
 
 

   

 
    

 
  
 

 
 
ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS 
 
PUBLIC UNIVERSITY OF NAVARRA 
 

 
 
Degree:  
 

COMPUTER TECHNICAL ENGINEERING 
(INDUSTRIALS AND TELECOMMUNICATIONS 

ENGINEERING SCHOOL) 
 
 
 
 

Title of the Diploma Thesis: 
 

UPGRADE SYSTEM: 
“Crawling Process: The Real Estate Case” 

 
 
 
 
 
 
 

 
 

     Student: Miren Arizaleta Arteaga 

Tutor: Michalis Vazirgiannis 

Athens,  February 2011 

 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    
 
 

 2   

INDEX 
 
INTRODUCTION .......................................................................................................... 3 

1.1 PURPOSE OF THE DIPLOMA THESIS .......................................................................... 4 
1.2 DESCRIPTION OF THE DIPLOMA THESIS .................................................................... 4 

WEB CRAWLING ......................................................................................................... 5 
2.1 DEFINITION OF WEB CRAWLING .............................................................................. 6 
2.2 CRAWLING POLICIES-TECHNIQUES .......................................................................... 6 
2.3 WEB CRAWLER ARCHITECTURES .......................................................................... 12 

SYSTEM DESCRIPTION ........................................................................................... 13 
3.1 GENERAL DESCRIPTION OF THE SYSTEM ................................................................ 14 
3.2 CRAWLING PROCESS .............................................................................................. 14 

3.2.1 Crawling Module ........................................................................................... 15 
3.2.2 Advertisements Feature Extraction Module .................................................. 17 

3.3 DATABASE PROCESS .............................................................................................. 19 
3.3.1 Temporary Database Storage ........................................................................ 19 
3.3.2 Final Database Storage ................................................................................. 19 

SYSTEM CHANGES ................................................................................................... 20 
4.1 INTRODUCTION TO THE JAVA PACKAGES AND CLASSES ......................................... 21 
4.2 CHANGES IN THE CLASSES ..................................................................................... 23 

4.2.1 Neomesitiki Website ....................................................................................... 23 
4.2.2 e-state WebSite .............................................................................................. 23 
4.2.3 Aggelioxoros WebSite .................................................................................... 23 
4.2.4 Kathimerini WebSite ...................................................................................... 25 
4.2.5 XE WebSite .................................................................................................... 28 

SYSTEM USER MANUAL ......................................................................................... 32 
5.1 APPLICATIONS USED .............................................................................................. 33 
5.2 MAIN CLASSES ...................................................................................................... 33 

PROBLEMS AND FUTURE WORK ........................................................................ 35 
6.1 PROBLEMS ............................................................................................................. 36 
6.2 FUTURE WORK ...................................................................................................... 36 

6.2.1 Introduction to RMI ....................................................................................... 36 
6.2.2 Construction step by step ............................................................................... 37 
6.2.3 Example: Hello World! With remote server .................................................. 37 

BIBLIOGRAPHY ......................................................................................................... 40 

- DOCUMENTATION FOR WEB CRAWLING: .............................................. 40 

- DOCUMENTATION FOR RMI: ....................................................................... 40 

- FOR PROGRAMMING IN JAVA: .................................................................... 40 

 
  



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 3 

Chapter 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

INTRODUCTION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 In this first chapter is going to be explained the purpose of the Diploma Thesis, 
detailing the process followed to do it. 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 4 

1.1 Purpose of the Diploma Thesis 
 
 The aim of this Project is to put into gear again the system developing last year 
“Crawling Process: The Real Estate Case”, changing or adding programs needed to 
make it works. This system consists basically in a compilation of information from five 
websites dedicated to selling and renting houses and plots, for the following realization 
of a statistic study.  
 
  For this, has been realized a study of the technics used in the system for 
capturing the data as well as its possible uses.   
 
 

1.2 Description of the Diploma Thesis 
 
 Nowadays everybody uses or has used the web for different reasons. Everybody 
is aware that the web constitutes an architecture to access information and retrieves data 
in the form of interconnected documents which are distributed in millions of machines 
through the internet.  
 

The most commonly used protocol for the retrieval of such documents is the http 
(Hypertext Transfer Protocol). When a user “demands” to retrieve some document or 
some information in the web, the use of this protocol is enough to do so. In this way the 
user can move through websites retrieving each piece of information or document which 
are useful to them at any given time. The question raised here is what happens in the 
case that one demands to retrieve millions and billions of documents or to retrieve a 
large volume of information either for future processing or for a simple reading. With 
the constant increase of the volume of data in the web as well as the daily renewal of the 
contents of the various websites, it is understandable that it is impossible for such a vast 
volume of data to be collected by the user, and therefore it is imperative the need to 
create mechanisms to automate this data retrieval procedure.  

 
This is exactly the purpose of the present project. The design and 

implementation of a complete data collection system (Web Crawler), which is 
applicable in the field of Real Estate in Greece.  

More specifically, the system implemented concerns the data (advertisements) 
retrieval by the five most popular property sites. The ultimate goal of this 
implementation is the collection of the advertisements from the above mentioned 
websites, so as to extract conclusions and statistical data for the overall picture of the 
property market in Greece. In addition to the above system and with the purpose to meet 
its demands, a database to store the retrieved data by the crawling process of the 
advertisements was designed and implemented. 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 5 

Chapter 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

WEB CRAWLING 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  In this chapter is gonna be introduced the concept of "Web 
Crawling", explaining the most common techniques and policies and their possible uses.   



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 6 

2.1 Definition of Web Crawling 
 
A Web Crawling (or Web Spider) is a program that inspects the World Wide 

Web pages in a methodical and automated way. One of the most common uses is to 
create a copy of all visited websites for the subsequent processing by a search engine 
that indexes pages providing a quick search system. Web spiders usually are bots (the 
most used type of these). 

 
Web Spiders begins visiting a list of URLs, it identifies the hyperlinks on these 

pages and adds them to the list of URLs to visit on a recurring way under a certain set of 
rules. Normal operation is that it gives the program a group of addresses, the spider 
downloads these addresses, parses the pages and looks for links to new pages. Then 
downloads these new pages, analyzes their links, and so on. 
 
The most common tasks of Web Spiders are: 
 
- Create the index of a search engine. 
- Analyze the links of a site to find broken links. 
- Gather information from a certain type, such as product prices to compile a catalog. 
 

 To sum up, a Web Crawler can be defined by these ideas: 
 
- A Web crawler is a computer program that browses the World Wide Web in a 
methodical, automated manner. 
  
- A Web indexing program that builds an index by following hyperlinks continuously 
from web page to web page.   
 
- A Web crawler is an automated program that accesses a web site and traverses through 
the site by following the links present on the pages.                                                                       
 
 

2.2 Crawling Policies-Techniques 

There are important characteristics of the Web that make crawling very difficult: 

- its large volume, 
- its fast rate of change, and 
- dynamic page generation. 

