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Abstract 

Nowadays game-related statistics in the sports industry are demanded by coaches, players, managers, 

journalists, supporters, fans, video games developers, betting markets and academics. However, the 

employment of game-related statistics to analyse performance in football (soccer) has inherent 

problems given it is a multifaced and complex phenomenon. This study analyses the importance of a 

large number of possible determinants of sport performance in the “Big Five” European football 

leagues during the period 2012/13–2014/15. To this end, Bayesian model averaging techniques and 

relative importance metrics are employed. The results obtained point to the existence of a set of robust 

determinants in sport performance. This set of drivers consists of (i) the assists, (ii) the shots 

conceded, (iii) the saves made by the goalkeeper, (iv) the number of precise passes with respect to the 

total number of passes, and (v) the shots on target. The results of the study support the idea that 

offensive actions are more relevant than defensive ones. In addition, we find the existence of some 

performance indicators that have usually been ignored by previous analyses such as the saves made by 

the goalkeeper and the assists. These findings could help the decision-making process of the coaching, 

scouting and managerial units of football clubs. Finally, the modelling techniques employed in this 

context can be generalized to gain knowledge in other fields of knowledge to extract factors affecting 

complex problems from large data set. This could be particular interesting when previous research has 

not yet obtained a well-defined and robust set of factors explaining these complex problems. 
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1. Introduction 

The worldwide sports events market defined as all ticketing, media and marketing revenues for 

major sports was 90.9 billion $ in 2017 (Statista, 2018). Football (soccer, in USA) is in the top spot in 

terms of relevance given that it accounts for 43% of the market share, above the rest of the sports. In 

Europe, football has a strong historical tradition and the leagues are highly competitive. The “Big 

Five” leagues (the English Premier League, the German Bundesliga, the Spanish Liga, Serie A Italian 

Calcio, and the French Ligue 1), are responsible for 54% of the revenues in the market of football 

(Deloitte, 2017). The main product of the football industry are the leagues or the championships, 

while the consumer are the fans who buy (i) stadium attendance, (ii) merchandising products and (iii) 

broadcasts. Fans and spectators are a key element of the success of sport contests (Mason, 1999). 

According to some studies, club identification and the win/lose phenomenon are the most considerable 

influences on the satisfaction of spectators (Byon, Zhang, & Baker, 2013; Scelles et al., 2017). Thus, 

increasing the understanding of the determinants of winning or losing is of major importance for 

football clubs.  

A number of decision-making units within a football club are responsible for developing the 

conditions to win a contest. Coaching staff, scouting departments, and management are key entities of 

a professional organization, all of which must work together to build a successful team (Young II, 

2010). Coaching staffs create playing philosophies and tactics using the talents of their players. The 

aim of the scouting department is to identify the skills that a player possesses, which later can be used 

to make a hiring decision. On the other hand, the responsibility of management is to ensure that each 

entity of a football club is working together towards a common goal. These units have to carry out 

collaborative efforts among themselves to determine successful global strategies.  

As explained by Schumaker, Solieman, and Chen (2010) it is of paramount importance that the 

right decisions are made in order to maintain a competitive advantage. In this regard, among the 

biggest decisions a team faces, we find the selection of the players and the design of a strategy. 

Several considerations must be made by managers in order to make hiring decisions (i.e, skill, age, 
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media impact, complementarity with the squad, etc) or by the coach when developing and designing a 

strategy (i.e, direct play style, possession game, positional defense, etc).  

The decisions of these organizational units can be influenced by the data, the challenge being to 

find ways to discover knowledge buried in the available data. The advances in information 

technologies have made it possible to collect, store and process massive and complex datasets. All this 

data holds valuable information such as trends and patterns, which can be used to improve decision 

making and increase chances of success (Cortez et al., 2009; MacHale & Relton, 2018). In fact, 

gaining a deeper understanding of the key determinants of positive sport results and the existing 

relationships between the countless actions during a match is not only a very important step towards a 

more predictive and prescriptive performance analysis but it is also a necessary condition to win 

matches, attract fans and increase incomes. However, despite the growing availability of football 

performance indicators, decision-making by the different units in a football club in most cases is still 

not supported by statistical models or a scientific process. Only recently, some empirical applications 

such as that of Schumaker Jarmoszko, and Labedz (2016) have shown that it could be possible to use 

data that is external to the playing field to forecast results.  

The present study aims to show that computer driven mathematical and recent statistical 

modelling methods employing past statistics data can be used to provide European football teams’ 

managers with additional information to improve their hiring decisions. Similarly, substantial 

knowledge gains can be obtained by the coaching staff to design and implement more effective 

strategies. Moreover, these techniques can be generalized to gain knowledge in other fields of 

knowledge where research has not yet obtained a well-defined and robust set of factors driving 

observable phenomena. Hence, the statistical methods employed here may allow researchers or 

decision-making units in many different contexts other than sports, to benefit from gaining a deeper 

understanding on the underlying drivers (and their relevance) of a given process.  This knowledge 

could help to make suitable decisions in organizations, improving their decision support system.  

 An important issue to highlight at this point, is that in the case of football, previous sport 

performance research has not identified a clear set of indicators determining the main actions that 
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distinguish winners from losers. In this regard, the main criticisms of previous analyses on the 

determinants of sport performance, highlighted by Mackenzie and Cushion (2013), Carling et al. 

(2014), and Sarmento et al. (2014), are mainly methodological and refer to (i) the sample size, (ii) the 

set of variables considered and their definition, and (iii) the statistical methods employed to perform 

inference. Additionally, this strand of research usually fails to support decisions and to derive 

implications useful for football clubs.  

The paper makes several novel contributions to the literature of football performance analysis 

and that of decision support systems in the management of sport teams. The proposed methodological 

approach can be important for the football industry given that (i) it is data driven and (ii) it can be 

integrated into a decision support system aiding the speed and quality of decision making. 

Furthermore, this paper solves the aforementioned methodological limitations in sport performance 

studies by analysing the relative importance of performance indicators in the final sports result 

through (i) the consideration of a greater set of determinants, (ii) a greater sample of observations, and 

(iii) the use of an innovative modelling methodology.  

First, we analyse sport performance employing a set of 24 possible explanatory variables, which 

contrasts with the limited set of controls employed in the literature. Moreover, instead of restricting 

our study to a single regression model estimation, we perform inference based on a Bayesian Model 

Averaging (BMA) econometric analysis. In particular, we use the Monte Carlo Markov Chain Model 

Composition (𝑀𝐶3) methodology for linear regression models developed by Madigan, York, and 

Allard. (1995). This analysis aims to compute the posterior inclusion probability (PIP) for the different 

variables in order to generate a probabilistic ranking of relevance for the various sport performance 

determinants.  

Secondly, the sample used in this study includes a greater number of observations (i.e., teams) 

than most previous studies, which helps to obtain representative results of modern high-competition 
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football1 . Therefore, to generalise our results to competitions with a high competitive level, we 

analyse the major national leagues of European football, the so-called “Big Five” during the period 

from 2012/13 to 2014/15. Notice that this implies our sample data cover 5,532 games. Also, we 

develop analyses for each league in order to detect differences among the five football leagues in 

terms of the key performance indicators. 

Third, we complement the BMA analysis with a relative importance analysis. Assigning shares 

of relative importance to each or to a set of regressors is one of the key goals of researchers in applied 

studies and in sciences that work with observational data. Advances in computational capabilities have 

led to increased applications of computer-intensive methods like averaging over orderings that enable 

a reasonable decomposition of the model variance. Thus, in a second phase, relative importance 

metrics allowing for all possible causal patterns among the regressors are computed (Grömping, 

2007). These metrics perform an R2 decomposition enabling more detailed analysis of the relative 

contribution of each variable to sport performance differentials than previous decompositions. 

After this introduction, the literature review is briefly presented in section 2. Section 3 describes 

the data used to analyse sports performance in the major European football leagues. Section 4 explains 

the modelling methodology. Section 5 discusses the main empirical findings of the paper, and Section 

6 offers the main conclusions to be drawn from this work. 

