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Abstract. At the beginning of paper [1] there is an error that
spreads along the rest of the work and the conclusions are not
correct in their present form. Precisely, in Section 2, page 783,
there is a contradiction related to the scaling. In the paragraph
before formula (6) it is said that t → ε3t but Hamiltonian (6) is
not scaled accordingly.

We have fixed the problem and, after performing due changes,
the conclusions are obtained. The existence of the manifolds at
infinity is guaranteed (Theorem 3.1) and the transversal intersec-
tion of them is concluded in Theorem 5.1. The applications in
Section 6 are also valid after adapting them to the new version of
the theorems.

1. List of changes

For the sake of clarity, our intention in this corrigendum has not
been providing an exhaustive list of changes but only pointing out
the error and its main consequences. Some misprints found in the
original paper have been also fixed. We apologize for the inconveniences
this mistake could have caused the reader. A full amended version
of the original paper is available upon request to the authors. We
appreciate the comments of Prof. M. Guardia, P. Mart́ın and T.M.
Seara who pointed out the crucial error in paper [1]. The authors
have received partial support from Project 2017–88137–C2–1–P of the
Ministry of Economy, Industry and Competitiveness of Spain. The
facilities provided by Cinvestav – IPN (Mexico) are also acknowledged.

• In the last paragraph of page 782 change: “(Q,P ) = e−it(q, p)”
by “(Q,P ) = e−tJ(q, p)”.
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tory motions.
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• In the paragraph before formula (6) eliminate t→ ε3t.
• Multiply by ε3 the right members of formulae (6), (7), (8), (9),

(10), (16), (20), (22) except for the equation corresponding to
ṡ, that should be ṡ = 1 − ε3x4 Θ. Accordingly, the expression
in between (16) and (17) gets dτ/dt = ε3x3/

√
2.

• Replace formula (12) by:

Θ =
1±

√
1 + 2ε3x4(C + ε3(x2 − y2))

ε3x4
+O(ε7).

• Substitute formula (13) by:

ẋ = 1√
2
ε3x3y,

ẏ = 1√
2
ε3x4 + ε3x6f(x, y, ε, s, C),

ṡ = 1 + Cε3x4 + ε6x6 − ε6x4y2 + ε6x8g(x, y, ε, s, C).

• The Poincaré map (15) reads now as:

P :

{
x→ x+

√
2 πε3x3y + ε6x7yr1(x, y, ε)

y → y +
√

2 πε3x4(1− C2x2) + ε6x6r2(x, y, ε)

where r1 and r2 are real analytic functions.

P̃ :

{
u→ u+ ε3p1(u, v) + ε3s1(u, v, ε)

v → v + ε3p2(u, v) + ε3s2(u, v, ε)

where p1(u, v) = −
√

2 πu(u+ v)3, p2(u, v) =
√

2 πv(u+ v)3 and
s1 and s2 are real analytic functions starting with homogeneous
polynomials of degree 6 in u and v.
• In McGehee’s Theorem 3.1.: δ = δ(ε) > 0 and β = β(ε) > 0

and the manifolds vary uniform and smoothly for ε ≥ ε0 > 0
small enough.
• The title of Section 4 should be “The main term of the Hamil-

tonian”.
• In (19) change H0 by HD.
• As ε = 0 is nonsense, Section 5 starts as follows: In this sec-

tion we compare equations (13) and (16). We observe that the
Poincaré map of the last one has (0, 0) as a fixed point with
a homoclinic orbit parametrized by (18). The fixed point is
preserved by the Poincaré map of (13), however the homoclinic
orbit is broken into the curves W s

ε (0, 0) and W u
ε (0, 0). Indeed,

the smooth dependence on ε implies that W s
ε (γ) and W u

ε (γ) are
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parametrized by orbits of the form

