by the battery during the analysed time lapse
∆t.

Parameters αj (j representing C and Ri) determine the
calendar ageing, while βj govern the cycle ageing. These
four parameters are not constant, since calendar ageing is
faster for increasing SOC and temperature [40] and cycle
ageing is faster for higher current [41], average voltage and
depth of discharge (DOD) [43]. These dependencies of αj

and βj are modelled using the following expressions:

αj =av,j · (vcell − a0,j) · exp
(
−aT,j

T

)
(8)

βi =b0,j + bv,j · (vcyc − bv0,j).2 + bDOD,j ·DOD

+bI,j · exp(bexp ·
|ibat|
C

)
(9)

With these expressions, calendar ageing has a linear
dependency on the cell voltage and the temperature ef-
fect is modelled by an Arrhenius expression, as proposed
in [43]. Given that Li-ion batteries require the operating
temperature to be controlled, the battery temperature is
assumed to be constant for this case study, being T=30oC
in Equation 8. The cycle ageing has a quadratic depen-
dence on average cycle voltage (vcyc), a linear relationship
with DOD [43] and an exponential trend with current, as
modelled in [41]. These are the main variables reported to
drive Li-ion battery calendar and cycle ageing, which are
taken into account in this model through the parameters
shown in Table 3.

It is noteworthy that the proposed ageing model is valid
for what is termed the linear region of the battery lifetime,

Table 3: Battery ageing model parameters for ∆C (first column) and
∆Ri (second column) calculation.

Parameter Unit ∆C ∆Ri

C
a
le

n
d

.

av – 2.716 · 105 9.486 · 103

a0 V 3.1482 3.096
aT K 6976 5986

C
y
cl

e

b0 – 2.71·10−5 2.28·10−5

bv V−1 3.14·10−4 3.208·10−4

bv0 V 3.683 3.741
bDOD – 1.61·10−6 3.404·10−6

bI – 1.56·10−5 1.56·10−5

bexp h 1.8 1.8

which occurs when capacity fade and impedance rise are
below 20% of their nominal values [44]. After that, both
ageing processes are accelerated and the battery lifetime
is usually considered to be over. In this context, ∆SOH
is defined as follows:

∆SOH = − 1

0.2
·max

[ ∣∣∣∣∆CC
∣∣∣∣ , ∣∣∣∣∆Ri

Ri

∣∣∣∣ ] (10)

3. Optimisation algorithm

We propose in this section an optimisation algorithm
aimed at the maximisation of the economic revenue ob-
tained by the inclusion of a battery in a PV system such
as the one described in Section 2. The optimisation prob-
lem consists in determining the battery size and power dis-
patch plan that maximize the value of an objective func-
tion. An optimisation method that combines dynamic pro-
gramming with a region-elimination technique (as shown
in Figure 3) is proposed to address this problem. It con-
sists of an iterative algorithm with n iterations. Each iter-
ation is an optimisation of the battery management during
a complete year of system operation followed by the cal-
culation of the value that the objective function has for
this year. A region-elimination technique is then used to
update the battery capacity. The proposed algorithm is
explained in detail in the following subsections.
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Figure 3: Flow diagram of the optimisation algorithm. The energy
dispatch optimisation is run for a whole year, being Revi the revenue
achieved during the day i and Rev the total revenue of the year. After
this annual analysis, the battery capacity is updated by means of the
region-elimination technique. This algorithms is repeated n times for
the capacity size and energy management optimisation.

3.1. Objective function and constraints

The optimisation algorithm combines the models ex-
plained in Section 2 with an objective function and a num-
ber of operational constraints. The objective function J
is an economic revenue obtained by the inclusion of a bat-
tery in the PV plant. This revenue comes, as explained
in Section 2, from the combined effect of the augmented
PV energy injected into the grid and the displacement of
the PV generation to the time interval with highest energy
price. The battery ageing costs are accounted by deduct-
ing, from the total profit of a time interval, the fraction of
the battery cost corresponding to the capacity fade dur-
ing that time. The proposed expression is shown in the
following equation:

J =

∫ t

t0

[(Pgrid,PV–bat − Pgrid,PV) · PCelec+

∆SOH · PCbat] dt (11)

where Pgrid,PV–bat is the power output of a PV–battery
plant and Pgrid,PV is the power output of the PV plant
with no battery. The economic variables involved in this
expression are PCelec, which is the price of electricity (in
EUR per kWh), and PCbat, which is the purchase price of
the Li-ion battery (in EUR).