2. Literature Review 

As highlighted in the introduction section, in spite of the increase in performance analysis 

research in recent decades, there is still no consensus about key performance indicators and how those 

impact the performance of football clubs.  

The literature has focused on regular leagues such as the English Premier league (Carmichael, 

Thomas, & Ward, 2000; Oberstone, 2009; Vecer, 2014), the Spanish Liga (Lago-Ballesteros & Lago-

                                                             
1 The only exception is Collet (2013), who employed a data set covering 5,478 regular national league games, 

395 UEFA Champions League games, and 205 Europe League games. However, an important drawback of this 

study is that to explain PIs such as the points, the goals, etc., only two regressors are employed (possession time 

and passing). 
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Peñas, 2010; Villa & Lozano, 2016), the Italian Serie A (Boscá et al., 2009), the French Ligue One 

(Collet, 2013), the German Bundesliga (Tiedemann, Francksen, & Latacz-Lohmann, 2011), and 

knockout competitions such as the UEFA Champions League and the UEFA Europe League (Collet, 

2013; Barreira et al., 2014; Zambom-Ferraresi et al., 2017), besides the FIFA World Cup (Castellano 

Casamichana, & Lago, 2012; Delgado-Bordonau et al., 2013; Hughes & Franck, 2005; Moura, 

Martins, & Cunha, 2014). 

Empirical research on the existing differences among styles of play across leagues is scarce. 

The findings of Boscá et al. (2009) indicated that to improve league ranking in Spain, the best-

rewarded strategy is to improve offensive efficiency when playing at home, followed by increased 

offensive efficiency when playing away from home. In contrast, in order to obtain a better 

classification in the Italian league, it is more important to improve defensive, rather than offensive, 

efficiency. Considering these differences, after an overall analysis of the ‘Big Five’ main determinants 

of sports performance, we will analyse individual leagues. 

The main samples, methodologies, and performance indicators employed by other studies 

related to our focus can be observed in table 1. A common drawback in many of these studies is the 

reduced sample size. Small sample size entails problems of generalisation and implies a low number 

of degrees of freedom, which could negatively affect the quality of statistical estimates. Examples of 

studies suffering from this problem included in table 1 are those of Barreira et al. (2014), Castellano et 

al. (2012), Delgado-Bordonau et al. (2013), Hughes and Franck (2005), and Moura et al. (2014), in 

which the coverage of games is limited.  

INSERT TABLE (1) ABOUT HERE 

Second, sport performance literature focusing on football has employed limited sets of 

variables, which is likely to create artificially narrow confidence intervals ignoring the uncertainty 

surrounding the true model or data generating process (DGP). Moreover, the omission of relevant 

explanatory variables that could affect sport performance patterns is of major importance from an 

econometric perspective, given that estimates may be inefficient and/or biased. The consequences of 
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biased and/or inefficient estimators include results with restricted reliability. This problem appears in 

a number of studies, such as those of Collet (2013) and Vecer (2014), in which the lack of controls is 

likely to create biased estimates.  

Third, although the univariate tests and the ANOVA analyses in Lago-Ballesteros and Lago-

Peñas (2010), Lago-Peñas et al. (2010), and Lago-Peñas and Lago-Ballesteros (2011) provide insights 

on the characteristics of different types of teams, they do not help to explain to what extent a variable 

is responsible for sport success in football. Similarly, the conventional regression analyses employed 

by Carmichael et al. (2000) and Vecer (2014), whenever regressors are correlated among themselves, 

as is likely to be the case, will fail to obtain precise estimates of importance. This is because in the 

case of correlated determinants, there is no obvious way to analyse how the fitted variability of the 

model can be decomposed across regressors (Grömping, 2007). 

3. Data 

Our sample of data is composed of three seasons ranging from 20012/13 to 2014/15 of the “Big 

Five”, which implies data coverage of 5,532 games in total. The data source is the OPTAPro, a 

company with one of the largest sports databases of European football and whose data reliability has 

been previously tested by Liu et al. (2013).  

To analyse sport performance, we take as our outcome variable the number of points of each of 

the teams in each league and season. However, problems may arise when comparing sport 

performance across teams and leagues given that different leagues have different numbers of teams, 

which implies the scores of leagues with more teams/games are likely to be higher than in the case of 

leagues with fewer teams. This is the case of the Bundesliga with 18 participants per season, while the 

other four leagues have 20 clubs playing the competition by season. To solve this problem, we apply a 

max–min normalisation to our raw data by scaling the total points between 0 and 1. This normalisation 

maintains the final ranking and the variability of the data, allowing us to homogenise the points of the 

different leagues and allowing us to perform comparisons across leagues. In particular, the normalised 

indicator of sport performance for each team i at period  𝑡, 𝐼𝑖,𝑡 , is calculated as:  
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𝐼𝑖𝑡 =
𝑒𝑖𝑡

𝑙  − 𝑒𝑚𝑖𝑛,𝑡
𝑙

𝑒𝑚𝑎𝑥,𝑡
𝑙  − 𝑒𝑚𝑖𝑛,𝑡

𝑙                                                                  (1) 

where 𝑒𝑚𝑖𝑛,𝑡
𝑙  denotes the minimum score in points in league 𝑙 during the season 𝑡, 𝑒𝑚𝑎𝑥,𝑡

𝑙  stands for 

the maximum score of any team in league 𝑙 during season 𝑡, and 𝑒𝑖𝑡
𝑙  is the score of team 𝑖 in league 𝑙 

during season 𝑡.  

 To explain differentials in football performance across clubs we have selected twenty-four 

variables based on the literature review. These variables have been grouped distinguishing between 

defense and attack. In turn, it is important to note that within the set of variables considered, some 

specific variables capture aspects of the game related to efficiency, while others capture aspects 

related to the total number of actions developed. Table 2 shows the descriptive statistics and 

operational definitions of these variables employed in the analysis. In addition, in Table 2 we include 

a column in which we provide information on the expected effect based on a review of the literature. 

INSERT TABLE (2) ABOUT HERE 

4. Empirical Methodology 

 To analyse the determinants of sport performance, we begin by considering a linear regression 

model given by Equation 2:  

𝑦 = 𝛼𝜄𝑛𝑡 + 𝑋𝛽 + 𝜀                                                                      (2) 

where y denotes a NTx1 dimensional vector consisting of observations for the normalised sport 

performance index for each team i = 1,…, N and period t = 1,…, T, X is an NT x K matrix of 

exogenous aggregate covariates with associated response parameters β contained in a K x 1 vector. α 

reflects the constant term, and 𝑙𝑛𝑡 is an NT x 1 vector of ones. Finally, ℰ = (ℇ1, … , ℇ𝑁) is a vector of 

i.i.d disturbances whose elements have zero mean and finite variance 𝜎2. 

4.1. Bayesian Model Averaging (BMA) 

 A large literature on BMA in regression models already exists (for detailed reviews on the 

literature, see Fragoso & Neto, 2015; Hoeting et al., 1999; Moral-Benito, 2015). The key feature of 

this econometric procedure is that it eliminates the need to consider all possible models by 
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constructing a sampler that explores relevant parts of the large model space. Hence, contrary to 

previous studies on sport performance in which inference is based on single econometric model 

analysis, the BMA approach has the advantage of minimising the likelihood of producing (i) biased 

estimates and (ii) artificially low confidence intervals (Moral-Benito, 2015). To get an intuition behind 

the BMA approach, notice that for any set of possible explanatory variables of size K, there are a total 

of  2K candidate models to be estimated, indexed by 𝑀𝑘, for  𝑘 = 1, . . , 2𝐾 to explain the y data. Each 

model 𝑀𝑘  depends upon parameters 𝛿𝑘 . This implies there are 2K sub-structures of the model in 

Equation 2 given by subsets of coefficients 𝛿𝑘 = (𝛼, 𝛽𝑘) and combinations of regressors Xk. Hence, 

there are many different candidate models for estimating the effect of Xj on y with 𝑗𝜖𝐾 . In this 

circumstance, one can either i) select a single model base and make inference using that selected 

model, ignoring the uncertainty surrounding the model selection process, or ii) estimate all candidate 

models and then compute a weighted average of all the estimates for the coefficient of 𝑋𝑗. In the 

second context, the researcher considers not only the uncertainty associated with the parameter 

estimate conditional on a given model, but also the uncertainty of the parameter estimated across 

different models. In particular, BMA inference on the parameters η=( 𝛿,σ) is based on probabilistic 

weighted averages of parameter estimates of individual models:  