The large volume implies that the crawler can only download a fraction of the Web 
pages within a given time, so it needs to prioritize its downloads. The high rate of 
change implies that by the time the crawler is downloading the last pages from a site, it 
is very likely that new pages have been added to the site, or that pages have already 
been updated or even deleted. 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 7 

The number of possible crawlable URLs being generated by server-side software 
has also made it difficult for web crawlers to avoid retrieving duplicate content. Endless 
combinations of HTTP GET (URL-based) parameters exist, of which only a small 
selection will actually return unique content. For example, a simple online photo gallery 
may offer three options to users, as specified through HTTP GET parameters in the 
URL. If there exist four ways to sort images, three choices of thumbnail size, two file 
formats, and an option to disable user-provided content, then the same set of content can 
be accessed with 48 different URLs, all of which may be linked on the site. This 
mathematical combination creates a problem for crawlers, as they must sort through 
endless combinations of relatively minor scripted changes in order to retrieve unique 
content. 

As Edwards noted, "Given that the bandwidth for conducting crawls is neither 
infinite nor free, it is becoming essential to crawl the Web in not only a scalable, but 
efficient way, if some reasonable measure of quality or freshness is to be maintained." 
A crawler must carefully choose at each step which pages to visit next. 

The behavior of a Web crawler is the outcome of a combination of policies: 

• a selection policy that states which pages to download, 
• a re-visit policy that states when to check for changes to the pages, 
• a politeness policy that states how to avoid overloading Web sites, and 
• a parallelization policy that states how to coordinate distributed Web crawlers. 

 
Selection policy 
 

Given the current size of the Web, even large search engines cover only a 
portion of the publicly-available part. A 2005 study showed that large-scale search 
engines index no more than 40%-70% of the indexable Web; a previous study by Dr. 
Steve Lawrence and Lee Giles showed that no search engine indexed more than 16% of 
the Web in 1999. As a crawler always downloads just a fraction of the Web pages, it is 
highly desirable that the downloaded fraction contains the most relevant pages and not 
just a random sample of the Web. 

 
This requires a metric of importance for prioritizing Web pages. The importance 

of a page is a function of its intrinsic quality, its popularity in terms of links or visits, 
and even of its URL (the latter is the case of vertical search engines restricted to a single 
top-level domain, or search engines restricted to a fixed Web site). Designing a good 
selection policy has an added difficulty: it must work with partial information, as the 
complete set of Web pages is not known during crawling. 

 
Cho made the first study on policies for crawling scheduling. Their data set was 

an 180,000-pages crawl from the stanford.edu domain, in which a crawling simulation 
was done with different strategies. The ordering metrics tested were breadth-first, 
backlink-count and partial Pagerank calculations. One of the conclusions was that if the 
crawler wants to download pages with high Pagerank early during the crawling process, 
then the partial Pagerank strategy is the better, followed by breadth-first and backlink-
count. However, these results are for just a single domain. Cho also wrote his Ph.D. 
dissertation at Stanford on web crawling.  



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 8 

Najork and Wiener performed an actual crawl on 328 million pages, using 
breadth-first ordering. They found that a breadth-first crawl captures pages with high 
Pagerank early in the crawl (but they did not compare this strategy against other 
strategies). The explanation given by the authors for this result is that "the most 
important pages have many links to them from numerous hosts, and those links will be 
found early, regardless of on which host or page the crawl originates". 
 

Abiteboul designed a crawling strategy based on an algorithm called OPIC (On-
line Page Importance Computation). In OPIC, each page is given an initial sum of 
"cash" that is distributed equally among the pages it points to. It is similar to a Pagerank 
computation, but it is faster and is only done in one step. An OPIC-driven crawler 
downloads first the pages in the crawling frontier with higher amounts of "cash". 
Experiments were carried in a 100,000-pages synthetic graph with a power-law 
distribution of in-links. However, there was no comparison with other strategies nor 
experiments in the real Web. 

 
Boldi used simulation on subsets of the Web of 40 million pages from the .it 

domain and 100 million pages from the WebBase crawl, testing breadth-first against 
depth-first, random ordering and an omniscient strategy. The comparison was based on 
how well PageRank computed on a partial crawl approximates the true PageRank value. 
Surprisingly, some visits that accumulate PageRank very quickly (most notably, 
breadth-first and the omniscent visit) provide very poor progressive approximations. 
Baeza-Yates used simulation on two subsets of the Web of 3 million pages from the .gr 
and .cl domain, testing several crawling strategies. They showed that both the OPIC 
strategy and a strategy that uses the length of the per-site queues are better than breadth-
first crawling, and that it is also very effective to use a previous crawl, when it is 
available, to guide the current one. 

 
Daneshpajouh designed a community based algorithm for discovering good 

seeds. Their method crawls web pages with high PageRank from different communities 
in less iteration in comparison with crawl starting from random seeds. One can extract 
good seed from a previously-crawled-Web graph using this new method. Using these 
seeds a new crawl can be very effective. 
 
Focused crawling 
 

The importance of a page for a crawler can also be expressed as a function of the 
similarity of a page to a given query. Web crawlers that attempt to download pages that 
are similar to each other are called focused crawler or topical crawlers. The concepts of 
topical and focused crawling were first introduced by Menczer and by Chakrabarti. 
 

The main problem in focused crawling is that in the context of a Web crawler, 
we would like to be able to predict the similarity of the text of a given page to the query 
before actually downloading the page. A possible predictor is the anchor text of links; 
this was the approach taken by Pinkerton in a crawler developed in the early days of the 
Web. Diligenti propose to use the complete content of the pages already visited to infer 
the similarity between the driving query and the pages that have not been visited yet. 
The performance of a focused crawling depends mostly on the richness of links in the 
specific topic being searched, and a focused crawling usually relies on a general Web 
search engine for providing starting points. 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 9 

URL normalization 
 

Crawlers usually perform some type of URL normalization in order to avoid 
crawling the same resource more than once. The term URL normalization, also called 
URL canonicalization, refers to the process of modifying and standardizing a URL in a 
consistent manner. There are several types of normalization that may be performed 
including conversion of URLs to lowercase, removal of "." and ".." segments, and 
adding trailing slashes to the non-empty path component. 
 
Path-ascending crawling 
 

Some crawlers intend to download as many resources as possible from a 
particular web site. So path-ascending crawler was introduced that would ascend to 
every path in each URL that it intends to crawl. For example, when given a seed URL 
of http://llama.org/hamster/monkey/page.html, it will attempt to crawl 
/hamster/monkey/, /hamster/, and /. Cothey found that a path-ascending crawler was 
very effective in finding isolated resources, or resources for which no inbound link 
would have been found in regular crawling. 

 
Many path-ascending crawlers are also known as Web harvesting software, 

because they're used to "harvest" or collect all the content from a specific page or host. 
 

 
Re-visit policy 
 

The Web has a very dynamic nature, and crawling a fraction of the Web can take 
weeks or months. By the time a Web crawler has finished its crawl, many events could 
have happened, including creations, updates and deletions. 

 
From the search engine's point of view, there is a cost associated with not 

detecting an event, and thus having an outdated copy of a resource. The most-used cost 
functions are freshness and age. 
 
Freshness: This is a binary measure that indicates whether the local copy is accurate or 
not. The freshness of a page p in the repository at time t is defined as: 
 

 
 
Age: This is a measure that indicates how outdated the local copy is. The age of a page 
p in the repository, at time t is defined as: 
 

 
 

Coffman worked with a definition of the objective of a Web crawler that is 
equivalent to freshness, but use a different wording: they propose that a crawler must 
minimize the fraction of time pages remain outdated. They also noted that the problem 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 10 

of Web crawling can be modeled as a multiple-queue, single-server polling system, on 
which the Web crawler is the server and the Web sites are the queues. Page 
modifications are the arrival of the customers, and switch-over times are the interval 
between page accesses to a single Web site. Under this model, mean waiting time for a 
customer in the polling system is equivalent to the average age for the Web crawler.  
 