The constraints of the battery storage system , PV sys-
tem, the feed-in power limitation and the battery converter
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are given by:

vbat,min ≤ vbat ≤ vbat,max (12)

SOCmin ≤ SOC ≤ SOCmax (13)

ibat,min ≤ ibat ≤ ibat,max (14)

Pgrid,min ≤ Pgrid ≤ P ∗
grid (15)

PPV ≤ P ∗
PV (16)

Pbat ≤ PN,conv (17)

3.2. Energy dispatch optimisation using dynamic program-
ming

A dynamic programming (DP) approach is used to
maximise the objective function. This technique is based
on the principle of optimality, as described by R. Bellman
[45]. DP is chosen as the optimisation method because
it can deal with nonlinear systems and it does not con-
verge to local optimums. Its main drawback is the rela-
tively large computational time needed to solve complex
problems compared to linear algorithms, which limits its
applicability in on-line applications. In our case, which is
a simulation study, optimisation time is not a constraint.

As shown in Figure 4, the DP algorithm constitutes
the core of the energy dispatch optimiser. Moreover, it
uses the models described in this paper for the PV system
(Subsection 2.2) and the battery system (Subsection 2.3),
including their required power converters. The input vari-
ables of the DP algorithm are the system and battery
characteristics (including its state of health, SOH), the
available photovoltaic power calculated from the weather
conditions and the electricity price during the time inter-
val studied. In order to run this algorithm, the objective
function (Equation 11) needs to be time-discretised. The
number of time steps that are addressed by the optimi-
sation problem (N) is an important parameter to define
the size of the problem, since this is the number of decision
variables [Pbat,1...Pbat,N ]. Taking into account the PV gen-
eration daily pattern, the optimisation problem is reduced
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to 24 h. Moreover, time steps of one hour (∆t = 1 h) are
chosen, since the electricity price has an hourly pattern in
most markets:

J =

24∑
k=1

[
(Pgrid,PV–bat − Pgrid,PV)k · PCelec,k+

∆SOHk · PCbat] (18)

The states used are the SOC of the battery at each time
step (SOCk), and the relationship between these states is
described by the following discretization of Equation 5:

SOCk = SOCk−1 −
ibat,k

C(SOH)
(19)

Additionally, the relationship between the current of the
battery used in Equation 19 and the battery power is es-
tablished based on the battery model. Therefore, 24 de-
cision variables need to be calculated by the energy dis-
patch optimiser (EDO) (Pbat,k, with k=1...24). The EDO
needs to be solved for each of the studied days, making it
possible to update the values of the battery capacity and
internal resistance, thereby taking the ageing phenomena
into account.

3.3. Battery size optimisation using a region-elimination
technique

The battery size optimiser is based on the results ob-
tained by the subsequent application of the EDO for each
of the days during a whole sample year. These results
are used to determine the optimal installed capacity of
the ESS that maximises the performance of the overall
system. With this approach, the battery sizing and its
subsequent management are considered as a whole, which
has particular significance given that the sizing of an ESS
depends on the management system, which in turn is cal-
culated taking its size into account. Therefore, the overall
optimisation of the system can only be achieved by this
comprehensive approach. Moreover, the battery sizing is
a key part of the PV–battery plant design process, given
that the profitability of the battery is affected by its size.
On the one hand, if the ESS is too small, it does not allow
for the storage and management of the excess PV energy,
thereby limiting the revenue achieved. On the other hand,
if its capacity is too large, then the investment costs are
higher. Therefore, the selection of the optimal battery size
involves a trade-off between the battery capacity and price.