𝑝(𝜂|𝑦, 𝑋) = ∑ 𝑝(𝜂𝑘|𝑀𝑘 , 𝑦, 𝑋)𝑝(𝑀𝑘|𝑦, 𝑋)2𝐾

𝑘=1                                          (3) 

The weights and the posterior model probabilities (PMPs) are given by:  

𝑝(𝑀𝑘|𝑦, 𝑋) =
𝑝(𝑦, 𝑋|𝑀𝑘)𝑝(𝑀𝑘)

∑ 𝑝(𝑦, 𝑋|𝑀𝑘)𝑝(𝑀𝑘)2𝐾
𝑘=1

                                                     (4) 

Model weights can be obtained using the marginal likelihood of each individual model after 

eliciting a prior over the model space. The marginal likelihood of model Mk is given by2:  

                                                             
2  In particular, we employ a normal-gamma conjugate prior for  and :  

  

However,  is adjusted following the convention in BMA analysis by means of the g-prior hyper-parameter, 

which takes the value of  such that:   

The employment of the g-prior scales in the variance of the coefficients in  reflects the strength of the prior. 
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𝑝(𝑦, 𝑋|𝑀𝑘) = ∫ ∫ 𝑝(𝑦, 𝑋|𝛿, 𝜎, 𝑀𝑘)𝑑𝛿𝑑𝜎
∞

−∞

∞

0
                                    (5) 

Inference on parameters of the model relies on the computation of the posterior mean (PM) and 

the posterior standard deviation (PSD).  

𝐸(𝜂|𝑦, 𝑋) = ∑ 𝐸(𝜂𝑘|𝑀𝑘 , 𝑦, 𝑋)𝑝(𝑀𝑘|𝑦, 𝑋)2𝐾

𝑘=1                                   (6) 

𝑃𝑆𝐷 = √𝑉𝑎𝑟(𝜂|𝑦, 𝑋)                                                 (7) 

where the 𝑉𝑎𝑟(𝜂|𝑦, 𝑋) is given by:  

𝑉𝑎𝑟(𝜂|𝑦, 𝑋) =            ∑ 𝑉𝑎𝑟(𝜂𝑘|𝑀𝑘, 𝑦, 𝑋)𝑝(𝑀𝑘|𝑦, 𝑋) +2𝐾

𝑘=1

                                ∑ (𝐸(𝜂𝑘|𝑀𝑘, 𝑦, 𝑋) − 𝐸(𝜂|𝑦, 𝑋))
2

𝑝(𝑀𝑘|𝑦, 𝑋)2𝐾

𝑘=1                (8) 

where the first term reflects the variability of estimates across different regression models, and the 

second term captures the weighted variance across different models. Additionally, it is possible to 

compute the conditional posterior positivity of a parameter h as: 

𝑝(𝜂ℎ ≥ 0|𝑦, 𝑋) = ∑ 𝑝(𝜂𝑘,ℎ|𝑀𝑘 , 𝑦, 𝑋)𝑝(𝑀𝑘|𝑦, 𝑋)2𝐾

𝑘=1                              (9) 

where values of conditional positivity close to 1 indicate that the parameter is positive in the vast 

majority of considered models. Conversely, values near 0 indicate a predominantly negative sign. 

Finally, with the aim of generating a probabilistic ranking of relevance for the various sport 

performance determinants, we compute the PIPs for a variable ℎ as the sum of the PMPs including the 

variable ℎ:  

𝑃𝐼𝑃 = 𝑝(𝜂ℎ ≠ 0|𝑦, 𝑋) = ∑ 𝑝(𝜂𝑘|𝑀𝑘 , 𝑦, 𝑋)𝑝(𝑀𝑘|𝜂𝑘 ≠ 0, 𝑦, 𝑋)2𝐾

𝑘=1               (10) 

In the BMA analysis, rather than estimating the 2𝐾  possible models, we will work with a 

relevant sub-sample of the model space drawn by means of the 𝑀𝐶3 algorithm developed by Madigan 

et al. (1995). The algorithm to sample models relies on the following acceptance rule to explore the 

model space:  

𝑃 = 𝑚𝑖𝑛 [1,
𝑝(𝑀′|𝑦)

𝑝(𝑀|𝑦)
]                                             (11) 

                                                                                                                                                                                              

Lastly, we employ a binomial prior on the model space , where each covariate  is 

included in the model with a probability of success . We set , which assigns equal probability 

 to all models under consideration. 

( ) ( ) kKk

kMp
−

− 1= k

 1/2=

( ) K

kMp −2=
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where 𝑝(𝑀|𝑦) denotes the probability of model M (i.e., the current model) and 𝑝(𝑀′|𝑦) denotes the 

probability of an alternative model M'. Thus, if, 𝑝(𝑀′|𝑦) > 𝑝(𝑀|𝑦) the sampler will move to model 

M'. The vector of log-marginal values for the current model 𝑀 and the proposed alternative models 𝑀′ 

are scaled and integrated to produce Equation (6).  

 4.2. Relative Importance Metrics 

 In order to complement the BMA analysis, we explore the relative importance of the various 

factors that could affect sport performance. To that end, we study the relative contribution of the 

various factors with the LMG method (Grömping, 2007; Lindeman, Merenda, & Gold, 1980), the 

Genizi, and the CAR scores (Genizi, 1993; Zuber & Strimmer, 2010, 2011). The decomposition 

procedures used in each of these metrics are detailed below. 

 Let the variance of the dependent variable 𝑌  be given by 𝜎𝑦
2 , the variance of the set of 

regressors contained in 𝑋 be denoted by Σ, and the covariance of 𝑌 and the covariates by Σ𝑦𝑋. Let 𝑃 

denote the correlations among regressors and 𝑃𝑦𝑋  marginal correlations between regressors and 𝑌, 

such that:  

∑ = 𝑉
1

2𝑃𝑉
1

2                                                                 (12) 

and  

∑ 𝑉
1

2𝑃𝑦𝑋𝑉
1

2𝑦𝑋                                                                (13) 

where 𝑉 = 𝑑𝑖𝑎𝑔(𝑉𝑎𝑟(𝑋1), … , 𝑉𝑎𝑟(𝑋𝑝)). Defining the correlation between the model estimates and Y 

as Ω = 𝑐𝑜𝑟𝑟(𝑌, 𝑌̂), then the squared multiple correlation coefficient is expressed as:  

𝑅2 = Ω2 = 𝑃𝑦𝑋𝑃−1𝑃𝑋𝑦                                                   (14) 

Then, the unexplained variance can be written as 𝜎𝑌
2(1 − Ω) and the explained variance of a model 

with 𝑋𝑘  regressors with indices in the set 𝑆 as 𝑒𝑣𝑎𝑟𝑠 = ⌊𝜎𝑌
2Ω⌋

𝑋𝑘,𝑘∈𝑆
. Finally, the sequential added 

explained variance when adding the regressors with indices in 𝑀 to a model that already contains the 

regressors with indices in 𝑆 can be written as 𝑠𝑣𝑎𝑟 = ⌊𝜎𝑌
2Ω⌋

𝑀∪𝑆
− ⌊𝜎𝑌

2Ω⌋
𝑆
. This implies that the true 

coefficient of determination is given by:  
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𝑅2 = Ω2 =
𝑒𝑣𝑎𝑟(𝑠)

𝜎𝑦
2                                                                      (15) 

With these definitions in hand for any model with 𝑝 regressors, the r-squared can be expressed as:  

𝑅2 = Ω2 = ∑ 𝜙𝑚𝑋(𝑘)
𝑝
𝑘=1                                                            (16) 

where m denotes the decomposition method. The LMG method assigns to each regressor 𝑋𝑘  the 

following share:  