ϕs (τ, xsε, y
s
ε) = ξ(τ − τ0) + ε4ϕ1

s(τ, τ0, ε) + ..., for τ ≥ τ0,

ϕu (τ, xuε , y
u
ε ) = ξ(τ − τ0) + ε4ϕ1

u(τ, τ0, ε) + ..., for τ ≤ τ0,

with τ0 = τ(s0), the functions ϕ1
s and ϕ1

u are determined by
the first variational equation of the ε4-perturbation of the main
term along the orbit ξ(τ), that is, the corrections to ξ(τ − τ0)
corresponding to the perturbation of the Duffing Hamiltonian
of order ε4, the next terms, i.e. ϕ2

s, ϕ
2
u, correspond to the

perturbation of order ε7, etc. Besides, ϕs(τ, x
s
ε, y

s
ε), ϕu(τ, x

u
ε , y

u
ε )

are taken so that ϕs(τ0, x
s
ε, y

s
ε), ϕu(τ0, x

u
ε , y

u
ε ) ∈ Σ, guaranteeing

the existence of a parametrization of the manifolds as above.
Our purpose now is to determine the speed of breaking up of
W s
ε (0, 0) and W u

ε (0, 0) under the perturbation.
• At the bottom of page 787 and top of page 788, it should be

Mν(τ0, ε) =

∫ ∞
−∞

dHD

dτ
(ξ(τ), τ + τ0) dτ

is the first term of the Melnikov function, x, y are evaluated
in the unperturbed homoclinic and the derivative of HD with
respect to τ is considered up to the perturbation of order εν

in the Duffing Hamiltonian such that the function Mν is not
identically zero. We decompose

HD(ϕs(τ0, x
s
ε, y

s
ε))−HD(ϕu(τ0, x

u
ε , y

u
ε )) =M(τ0, ε) +R(τ0, ε), (1)

where

M(τ0, ε) =
∞∑
l=2

ε2lM2l(τ0, ε)

is the so called Melnikov function and M2l contain the main
terms of the total variation of HD; their computation is similar
to that of Mν above. In other words, the series contains the
whole Hamiltonian Hε with x, y replaced by their values in the
Duffing equation whileR corresponds to the contribution to the
separation provided by the higher order terms of the orbits on
the stable and unstable manifolds given above. After changing
from τ0 to s0 the infinite series is interpreted as a Fourier series
in s0 whose coefficients are given as asymptotic expressions of
ε. In the Appendix we will provide the leading terms of the
series and the corresponding estimates for the higher orders.
RegardingR we shall prove that it is smaller than the dominant
terms of M at least in regions of the phase space containing
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portions of the stable and unstable manifolds of γ big enough
where transversality is checked.
• In (23): s′ =

√
2(ε−3 −Θx4)x−3.

• The ε3 factor provokes that in order to get the conclusions of
Theorem 5.1 we need to consider the subsequent orders in the
Legendre approximation.
• To obtain the Melnikov function we use the integral correspond-

ing to HD in (19), and compute the total derivative, assuming
that Θ0 in (19) is considered as Θ, arriving at

dHD

dτ
=
∂HD

∂x
x′ +

∂HD

∂y
y′ +

∂HD

∂Θ
Θ′.

• At this point we define Θ̃0 = Θ0/ε.
• In the expression of s′(τ) and s(τ) in (24), replace Θ0 by Θ̃0.
• We observe that the total derivative of the Duffing Hamiltonian

has become:

dHD

dτ
= ε4M4 + ε6M6 +O(ε8).

• The integrals corresponding to M4 and M6 are

M4(s0; Θ0, ε) =

∫ ∞
−∞

M̃4 dz = ± 2

Θ6
0

F4(Θ0, ε)(c2 sin 2s0 − c3 cos 2s0),

(25)
where

F4(Θ0, ε) =

∫ ∞
−∞

1

(z2 + 1)6

(
2(7z4 − 12z2 + 1) cos(

Θ̃3
0

3
z(z2 + 3))

+ z(3z4 − 26z2 + 11) sin(
Θ̃3

0

3
z(z2 + 3))

)
dz

(26)
and

M6(s0; Θ0, ε) =

∫ ∞
−∞

M̃6 dz

= ± 2

Θ8
0

(
F6,1(Θ0, ε)(d2 cos s0 − d1 sin s0)

+ F6,2(Θ0, ε)(d4 cos 3s0 − d3 sin 3s0)
)
,

(28)
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with

F6,1(Θ0, ε) =

∫ ∞
−∞

1

(z2 + 1)6

(
(9z2 − 1) cos(

Θ̃3
0

6
z(z2 + 3))

+ 2z(2z2 − 3) sin(
Θ̃3

0

6
z(z2 + 3))

)
dz,

F6,2(Θ0, ε) =

∫ ∞
−∞

1

(z2 + 1)8

(
(27z6 − 125z4 + 69z2 − 3)×

× cos(
Θ̃3

0

2
z(z2 + 3))

+ 2z(2z6 − 39z4 + 60z2 − 11) sin(
Θ̃3

0

2
z(z2 + 3))

)
dz.