A schematic of the battery size optimiser (BSO) is
shown in Figure 3. Given that the EDO described in Sub-
section 3.2 manages the ESS, this algorithm must be run
for each BSO iteration step, as shown in the figure. The
objective of the ESS designer must be the same as that

 

J 

Battery size 

* 

* 

* Eliminated 

regions 

Optimal 

area 

* 

Previous 

evaluations 

Figure 5: Schematic of the optimisation process carried out by a
region-elimination technique. The optimal storage capacity is se-
lected from the optimal area (asterisks in the figure), the objective
function is evaluated and this area is narrowed down.

of the battery management in order to achieve a ratio-
nal design. Therefore, the EDO and BSO must have the
same objective function (Equation 18). The complexity of
this optimisation problem is much lower than that of the
EDO explained in Subsection 3.2 because the BSO has
only one decision variable (the size of the battery), while
the EDO has 24. Therefore, considering that the objec-
tive function for the BSO is a unimodal function, a region-
elimination technique is used for this optimisation. Uni-
modality means that there is only one maximum in the in-
terval analysed. The region-elimination technique is based
on this characteristic of the economic revenue related to
battery size. This algorithm evaluates the objective func-
tion for different battery sizes and eliminates regions that
cannot host the optimal solution, thereby narrowing down
the area in which the optimal value for the objective func-
tion is reached, as shown in Figure 5. The battery sizes
analysed during the subsequent iteration steps belong to
the interval defined by the three battery sizes that lead to
the three highest revenues to the moment. The strategy
used to determine the battery size for each step is divided
into two stages. The first three battery sizes to be anal-
ysed depend on the PV plant size (C1 = 0.5 kWh/kWp,
C2 = 2 kWh/kWp, C3 = 5 kWh/kWp). For the following
iterations, the calculated capacities are arranged such that
C1 < C2 < ... < Ck. The capacity (Cm) that provides the
maximum value for the objective function is selected, as
well as Cm−1 or alternatively Cm+1. The average of these
selected capacities is chosen as the value of Ck+1, as shown
in Figure 5.

There are several options for detecting the optimal
value, which stops the algorithm. Three of the most com-
monly-used approaches are (i) a given number of itera-
tions is reached, (ii) the difference between the value of
J in two successive iterations is lower than a predefined
value, or (iii) the optimal area is narrower than a value.
Given that simulation time is not a limiting variable for
this study, approach (i) is chosen and n = 10 is selected
as the number of iterations, given that sufficient accuracy
is achieved in a reasonable optimisation time.
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4. Comparison with other optimisers

The proposed global optimisation algorithm is applied
in this section to the case study described in Section 2 and
compared to two other approaches in order to quantify the
improvement in the NPV achieved by our proposal. The
performance of each algorithm is described in the following
three subsections and their results are summarised in Ta-
ble 4. Given that the two first algorithms do not take into
account the sizing of the battery, the size proposed in a re-
cent research study is chosen [46] (1 kWh per kWp of PV
plant). The first algorithm is a commonly-used battery
management strategy when the battery cannot be mod-
elled. It lacks of optimisation tool. The second algorithm
optimises the management strategy with no consideration
about the battery size, which is a typical proposal in the
literature. Finally, the third algorithm is the proposal pre-
sented in this paper. The performance of the PV–battery
plant during the entire lifetime of the battery is simulated
in order to achieve this comparison.