𝜙𝐿𝑀𝐺𝑋(𝑘) =
1

𝑝
∑ (∑

𝑠𝑣𝑎𝑟({𝑘}|𝑆)

(
𝑝−𝑘

𝑖
)

𝑆⊆𝑘+1,...,𝑝,𝑛(𝑆)=𝑖 )
𝑝−1
𝑖=0                             (17) 

where 𝑠𝑣𝑎𝑟 denotes the sequentially added explained variance as defined above. Thus, the share ∅𝑘 

assigned to regressor 𝑘  is the average over model sizes 𝑖  of average improvements in explained 

variance when adding regressor 𝑘 to a model of size 𝑖  that did not contain  𝑘. Hence, the LMG metric 

performs a 𝑅2 decomposition by averaging marginal contributions of independent variables over all 

orderings of variables and using sequential sums of squares from the linear model, the size of which 

depends on the order of the regressors in each particular model. Finally, to check the robustness of our 

results, we also compute two alternative metrics of relative importance: (i) the Genizi (1993) and the 

(ii) CAR scores. The weights associated to the Genizi (1993) and CAR measures are given by:  

𝜃𝐺𝐸𝑁𝑍(𝑘) = ∑ [(𝑃
1

2)
𝑘𝑝

(𝑃
−1

2 𝑃𝑋𝑦)
𝑝
]

2
𝑝
𝑝=1                                         (18) 

and  

𝜙𝐶𝐴𝑅𝑍(𝑘) = 𝜔𝑘
2                                                      (19) 

with 𝜔 = 𝑃
−1

2 𝑃𝑋𝑦. 

5. Results and Discussion 

5.1. Key Sport Performance Indicators for the Big Five Leagues  

 Table 3 reports the results obtained when implementing the 𝑀𝐶3 algorithm for the 5,000 top 

models out of the 8,149 generated by the sampler, where the number of draws to carry out the 

sampling exercise on the model space was 100,000. The concentration of the posterior density in this 

context was high, given that the top 1% of models concentrate 52% of the mass, whereas the top 5% 

concentrate 76%. We scale the PIPs of the different variables to classify evidence of robustness of 
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inequality regressors into three categories so that regressors with PIP ∈ [0 − 20%] are considered as 

weak determinants, with PIP ∈ [20 − 80%] of medium importance, and with PIP ∈ [80 − 100%] as 

very important. 

Column 1 show the PIPs, while Columns 2 to 5 show the mean and the standard deviation of 

the posterior parameters’ distributions, along with the lower and upper bounds, conditional on the 

variable being included in the model3. To complement these statistics, Column 6 reports the fraction 

of models where the t-stat of the corresponding variables is higher than 1.96 (which implies statistical 

significance at the 5% level), while Column 7 presents the results of the posterior sign certainty, 

which measures the posterior probability of a positive coefficient expected value, conditional on 

inclusion. 

As observed in Column 1, there is a set of top variables that appears with high frequency in the 

group of very important determinants. The assists, the shots conceded, the saves made by the 

goalkeeper, and the passing accuracy appear to be the most relevant determinants and, in all cases, 

display PIPs of 99.9%. In the range of medium importance, we find the number of clearances blocks 

and interceptions (58%), the shots on target (23%), and the total number of fouls conceded (21%). On 

the other hand, the group of weak sport performance determinants with PIPs below 20% consists of a 

myriad of factors. Therefore, for the remainder of the paper, we will discuss only the results for the 

regressors with a PIP above 20%. 

Column 6 shows that for the group of very important determinants, the variables appear to be 

significant at the 5% level in all of the regression models. On the other hand, the statistical 

significance of the regressors included in the group of medium relevance oscillates between 93% of 

the regression models in the case of the clearances, blocks, and interceptions and 34% of the models in 

the case of the fouls conceded. As shown in Column 7, the effects of the determinants of higher and 

                                                             
3 The key difference with respect to unconditional posterior estimates of Equations 6 and 7 is that conditional 

posterior estimates for a particular variable are obtained as the weighted average over the models in which the 

variable is included. On the contrary, the unconditional posterior estimate is the averaged coefficient over all 

models, including those in which the variable does not appear, hence having a zero coefficient. Thus, the 

unconditional PM can be computed by multiplying the conditional mean in Column 3 times the PIP in Column 

1. 
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medium levels of importance are robust across regression models and display the same sign of the PM 

in all cases. Among the top determinants of sport performance, only the number of shots conceded 

displays a negative effect, while the determinants that have a positive effect on sport performance are 

(i) the assists; (ii) the saves made; (iii) the passing accuracy; (iv) the number of blocks, clearances, and 

interceptions; (v) the shots on target; and (vi) the total fouls conceded. 

INSERT TABLE (3) ABOUT HERE 

One of the advantages of including regressors that capture both the efficiency in a type of 

behaviour or style of play (i.e., passing accuracy) and the intensity of this (i.e., total passes) is that by 

analysing the values of the PIPs we can see whether it is the brute force or the accuracy that matters. 

For the most remarkable determinants, the performance indicators related to efficiency/accuracy take a 

higher probability of inclusion than their absolute counterparts. In the context of passes, we find that 

passing accuracy (100%) displays a higher PIP than the total number of passes (11%). Similarly, 

regarding shots, we find that shots on target (23%) appear to be more relevant than the total number of 

shots attempted (10%). These results indicate that among the determinants with high PIP the 

accuracy/efficiency ratios are more important than the total actions performed. 

Table 4 reports the results of the analysis of relative importance. For a proper interpretation of 

the 𝑅2 decomposition performed, recall that in the context of a linear regression model the 𝑅2 informs 

on the model's explained variability across observations. Thus, decompositions on the relative 

importance of a factor 𝑋𝑘 tell us the percentage of explained disparities in sport performance across 

the observations by 𝑘. In the present context, the, 𝑅2 = 0.88, while the unexplained variability is 

𝜎𝑌
2(1 − Ω) = 0.1 2, which implies our decomposition explains most of the differences in sport 

performance across teams and seasons. Given that results produced by them were similar, we will 

discuss just the average share reported in the last column of Table 4. 

The first salient feature of the relative importance decomposition is that the variability in sport 

performance that can be attributed to attack actions is 62%, while the sum of defense variables 

accounts for 38% of the differences in sport performance, which suggests that attack actions are more 
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relevant than defense ones. Among the set of attack factors, we find the most relevant factors are, in 

decreasing order, the assists (18%), the shots on target (10%), the passing accuracy (8%), the total 

passes (7%), and the total shots attempted (6%). However, the most relevant factor is a defensive one: 

the shots conceded. This factor explains by itself 21% of the sport performance of a football team. In a 

lower level of explanatory power of the sport performance, we find the saves made (6%) and the fouls 

conceded (3%). Notice that these results imply that relative importance metrics produce a similar 

group of factors to that suggested by the BMA analysis. The most remarkable differences can be seen 

in the fact that relative importance analysis attributes a relatively higher share to the total passes and to 

the total shots and a relatively lower importance to the total fouls conceded when compared to the 

BMA. Taken together, the two methodologies point to the existence of a set of key variables, such as 

(i) the number shots conceded, (ii) the assists, (iii) the passing accuracy, (iv) the saves made, and (v) 

the shots on target. 

INSERT TABLE (4) ABOUT HERE 

These results support previous analyses in the literature and provide new insights on the 

relevance for decision making of football clubs. Our findings regarding the positive and relevant effect 

of assists in the performance is in line with previous discriminant analyses (Lago-Ballesteros and 

Lago-Peñas, 2010; Lago-Peñas et al., 2010). Second, the relevance of the passing accuracy indicator 

supports Carmichael et al. (2000) and Oberstone (2009). Regarding defensive actions, two 

performance indicators appear to be key determinants in our empirical analysis: the shots conceded 

(Castellano et al., 2012), and the saves made. As far as we know, no previous empirical evidence 

analysing a set of determinants of sport performance have included the saves made in their modelling; 

a neglected indicator, which as we have highlighted is an important factor in the sporting success. 