The objective of the crawler is to keep the average freshness of pages in its 
collection as high as possible, or to keep the average age of pages as low as possible. 
These objectives are not equivalent: in the first case, the crawler is just concerned with 
how many pages are out-dated, while in the second case, the crawler is concerned with 
how old the local copies of pages are. 
 

Two simple re-visiting policies were studied by Cho and Garcia-Molina: 
Uniform policy: This involves re-visiting all pages in the collection with the same 
frequency, regardless of their rates of change. 
 
Proportional policy: This involves re-visiting more often the pages that change more 
frequently. The visiting frequency is directly proportional to the (estimated) change 
frequency. 
 

(In both cases, the repeated crawling order of pages can be done either in a 
random or a fixed order.) 
 

Cho and Garcia-Molina proved the surprising result that, in terms of average 
freshness, the uniform policy outperforms the proportional policy in both a simulated 
Web and a real Web crawl. The explanation for this result comes from the fact that, 
when a page changes too often, the crawler will waste time by trying to re-crawl it too 
fast and still will not be able to keep its copy of the page fresh. 
 

To improve freshness, the crawler should penalize the elements that change too 
often. The optimal re-visiting policy is neither the uniform policy nor the proportional 
policy. The optimal method for keeping average freshness high includes ignoring the 
pages that change too often, and the optimal for keeping average age low is to use 
access frequencies that monotonically (and sub-linearly) increase with the rate of 
change of each page. In both cases, the optimal is closer to the uniform policy than to 
the proportional policy: as Coffman note, "in order to minimize the expected 
obsolescence time, the accesses to any particular page should be kept as evenly spaced 
as possible". Explicit formulas for the re-visit policy are not attainable in general, but 
they are obtained numerically, as they depend on the distribution of page changes. Cho 
and Garcia-Molina show that the exponential distribution is a good fit for describing 
page changes, while Ipeirotis show how to use statistical tools to discover parameters 
that affect this distribution. Note that the re-visiting policies considered here regard all 
pages as homogeneous in terms of quality ("all pages on the Web are worth the same"), 
something that is not a realistic scenario, so further information about the Web page 
quality should be included to achieve a better crawling policy. 
 
 
 
 
 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 11 

Politeness policy 
 

Crawlers can retrieve data much quicker and in greater depth than human 
searchers, so they can have a crippling impact on the performance of a site. Needless to 
say, if a single crawler is performing multiple requests per second and/or downloading 
large files, a server would have a hard time keeping up with requests from multiple 
crawlers. 
 

As noted by Koster, the use of Web crawlers is useful for a number of tasks, but 
comes with a price for the general community. The costs of using Web crawlers 
include: 
- network resources, as crawlers require considerable bandwidth and operate with a high 
degree of parallelism during a long period of time; 
- server overload, especially if the frequency of accesses to a given server is too high; 
- poorly-written crawlers, which can crash servers or routers, or which download pages 
they cannot handle; and 
- personal crawlers that, if deployed by too many users, can disrupt networks and Web 
servers. 
 

A partial solution to these problems is the robots exclusion protocol, also known 
as the robots.txt protocol that is a standard for administrators to indicate which parts of 
their Web servers should not be accessed by crawlers. This standard does not include a 
suggestion for the interval of visits to the same server, even though this interval is the 
most effective way of avoiding server overload. Recently commercial search engines 
like Ask Jeeves, MSN and Yahoo are able to use an extra "Crawl-delay:" parameter in 
the robots.txt file to indicate the number of seconds to delay between requests. 

 
The first proposal for the interval between connections was given in and was 60 

seconds. However, if pages were downloaded at this rate from a website with more than 
100,000 pages over a perfect connection with zero latency and infinite bandwidth, it 
would take more than 2 months to download only that entire Web site; also, only a 
fraction of the resources from that Web server would be used. This does not seem 
acceptable. 
 

Cho uses 10 seconds as an interval for accesses, and the WIRE crawler uses 15 
seconds as the default. The MercatorWeb crawler follows an adaptive politeness policy: 
if it took t seconds to download a document from a given server, the crawler waits for 
10t seconds before downloading the next page.  
 

Anecdotal evidence from access logs shows that access intervals from known 
crawlers vary between 20 seconds and 3–4 minutes. It is worth noticing that even when 
being very polite, and taking all the safeguards to avoid overloading Web servers, some 
complaints from Web server administrators are received. Brin and Page note that: "... 
running a crawler which connects to more than half a million servers (...) generates a 
fair amount of e-mail and phone calls. Because of the vast number of people coming on 
line, there are always those who do not know what a crawler is, because this is the first 
one they have seen." 
 
 
 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 12 

Parallelization policy 
 

A parallel crawler is a crawler that runs multiple processes in parallel. The goal 
is to maximize the download rate while minimizing the overhead from parallelization 
and to avoid repeated downloads of the same page. To avoid downloading the same 
page more than once, the crawling system requires a policy for assigning the new URLs 
discovered during the crawling process, as the same URL can be found by two different 
crawling processes. 
 

 

2.3 Web Crawler Architectures 
 

A crawler must not only have a good crawling strategy, as noted in the previous 
section, but it should also have a highly optimized architecture. 

 
Shkapenyuk and Suel noted that: "While it is fairly easy to build a slow crawler 

that downloads a few pages per second for a short period of time, building a high-
performance system that can download hundreds of millions of pages over several 
weeks presents a number of challenges in system design, I/O and network efficiency, 
and robustness and manageability." 
 

Web crawlers are a central part of search engines, and details on their algorithms 
and architecture are kept as business secrets. When crawler designs are published, there 
is often an important lack of detail that prevents others from reproducing the work. 
There are also emerging concerns about "search engine spamming", which prevent 
major search engines from publishing their ranking algorithms. 
 
 

 
 
 Figure 2.1: High-level architecture of a standard Web crawler 
 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 13 

Chapter 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SYSTEM DESCRIPTION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 This chapter consists in a deep vision of the system developed for this project. 
All that appears in this chapter is based in the original project “Crawling Process: The 
Real Estate Case”. 
  



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 14 

3.1 General description of the System 
 

The Web Crawler developed in this Project is shown by the following diagram, 
where appear all the parts of the structure. 

 
 

 
Figure 3.1 Structure of the Web Crawler 

 
 

As shown in the previous diagram, the types of processes that implement the 
system are twofold: the process of data collection (Crawling Process) and transport and 
storage process in the final database (Database Process). Let’s analyze each one 
separately emphasizing the important points and problems encountered in each phase. 
 
 

3.2 Crawling Process 
 

This process performs the data collection web pages, and export of key features 
for subsequent introduction into the database. There are two units that carry out this 
process: The base unit Crawling (Crawling Module), and the extraction unit of the 
nature of advertising (Advertisements Feature Extraction module). The ads have been 
selected to be exported are those related to the sale and rental of residential and land. 