4.1. Intuitive algorithm

The intuitive algorithm is based on the battery charg-
ing while the available PV power exceeds the maximum
grid feed-in limit. Figure 6 (a) and (b) show its perfor-
mance during a sample day, specifically 2 October 2016.
Figure 6 (a) shows the power flows defined in Figure 1,
with an hourly time step, as well as the measured global
horizontal irradiance (GHI) with a 10 minutes sampling
period. It is noteworthy that, even though the GHI is
lower than 800 W m−2 (80% of the nominal 1,000 W m−2),
the power generation at noon is as high as 90% of the
nominal PV power. This is due to the oversized PV field
described in Section 2.There is excess PV power available
between 10:00 h and 15:00 h that day, given the feed-in
limit at 60 kW. The battery charging lasts until the max-
imum charge is reached (14:00 h in the figure). Between
13:00 h and 15:00 h there is excess energy available from
solar radiation, but it cannot be fed into the grid (because
of power limit) or stored in the battery (because it is al-
ready fully charged). This intuitive algorithm discharges
the battery during the period when the price paid for the
electricity reaches its maximum in order to maximise the
economic income. In the example shown in Figure 6 this
maximum price is achieved between 18:00 h and 19:00 h.
However, given the power limitations of the battery, it
cannot be fully discharged in one hour and the battery
discharging is prolonged until 20:00 h.

The results obtained with this strategy are summarised
in the first column of Table 4. Of particular note is the
high annual profit of EUR 3,335. However, this intuitive
algorithm does not take the ESS degradation into account
and, therefore, the battery lifetime is as short as 6.9 years.

Despite the high annual profit, the time needed to pay for
the cost of the battery (the payback period) is 7.2 years.
Therefore, based on the models described above, the in-
vestment is not profitable if the ESS is managed by means
of this intuitive algorithm, given that the NPV of the in-
vestment is EUR –1,090.

4.2. Energy dispatch optimisation

A dynamic programming based energy dispatch opti-
miser is applied in this subsection for the management of
an ESS. Given that this algorithm does not take the bat-
tery sizing into account, the proposed size of 1 kWh per
kWp of PV plant is assumed [46].

The power dispatch plan and battery SOC calculated
by this algorithm are shown in Figure 6 (c) and (d) for
comparison with the previously-described intuitive algo-
rithm. Similarly to the intuitive algorithm, the energy
dispatch optimiser charges the battery when there is extra
PV power available, while some of the available PV energy
needs to be discarded. However, the charging process re-
sulting from this algorithm is slower than the previous one,
lasting from 10:00 h to 15:00 h on 2 October 2016, which
allows for a lower battery charging current, thereby reduc-
ing the current-induced ageing mechanisms in the Li-ion
battery. Moreover, the surplus energy is discarded during
the first three hours of extra PV power (10:00 h–13:00 h),
reducing the time at which the battery is kept at maximum
SOC, which limits the side reactions resulting in power
and capacity fade. Finally, the battery is discharged from
15:00 h to 20:00 h at a variable current rate. Therefore,
the revenue obtained by selling this electricity is lower than
the one achieved by the intuitive algorithm.

The relevant results compiled in Table 4 show the im-
provement achieved by this algorithm compared to the
simple dispatch. Given that both use the same battery
size of 1 kWh per kWp of PV plant, the cost of the bat-
tery is the same, as shown in the second column of Table 4.
It is particularly noteworthy that, while the annual profit
obtained from the electricity is reduced form EUR 3,335 to
EUR 2,774, the battery lifetime is almost doubled from 6.9
to 13.7 years. This makes the NPV positive (EUR 13,870),
making the ESS a profitable investment by simply man-
aging the same battery with a more elaborated strategy,
which implies no extra cost.

4.3. Global optimisation

The global algorithm proposed in this paper is herein
applied to the case study. The most important variables
during 2 October 2016 are shown in Figure 7 for compari-
son with Figure 6. The maximisation of the annual revenue
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Figure 6: Energy dispatch plan, global horizontal irradiance, battery SOC and electricity price on 2 October 2016 calculated with two
algorithms: Intuitive charging and discharging (a) and (b), and proposed EDO (c) and (d).

accounting for the battery sizing and management at the
same time gives an optimal battery size of 1.79 kWh per
kWp of PV plant, as summarised in the third column of
Table 4. This battery size is 79% larger than the 1 kWh
per kWp of PV plant used by the previous algorithms.