(29)
• It is straightforward to check that the relevant factor of the

terms related to cos s0, sin s0 in ε2(2l+1)M2(2l+1), l ≥ 2 is

d
(l)
2 cos s0 − d(l)

1 sin s0 with

{
d

(l)
1 =

∑N−1
j=1 mjaj1(a2

j1 + a2
j2)l,

d
(l)
2 = −

∑N−1
j=1 mjaj2(a2

j1 + a2
j2)l.

• Theorems 5.1 and 5.2 come together to establish the following:

Theorem 5.1. There exists ε0 > 0 such that for any ε with
ε0 ≤ ε � 1 the stable and unstable manifolds of the periodic
orbit γ related to Hamiltonian (6) intersect transversally if one
of the following situations is given: i) d1 or d2 do not vanish;

ii) d1 = d2 = 0 and there exists l ≥ 2 such that d
(l)
1 or d

(l)
2

do not vanish; iii) all the previous terms are zero and c2 or c3

do not vanish; iv) all the preceding terms are zero and there is
a non-null constant term accompanying cos ks0 or sin ks0 for
some k ≥ 2.

Proof. In the Appendix, using an argument of Sanders [4] we
prove that R can be maintained small enough in regions of the
phase space that include parts of the stable and unstable mani-
folds of γ such that transversality is satisfied. More precisely, we
can control the size of R for all |τ | ≥ K > 0 and K a constant
independent of ε, keeping it smaller than the dominant terms of
M. Then we prove that the leading terms of the Melnikov func-
tion are those factorizing cos s0, sin s0, then those factorizing
cos 2s0, sin 2s0 and so on. Therefore, the most influential term
in the Melnikov function is the one appearing in ε6M6, that
is (d2 cos s0 − d1 sin s0)F6,1(Θ0, ε). As F6,1 does not vanish for
Θ0 6= 0 and ε ≥ ε0 small enough, we focus on the analysis of the
possible zeros of the factor f(s0) = d2 cos s0−d1 sin s0. Multiple
roots of f(s0) = 0 occur only when d1 = d2 = 0. In this case we
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consider the next most important term of the Melnikov func-

tion, that is, ε10M10. Its corresponding constant terms are d
(2)
1 ,

d
(2)
2 and they always appear in the form d

(2)
2 cos s0 − d(2)

1 sin s0,
and similarly for l > 2. Thus, it is enough that there is a non-

null coefficient d
(l)
j , j = 1, 2, l ≥ 2, to establish the transversal-

ity condition. When all terms related to cos s0, sin s0 vanish,
we take into account the next main terms, that are those of
ε4M4. They appear in the form c3 cos 2s0− c2 sin 2s0, thus it is
enough that c2 or c3 do not vanish to get transversality. When
c2 = c3 = 0 we need to consider the next terms related to
cos 2s0, sin 2s0, and these terms appear in ε8M8. We continue
until we identify a non-null constant term accompanying cos ks0

or sin ks0, concluding the transversality of the manifolds in that
case. �

6. Applications

6.1. Restricted circular 3-body problem. Now the parameters that
determine the conclusion of Theorem 5.1 are d1 and d2.

For µ = 1/2 we have to consider higher-order terms, starting with
the harmonics cos s0, sin s0. In this case we note that the parameters

d
(l)
1 , d

(l)
2 vanish for all l ≥ 2, then we calculate c2 = 3/4 and c3 = 0.

6.2. Equilateral restricted 4-body problem. Again, the essential
coefficients are di instead of ci:

d1 = 3
2
(m1 + 2m2 − 1)(2m2

1 + 2m2
2 + 2m1m2 −m1 − 2m2),

d2 = −3
√

3
2
m1 (2m2

1 + 2m2
2 + 2m1m2 − 3m1 − 2m2 + 1) .