Furthermore, the results stemming from the group of medium importance such as the 

clearances, blocks and interceptions (Carmichael et al., 2000), shots on target (Delgado-Bordonau et 

al., 2013; Lago-Peñas et al., 2010, 2011; Moura et al., 2014), and total fouls conceded (Oberstone, 

2009) are in agreement with the previous literature. Finally, the negative estimated effect of recovery 
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in the opposite half and the positive effect of all ball recoveries corroborate the results of Barreira et 

al. (2014), who found recovering directly ball possession in mid-defensive central zones increases 

attacking efficacy. However, some of the findings in our analysis contrast with those previously found 

in literature. This is the case in the set of regressors displaying relatively low PIPs. For instance, the 

indicator measuring the crosses attempts displays a PIP of 15% and has a positive effect on the 

success of the teams, which contrasts with the results of Vecer (2014).  

The results obtained allow us to exemplify that by using statistical modeling techniques, 

football teams can obtain useful knowledge of what happened in the playing field to improve their 

performance at different levels. First, the results obtained, offer interesting implications from the point 

of view of strategic decisions to be developed by football clubs when selecting certain player profiles. 

Compared to the traditional importance given to the selection of good strikers and forward players, the 

results stemming from this empirical analysis highlights the importance of sports actions carried out 

by other players. In the first place, the relevance of shots conceded highlights the need to have defense 

players that are quick and agile to get ahead of the adversary and not allow him to shoot. Therefore, 

coaches and managers should select defensive players based on their physical characteristics instead 

of their technical skills. 

Second, the relevance of other key determinants such as the variable assist and the passing 

accuracy emphasize the relevance of the midfielders, requiring eminently technical players who are 

safe in their game and make few mistakes (high degree of accuracy). Reinforcing the intuition that 

midfielders should have a marked technical profile and high precision, we find the fact that the 

through ball is more relevant than dribbles and runs, that do not appear to be a key determinant. 

Therefore, scouting units of football teams in which the offensive system is structured on an attacking 

midfielder (which connects the center of the field with the forwards) should prioritize players with 

high passing skills rather than dribbling.  

Third, our results emphasize the importance of goalkeepers, through the variable "saves made". 

This result, which has traditionally been ignored in previous studies, coincides with the reality of the 
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main football teams in Europe, who attach great importance to the presence of a goalkeeper of high 

quality and safety among their players. 

5.2. Robustness Check 

 The analysis carried out so far suggests the existence of a group of robust determinants of sport 

performance in the European football league. In the remainder of this section, the robustness of 

previous findings is investigated. 

As a first robustness test, we examine to what extent the results may be sensitive to the choice 

of the measure used to quantify the sport results in the sample teams. To that end, we test an 

alternative measure of sport result based on a transformation of the final position in the league such 

that:  

𝑆𝑃𝑖𝑡 = 𝑙𝑛 (
𝑋+1−𝐶𝑖𝑡

𝐶𝑖𝑡
)                                                        (20) 

where 𝑋 is the number of teams in the league, and 𝐶𝑖𝑡 denotes the classification of the team 𝑖 in the 

league  𝑡. 

Table 5 summarises the results of the BMA when using the alternative sport result metric. As is 

observed, (i) the number of shots conceded, (ii) the assists, (iii) the passing accuracy, (iv) the saves 

made, and (v) the shots on target also appear to be among the top determinants of SP.  

INSERT TABLE (5) ABOUT HERE 

5.3. Is there a unique play style? Main results and robustness checks by league 

 An additional issue to examine is to what extent previous findings are specific to the football 

league that was considered. This section analyses and compares the main results and robustness 

checks by league. We perform the BMA analysis and the relative importance decomposition for each 

individual league for the period between the 2012/13 and 2014/15 seasons.  Tables 6 and 7 summarise 

the PIPs by factor and the average share of the 𝑅2  attributed to each factor across metrics, 

respectively. 
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As observed in Table 6, the PIPs by factor in the different European football leagues are very 

similar, which implies that the primary determinants we identified previously using BMA analysis are 

robust across leagues. Assists, number of shots conceded and saves made all have a PIP of 100% in all 

leagues. However, passing accuracy does not display a high PIP value for each of the individual 

leagues. While the PIPs in the Bundesliga closely follow the overall aggregate European PIP values, 

without non-highlighted differences, there are some interesting differences in the actions related to 

success across the other leagues, which ultimately imply that the strategies for success and playing 

styles are different across countries. 

INSERT TABLE (6) ABOUT HERE 

The individual results obtained regarding the key determinants of sports performance in the 

Premier League reinforce the notion that the corners taken in the Premier League are more closely 

related with success than in other leagues. Nevertheless, the most remarkable performance indicator 

that differentiates the Premier League play style from the others is how consistently the English teams 

finished plays, through the shots. The shot on target, with almost 100% of PIP, and the related total 

shots attempts (37%) are highly important when compared with the results of the other four leagues.  

A separate analysis of the Liga reveals that there are five performance indicators differentiating 

sport success and the play style of this competition. Clearances, blocks and interceptions, and total 

fouls conceded were determinants with medium importance in the overall analysis. When we analyse 

only the Liga, their importance increases from 58% to 93% and from 21 to 66% respectively. Other 

sports indicators such as recoveries in the opposite half (62%), dribbles and runs success rate (29%) 

and red cards (21%) also have more impact on sports performance than in the analysis of the ‘Big 

Five’. Thus, four out of five highlighted determinants of the Liga are defensive, which is not in line 

with the colourful and attractive play style displayed by some Spanish teams in the last decade such as 

the FC Barcelona. This play style, characterized by high ball possession and a specific structure of 

passing sequence4, contrasts with the other teams of the Liga. Our findings regarding the sports 

                                                             
4 Gyarmati et al. (2014) have proposed a quantitative method to evaluate the styles of football teams through 

their passing structures. The analysis of the motifs in the pass networks allow them to compare and differentiate 



 

 19 

performance in the Liga suggest that differences in the rankings for the majority of the teams can be 

explained by more efficient defensive tactics and a higher quality in the execution of the wide range of 

defensive actions. The high importance observed in the recoveries in the opposite half poses important 

implications for coaches who aim to achieve success in the Spanish competition. Specifically, this 

suggests that the implementation of an aggressive and risky defense, in which the lines of defense are 

placed in an advanced location is likely to increase sport performance. The reason is that this type of 

defense allows the execution of counter-attacks easily than other defense systems. However, this type 

of strategy is quite risky since it also generates vulnerabilities. Moreover, to be implemented correctly, 

this type of strategy requires sustained pressing over time, which is very physically demanding for 

players/both the forwards and the midfielders. 

Regarding the results of the Serie A, two defensive variables appear to be more important in 

this league than in the rest of the leagues: tackle attempts (36%) and recoveries (26%). This result is 

consistent with Boscá et al. (2009) findings, where they find that to obtain a better classification in the 

Italian league, it is much more important to improve defensive efficiency rather than offensive 

efficiency. As a consequence, Italian teams might have developed a more direct attacking style, which 

is in agreement with the fact that two very specific attack indicators are more relevant in the Italian 

league than in the rest of leagues, i.e., through ball (61%) and offsides (24%). From the tactical point 

of view, our results suggest that coaches in Serie A should promote a style of game based on the 

concentration of the ball possession in midfield or even in defensive areas. 

In the Ligue 1, fouls conceded in dangerous area (54%) and red cards (25%) are clearly above 

the other European leagues under study. This result might reflect a more physical and aggressive play 

style in the French league than in the other leagues. The probabilistic importance given to red cards 

and faults conceded in danger areas, suggests that, coaches in League 1, may consider developing 

highly cooperative and aid-based defenses in order to avoid high-risk situations in which defenders are 

forced to make faults that could leave the team in numerical inferiority. 

                                                                                                                                                                                              
the styles of different teams. Although most teams tend to apply homogenous style, surprisingly, a unique 

strategy of soccer is also viable—and quite successful, as we have seen in the recent years. Their results shed 

light on the unique philosophy of FC Barcelona quantitatively: does not consist of uncountable random passes 

but rather has a precise, finely constructed structure. 
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INSERT TABLE (7) ABOUT HERE 

Finally, table 7 also aids in identifying the overall most important determinants of sports 

performance and the differences by league. The most notable differences identified in this analysis 

are: (i) the importance of shots on target in the Premier League, (ii) that shots conceded are less 

important across leagues than to the ‘Big Five’ and (iii) that fouls conceded in dangerous areas have 

the highest impact in Ligue 1. 

6. Conclusions and general implications for decision making 

 This study analyses the relative importance of a large number of possible determinants of 

football performance during the period 2012/13–2014/15 for the most important European leagues. 

This paper makes two key contributions: methodological and empirical contributions. Firstly, we 

consider the effect of a great number of determinants employing two innovative methodologies in this 

context: the BMA technique and relative importance metrics analysis. These methods enable us to 

compute the PIPs for the different indicators to generate a probabilistic ranking of relevance for the 

various determinants driving success and decompose the 𝑅2 of the model. These modelling techniques 

can be useful to gain knowledge in other decision support system contexts where there are complex 

problems and large datasets. Secondly, our empirical results reveal a set of robust determinants of 

sport performance in football. These performance indicators consist of (i) the assists, (ii) the shots 

conceded, (iii) the saves made by the goalkeeper, (iv) the passing accuracy, and (v) the shots on target. 

Moreover, we find strong support for the idea that offensive actions are more relevant than defensive 

ones. However, the indicator that exerts a stronger influence on the differentials of performance across 

football teams is a defensive indicator (shots conceded).  

There are important implications of our findings that could be useful as inputs for the decision-

making units in football teams. The first is related to tactics (for coaches) and techniques (for players). 

Based on our observation that assists and through balls are much more important than dribbles, runs, 

and crosses; hence, improving the technical and tactical execution in these plays is essential. However, 

we also observed that accuracy is more important than the amount of executions. The second main 
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implication is related to the clubs’ management section. When hiring players, managers should 

consider hiring players with skills and abilities associated with those determinants that have an impact 

on the team success, in light of the possible combinations of players that the team already has and/or 

lacks. For example, considering the importance of shots conceded and saves made, if a team already 

has a relatively high value for shots conceded, a good strategy could be to increase the quality of the 

goalkeeper. Also, it should be highlighted that according to the results, the same style of plays and 

player characteristics are not adequate for all the leagues under study. It should therefore be 

mandatory for coaches and sports managers to know the peculiarities of each league in order to 

optimally select tactics and players. 

More in general, the two modelling methodologies and statistical approaches employed in this 

research could be used to produce knowledge on the relevance of the determinants of other complex 

and multifaceted processes given that they allow the researcher to extract factors affecting complex 

problems for large datasets. This is a relevant contribution to the field of decision support systems as 

in many contexts and environments there is a substantial degree of uncertainty on the true 

determinants behind observable phenomena. Even if the methods are computationally intensive, we 

consider that this type of analysis could be integrated in the phase of data processing and knowledge 

creation of a wide spectrum of decision support systems and not only in the field of sport analytics.  
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Table 1. Analysis of the Determinants of Football Performance 

Study Sample (N); period (T) Methodology Dependent variable 

Barreira et al. (2014) N= 4 (24 matches) 

FIFA WC; T= 1 cup (2010) 

ANOVA (one and two way); Multinomial 

and logistic regression  

BR with efficacy 

BR with no efficacy  

Boscá et al. (2009) N= IL; SL; 

T= 3 seasons (2000/01-2002/03) 

DEA Goals scored (attack output) 

goals conceded (defense output) 

Carmichael et al. (2000) N= PL (380 matches) 

T= 1 season (1997/98) 

Panel data Difference of goals (scored -conceded) 

Castellano et al. (2012) N= FIFA WC 

T= 3 cups (2002, 2006, 2010) 

Discriminant analysis 

ANOVA; and multivariate analysis 

Winning, drawing and losing teams 

Collet (2013) N= BF (5478 matches); N= UEFA CL (395 matches) 

T= 3 seasons (2007/08-2009/10); N= UEFA EL (205 

matches), T= 1 season (2009/10) 

2 stages - proportional odds models 

1st aggregated team success 

2nd individual match level 

1st: points/match; goals/match; 

shots/match; FIFA points 

2nd: home loss (-1), draw (0), win (1) 

Delgado-Bordonau et al. 

(2013) 

N= FIFA WC (54 matches) 

T= 1 cup (2010) 

Student’s independent t-test Reach semi-finals (successful 

and unsuccessful teams) 

Hughes and Franck (2005) N= FIFA WC (52 and 64 matches) 

T= 2 cups (1990 - 1994) 

Descriptive Ratios  (Un)Successful teams (shots; 

shots/goal; projected goals) 

Lago-Peñas et al., (2010) N= SL (380 matches) 

T= 1 season (2008/09) 

Univariate (t-test) Multivariate 

discriminant analysis 

Winning, drawing and losing 

teams 

Lago-Peñas et al., (2011) N= UEFA CL (288 matches of group stage) 

T= 3 seasons (2007/08- 2009/10) 

One way ANOVA and 

discriminant analysis 

Winning, drawing and losing 

teams 

Lago-Ballesteros and Lago-

Peñas (2010) 

N= SL (380 matches) 

T= 1 season (2008/09) 

One way ANOVA 3 groups: top 4, middle 12 

clubs and bottom 4 

Lago-Peñas and Lago-

Ballesteros (2011) 

N= SL (380 games) 

T= 1 season (2008/09) 

Univariate (t-test and Mann-Whitney U) 

and multivariate (discriminant analysis) 

4 groups (1-5, 6-10, 11-15, and 16-20 of 

final ranking) 

Moura et al. (2014) N= FIFA WC (Group stage); T= 1 cup (2006) Principal component and cluster analysis Winning, drawing and losing teams 

Oberstone (2009) N= PL (380 matches) 

T= 1 season (2007/08) 

Multiple regression 

ANOVA (one-way) 

Final league standings; 3 groups: top 4, 

middle 12 clubs and bottom 4 

Villa and Lozano (2016) N= SL (380 matches); T= 1 season (2013/14) Network DEA Goals 

Vecer (2014) N= PL (1780 games); T= (2008-2013) Regression analysis Goals 

Note: WC= World Cup; CL= Champions League; EL= Europe League; BF= Big Five; BR= ball recovery. 
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Table 2. Definitions and Descriptive Statistics of the Explanatory Variables  

Variable  Definition  Mean STD Expected 

Effect 

Outcome Variable       

Sport Performance  Normalised total points archived by clubs at the end of a season  0.4 0.269   

A. Attack plays        

Total Shots Attempted  Shot: An attempt to score a goal, made with any part of the body, either on or off target. The 

outcomes of a shot could be: goal, shot on target, shot off target, blocked shot, post 

367.80 60.83 + 

Shots on Target  Total shots on target  164.76 36.42 + 

Total Passes,  (excl. 

Crosses, and Corners 

 Pass: An intentionally played ball from one player to another)  15902.81 2739.50 + 

Passing Accuracy  Successful passes/total passes  0.78 0.05 + 

(excl. Crosses and Corners)       

Assists  The final pass or cross leading to the recipient of the ball scoring a goal  34.13 12.66 + 

Crosses Attempted  Any ball played into the opposition team’s area from a wide position  603.79 131.86 + 

Corners Taken  (incl. Short 

Corners 

A corner kick is a method of restarting play. It is awarded to the attacking team when the ball 

leaves the field of play crossing the goal line) 

192.19 32.62 + 

Dribbles and Runs 

Attempted 

An attempt by a player to beat an opponent in possession of the ball. A successful dribble: the 

player beats the defender; unsuccessful: the dribbler is tackled  

746.89 161.07 + 

Dribble and Run Success 

Rate  

Effective dribbles and runs with respect to the total number attempted  0.45 0.07 + 

Long Pass Final Third  A pass over 32 metres on the final third of the field (attack of the reference team)  931.76 156.55 + 

Through Ball  A pass playing a player through on goal, which could lead to a goal scoring opportunity. The pass 

needs to split the last line of defense and plays the teammate through on goal. 