 
 
 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 15 

3.2.1 Crawling Module 
 

This unit performs the data collection process (Crawling Process). The operation 
is as follows: 

- First of all, insert the URL of the target portal, i.e., the sites that we are 
interested to collect data. 

- Then, knowing the structure of each one separately, are connected to each site, 
and source code is exported from each web page. 

- After recovery of the source, then using a user-specific query (Focused Crawling 
technique), we focus on a specific piece of information to be retrieved. At this 
point the information has been recovered from the final announcement, which 
may be a new link that leads to the discovery of one or more final 
announcements. In the first case we take the ad or the final ads. In the second 
case, after making an extract from a new connection, reconnect to the new URL 
now and gives a new user query to retrieve new information that is relevant. The 
process is repeated until we have taken out all the ads that interest us. 

- Let's see a concrete example of this procedure to retrieve data from the site  
(URL: http://www.xe.gr) 

- This example shows the contents (index) generated during the process of 
collecting the ads until the final movement. This directory is only a path of links 
followed to reach the final of the ads. 

Note: For purposes of this example, a prefix is used, which is used for the 
construction of the new URL. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.xe.gr/�


Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 16 

Pattern= http://www.xe.gr/pages/ 
 

 
Figure 3.2. Example 

 
Comments-Remarks: As shown in the diagram above, each advertisement is the result 
of the compilation process (Crawling Process) in each phase. 
Initially, the starting point used by default is the original direction of each site and a 
user query, which in this example corresponds to the tags (one for start and other for 
end) of which we are enclosing the text to retrieve. Therefore run a list of URLs 
(Results of phase 1). In this example, the links of such links are for sale, rental housing 
and land sales. So, taking the first item in the list of home sales and repeating all the 
details to create a new series: URL=Pattern+current_element_of_the_list. 
To rerun the data collection process with the new URL, and a new start tag and end tag, 
shows a list of new data as a result (Results of Phase 2). Note that these results relate to 
residential sales in specific areas. Start again, therefore, with the first element of the 

http://www.xe.gr/pages/�


Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 17 

new list for each item, create a new URL, which is derived as follows: 
URL=pattern+current_list_element. 
Repeating this process as we have all the elements of the list first, we have completed 
the data collection process for each site. 

- In this example, the advertising recovery is carried out in 4 phases. This showed 
the structure of the advertising site. In other cases, it may take more or less 
action. Thus we see that when this is completed, it formed a complete index on 
the procedure to the extraction site for each ad. For a better understanding of the 
above process it can be thought a graphic representation G = (V,E) where: 

- V: The set of vertices of the graph where each vertex represents a new link. 
- E: All edges of the graph where each edge represents the relationship between 

each of the peaks (links). 
- The root represents the initial step of each site. 
- Each node represents a link of descendents who are the result of the crawling 

process. 
- The leaves represent the final announcements. 
- Each path from root to leaf represents a sequence of links until it recovers each 

advertisement. 
 
 

3.2.2 Advertisements Feature Extraction Module 
 

This unit carries out the export of the key features of each ad before its entry into 
the database. More specifically, because the crawler has exported ads by category and 
by region in the form of text, this unit is responsible for exporting the particular 
characteristics of each ad, depending on the kind of it. 

 
For each type of ad are two types of features. The general characteristics, which 

are relate to the type, date of export, the source from which are exported, and the 
department, the earldom in question. The above information is usually extracted from 
the information provided by the website through the ad text. The second type of 
characteristics of the individual characteristics of each listing is the size that is removed 
from the ad text. These features are picked up from the main site of the announcement, 
and secondarily if it is determined from the ad text. Costs, unless stated in the notice if 
the value stored and the area is a property, of the earth. In addition, some sites offer 
information about the period in which each advertisement was published and in many 
cases, always in contact the agency responsible for this listing. Then, depending on the 
type of advertising, whether land or property, more information is stored. If it is a 
house, keep the number of rooms and floor location. Similarly, in the case of land, 
stores information about whether inside or outside the plan. Also one of the most 
important export dates is the type of property. This changes the formula depending on 
whether it is property or land. More specifically, residential properties are divided into 
apartments, houses, flats, penthouses, apartments, villas and studios. Land types are as 
follows: Land, property, plot, agricultural, area, vineyard, field. 

 
- In all these cases, the information is stored, as determined by the text of each ad. 

Also, any information can not be assigned to any of the above categories, stored 
in a different field (other). 

 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 18 

Problems-solutions: 
 
- In this process we have found some problems. In some cases a solution was found. In 
others, it was impossible to find a solution, so it was simply to restrict the size of the 
problem. To name a few examples:  
 

 The initial problems are in the extraction of the main area of the property 
and the secondary. As the actual location of this information cannot be 
identified by a specific keyword, you could not ensure the success of 
export. It has been partially addressed the problem with the structure of 
their ads. I.e., they tend to put ads on a specific point on the main page, 
or highlighting them. The secondary areas are normally found on the 
main site and often accompanied by certain keywords. Several of them 
have been identified, but there is a margin of error. To further increase 
the success rate in identifying the main area of the property, we have a 
list with a big number of areas to help us to identified its.  

 A general and unexpected problem was the extraction of other features. 
There was no standard by which the ad should be structured, so the 
extraction of other features was quite difficult. This problem has been 
solved in part by studying the various advertisements to find the 
characteristics of a set of keywords. For example, there is a clear 
structure for calculating the number of bedrooms. Sometimes the number 
was next to the word room, or bedroom, or, literally, or word in another 
set of words. All keywords can be improved even more if there are other 
words that identify the selected features. 

- Here's an example for the extraction of the key features of an ad to understand what is 
actually done in this system. 
  

 Input: Papadiamantis March 25, attic of 75 square meters, 2 
bedrooms, fourth floor, lounge, kitchen, bathroom, toilet, heating 
and no lift, price 100,000 euros. 

 Output: MainArea_id , Second Area : Papadiamantis; Bedrooms: 
2; Size: 75; Price: 100000; Floor: 4; Other: bright living room, 
kitchen, bathroom, toilet, heating and without elevators. 

 
- In the example, receives as input the above entry and perform the procedure described 
above, produces the final announcement for entry into the database. As can be seen in 
the export of primary and secondary site all the ads on this site have this structure 
(primary-secondary). The number of rooms is returned by the token (integer) which is a 
position before the keyword ‘υ/δ’. Similarly for the other features are used keywords to 
find the text in the ad.  
 
- The discovery of the main area of each ad plays an important role in the subsequent 
extraction of these characteristics. To achieve a significant increase in the probability of 
finding a large number of areas are stored in order to identify areas with the help of this 
list. 
 
 
 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 19 

3.3 Database Process 

3.3.1 Temporary Database Storage 
 
 After completing the admission process for a final announcement starts the 
import process to the final database. However, before final storage in the previous 
database, as shown in the diagram of the system, must be stored in a temporary 
database. Therefore, we use a database to temporarily transfer control of the uniqueness 
of the ads in the process of transferring them from temporary to permanent. More 
specifically, in the process of importing the database temporary ad, there is no 
verification that the ad is already in the earlier crawling process. Therefore, it is 
interesting to accelerate the process of collection of the ads, if we think that the system 
load by using only one database and no evidence before introducing the announcement, 
because the rate of data recovery crawling process goes far beyond search completion 
rate and the introduction of the ad. As a result we find a long queue of ads that are 
awaiting to be storaged in the database, which would be disastrous for the entire system. 
Thus, the ads are stored in a temporary database and once completed, we can execute 
the transportation process to the final database. 
 