When m1 = m2 = 1/3 we check that the coefficients d
(l)
1 , d

(l)
2 vanish

for all l ≥ 2. Moreover, c2 = c3 = 0 and all terms accompanying
cos 2s0, sin 2s0 vanish as well. Thus, we consider the leading terms of
cos 3s0, sin 3s0 and get d3 = 0, d4 = 5/(3

√
3).

6.3. Restricted rhomboidal 5-body problem. In terms of x, y,
the perturbation parameters di are identically zero. Moreover the co-

efficients d
(l)
1 , d

(l)
2 also vanish for all l ≥ 2, thus we need to obtain

c2 = −3y2 + 6µ(x2 + y2) and c3 = 0. When c2 is non-zero Theorem 5.1
applies. For c2 = 0 we should go to higher orders in ε. According to
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Theorem 5.1, the next terms that have to be checked are the coeffi-
cients of cos 2s0, sin 2s0 that appear in the function ε8M8. Specifically,
we have calculated

∓10ε8Θ−10
0 F8,1(Θ0, ε)(c

(2)
2 sin 2s0 − c(2)

3 cos 2s0),

where F8,1 is a function of order ε−5/2 exp(−2Θ̃3
0/3) when Θ0 > 0 and

of order ε−1 exp(2Θ̃3
0/3) when Θ0 < 0. We get c

(2)
3 = 0 and c

(2)
2 =

0.20447308... for a = 1.32018439...b and c
(2)
2 = −0.20447308... for a =

0.75746994...b.

6.4. Collinear restricted N-body problem.

6.4.1. Collinear restricted 8-body problem. The parameters d1, d2, d
(l)
1

and d
(l)
2 are zero for all l ≥ 2. Then, the essential perturbation param-

eters that lead to the conclusion of Theorem 5.1 are c2 = 1.76876487...,
and c3 = 0.

6.4.2. Collinear restricted 11-body problem. As in the previous case,

the parameters d1, d2, d
(l)
1 and d

(l)
2 also vanish. Then we need to obtain

the leading terms of the harmonics cos 2s0, sin 2s0. We calculate the
coefficients ci and get their values also exactly, an approximation of
them accurate up to eight decimal places being c2 = 1.95579995... and
c3 = 0.

6.5. Polygonal restricted N-body problem. The right member
of Formula (33) is multiplied by ε3. An important feature of this
Hamiltonian is that terms of order higher than ε2N+1 can depend on
cos(N−1)(t−θ) but they are of smaller influence than the one of order
ε2N+1.

In this case the total derivative is:

dHD

dτ
= −1

4
Θ2

0 sinh 2τ
2N−3∑
j=1

εjUj
2j/2+1(j + 2)

(|Θ0| cosh τ)j+4

− ε2N−2 2N

Θ2N
0 cosh2N+1 τ

(NVN−1 sinh τ

+WN−1 (N sinh τ cos q(s0, τ)

∓ (N − 1) sin q(s0, τ)))
+O(ε2N−1),

where Θ0 is replaced by Θ̃0 in the expression of q(s0, τ).
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The Melnikov function is:

M2N−2(s0; Θ0, ε) = −2NWN−1

Θ2N
0

∫ ∞
−∞

1

(z2 + 1)N+1
(Nz cos q̃(s0, z)

∓ (N − 1) sin q̃(s0, z)) dz,
(34)

where Θ0 is replaced by Θ̃0 in the expression of q̃(s0, z).

When N = 7 we get

M12(s0; Θ0, ε) = ± 231

4Θ14
0

F12(Θ0, ε) sin 6s0

where

F12(Θ0, ε) =

∫ ∞
−∞

1

(z2 + 1)14

(
p1(z) cos(Θ̃3

0z(z2 + 3))

+p2(z) sin(Θ̃3
0z(z2 + 3))

)
dz,

with

p1(z) = 2(45z12 − 968z10 + 4257z8 − 5544z6 + 2255z4 − 240z2 + 3),

p2(z) = z(7z12 − 534z10 + 4785z8 − 11220z6 + 8217z4 − 1782z2 + 79).