With regard to the power dispatch calculated by this
algorithm, Figure 7 (a) shows that almost all the avail-
able PV energy is used either to be fed directly into the
grid or to charge the battery. Given the larger size of the
battery compared to the one analysed in Figure 6 (c) and
(d), there is sufficient capacity to store the surplus energy
from 10:00 to 15:00 reaching a maximum SOC of 66%.
This reduction in the maximum SOC of the battery leads
to slowed ageing phenomena, given that the ageing elec-
trochemical reactions are accelerated by higher voltage.
After this charging, the battery discharge is programmed
to take place during the afternoon (from 15:00 to 20:00).
This slow discharging process results in a lower battery
current and, therefore, reduced battery ageing.

The figures of merit for the PV–battery plant optimally
managed with the proposed global algorithm are shown in

Table 4: Main magnitudes for the three sizing and management
strategies compared.

Strategy Intuitive EDO Global

Battery size (kWh kWp−1) 1 1 1.79
Battery price (EUR) 25 000 25 000 44 625
Average annual profit (EUR) 3335 2774 3822
Payback (years) 7.2 8.7 11.14
Battery lifetime (years) 6.9 13.7 16.42
Total revenue (EUR) –1000 13 870 20 178
NPV (EUR) –1090 10 448 13 400

the column Global of Table 4. The result of the greater
battery size is that the investment (battery price) is 80%
larger than that required for the other two algorithms,
which allows a less intensive use of the battery, extend-
ing its lifetime from 13.7 achieved by the EDO algorithm
to 16.42 years. Furthermore, given the greater battery
capacity available, less PV energy needs to be discarded,
thereby increasing the annual profit of the system. The to-
tal revenue of the PV–battery plant, when sized and man-
aged with the proposed global optimiser, increases from
EUR 13,870 to EUR 20,178 per year, corresponding to a
22% increase in the NPV.
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Figure 7: Energy dispatch plan and global horizontal irradiance (a), battery SOC and electricity price (b) on 2 October 2016 calculated with
the EDO algorithm for a PV–battery system with a battery sized by means of the BSO algorithm.

Therefore, Table 4 clearly summarises the improve-
ments that the proposed global optimisation algorithm
achieves in a PV–battery system compared to other man-
agement algorithms. The longer lifetime, added to the
higher annual revenue, leads to an increased NPV of the
investment, which is the objective function of the opti-
miser.

5. Sensitivity analysis

As an application of the battery optimisation method
proposed in this paper, a sensitivity analysis is presented
in this section. This analysis provides information about
the most critical variables that influence the NPV of a
PV–battery plant. Three magnitudes are chosen as input
variables for the sensitivity analysis: (i) average electricity
price, (ii) electricity price range, and (iii) ESS cost. The
variation interval around their rated values is set to ±20%
with a total of seven points (0.8, 0.9, 0.95, 1, 1.05, 1.1
and 1.2 times the nominal value). Finally, the NPV of the
PV storage system will be analysed as the output variable.
The sensitivity analysis helps to answer questions such as:
Is a 10% reduction in battery price more or less profitable
than a 10% increase in electricity prices for a PV–battery
plant? Which variable is more sensitive for the design of
the storage system: average electricity price during the
year or the difference between maximum and minimum
daily price?

The chosen sensitivity method is the variation of one
factor at a time, consisting in setting a standard scenario
(the one described in Section 2), defining the studied vari-
ables and changing the value of one input variable, while
the others are maintained at their nominal values. The
variable is then returned its rated value and the process
is repeated for the next input variable. Sensitivity is then

measured by monitoring changes in the output, as any
observed change will unambiguously be due to the single
variable changed.

The results of a sensitivity analysis are usually dis-
played in graphs with the input parameter represented on
the horizontal axis and the output variable on the vertical
axis. For the sake of comparability, both values are usu-
ally normalised, being (1, 1) the central point of each plot.
In addition to this plot, a numerical value of the average
sensitivity is also useful for easy and accurate comparison
of different analyses.

The results of the sensitivity analysis for the PV–battery
plant are shown in Figure 8. The circles are the NPV of
the PV–battery plant. A straight line is fitted to these
markers, whose slope is the average NPV sensitivity to
each parameter. The nominal value (1, 1) in the three fig-
ures corresponds to an NPV of EUR 13,400, as already
reported in Table 4, in which the standard scenario is
analysed. The absolute value for each input variable at
this point is defined in Section 2, corresponding to an av-
erage electricity price of EUR 0.14 per kWh, electricity
price range of EUR 0.23 per kWh and a battery price of
EUR 250 per kWh.

A variation in the average electricity price is studied
in Figure 8 (a). As is to be expected, an increase in this
input variable results in a greater NPV of the investment.
Moreover, the variation in the NPV is greater than the one
for the average electricity price. In fact, a 20% increase in
the electricity price leads to an NPV that is more than 2
times higher, which means a sensitivity of 5.31, as reported
in Table 5. Therefore, the average electricity price needs
to be closely studied during the design and management of
such a PV–battery plant, since the variation in the NPV
of the investment is five times greater than the original
change in electricity price. Figure 8 (b) shows the NPV
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Figure 8: Sensitivity analysis of the NPV to three input variables: average electricity price (a), electricity price range (b), and battery price
(c).

Table 5: Average sensitivity of the NPV to three characteristic pa-
rameters in a ±20% interval.

Input parameter Sensitivity of NPV

Average electricity price 5.31
Electricity price range 0.59

Battery price –4.16

sensitivity to the electricity price range. The points are
much closer to 1 and, therefore, the line slope is lower
than for the previous case. Indeed, a variation of 20%
in the electricity price range only brings a change of 12%
in the NPV, representing a sensitivity of 0.59. Finally,
Figure 8 (c) shows the sensitivity of NPV to battery price.
As expected, it has a downward trend, since as the battery
price increases, the investment opportunity decreases. The
slope of the line is –4.16. Note that that a 20% increase in
ESS costs (and thus an increase in investment) still results
in a profitable investment, i.e. NPV> 0.

6. Conclusion

A new approach to the sizing and management of Li-
ion batteries for the grid integration of renewable energy
plants has been described in this paper. This approach
is based on a combined dynamic program algorithm and
region-elimination technique to achieve the global optimi-
sation of two key problems: the battery sizing and its
subsequent management. This comprehensive optimisa-
tion makes it possible to both consider the battery size
in the design of the management strategy, and calculate
its optimal size based on the strategy that will manage
the battery during its operation. As a result, the battery
lifetime is extended, thereby increasing the profitability of
the required investment. After the detailed presentation
of the optimisation algorithm, this was then applied to a
rooftop PV plant installed in an industrial area, which is
an interesting scenario to be studied, given the problems
that can arise in industrial estate distribution networks
due to the expected increase in these installations in the

upcoming years. Finally, a sensitivity analysis identifies
interesting variables to be analysed by different decision
makers.

The main features offered by the proposed algorithm
based on the combined dynamic programming and region-
elimination technique are (i) its overall approach to the
correlated problems of sizing an ESS and its subsequent
management, (ii) its ability to handle non-linear system
models and operational constraints, (iii) its ease of adap-
tation to handle different problems with customised mod-
els and constraints, (iv) its reduced computational de-
mands, being suitable for a normal laptop, and (v) its
improved performance, compared to other studies which
focus their attention on the management of an arbitrarily-
sized battery. This last capability deserves special atten-
tion, and a section of the paper offers further details on
this issue. With this aim, an objective function is opti-
mised assuming a battery size of 1 Wh per Wp of PV
power, as proposed in the literature, and then using the
proposed comprehensive algorithm. The comprehensive
algorithm achieves a 22% improvement in the objective
function, hitting the global optimum of the system.Finally,
the influence of three input variables on the NPV of the
investment are studied by means of a sensitivity analysis.

Two new research lines arise as a consequence of this
paper. On the one hand, an accelerated algorithm would
allow for the on-line optimisation of the battery manage-
ment by means of a typical microcontroller. On the other
hand, the capability of the algorithm to manage shorter
time steps (with the subsequent increase of optimisation
variables) would allow the study of faster battery charge–
discharge cycles and its implications related to battery age-
ing.