3.3.2 Final Database Storage 
 
 The completion of this process offers the integration process of the database. As 
mentioned, this process is the transfer of files, which is the result of the collection of 
data from the temporary database to the final database. This process only includes the 
new ads. For other announcements only keeps the information coming from the new 
crawling process, which was renovated in the period of publication. The transfer of 
control to the final database is accomplished by controlling the characteristics of each 
advertisement. If these are the same as the existing final advertisements in the database, 
then the ad is already in the database and is not necessary to be transported. In addition, 
an important technique to speed up the transfer process is that each candidate for the 
transfer is compared only with ads that have some common characteristics. More 
specifically, the same type of ads, the county and the same source from which it was 
recovered. Therefore, avoiding the comparison with all the ads in the database and is 
matched only by those who satisfy the above criteria. 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 20 

Chapter 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SYSTEM CHANGES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 This chapter is the main chapter of the Diploma Thesis because it explains every 
change made in the Java programs developed initially to get again the properly working 
of the system. 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 21 

4.1 Introduction to the Java packages and classes 
 
 All the system which is explained in the previous chapters has been developed in 
Java. The packages used in the system are as follows: 
 

 crawling 
 crawling.aggel 
 crawling.database 
 crawling.databasecleaner 
 crawling.entities 
 crawling.estate 
 crawling.kathimerini 
 crawling.neomesitikh 
 crawling.xe 
 

Each of these packages contains classes that perform specific functions. For 
packets with the prefix of the word "crawling." followed by the names of the sites 
kathimerinh, neomesitikh, xe, Aggelos and estate, it is obvious that contain the code of 
ads from their respective websites. For large packages like crawling, crawling.database, 
crawling.entities and crawling.databasecleaner, which include general titles, are 
essential to the process of collecting ads for these websites. 

 
Here, we have a summary of all the packages with their classes in Java: 

- crawling: AdressesFeatExtraction.java, AnnFeatExtraction.java, 
Annkeywords.java, DataBaseConstants.java, DhmoiExtracter.java, 
HouseFeatExtr.java, ReadSource.java, SellEarthFeatExtr.java, Test.java, 
Utilities.java, WordUtilities.java 
 
- crawling.aggel: AggelAdvertisements.java, 
AggelEarthFeatExtraction.java, AggelFeatExtraction.java, 
AggelHouseFeatExtraction.java 
 
- crawling.database: DatabaseChangeManager.java, 
DatabaseDeleteManager.java, DatabaseManager.java, 
DatabaseQueriesManager.java, DatabaseSelectManager.java, 
DatabaseUpdateManager.java, DistinctionNew.java 
 
- crawling.databasecleaner: ChageDates.java, CleaningDatabase.java, 
DublicateEntriesCleaner.java, ErrorClearer.java, 
WrongRecordsCleaner.java 
 
- crawling.entities: Address.java, Announcement.java, 
AreaDescriptionEntity.java, AreaNumPriceEntity.java, Auction.java, 
CategoryValueEntity.java, DoubleStringFormat.java, 
HouseAnnouncement.java, IdDescription.java, IdPrice.java, MainArea.java, 
Period.java, PlotSellingAnnouncement.java, SearchInfo.java, 
SecondAreaPriceOtherEntity.java 
 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 22 

- crawling.estate: EstateAdvertisements.java, EstateEarthFeatExtr.java, 
EstateHouseFeatExtr.java 
 
- crawling.kathimerini: KathimeriniAdv.java, 
KathimeriniEarthFeatExtr.java, KathimeriniHouseFeatExtr.java, 
KathimeriniTest.java 
 
- crawling.neomesitikh: NeomesitikhAdvs.java, 
NeomesitikhEarthFeatExtraction.java, 
NeomesitikhHouseFeatExtraction.java 
 
- crawling.xe: Advertisments.java, AuctionFeatExtr.java, 
EkswxikaFeatExtr.java, final_test.java, testing.java, XEAdvertisments.java, 
Xetest.java 

 
With the aim of understand the relation between the classes, we show a diagram 

with the inheritance. 
 

CLASSES DIAGRAM. INHERITANCE 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Figure 4.1: Classes Diagram. Inheritance between classes 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 23 

4.2 Changes in the Classes 
 
 In this paragraph is going to be explained all the changes made in the Java 
classes to make the system work again.  
 

4.2.1 Neomesitiki Website 
  
 The Website www.neomesitiki.gr is not available since last year. The web server 
doesn’t work so, is impossible to work with this site and therefore, it can’t be 
considered for the statistics. 
 
 

4.2.2 e-state WebSite 
  
 This Website www.e-state.gr is available but there are no advertisements in the 
page. Trying with every different possibility for the search there is no result for it. This 
is the appearance of the website:  
 

 
 

Figure 4.2: e-state website with no results for the search 
 

 

4.2.3 Aggelioxoros WebSite 
 
 The website www.aggelioxoros.gr is working properly. Since last year the code 
of the web has changed and so, it has been necessary to change the Java programs to 
take the correct data from the website again. 
 

http://www.neomesitiki.gr/�
http://www.e-state.gr/�
http://www.aggelioxoros.gr/�


Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 24 

 The main class for this website is AggelAdvertisements.java. This class does 
everything that is necessary to get all the advertisements from the web: connect to the 
website to download the code, extract all the ads from this code, decides the kind of the 
ad (sell earth, sell house or rent house), connect to the database and change the 
information with the new one from each advertisement… 
 
 As it has been explained some sentences before, the code of the web has 
changed. Therefore, it was necessary to update the AggelAdvertisemtents class to take 
the correct information (advertisements) from de web code. In the following lines is 
going to be explained how we get it. 
 
 The first step is getting all the links that we want. For the rent house we include 
the advertisements for rent one room and the houses for holidays. To take all the links 
we use two tags, the start tag and the end tag. The code of each link is as follows: 
 
 <p class="hypcat"><a href="…">…</a></p> 
 
Therefore, our tags are: 

- Start tag for the link: “<p class=\"hypcat\"><a href=” 
- End tag for the link: “</a></p>” 

 
Using these tags we get all the links from the website but the problem is that we 

don’t need all of them. With the aim of take only the links that we want and separate 
them in types (rent house, sell house and sell earth) it has been necessary a piece of code 
like this: 
 
if((text.contains("Ενοικιάσεις Κατοικιών")||text.contains("Ενοικιάσεις 
Εποχικές")||text.contains("Συγκάτοικοι"))&&!(text.contains("Ζητήσεις")
)){ 
//This kind of advertisement is for rent houses 
    searchInfo.setOffer(1); 
    System.out.println("RENT_HOUSE"); 
    editRentHouses(text,searchInfo); 
} 
if((text.contains("Πωλήσεις Κατοικιών")||text.contains("Πωλήσεις 
Εξοχικών Κατοικιών"))&&!(text.contains("Ζητήσεις"))){ 
//This kind of advertisement is for sell houses 
    searchInfo.setSold(true); 
    System.out.println("SELL_HOUSE"); 
    editSellHouses(text,searchInfo); 
     