For N = 8 the corresponding Melnikov function reads as

M14(s0; Θ0, ε) = ±429

Θ16
0

F14(Θ0, ε) sin 7s0

where

F14(Θ0, ε) =

∫ ∞
−∞

−1

(z2 + 1)16

(
p3(z) cos(7

6
Θ̃3

0z(z2 + 3))

+ p4(z) sin(7
6
Θ̃3

0z(z2 + 3))
)
dz,

with

p3(z) = 119z14 − 3549z12 + 23023z10 − 48477z8 + 37037z6 − 9919z4

+ 749z2 − 7,

p4(z) = 2z(4z14 − 413z12 + 5278z10 − 19019z8 + 24024z6 − 11011z4

+ 1638z2 − 53).

The graphs of F12, F14 are given in Fig. 2.

The asymptotic estimates of the Appendix hold provided ε is small
enough so that F12 and F14 do not vanish.

Examining (34) carefully, it is not difficult to infer that the integrals
appearing in the Melnikov functionM2N−2 are of the same type as F4,
F6,1 and so on. We also take into account that the smallest harmonic
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Figure 2. On the left: graph of F12; on the right, graph
of F14.

appearing in the Melnikov function is sin(N − 1)s0, thus we end up
with an expression like

M2N−2(s0; Θ0, ε) = ± K

Θ2N
0

F2N−2(Θ0, ε) sin(N − 1)s0,

with K a non-null constant. Applying the estimates provided in the
Appendix and taking ε small enough, we conclude that ε2N−2M2N−2

behaves like ε−N−1/2 exp(−(N − 1)Θ̃3
0/3)(1 + O(ε)) when Θ0 > 0 and

ε−N+1 exp((N−1)Θ̃3
0/3)(1+O(ε)) for negative Θ0. Thus, we can apply

Theorem 5.1, achieving the transversality of the manifolds of γ in the
polygonal restricted N -body problem for all N ≥ 4.

Qualitative study of functions F4(Θ0, ε), F6,1(Θ0, ε) and F6,2(Θ0, ε)

The graph of function F4 is given in Fig. 3. The function has two
zeroes (instead of one), namely Θ̃′0 = 0 and Θ̃∗0 = 0.61078210..., and
F4(Θ̃0) < 0 for Θ̃0 < Θ̃∗0 (excepting at Θ̃′0), while F4(Θ̃0) > 0 for
Θ̃0 > Θ̃∗0.

The graphs of functions F6,1 and F6,2 can be seen in Fig. 4. Function

F6,1 = 0 has its unique root at Θ̃0 = 0 whereas the roots of F6,2 = 0

occur at Θ̃0 = 0, Θ̃0 = 0.15745028..., Θ̃0 = 0.87685728.... Besides,
F6,1 > 0 when Θ̃0 < 0, F6,1 < 0 when Θ̃0 > 0 while F6,2 > 0 when

Θ̃0 < 0 and 0.15745028... < Θ̃0 < 0.87685728..., F6,2 < 0 when 0 <

Θ̃0 < 0.15745028... and Θ̃0 > 0.87685728....

Due to the highly oscillatory character of the integrals, an asymptotic
analysis of F4, F6,1, F6,2 and other related functions involved in the
Melnikov functions obtained in Section 5 is due.
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F4

Figure 3. The graph of the function F4(Θ0, ε).
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Figure 4. The graphs of the functions F6,1(Θ0, ε) and F6,2(Θ0, ε).

Following [3] we introduce the improper integrals

Ik(δ) =

∫ ∞
0

cos(δ(z + z3/3))

(1 + z2)k
dz, Jk(δ) =

∫ ∞
0

z sin(δ(z + z3/3))

(1 + z2)k
dz.

In [2] it is proved that Jk can be written in terms of Ik through

Jk+2(δ) =
δ

2(k + 1)
Ik(δ),

whereas for δ > 0 big enough, the following estimates hold:

I2n−1(δ) = exp(−2δ/3)

(
π

2n+1(2n− 2)!!
δn−1 +O(δn−3/2)

)
,

I2n(δ) = exp(−2δ/3)

( √
π

2n+1(2n− 1)!!
δn−1/2 +O(δn−1)

)
.

(35)

The functions F4, F6,1, F6,2 as well as the rest of the functions ap-
pearing in M2k with k > 3 can be cast in terms of Ik and Jk, after
performing a partial fraction decomposition.

We start with Θ0 > 0 and take ε small enough with ε ≥ ε0 > 0
to avoid the possible zeroes of the functions F4, F6,1, etc. Concerning
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M4 we apply the estimates (35) to F4, and after arranging the function
conveniently, we conclude that

ε4M4 = 4
√
π

3
ε−7/2Θ

3/2
0 e−

2
3

Θ̃3
0(c2 sin 2s0 − c3 cos 2s0)(1 +O(ε)).

Similarly, for M6 we get

ε6M6 = −
√
π

12
√

2
ε−3/2Θ

−1/2
0 e−

1
3

Θ̃3
0(d2 cos s0 − d1 sin s0)(1 +O(ε))

− 9
√

3π
5
√

2
ε−9/2Θ

5/2
0 e−Θ̃3

0(d4 cos 3s0 − d3 sin 3s0)(1 +O(ε)).

From the above calculations it is clear that for ε small enough the
most important terms are those related to exp(−Θ̃3

0/3), then those
related to exp(−2Θ̃3

0/3)), next those with exp(−Θ̃3
0) and so on. Fur-

thermore, we observe that the terms with asymptotic estimates having
the factor exp(−Θ̃3

0/3) correspond to the harmonics cos s0, sin s0, and
in general, the asymptotic expressions with exp(−kΘ̃3

0/3) are related to
the harmonics cos ks0, sin ks0. In addition to this, for k ≥ 2 the terms
of cos ks0, sin ks0 are of order ε−k−3/2 exp(−kΘ̃3

0/3)(1 +O(ε)) while for
k = 1 the terms of cos s0, sin s0 have the estimate ε−3/2 exp(−Θ̃3

0/3)(1+
O(ε)). This in turn implies that the leading terms in the Melnikov
function are the ones depending on the coefficients d1, d2, the next
ones those with estimate ε−1/2 exp(−Θ̃3

0/3) to which follows the rest of
terms with harmonics cos s0, sin s0. Next we consider the main terms
factorized by cos 2s0, sin 2s0, they are the ones depending on c2, c3. We
continue with the higher order terms and so on. The Melnikov function
becomes the formal Fourier series

M(s0; Θ0, ε) =
∞∑
k=1

αk(ε) cos ks0 + βk(ε) sin ks0

with

α1(ε) = ε−3/2e−
1
3

Θ̃3
0(A1 +O(ε)), β1(ε) = ε−3/2e−

1
3

Θ̃3
0(B1 +O(ε)),

αk(ε) = ε−k−3/2e−
k
3

Θ̃3
0(Ak +O(ε)), βk(ε) = ε−k−3/2e−

k
3

Θ̃3
0(Bk +O(ε)),

for k ≥ 2 and

A1 = −
√
π

12
√

2
Θ
−1/2
0 d2, B1 =

√
π

12
√

2
Θ
−1/2
0 d1,

A2 = 4
√
π

3
Θ

3/2
0 c3, B2 = −4

√
π

3
Θ

3/2
0 c2,

Ak, Bk, k ≥ 3 constants independent of ε.

Regarding the estimate of R we use the ideas of Sanders [4] for the
case of exponentially small estimates. Given a vector field of the form
ẋ = f0(x) + εf1(x, t, ε) with x ∈ D ⊂ R2 and ε a small parameter, he
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defines the Melnikov integral ∆ε(t, x) = ε−1f0(xs,u0 (t))∧ (xuε (t)− xsε(t))
where ∧ is the wedge product in R2, xs,u0 refers to the parametrization
of the stable and unstable manifolds of the unperturbed system and
xuε , x

s
ε denote solutions on the unstable and stable manifolds, respec-

tively. After some assumptions on the smoothness of the vector field,
and a lemma regarding the relationships between the unperturbed and
perturbed manifolds, Sanders arrives at an expression of the form

∆ε(t, x) = ∆0(x) +O(ε(1 + e−µ|t|)2 min{1, e−µ|t|}),

where ∆0 stands for the usual Melnikov function and µ is the Lipschitz
constant associated to f0. Systems of the type ẋ = εf(x, t, ε), after
applying averaging and rescaling time by τ = εt, are transformed into
y′ = dy/dτ = f0(y)+εf1(y, τ/ε, ε), thus admitting the estimate O(ε(1+
exp(−µ|τ |/ε))2 min{1, exp(−µ|τ |/ε)}) = O(ε exp(−µ|τ |/ε)) for τ 6= 0.