Due to the good performance of the algorithm shown
in the case study, as well as its flexibility and ease of use,
it can be considered to be a useful tool for the sizing and
management of energy storage systems connected to re-
newable power plants.
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[43] J. Schmalstieg, S. Käbitz, M. Ecker, D. U. Sauer, From ac-
celerated aging tests to a lifetime prediction model: Analyz-
ing lithium-ion batteries, in: 2013 World Electric Vehicle Sym-
posium and Exhibition (EVS27), 2013, pp. 1–12 (Nov 2013).
doi:10.1109/EVS.2013.6914753.

[44] S. F. Schuster, T. Bach, E. Fleder, J. Müller, M. Brand,
G. Sextl, A. Jossen, Nonlinear aging characteristics of lithium-
ion cells under different operational conditions, Journal of En-
ergy Storage 1 (2015) 44 – 53 (2015). doi:http://dx.doi.org/
10.1016/j.est.2015.05.003.

[45] R. Bellman, Dynamic Programming, 1st Edition, Princeton
University Press, Princeton, NJ, USA, 1957 (1957).

[46] S. T. Kim, S. Bae, Y. C. Kang, J. W. Park, Energy management
based on the photovoltaic HPCS with an energy storage device,
IEEE Transactions on Industrial Electronics 62 (7) (2015) 4608–
4617 (July 2015). doi:10.1109/TIE.2014.2370941.

14

http://meteo.navarra.es/estaciones/mapadeestaciones.cfm
http://meteo.navarra.es/estaciones/mapadeestaciones.cfm
http://meteo.navarra.es/estaciones/mapadeestaciones.cfm
http://meteo.navarra.es/estaciones/mapadeestaciones.cfm
https://doi.org/http://dx.doi.org/10.1016/j.enconman.2014.12.038
https://doi.org/http://dx.doi.org/10.1016/j.enconman.2014.12.038
https://pvpmc.sandia.gov/applications/pv_lib-toolbox/
https://pvpmc.sandia.gov/applications/pv_lib-toolbox/
https://pvpmc.sandia.gov/applications/pv_lib-toolbox/
https://doi.org/10.1109/PVSC.2008.4922827
https://doi.org/10.1109/EPE.2015.7309337
https://doi.org/10.1109/EPE.2015.7309337
https://doi.org/10.1109/IECON.2016.7794094
https://doi.org/10.1016/j.energy.2017.11.154
https://doi.org/10.1016/j.energy.2017.11.154
https://doi.org/http://dx.doi.org/10.1016/j.jpowsour.2014.02.064
https://doi.org/https://doi.org/10.1016/j.apenergy.2016.07.126
https://doi.org/https://doi.org/10.1016/j.est.2016.03.004
https://doi.org/https://doi.org/10.1016/j.est.2016.03.004
https://doi.org/http://dx.doi.org/10.1016/j.jpowsour.2014.02.012
https://doi.org/http://dx.doi.org/10.1016/j.jpowsour.2014.02.012
https://doi.org/http://dx.doi.org/10.1016/j.jpowsour.2017.03.090
https://doi.org/http://dx.doi.org/10.1016/j.jpowsour.2017.03.090
https://doi.org/http://dx.doi.org/10.1016/j.jpowsour.2014.07.030
https://doi.org/http://dx.doi.org/10.1016/j.jpowsour.2014.07.028
https://doi.org/http://dx.doi.org/10.1016/j.jpowsour.2014.07.028
https://doi.org/10.1109/EVS.2013.6914753
https://doi.org/http://dx.doi.org/10.1016/j.est.2015.05.003
https://doi.org/http://dx.doi.org/10.1016/j.est.2015.05.003
https://doi.org/10.1109/TIE.2014.2370941

	Nomenclature
	Introduction
	Case study
	General description of the case study
	PV system modelling
	Battery system modelling

	Optimisation algorithm
	Objective function and constraints
	Energy dispatch optimisation using dynamic programming
	Battery size optimisation using a region-elimination technique

	Comparison with other optimisers
	Intuitive algorithm
	Energy dispatch optimisation
	Global optimisation

	Sensitivity analysis
	Conclusion