27.60 18.70 + 

Offsides  Being caught in an offside position resulting in a free kick to the opposing team  88.71 19.14 ? 
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Table 2. (Continued) 

Variable  Definition  Mean STD Expected 

Effect 

B. Defense plays        

Total Shots Conceded  Total shots attempted for the opposite team  164.76 29.78 - 

Tackles Attempted  The act of gaining possession from an opposition player when he is in possession of the ball  754.60 79.47 - 

Tackled Possession 

Retained (%) 

A tackle won when a player makes a tackle and possession is retained by his team  0.23 0.03 + 

Recoveries  The event given at the start of a team’s recovery of possession from open play. The defending team must 

have full control of the ball and must start a new passage of play. 

2071.00 297.60 + 

Recoveries in Opp Half  A recovery on the opposite team’s field (attack of reference team)  400.63 93.26 + 

Clearances, Blocks, and 

Interceptions 

Attempts to get the ball out of the danger zone when there is pressure. A defensive block, blocking a shot 

going on target. An interception is given when a player intercepts a pass with some movement 

1750.02 246.97 ? 

Total Fouls Conceded  Any infringement that is penalised as foul play by a referee  517.86 73.38 - 

Fouls Conceded in 

Danger Area 

Infringement that is penalised as foul play by a referee in the lower 1/3  106.59 18.87 - 

Yellow Cards  Indicates that a player has been officially cautioned/penalised due to infringement. A player receiving 

two yellow cards in a match is sent off. 

75.59 20.28 - 

Red Cards  A red card is shown by a referee to signify that a player has been sent off.  4.46 2.66 - 

Saves Made  The goalkeeper prevents the ball from entering the goal with any part of his body. 112.22 20.79 + 

Catches  The goalkeeper catching a cross or a ball played into the area when there is pressure from the rival  52.11 17.18 + 

Notes: Own elaboration; Sources: Liu et al. (2013) and OPTA (2012) 
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Table 3. Main Results: Model Averaged Estimates  

Variable  PIP Lower 5%   Cond Post.   Cond Post.  Upper 95% T-Stat  Sign  

      Mean   Std    1.96   Pos.  

  (1)   (2)   (3)   (4)   (5)   (6)   (7)  

Assists 0.999 0.00868 0.00992 0.00110 0.01098 1.00 1.00  

Shots Conceded 0.999 -0.01012 -0.00959 0.00065 -0.00921 1.00 0.00 

Saves Made 0.999 0.00820 0.00882 0.00086 0.00945 1.00 1.00 

Passing Accuracy  0.998 0.70022 0.90790 0.22871 1.22442 1.00 1.00 

Clearances, blocks and 

interceptions 

0.581 0.00005 0.00008 0.00003 0.00010 0.93 1.00 

Shots on Target  0.229 0.00056 0.00076 0.00031 0.00117 0.40 1.00 

Total Fouls Conceded 0.210 0.00006 0.00017 0.00009 0.00033 0.34 1.00 

Recoveries in Opp. Half 0.183 -0.00030 -0.00016 0.00008 -0.00005 0.46 0.00 

Recoveries 0.171 0.00002 0.00006 0.00003 0.00011 0.67 1.00 

Crosses Attempted 0.154 0.00007 0.00011 0.00004 0.00017 0.63 1.00 

Total Passes  0.110 -0.00001 0.00000 0.00000 0.00001 0.25 0.19 

Total Shots Attempted 0.103 -0.00005 0.00024 0.00009 0.00053 0.17 0.91 

Fouls Conceded (danger area)  0.100 -0.00156 -0.00088 0.00036 -0.00034 0.52 0.00 

Tackles Attempted 0.087 -0.00023 -0.00016 0.00005 -0.00008 0.44 0.00 

Red Cards 0.056 0.00144 0.00282 0.00082 0.00425 0.03 1.00 

Dribble Run Success Rate 0.042 -0.08440 0.02976 0.02350 0.15284 0.01 0.64 

Dribbles and Runs Attempted 0.042 -0.00006 -0.00002 0.00001 0.00001 0.00 0.12 

Yellow Cards 0.040 -0.00012 0.00018 0.00008 0.00050 0.00 0.85 

Through Ball 0.038 -0.00027 0.00014 0.00010 0.00062 0.01 0.69 

Corners Taken  0.038 -0.00051 -0.00010 0.00006 0.00017 0.01 0.34 

Catches 0.033 -0.00017 0.00004 0.00007 0.00028 0.00 0.56 

Long Pass Final Third 0.033 -0.00011 -0.00001 0.00001 0.00005 0.16 0.63 

Tackled Poss. Retained% 0.032 -0.00422 0.11059 0.04030 0.24587 0.00 0.94 

Offsides 0.031 -0.00023 -0.00008 0.00006 0.00007 0.00 0.21 

Notes: The dependent variable in all regressions is the normalized indicator of sport performance based on the 

points obtained during the season. All the results reported here correspond to the estimation of the top 5,000 

models from the 16.77 million possible regressions including any combination of the 24 regressors. Prior mean 

model size is 12. Variables are ranked by Column (1), the posterior inclusion probability. Columns (2) to (5) 

reflect the lower 5% bound, the posterior mean, standard deviations and upper 95% bound for the linear 

marginal effect of the variable conditional on inclusion in the model, respectively. Column (6) is the fraction of 

regressions in which the coefficient has a classical t-test greater than 1.96, with all regressions having equal 

sampling probability. The last column denotes the sign certainty probability, a measure of our posterior 

confidence in the sign of the coefficient.  
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Table 4. Relative Importance Decomposition: Main Results  

Variable  LMG CAR Genizi  Average  

  Metric   Scores   Decomposition  Importance  

A. Attack  0.626  0.626  0.618 0.624  

Assists 0.161 0.226 0.150 0.179 

Shots on Target  0.103 0.101 0.090 0.098 

Passing Accuracy  0.079 0.084 0.074 0.079 

Total Passes  0.079 0.061 0.073 0.071 

Total Shots Attempted 0.070 0.048 0.068 0.062 

Through Ball 0.049 0.047 0.058 0.051 

Long Pass Final Third 0.014 0.011 0.021 0.015 

Offsides  0.013 0.012 0.018 0.014 

Dribbles and Runs Attempted 0.010 0.005 0.013 0.009 

Dribble and Run Success Rate 0.006 0.005 0.009 0.007 

Crosses Attempted 0.005 0.004 0.007 0.005 

B. Defense  0.374  0.374  0.382  0.376  

Shots Conceded 0.182 0.294 0.168 0.215 

Saves Made 0.084 0.006 0.085 0.058 

Fouls Conceded in the Danger Area  0.030 0.032 0.037 0.033 

Clearances, blocks and intercept.  0.017 0.010 0.022 0.017 

Recoveries 0.012 0.016 0.016 0.015 

Recoveries in Opp. Half 0.016 0.003 0.015 0.011 

Total Fouls Conceded 0.011 0.001 0.010 0.007 

Yellow Cards 0.006 0.003 0.007 0.005 

Red Cards 0.005 0.004 0.007 0.005 

Tackles Attempted 0.003 0.002 0.005 0.003 

Tackled and Possession Retained %  0.004 0.001 0.005 0.003 

Catches 0.003 0.001 0.004 0.003 

Notes: The dependent variable in all regressions is the normalized indicator of sport performance 

based on the points obtained during the season. The decomposition applies to a model with 𝑅2 = 0.88 

while the unexplained variability is 𝜎𝑌
2(1 − Ω) = 0.12 
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Table 5. Dependent Variable Robustness Check (I): BMA Ranking in League  

Variable  PIP Lower 5% Cond Post. Cond Post. Upper 95% T-Stat  Sign  

      Mean   Std    1.96  Pos.  

  (1)   (2)   (3)   (4)   (5)   (6)   (7)  

Shots Conceded 1.000 -0.02929 -0.02660 0.00322 -0.02524 1.00 0.00 

Saves Made 1.000 0.02436 0.02602 0.00416 0.02855 1.00 1.00 

Assists 0.991 0.01535 0.01912 0.00393 0.02218 1.00 1.00 

Catches 0.334 0.00268 0.00333 0.00163 0.00384 0.60 1.00 

Clearances, blocks and 

intercept.  

0.120 0.00011 0.00020 0.00008 0.00026 0.06 1.00 

Recoveries 0.109 0.00008 0.00015 0.00006 0.00024 0.04 1.00 

Corners Taken  0.109 0.00050 0.00148 0.00057 0.00377 0.12 1.00 

Long Pass Final Third 0.087 -0.00047 -0.00033 0.00010 -0.00025 0.07 0.00 

Red Cards 0.086 0.01380 0.01746 0.00603 0.02032 0.01 1.00 

Dribble and Run Success Rate 0.069 -0.77155 -0.56249 0.19162 -0.31309 0.01 0.00 

Passing Accuracy  0.066 0.48877 1.24473 0.35903 3.18904 0.11 0.99 

Shots on Target 0.060 0.00050 0.00381 0.00083 0.00665 0.45 0.97 

Total Shots Attempted 0.052 0.00065 0.00159 0.00033 0.00328 0.27 1.00 

Crosses Attempted 0.052 -0.00006 0.00010 0.00006 0.00023 0.00 0.86 

Offsides 0.050 -0.00150 -0.00098 0.00041 -0.00054 0.00 0.00 

Recoveries in Opp. Half 0.039 -0.00058 -0.00013 0.00009 0.00009 0.00 0.22 

Yellow Cards 0.039 -0.00014 0.00071 0.00035 0.00134 0.00 0.92 

Through Ball 0.039 -0.00190 -0.00066 0.00041 0.00034 0.00 0.13 

Fouls Conceded (danger area) 0.036 -0.00007 0.00096 0.00041 0.00186 0.00 0.94 

Total Passes  0.036 -0.00004 0.00000 0.00000 0.00003 0.08 0.44 

Tackled Possession Retained 

(%)  

0.035 -0.35535 0.04169 0.18434 0.41473 0.00 0.57 

Total Fouls Conceded 0.035 0.00008 0.00033 0.00010 0.00051 0.00 0.97 

Tackles Attempted 0.035 -0.00013 0.00005 0.00007 0.00021 0.00 0.69 

Dribbles and Runs Attempted 0.035 0.00006 0.00014 0.00004 0.00023 0.01 1.00  

Notes: The sport performance dependent variable is the transformed of the ranking in the league such that  𝑦𝑖 =
log(𝑋 + 1 − 𝐶𝑖)/𝐶𝑖) where  is the number of teams in the league and C denotes their classification. The 

results reported here correspond to the estimation of the top 5.000 models from the 16.77 million possible 

regressions including any combination of the 24 regressors. Prior mean model size is 12. Variables are ranked 

by Column (1), the posterior inclusion probability. Columns (2) to (5) reflect the lower 5% bound, the posterior 

mean, standard deviations and upper 95% bound for the linear marginal effect of the variable conditional on 

inclusion in the model, respectively. Column (6) is the fraction of regressions in which the coefficient has a 

classical t-test greater than 1.96, with all regressions having equal sampling probability. The last column denotes 

the sign certainty probability, a measure of our posterior confidence in the sign of the coefficient.  
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Table 6. Robustness Check (II): Posterior Inclusion Probabilities by League 

Variable  Big Five  Premier      La Liga   Serie A   Bundesliga    Ligue 1  

Total Shots Attempted 0.103 0.3744 0.0460 0.0960 0.1260 0.0465 

Shots on Target  0.229 0.9903 0.0437 0.1073 0.0880 0.0336 

Total Passes 0.110 0.0362 0.1418 0.0385 0.0521 0.0370 

Passing Accuracy  0.998 0.0364 0.0569 0.0513 0.0530 0.0624 

Assists 1.000 0.9986 1.0000 1.0000 0.9997 1.0000 

Crosses Attempted 0.154 0.0423 0.1463 0.0418 0.0342 0.0426 

Corners Taken  0.038 0.2561 0.0392 0.0347 0.1361 0.0344 

Dribbles and Runs Attempted 0.042 0.0534 0.0489 0.0570 0.0380 0.1069 

Dribble and Run Success Rate 0.042 0.0353 0.2908 0.0567 0.0962 0.0813 

Long Pass Final Third 0.033 0.0426 0.0453 0.0740 0.0564 0.0476 

Through Ball 0.038 0.1115 0.0401 0.6101 0.0329 0.0400 

Offsides 0.031 0.0469 0.0327 0.2361 0.0328 0.0387 

Shots Conceded 1.000 1.0000 1.0000 1.0000 1.0000 1.0000 

Tackles Attempted 0.087 0.0341 0.0483 0.3646 0.0380 0.0563 

Tackled and Possession 

Retained % 

0.032 0.0437 0.0323 0.0499 0.0342 0.0320 

Recoveries 0.171 0.1979 0.1404 0.2573 0.0340 0.0453 

Recoveries in Opp. Half 0.183 0.0779 0.6225 0.0674 0.0346 0.0386 

Clearances, block and intercept.  0.581 0.0369 0.9315 0.1989 0.2826 0.0396 

Total Fouls Conceded 0.210 0.0475 0.6616 0.0478 0.0559 0.0445 

Fouls Conceded (Danger Area)  0.100 0.0341 0.1334 0.0521 0.0354 0.5401 

Yellow Cards 0.040 0.0345 0.0647 0.0279 0.0435 0.1119 

Red Cards 0.056 0.0982 0.2114 0.1459 0.0742 0.2487 

Saves Made 1.000 1.0000 0.9953 0.9991 0.9998 1.0000 

Catches 0.033 0.0453 0.0550 0.0378 0.0782 0.0346 

Notes: The dependent variable in all regressions is the normalized indicator of sport performance based on the 

points obtained during the season. All the results reported here correspond to the estimation of the top 5,000 

models. 
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Table 7. Robustness Check (III): Relative Importance Decomposition by League 

Variable  Big Five   Premier   La Liga   Serie A   Bundesliga   Ligue 1  

A. Attack       

Total Shots Attempted 0.062 0.078 0.066 0.066 0.066 0.057 

Shots on Target 0.098 0.156 0.085 0.085 0.092 0.067 

Total Passes 0.071 0.064 0.058 0.058 0.099 0.076 

Passing Accuracy  0.079 0.067 0.068 0.068 0.083 0.105 

Assists 0.179 0.193 0.202 0.202 0.158 0.131 

Crosses Attempted 0.005 0.002 0.004 0.004 0.004 0.012 

Corners Taken  0.033 0.052 0.032 0.032 0.032 0.023 

Dribbles and Runs Attempted 0.009 0.030 0.015 0.015 0.011 0.013 

Dribble and Run Success Rate 0.007 0.005 0.010 0.010 0.013 0.005 

Long Pass Final Third 0.015 0.031 0.005 0.005 0.005 0.025 

Through Ball 0.051 0.040 0.055 0.055 0.052 0.047 

Offsides 0.014 0.003 0.054 0.054 0.006 0.013 

B. Defense       

Shots Conceded 0.215 0.135 0.148 0.148 0.157 0.189 

Tackles Attempted 0.003 0.008 0.011 0.011 0.024 0.004 

Tackled Possession Retained %  0.003 0.005 0.007 0.007 0.003 0.008 

Recoveries 0.015 0.008 0.022 0.022 0.006 0.012 

Recoveries in Opp. Half 0.011 0.027 0.020 0.020 0.008 0.012 

Clearances, Blocks and 

Intercept  

0.017 0.020 0.013 0.013 0.016 0.022 

Total Fouls Conceded 0.007 0.007 0.016 0.016 0.022 0.009 

Fouls Conceded (Danger Area)  0.033 0.023 0.028 0.028 0.041 0.104 

Yellow Cards 0.005 0.002 0.027 0.027 0.036 0.003 

Red Cards 0.005 0.003 0.006 0.006 0.016 0.003 

Saves Made 0.058 0.040 0.046 0.046 0.024 0.049 

Catches 0.003 0.005 0.004 0.004 0.024 0.009 

Notes: The dependent variable in all regressions is the normalized indicator of sport performance based on the 

points obtained during the season. The decomposition applies to a model with  while the unexplained 

variability is . 

 

0.88=2R

( ) 0.12=12 −Y