We adopt Sanders’ point of view in our setting as follows. First, we
notice that the hypotheses on the Hamiltonian and the existence of the
manifolds are fulfilled. Then we realize that t and τ are related through
the change of time, assuming that x(τ) =

√
2/Θ0 sech τ + O(ε3) we

get t = Θ3
0τ/(2ε

3) + O(1). The Lipschitz constant of HD along the
homoclinic ξ(τ) is calculated, obtaining µ =

√
2/Θ0. Finally, after

adjusting the factor ε4 in the whole expression of ∆ε so that we identify
∆0 with M, we get an upper bound on R as O(exp(−Θ2

0|τ |/(
√

2ε3))).
To control the size of R we compare the estimate with the dominant
term ofM. When d1 or d2 are not zero, due to the presence of the factor
ε−3/2 in α1, β1, it is enough that exp(−Θ̃3

0/3) > exp(−Θ2
0|τ |/(

√
2ε3))

from where it is deduced that |τ | ≥
√

2
3

Θ0, which is true in big portions
of the manifolds as Θ0 is of moderate size. Next, the transversality
condition is verified in the part of phase space where this restriction on
τ holds, but it implies that transversality is satisfied for every τ as this
property is preserved through diffeomorphisms. When d1 = d2 = 0 one
compares exp(−kΘ̃3

0/3) with exp(−Θ2
0|τ |/(

√
2ε3)), starting with k = 2.

When Θ0 < 0 we notice that to apply the estimates given above we
should consider the integrals Ik, Jk with δ < 0. Then we realise that
Ik(δ) = Ik(−δ), Jk(δ) = −Jk(−δ) and Jk+2(δ) = δ/(2(k + 1))Ik(−δ)
and the estimates for Ik given in (35) apply replacing δ by −δ in the
expressions. Proceeding similarly to the case Θ0 > 0 we arrive at

ε4M4 = 5π
8
ε−2e

2
3

Θ̃3
0(c2 sin 2s0 − c3 cos 2s0)(1 +O(ε)),

ε6M6 = − 5π
128

Θ−2
0 e

1
3

Θ̃3
0(d2 cos s0 − d1 sin s0)(1 +O(ε))

+ 63π
64
ε−3Θ0e

Θ̃3
0(d4 cos 3s0 − d3 sin 3s0)(1 +O(ε)).
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Reasoning as in the positive case we realize that the main term in
the Melnikov function is that of ε6M6 having coefficients d1, d2, then
the rest of terms related to cos s0, sin s0, next the term associated to
cos 2s0, sin 2s0 beginning with those whose coefficients are c2, c3, and
so on. Moreover, when k ≥ 2 the terms of cos ks0, sin ks0 behave like
ε−k exp(kΘ̃3

0/3)(1 +O(ε)), thus we obtain analogous results to the case
Θ positive though with estimates of different order in ε.

The estimate analysis of R is alike the procedure for Θ0 > 0.
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[1] Alvarez-Ramı́rez, M., Garćıa, A., Palacián, J.F., Yanguas, P.: Oscillatory mo-
tions in restricted N -body problems, J. Differential Equations 265 (2018) 779-
803.

[2] Mart́ınez, R., Pinyol, C.: Parabolic orbits in the elliptic restricted three body
problem, J. Differential Equations 111 (1994), 299-339.

[3] Mart́ınez, R., Simó, C.: Invariant manifolds at infinity of the RTBP and the
boundaries of bounded motion, Regul. Chaotic Dyn. 19 (2014), 745-765.

[4] Sanders, J.A.:Melnikov’s method and averaging, Celestial Mech. 28 (1982)
17-181.
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