} 
if((text.contains("Πωλήσεις 
Οικοπέδων"))&&!(text.contains("Ζητήσεις"))){ 
//This kind of advertisement is for sell earth 
    searchInfo.setSold(true); 
    System.out.println("SELL_EARTH"); 
    editSellEarth(text,searchInfo); 
} 

 
 When we have all the links, we have to obtain the advertisements from each 
link. So, we use another two tags to get it. These tags are: 

- Start tag for the advertisement: "<p class=\"p1" 
- End tag for the advertisement: "</p>" 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 25 

The next step (and the last one) is dividing all the information from the ad and put it 
into the database. This part of the system works properly except of the piece of the 
program that takes the price of the houses. So, the method mandated to do that has been 
modified as follows:  

 
protected String getPrice(String[] text){ 
   

for (int i=0; i < text.length; i++){ 
  String text_low =text[i].toLowerCase(); 
  String text_up = text[i].toUpperCase(); 
           
if((text[i].contains("0"))&&(text_low.equals(text_up))&&(((text[i].con
tains("."))&&(!text[i].endsWith(".00")))||((text[i].length()==3)&&(tex
t[i].endsWith("0"))))&&(!text[i].contains("-"))){ 
    return text[i]; 
   } 
 } 
 return ""; 
} 

 
It was difficult to find a solution because the symbol “€” doesn’t appear when 

the text from the website is taken. So, it was necessary to consider many cases and to be 
careful not to get the wrong information like dates, hours, number of the floor… Is 
because of that, the conditional sentence if is so long. 

 
 

4.2.4 Kathimerini WebSite 
 
 The WebSite www.kathimerini.gr is working properly too. In this case, the code 
has changed as well, so it was necessary to rewrite the main program 
KathimeriniAdv.java.  
 
 First of all we have to choose the right links. Like in the previous paragraph, we 
get the links from the website using two tags. Each link has this form: 
 

href='/4dcgi/classif/subcategorie_flag…frame…?cat?_id=…'>…</a></td></tr> 
 

So, the tags are: 
- Start tag for the link: "href=\'/4dcgi/classif/subcategorie_flag" 
- End tag for the link: "</a></td></tr>" 

 
Most of the links that we get with these tags are not necessary for us, so we have to 

select the right ones. For do that we use tree tables with specific words for each type of 
advertisement. These tables are: 
 
public static final String[] sell_house_words = {"Aνατολικής 
Aθήνας","Bόρειας Aθήνας","Δυτικής Aθήνας","Nότιας Aθήνας","Δήμου 
Aθήνας"," Δήμου Πειραιά","Nομού Aττικής","Aκίνητα 
Θεσσαλονίκης","Aκίνητα σε όλη τη χώρα"}; 
 
public static final String[] rent_house_words = {"Aκίνητα 
Eνοικιάζονται", "Aκίνητα Θεσσαλονίκης"}; 

http://www.kathimerini.gr/�


Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 26 

 
public static final String[] sell_earth_words = {"Aνατολικής Aθήνας", 
"Bόρειας Aθήνας", "Δυτικής Aθήνας", "Nότιας Aθήνας", "Δήμου Aθήνας", 
"Δήμου Πειραιά", "Nομού Aττικής", "Oικόπεδα Θεσσαλονίκης", "Oικόπεδα 
σε όλη τη χώρα"}; 

 
 For each link, we check the type of the advertisement (sell house, rent house or 
sell earth) with three methods:  
 
public boolean is_sell_earth(String url, int c) { 
  for(String i: sell_earth_words){ 
   boolean b= i.contains(url); 
   if ((b)&&(c < 17)&&(c > 4)){ 
    return true; 
   } 
  } 
  return false; 
 } 
  
public boolean is_sell_house(String url, int c){ 
  for(String i: sell_house_words){ 
   boolean b= i.contains(url); 
   if ((b)&&(c >= 17)){ 
    return true; 
   } 
  } 
  return false; 
 } 
  
 public boolean is_rent_house(String url, int c){ 
  for(String i: rent_house_words){ 
   boolean b= i.contains(url); 
   if ((b)&&(c < 5)){ 
    return true; 
   } 
  } 
  return false; 
 } 

 
The Website code is constantly changing. The way to handle this is by changing 

the value of the variable 'c' in the 'if' statement. 
 

 The next point is finding all the advertisements per page (link). There are two 
kinds of pages. The first ones that have links in this content and the others which have 
directly the advertisements in this page. In the first case we need tags to get these new 
links. The links are as follows: 
 

<td class=small><a href='/4dcgi/claf_flag…frame…_id=…'>…</a> 
 
Therefore, the tags are: 

- Start tag for the new links: "<td class=small><a href=" 
- End tag for the new links: "</a>" 

 
Is important to check in which case we are, with or without links. Is because of 

that, we use this piece of code: 
 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 27 

 
if (urls.size()==0){ 
  String[] info = {"",""}; 
  info[0]=URL.substring(URL.indexOf("/4")); 
  ArrayList<String> info2=Utilities.extractAllTexts(source, 
"<div class='ctytle'><center>", "</center>"); 
  for(String i:info2){ 
   info[1]=i; 
  } 
… 
}//if (checking --> with links in the code) 
//In this case, the page has got links 
else { 
… 
} 

 
 If the condition is true we are in the first case, i.e. there is no links in the page. 
For the following steps, we need to store part of the link and the area in the array info. 
The rest of the code is the same for both cases. 
 

Anyway, in both cases we need another two tags to extract the text of the 
advertisements. These advertisements are more or less like: 

 
<TR><TD><span class="sidemenulinks"><P><B>…</B> … <HR><B>…</B>…</span> 

 
For this reason, we use again two tags to find the ads in the pages. The tags are: 

- Start tag for get code before the first advertisement: "<TR><TD><span 
class=\"sidemenulinks\"><P>" 

- End tag for get code till the last advertisement: "</span>" 
 

With this method we catch all the advertisements together, so, we have to 
separate them. In this case, the tag to do that is "<HR>". And the code is: 

 
 
String[] advs = advsText.split(DEVIDE_TAG); 
 
 
Where DEVIDE_TAG is "<HR>". 
 

The next step (and the last one) is dividing all the information from the ad and put it 
into the database. Like in the previous Website, the method to get the prices has been 
modified. So, the method now is like that:  

 
protected String getPrice2(String[] text){ 
 String ant = ""; 
 for (int i=0;i < text.length;i++){ 
  if (text[i].contains("€")){ 
   return text[i].substring(0, text[i].indexOf("€")); 
  } 
  if 
((text[i].contains("ευρώ"))||(text[i].contains("Ευρώ"))){ 
   return text[i].substring(0, (text[i].indexOf("υρώ"))-
1); 
  } 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 28 

  if 
((text[i].length()==4)&&((text[i].contains("Ευρώ"))||(text[i].contains
("ευρώ")))){ 
   return ant; 
  } 
  ant=text[i]; 
 } 
 return ""; 
} 

 
 
 There is a similar problem with the phones. Therefore, the new method is as 
follows: 
 
 protected ArrayList<String> getPhones2(String[] text){ 
  ArrayList<String> phones = new ArrayList<String>(0); 
  for (int i=0; i < text.length; i++){ 
   String text_low =text[i].toLowerCase(); 
   String text_up = text[i].toUpperCase(); 
   if ((text[i].contains("-
"))&&(text[i].length()>=11)&&(text_low.equals(text_up))){ 
    if (text[i].length()>13){ 
    
 phones.add(text[i].substring(text[i].indexOf("Τηλ.")+3)); 
    } 
    else{ 
     phones.add(text[i]); 
    } 
    return phones; 
   } 
  } 
  return null; 
 } 

 
 

4.2.5 XE WebSite 
 
 The Website www.xe.gr works but not for a long time. That means that the 
server works for a few minutes and then falls down. This makes the work more difficult 
because the programs need time to run and is impossible to test it in this way. Anyway 
we tried to fix all the problems and in the following lines are going to be explained all 
the changes that have been made although we are not sure of the result. Like in the other 
websites, the main program Advertisements.java has been changed. 
 
 The first step is getting all the links from the main page. This piece of code 
makes it possible: 
 
if(URL.contains("Ενοικιάσεις Κατοικιών")||URL.contains("Ενοικιάσεις 
Επιπλωμένων")||URL.contains("Ενοικιάσεις Εξοχικών Κατοικιών")){ 
          
        TypeOFAdv=AnnKeywords.RENT_HOUSE_CODE; 
        editRent_Sell_Houses(URL); 
        System.out.println("Finished Rent House Advertisments");  
} 

http://www.xe.gr/�


Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 29 

if(URL.contains("Πωλήσεις Κατοικιών")||URL.contains("Πωλήσεις Εξοχικών 
Κατοικιών")){    
          
        TypeOFAdv=AnnKeywords.SELL_HOUSE_CODE; 
        editRent_Sell_Houses(URL); 
        System.out.println("Finished Sell House Advertisments");  
} 
if (URL.contains("Πωλήσεις Οικοπέδων")){ 
          
        TypeOFAdv=AnnKeywords.SELL_EARTH_CODE; 
   editSellEarth(URL);    
        System.out.println("Finished Sell Earth Advertisments"); 
} 

 
 

When we have all the links from the website, we need to take the advertisements 
of these pages. There are two kinds of links. The first ones lead us to a new page with 
advertisements and the others lead us to a page like the following one: 

 

 
Figure 4.3: XE website without advertisements 

 
In this case the links for the advertisements are: 
 

<br /><br /><a href="RealEstateResults.aspx?catId=…"><b>…</b></a> 
 
Therefore, the tags for get the links are: 
 

- Start tag for the link: “<br /> <a href=\"” 
- End tag for the link: “</b></a>” 

 
 
 
 
 
 
 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 30 

The second kind of links is leading us directly to a page with advertisements like 
this: 

 
Figure 4.4 XE Website with advertisements 

  
The way to check in which case we are right now is this piece of code: 
 
ArrayList<String> advs= new ArrayList(); 
ArrayList<String> links,ad; 
 
if (url1.contains("CategoriesLevel")){ 
 links = extractAdvertisements(url1,Ann_start_tag,Ann_end_tag); 
  for(String l:links){ 
   String l2; 
   l2 = l.substring(0,l.indexOf("\">")); 
   l2 = Pattern.concat(l2); 
   ad = 
extractAdvertisements(l,Ann_start_tag2,Ann_end_tag2); 
     advs.addAll(ad); 
  } 
} 
 
 
else{ 
 advs = extractAdvertisements(url1,Ann_start_tag2,Ann_end_tag2); 
} 

 
When we have all the links for the different pages, we need the advertisements. 

They are like this:  
 

</td> <td valign="top">…</td><td valign="top"> <div 
class="resultsSmalcol"> <nobr><span class="price">…</span></nobr> 

 
So, the tags are as follows: 

- Start tag for the advertisements: "</td> <td valign=\"top\">" 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 31 

- End tag for the advertisements: "</span></nobr>" 
 

 
NOTE: Is important to know that the last time that these programs have been checked 
was the day 11/02/11. Probably, the code of the websites has changed again after this 
day. 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    
 
 

 32   

Chapter 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SYSTEM USER MANUAL  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The aim of this chapter is to explain how to run all the programs to make work 
the system. 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    
 
 

 33   

5.1 Applications used 
 
 For this Diploma Thesis were necessary this applications or programs:  
 
- Xamp Server & phpMyAdmin tool 2.5.8 to use Apache and MySql 
- Eclipse SDK 3.4.2 to program all the classes in Java. 
- mysql-connector-java-5.1.8 
- J2SE-1.5 programming language 
 
 
 
 

5.2 Main Classes 
 
 The main classes of the System and therefore, the necessary classes to run it are 
these ones: 
 
(To collect the information from the Websites) 

- AggelAdvertisements.java from the package crawling.aggel. 
- KathimeriniTest.java from the package crawling.kathimerini. 
- Advertisements.java from the package crawling.xe. 

 
The rest of the websites don’t work, as it has been explained in the previous chapter. 

 
To run these three classes first of all we need to have running Apache and 

MySql. In this case, we use the program Xamp, which includes these two applications. 
 
 With Eclipse opened (Eclipse is the application that we need to run the java 
programs), pressing the right button of the mouse above the main class and choosing 
Run as/Java Application the program will start to execute. In the next picture we can 
see it: 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 34 

 

 
Figure 5.1: How to run a main class in Eclipse 

 
(To clean the Database, all these classes are from the same package: 
crawling.databasecleaner) 

- ChangeDates.java  
- CleaningDatabase.java 
- DublicateEntriesCleaner.java 
- ErrorCleaner.java 
- WrongRecordsCleaner.java  

 
To run these classes we have to follow the same steps than in the previous 

paragraph. 
 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    
 
 

 35   

Chapter 6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PROBLEMS AND FUTURE WORK 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The last chapter of the project is dedicated to explain all the problems that have 
been founded during the development of the Diploma Thesis and a proposal of work for 
the future. 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    
 
 

 36   

6.1 Problems  
 
 During the whole process of upgrading the system, have been found many 
problems.   
 
 Most of them were connected with the servers of the websites. In the Chapter 4 
has been explained each case separately. Anyway, we will explain them in a short way.  
 

The web server for Neomestiki doesn’t work, therefore is impossible to work 
with this website. A similar problem exists with e-state. The server works but the 
website hasn’t advertisements, so, there is no information to be considered in this page. 
In the case of Xe, the server works during a few seconds and then falls down during 
minutes or hours. Is because of that, the checking to test if the programs were working 
properly was really difficult. Even if we run the program during the whole day, it can’t 
finish the tasks because it has to re-establish the connexion many times. This was one of 
the biggest problems that we found. 

 
For the rest of the websites (Aggelioxoros and kathimerini) there was not any 

problem with the servers. They worked well. The difficulty was that the code of 
kathimerini has changed many times, once per 15 days more or less. So, we have had to 
change the programs every time that the code had been changed to fix it.  

 
 
 

6.2 Future Work 
 

In the following lines is gonna be explained a possible work for the future for the 
System of the Diploma Thesis.  

 
It could be a possible work for the future creating this system but using different 

computers. It means that we will separate the tasks in PCs. For example, the web 
crawling will take place in one computer, the processing of the information in another 
one, the temporal warehouse in a different computer and the final warehouse in another 
one. Therefore we will have four different PCs (or more if we want one computer per 
website crawling) working communicated each other. To get this, we need to have all 
the computers in the same network and to use, for connect each other and send the 
information, RMI. Now, we are going to explain in a short way what RMI is. 

 

6.2.1 Introduction to RMI 
 
The Java Remote Method Invocation (RMI) system allows an object running in 

one Java virtual machine to invoke methods on an object running in another Java virtual 
machine. RMI provides for remote communication between programs written in the 
Java programming language. 

 
A distributed application in Java need:  



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 37 

 
1. Locate the remote objects: With the ease rmiregistry Java or from remote objects as 
parameters or return values of remote method calls 

 
2. Communicate with remote objects: RMI handles all details of the communication. 
For the programmer the remoting communication is equal to an invocation of a method 
standard local. 

 
3. The download of kinds of objects passed as parameters or return value: RMI provides 
necessary mechanisms to download the code of both remote and local objects passed as 
parameters or return value, as well as passes their data. 

 

6.2.2 Construction step by step 
 
1. Write the RMI server code and Client 

1.1. Define the functions of the remote class as a remote interface 
1.2. Implement the remote class and the server 
1.3. Write a client program that uses the remote service 

 
2. Compile the client code and server code 
 
3. Start the RMI registry and server as well 
 

6.2.3 Example: Hello World! With remote server 
 
Step 1.1.  Remote interface definition 
 
package examples.hello; 
 
/ / All remote interfaces must implement Remote interface  
import java.rmi.Remote; 
 
/ / All remote methods must have the ability to launch the exception RemoteException 
import java.rmi.RemoteException; 
 
public interface Hello extends Remote{ 

String sayHello() throws RemoteException; 
} 
 
Step 1.2. Implementing Remote Object and Server  
 
package examples.hello; 
import java.rmi.Naming; 
import java.rmi.RemoteException; 
import java.rmi.RMISecurityManager; 
import java.rmi.server.UnicastRemoteObject; 
 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 38 

public class HelloImpl extends UnicastRemoteObject implements Hello { 
public HelloImpl() throws RemoteException { 
        super(); 
} 
public String sayHello() throws RemoteException{ 

                    return "Hello World!"; 
} 
 
public static void main(String args[]) { 

                     // Create and install a security manager 
                     if (System.getSecurityManager() == null) 
                          System.setSecurityManager(new RMISecurityManager()); 
                     try { 
                           //Create a remote object 
                           Hello obj = new HelloImpl(); 
                           // Register this instance with the name “HelloServer” 
                           Naming.rebind("//IPmaquina:puerto/HelloServer", obj); 
                     } catch (Exception e) {} 
            } 
} 
 
Step 1.3. Implement the client 
 
package examples.hello; 
import java.rmi.Naming; 
import java.rmi.RemoteException; 
 
public class HelloCliente { 

public static void main(String args[]) { 
                  try { 
                          String message = "blank"; 
                         // In "obj" is stored the reference for the remote object 
                         // This object has to be declared like the type of the remote interface of   
                         // the object     
                         Hello obj = null; 
                         //Obtains a reference of the remote object 
                         obj = (Hello)Naming.lookup("//" + getCodeBase().getHost() + 
"/HelloServer"); 
                         //Le envía un mensaje al objeto remoto 
                         message = obj.sayHello(); 
                    } catch (Exception e) {} 
            } 
} 
 
Step 2. Compiling the distributed application 
 

- Compile the source files of the client and the server. 
Using the Java compiler javac 

  javac -d $HOME/public_html/myclasses Hello.java HelloImpl.java 
                                HelloApplet.java 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    

 39 

- Generate stub and skeleton files. 
Using the Java rmic compiler 
rmic -d $HOME/public_html/myclasses examples.hello.HelloImpl 
Classes of stub and skeleton are generated 
examples.hello.HelloImpl_Stub.class 
examples.hello.HelloImpl_Skeleton.class 

 
Step 3. Start the Java logging, Server and Client 
 

- Start the Java logging 
The RMI registry is a simple name server in the side of the server that 
allows remote clients to obtain a reference to a remote object. 
To start the log on the server, the rmiregistry command of Java is 
running. This command produces no output and runs usually in the 
background. By default, the log runs on port 1099. To start recording at a 
port different, you have to specify in the command line. 

- Start the RMI server 
java -Djava.rmi.server.codebase = http://myhost/~myusrname/myclases/ 
       -Djava.security.policy=$HOME/mysrc/policy         
         examples.hello.HelloImpl 
codebase: the place to download the classes from 
policy: file that specifies the security policy to follow 

- Start the RMI client 
appletviewer http://myhost/~myusrname/hello.html 

 



Arizaleta Arteaga, Miren                        Athens University of Economics and Business    
 
 

 40   

BIBLIOGRAPHY 
 

- Documentation for Web Crawling: 
 

http://en.wikipedia.org 
 
http://en.wikipedia.org/wiki/Web_crawler#URL_normalization 
 
Diploma Thesis: “Crawling Process: The Real Estate Case” 
 
Article: “SDMW 2008” 
 
- Documentation for RMI: 

 
http://www.lcc.uma.es/~pinto/apuntes/software%20de%20sistemas/Tema%204%20
-%20Java%20RMI.pdf (Spanish) 
 
http://en.wikipedia.org/wiki/Java_remote_method_invocation 
 
 
- For programming in Java: 

 
http://download.oracle.com/javase/1.5.0/docs/api/ 

 

http://en.wikipedia.org/�
http://en.wikipedia.org/wiki/Web_crawler#URL_normalization�
http://www.lcc.uma.es/~pinto/apuntes/software%20de%20sistemas/Tema%204%20-%20Java%20RMI.pdf�
http://www.lcc.uma.es/~pinto/apuntes/software%20de%20sistemas/Tema%204%20-%20Java%20RMI.pdf�
http://en.wikipedia.org/wiki/Java_remote_method_invocation�
http://download.oracle.com/javase/1.5.0/docs/api/�

	Arizaleta_Miren_2011
	INTRODUCTION
	1.1 Purpose of the Diploma Thesis
	1.2 Description of the Diploma Thesis

	WEB CRAWLING
	2.1 Definition of Web Crawling
	2.2 Crawling Policies-Techniques
	2.3 Web Crawler Architectures

	SYSTEM DESCRIPTION
	3.1 General description of the System
	3.2 Crawling Process
	3.2.1 Crawling Module
	3.2.2 Advertisements Feature Extraction Module

	3.3 Database Process
	3.3.1 Temporary Database Storage
	3.3.2 Final Database Storage


	SYSTEM CHANGES
	4.1 Introduction to the Java packages and classes
	4.2 Changes in the Classes
	4.2.1 Neomesitiki Website
	4.2.2 e-state WebSite
	4.2.3 Aggelioxoros WebSite
	4.2.4 Kathimerini WebSite
	4.2.5 XE WebSite


	SYSTEM USER MANUAL
	5.1 Applications used
	5.2 Main Classes

	PROBLEMS AND FUTURE WORK
	6.1 Problems
	6.2 Future Work
	6.2.1 Introduction to RMI
	6.2.2 Construction step by step
	6.2.3 Example: Hello World! With remote server


	BIBLIOGRAPHY
	- Documentation for Web Crawling:
	- Documentation for RMI:
	- For programming in Java:


