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ABSTRACT 

Tumors effectively escape from the immune attack by inhibiting anti-

tumor activities of T cells. This is achieved by at least two mechanisms, although 

there are several others of importance. First, the establishment of inhibitory 

interactions between T and tumor cells through programmed death-1 (PD-1) 

binding to its ligand (PD-L1), among others. Second, by inducing the expansion 

of potent immunosuppressive myeloid-derived suppressor cells (MDSCs). In this 

Ph.D. thesis, I have studied these two key immunosuppressive barriers for 

cancer therapy. 

PD-L1 is one of the most important immunoregulatory molecules 

expressed on the cell surface of many cell types including cancer cells. Apart 

from binding to the inhibitory receptor PD-1 on T cells, it suppresses immune 

responses by the delivery of intrinsic intracellular signaling pathways that 

enhance cancer cell survival, regulates stress responses and in this thesis we 

discover that it confers resistance towards pro-apoptotic stimuli such as 

interferons. The systemic administration of antibodies that block PD-L1/PD-1 

interactions to cancer patients is demonstrating unprecedented clinical success, 

but much is yet to be known on the mechanisms of action. The first aim of this 

thesis was to firsltly identify sequence motifs within the intracytoplasmic domain 

of PD-L1 mediating protection from IFN-β-induced apoptosis. Two motifs 

implicated in the delivery of signals that inhibit IFN-β signal transduction 

pathways were identified. Moreover, it was found that human cancers acquire 

somatic mutations within these motifs that enhance the anti-interferon 

activities of PD-L1, favoring cancer cell growth in vitro. Overall, the results 

presented in this Ph.D. thesis uncovers a mode of action of PD-L1 in cancer cells 

as the first line of defense against IFN cytotoxicity. 
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Myeloid derived suppressor cells (MDSCs) differentiate from bone 

marrow precursors and expand in cancer-bearing hosts. MDSCs infiltrate tumors 

where they exert pro-carcinogenic activities. Identification of specific molecular 

pathways in MDSCs could help the development of novel anti- neoplastic 

treatments. The second aim of this thesis consisted in the in-depth molecular 

study of ex vivo generated murine MDSCs that resemble melanoma tumor-

infiltrating subsets by high-throughput quantitative proteomics. The neoplastic 

MDSC proteome was compared to those of non-neoplastic MDSC controls 

(derived ex vivo from 293T conditionant medium), and conventional bone-

marrow derived dendritic cells (DCs). Our analyses resulted in the most detailed 

interactome map of the murine MDSC to date, and uncovered the networks 

regulating cell lineage and cancer-induced pathways. We propose some kinases 

as MDSC-specific therapeutic targets. The activities of these kinases 

differentially regulate MDSC differentiation and activities and can be specifically 

inhibited in MDSCs while keeping immunogenic DCs largely unaffected. 

Finally, I discuss the potential combination of therapies targeting both 

barriers; inhibition of PD-1-PD-L1 interactions and blockade of MDSC activities 

as an optimal approach for anti-cancer therapies.
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RESUMEN 

Los tumores escapan eficazmente del ataque inmunitario al inhibir las 

actividades antitumorales de las células T. Esto se logra mediante al menos dos 

mecanismos principales. En primer lugar por el establecimiento de 

interacciones inhibitorias entre T y las células tumorales a través de la unión de 

“programed death”-1 (PD-1) y su ligando (PD-L1). En segundo lugar, al inducir la 

expansión de células mieloides inmunosupresoras potentes (MDSC). En esta 

tesis doctoral, he estudiado estas dos barreras inmunosupresoras clave para la 

terapia del cáncer. 

PD-L1 es una de las moléculas inmunorreguladoras más importantes 

expresadas en la superficie celular de muchos tipos de células, incluidas las 

cancerosas. Además de unirse al receptor inhibidor PD-1 en las células T, 

suprime las respuestas inmunes a través de vías de señalización intracelulares 

intrínsecas que mejoran la supervivencia de las células cancerosas, regulan las 

respuestas al estrés y confieren resistencia frente a estímulo proapoptóticos 

tales como los interferones. La administración sistémica de anticuerpos que 

bloquean las interacciones PD-L1 / PD-1 en pacientes con cáncer está 

demostrando un éxito clínico sin precedentes, pero aún queda mucho por 

conocer sobre sus mecanismos de acción. El primer objetivo de esta tesis fue 

identificar qué motivos en la secuencia dentro del dominio intracitoplásmatico 

median la protección mediada por PD-L1 frente a la apoptosis inducida por IFN. 

Se identificaron dos motivos implicados en el suministro de señales que inhiben 

las rutas de transducción de señales de IFN. Además, se descubrió que los 

cánceres humanos adquieren mutaciones somáticas dentro de estos motivos 

que potencian las actividades anti-interferón de PD-L1, favoreciendo el 

crecimiento de células cancerosas in vitro. En general, los resultados 

presentados en esta tesis doctoral descubren un modo de acción de PD-L1 en 

células cancerosas como primera línea de defensa contra la citotoxicidad de IFN. 
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Las MDSC se diferencian de los precursores de la médula ósea y se 

expanden en los enfermos de cáncer. Las MDSC se infiltran en tumores donde 

ejercen actividades procarcinógenicas. La identificación de vías moleculares 

específicas en las MDSC podría ayudar al desarrollo de nuevos tratamientos 

antineoplásicos. El segundo objetivo de esta sección de la tesis consistió en el 

estudio molecular en profundidad de MDSCs murinas generadas ex vivo que se 

asemejan a aquellas infiltrantes de tumores de melanoma mediante 

proteómica cuantitativa de alto rendimiento. Se comparó el proteoma de MDSC 

neoplásicas con los controles de MDSC no neoplásicos (generados ex vivo a 

partir de medio codicionante de 293T) y las células dendríticas (DC) 

convencionales derivadas de médula ósea. Nuestros análisis dieron como 

resultado el mapa del interactoma más detallado del MDSC murinas hasta la 

fecha, y se descubrieron las redes que regulan el linaje celular y las vías inducidas 

por el cáncer. Proponemos algunas quinasas como dianas terapéuticas 

específicas de MDSC. Las actividades de estas quinasas regulan la diferenciación 

y las actividades de las MDSC, y se pueden inhibir específicamente en las MDSC 

mientras que las DC inmunogénicas no se ven afectadas en gran medida. 

Finalmente, discuto la potencial combinación de terapias dirigidas a 

ambas barreras; inhibición de las interacciones PD-1/PD-L1 y el bloqueo de las 

actividades de las MDSC como un enfoque óptimo para las terapias contra el 

cáncer. 

 

  



23 
 

 

 

INTRODUCTION 



24 
 

 



25 
 

INTRODUCTION 

1. CANCER AND MELANOMA 

 

Cancer is one of the major leading causes of death as nearly 1 in 6 deaths 

is associated with neoplasms. Indeed, the number of new cases is expected to 

increase by about 70% over the next 2 decades (www.who.int/en/ ). As an 

illustrative example, the total annual cost of cancer in 2010 was estimated by 

the World Health Organization to be on the order of 1.16 trillion US$. 

Cancer is a generic term for a large group of heterogeneous diseases 

that have in common the uncontrolled growth and spread of transformed 

mutant cells that arise through a multistage process. The malignant 

transformation may be started by external agents and/or inherited genetic 

factors that cause deleterious/dysregulating mutations in genes controlling the 

cell cycle, proliferation, survival pathways and apoptosis. These mutant cells 

may originate masses (solid tumors), or uncontrolled proliferation of circulating 

cells in the case of some haematological neoplasms. Cancer cells are 

characterized in many instances by genetic instability, which accelerates the 

acquisition of further mutations that may favour tumor invasion, angiogenesis, 

and metastasis. In time, the uncontrolled spread of cancer cells will originate 

secondary tumors that will interfere with the physiological function of the 

invaded organs, leading to disease and eventually to death. 

This Ph.D. thesis will focus on malignant melanoma as an experimental 

model. Melanoma is a cancer of the skin that arises from melanocytic nevi as a 

result of mutations that confer transformed melanocytes with high invasive 

capacities. Although not the most frequent of skin cancers, melanoma is one of 

the fastest and most aggressive. In fact, the incidence rate of melanoma has 

doubled worldwide since 1973 particularly in regions with a high proportion of 

fair-skinned population. There were an estimated 14.1 million cancer cases 

worldwide in 2012, and this number is expected to increase to 24 million by 

2035 (https://www.wcrf.org/) (Figure 1). 

http://www.who.int/en/
https://www.wcrf.org/
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Figure 1: Incidence of malignant melanoma. (A) Graph representing the 

increase in incidence of skin melanoma, US. Data are reported as lifetime risk 

and taken from NCI SEER reports. (B) Pie graphs representing the incidence of 

melanoma by race and gender in the US. Incidence rates based on NCI SEER data. 

Irrespective of gender, fair-skinned people have a higher incidence. 

 
 

Melanoma progression is staged following different systems (Figure 2A). 

The Breslow system grades melanoma lesions from I to IV according to thickness 

in mm (1-4 mm) (Figure 2A); The Clark system is the most extensively used and 

classifies melanomas according to tissue invasion (Figure 2A). It defines 

melanoma stages from 0 to IV according to the location of the primary tumor 

and whether it has spread or not. Stage zero corresponds to melanomas present 

only in the outer layer of the skin. Stage I when the primary melanoma lesion is 

thin and present in the epidermis. Stage II corresponds to melanomas that have 
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extended into the dermis and stage III when cancer cells have spread through 

the lymphatic system. All the stages are also subdivided depending on the 

thickness of the neoplastic lesion, the presence of ulceration and in stage III 

according to the number of lymph nodes with metastases. Stage IV describes 

melanomas that have spread to distant organs, and it is further divided into 3 

groups according to the location of the metastases; in lymph nodes (first group), 

skin/soft tissues (second group) and lung, liver, brain, bone or gastrointestinal 

tract (third group). The Clark system has prognostic value. Survival rates in which 

the survival rates decrease significantly for each successive stage (Figure 2B). 

Melanomas are also staged using the TNM classification, with “T”according to 

thickness, “N” the number of invaded lymph nodes, and “M”, presence of 

metastases to distant organs (Santos et al. 1984). 
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Figure 2: Melanoma staging and prognosis. (A) Breslow and Clark systems. In 

vertical, Breslow classification system from I to IV according to thickness and depth 

in the skin, with 0 describing superficial lesions in the epidermis, to 4 for lesions 

affecting the subcutaneous layer. Clark classification is shown horizontally, 

according to tissue invasion: from type I (intradermal) to type V, when lesions invade 

the subcutaneous tissue. Stage III is used for melanomas spreading through the 

lymphatic system and Stage IV when the disease has metastasized to other parts of 

the body. (B) Survival rates of malignant melanoma according to staging of 

disease. The chart represents the overall survival rates as a function of the 

melanoma staging (I through IV). Survival may also be predicted by subclasses 

within each stage. 

 
 

2. ONCOGENESIS IN MELANOMA 

 

Oncogenesis is the process by which malignant transformation occurs in 

a normal cell, and it is driven by the accumulation of gain-of-function mutations 

in genes that regulate proliferation and survival (proto-oncogenes) and 

inactivating mutations in genes that regulate anti-proliferative or apoptotic 

pathways (anti-oncogenes or tumour suppressor genes) (Polsky et al. 2003) 

(Figure 3). These changes can occur through point mutations, translocations, 

gene amplification, deletions and insertions (www.who.int/en/ ). There are 

mutations in proto- and anti-oncogenes that appear with high frequency. Some 

of these changes are required for melanocytic transformation (driver 

mutations). Without any doubt, the most prevalent pro-oncogenic mutations in 

melanoma occur in the GTPase RAS signal transduction pathway. This is a core 

pathway in response to cytokines and growth factors, and it is characterized by 

a RAS-RAF-MEK-ERK kinase cascade that promotes cell division, angiogenesis, 

and evasion from cellular senescence and apoptosis (Karasarides et al. 2004; 

Wellbrock et al. 2004). Gain-of-function RAS mutations occur in most human 

cancers (Santos et al. 1984). Other prevalent activating mutations in melanomas 

are present within the B-RAF gene, which encodes a serine/threonine kinase 

http://www.who.int/en/
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that activates the mitogen-activated protein kinase (MAPK)/ERK-signalling 

pathway (Pollock et al. 2002). Of these, the B-RAF V600E represents 90% of 

oncogenic RAF mutations in melanomas. C-KIT (receptor for stem cell factor) 

mutations also take place but at a lower frequency, enhancing intrinsic tyrosine 

kinase activities that facilitate cell growth. 

Driver mutations take place in pre-cancerous cells (Figure 3). There are 

some inactivating mutations in tumor-suppressor genes which contribute to 

oncogenic transformation. For example, mutations in CDKN2A, NF1 and PTEN 

genes. P53 is one of the main cellular anti-oncogenes that responds to stress-

induced stimuli including genetic instability (Tímár et al. 2016), that can also be 

disrupted by mutations. In addition, other mutations appear at a lower 

frequency which may contribute to oncogenesis, tumor progression and 

adaptation to pro-inflammatory and hypoxic environments. Amongst these, 

putative oncogenes such as CDK4, Cyclin D1, C- MYC, GNAQ, CTNNB1, ALK, 

EGFR4, BCL2, RAC1, MAPK2K1 or tumor-suppressor genes including WT1, ARID2 

or RB1 (Tímár et al. 2016; Geis et al. 2015). Additionally, genetic instability in 

cancer cells makes them susceptible to accumulating additional somatic 

mutations. Overall, the collection of somatic mutations found in tumors 

(termed “mutanome”) has a significant clinical relevance particularly for 

immunotherapies and targeted therapies (Overwijk et al. 2013; Sahin et al. 

2017) (Figure 3). 

 

Figure 3: Oncogenesis in melanoma. The process of melanocyte transformation 

into malignant melanomas is illustrated. (1) Main mutagens responsible for 

acquisition of driving mutations in normal cells. Changes in proto- or anti-

oncogenes mentioned in (2) cause genetic instability and melanocytic 

transformation by the mechanisms described in (3). Transformed cells acquire 

further mutations leading to the expression of melanoma tumor-associated 

antigens (TAAs) as shown in (4). Cells are selected that are poorly immunogenic, 

efficacious in establishing immune suppression and surviving hypoxia. These 

cells may further progress by promoting angiogenesis and metastasis as shown 

in (5). 
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3. TREATMENTS OF MELANOMA OTHER THAN IMMUNOTHERAPIES 

 

The therapeutic options very much depend on the staging at diagnosis. 

The first line of treatment is the removal by surgery followed by radiotherapy 

and chemotherapy. During the last decade, the development of targeted 

therapies and immune checkpoint blockade therapies has radically changed 

conventional therapeutic approaches. For more than 30 years, chemotherapy 

has been the main therapeutic strategy for patients with advanced malignant 

melanoma, with dacarbazine as the standard of treatment since 1975; however, 

the outcomes are poor with an overall response rate (ORR) of about 20% and a 

median duration of 4 to 6 months (Serrone et al. 2000). Different chemotherapy 

agents such as temozolomide or fotemustine amongst others have failed to 

demonstrate superior efficacies (Middleton et al. 2000; Avril et al. 2004). 

Traditional chemotherapies indiscriminately affect quickly dividing and 

are characterized by high collateral damage and limited long-term efficacy. 

Targeted therapies rebased on small molecules or antibodies that preferentially 

inhibit kinases mutated in malignant cells. Therefore, these agents are more 

selective (Figure 4). 
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Figure 4. Efficacies of melanoma treatment types. The chart represents models 

of Kaplan-Meier survival plots for each type of treatment. Classical 

chemotherapy has a poor overall response rate and limited long-term efficacy. 

Targeted therapies are more selective, exhibiting a delay in progression and 

slightly better survival. Immune checkpoint blockade therapies achieve durable 

long-term responses. Combination therapies of immune checkpoint inhibitors 

approved in metastasic melanoma. Are demonstrating significantly increased 

responses. The right table contains examples of the type of therapies 

represented in the survival plot. 

 
 
B-RAF mutated at codon V600 was one of the first mutant kinases to be 

targeted with selective tyrosine kinase inhibitors (Ott et al. 2013). Two of them 

(vemurafenib and dabrafenib) have been approved by the FDA and EMA for the 

treatment of B-RAFV600E and B-RAFV600K melanomas (Kudchadkar et al. 

2012). The MAP kinase MEK has also attracted interest as a target, with 

trametinib as the only inhibitor accepted for clinical use to date (Flaherty et al. 

2012). Targeted therapies achieve fast responses after administration, but their 

duration is short-lived due to acquired resistances (Ott et al. 2013; Weber et al. 

2015; Johnson et al. 2014) (Figure 4). Other inhibitors such as imatinib and 

nilotinib targeting mutated C-KIT can also be used for the treatment of 

melanoma (Gato-Canas et al. 2016). 
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4. IMMUNOTHERAPIES 

Cancer immunotherapy is based on the stimulation of the immune 

system to selectively identify and kill tumor cells, leading to long-term responses 

and immunological memory. 

Cancer immunotherapies englobe different therapeutic strategies that 

stimulate the natural capacities of the immune system to recognize and 

eradicate tumor cells. Especially desired is the activation of adaptive immune 

responses to achieve immunological memory and long-term control of tumors 

(Figure 4). 

Cancer immunotherapies can be classified into six major strategies, 

which can also be combined: cytokine therapies, tumor vaccines, adoptive 

transfer of immune cells, immune checkpoint modulators, and depletion of 

immunosuppressive cells. 

 
 

4.1. Tumor-associated antigens 

Cancer cells express a collection of mutated self-proteins, neoantigens, 

oncofetal proteins or increased levels of some tissue-specific proteins that 

confer them with a degree of immunogenicity (quasi-antigens). These antigens 

are called tumor- associated antigens (TAAs) (Gato-Canas et al. 2016). The 

acquired immunogenicity confers the immune system the potential to identify 

and destroy transformed cells (Escors et al. 2014). 

 
Melanoma is one of the most immunogenic cancers. In the 1990s, several 

immunogenic TAAs were identified both in murine and human melanomas, such 

as overexpressed endogenous tyrosinase-related proteins 1 and 2 (TRP-1, TRP-

2) (Cohen et al. 1990; Tsukamoto et al. 1992; Wang et al. 1996). Immunological 

tolerance towards them could be broken to drive effective anti-melanoma 

responses (Wang et al. 1998; Parkhurst et al. 1998; Castelli et al. 1999; Noppen 

et al. 2000; Sun et al. 2000; Liu et al. 2009; Osen et al. 2010; Sierro et al. 2011; 

Overwijk et al. 1999). Indeed, TRP- 2 targeted immune responses can lead to 

melanoma regression (Khong et al. 2002; Bronte et al. 2000).  
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Some epitopes of the gp100 protein were recognized by human 

cytotoxic T cells (Vennegoor et al. 1988; Bakker et al. 1994; Adema et al. 1994), 

and have been used in preclinical studies and in human vaccines (Tarhini et al. 

2012). Similarly, several CD8 and CD4 T cell epitopes were identified for NY-ESO-

1 (cancer-testis antigen 1B) (Eikawa et al. 2013; Mizote et al. 2010; Robson et al. 

2010; Escors et al. 2008; Jager et al. 2000; Odunsi et al. 2012; Gnjatic et al. 2006; 

Campos-Perez et al. 2013). T cells modified to express NY-ESO-1-specific TCRs 

induced tumor regression in metastatic synovial cell sarcoma and melanoma in 

human patients (Robbins et al. 2011). Similarly, genetically engineered 

autologous CD8 T cells expressing MART-1-specific TCRs demonstrated their 

capacities to achieve melanoma regression and long-term therapeutic effects in 

animal models and human patients (Abdel-Wahab et al. 2005; Kawakami et al. 

1994; Bobisse et al. 2009; Khong et al. 2002; Overwijk et al. 1999). A large 

collection of TAAs is known nowadays, and the study and exploitation of the 

cancer cell mutanome remains an active area of research (Bakker et al. 1994; 

Cheever et al. 2009). 

 
 

4.2. Oncoimmunology of melanoma 

Oncoimmunology or cancer immunology can be defined as the study of 

the relationship between the immune system and cancer. A significant number 

of tumors including melanoma are certainly immunogenic and subjected to the 

“immunological cycle” of anti-tumor responses (Figure 5). 

The initial phase of recognition is most likely mediated by innate 

immune responses, possibly mediated by NK cells and macrophages that induce 

local inflammation through production of IFNs and other pro-inflammatory 

cytokines and chemokines that in turn attract other immune cells. This initial 

direct cytotoxic attack over cancer cells (Miller et al. 2009; Ichim et al. 2005) 

causes the release of tumor-associated antigens (TAAs) (Figure 5). This phase is 

critical for the initiation of adaptive immune responses against cancer cells, and 

most likely mediated by recruited dendritic cells (DCs), the main professional 

antigen presenting cells (APCs) regulating innate and adaptive immunity 
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(Matzinger et al. 1994). Upon arrival, DCs take up necrotic cancer cells, process 

TAAs into immunogenic peptides, mature, and migrate to tumor-draining lymph 

nodes where they present cancer-derived antigens complexed to class I and class 

II major histocompatibility molecules (MHCs) to CD8 and CD4 T cells, 

respectively (Lipscomb et al. 2002; Goold et al. 2011) (Figure 5 and Figure 6). 

Activation of T helper 1 (Th1) CD4 T cells is critical for anti-cancer immunity 

(Kennedy et al. 2008). Th1 cells secrete IFN, IL2, and IL12 needed for 

differentiation, clonal expansion, and survival of antigen-specific cytotoxic CD8 

T cells. Activated CD8 T cells are recruited to the inflamed tumor site where they 

exert their cytotoxic activities and may also further differentiate into CD8 

memory cells (Curtsinger et al. 2003; Knutson et al. 2005) (Figure 5). 

Both CD4 Th1 and CD8 T cells can directly exert cytotoxic activities 

through the production of IFN-γ, TNF-α, and secretion of perforin and granzyme-

containing granules. Cytotoxic T cells express ligands of the TNF superfamily such 

as FasL on their cell surface, which after ligation with death receptors induce the 

death of targeted cells (Cullen et al. 2008). Secreted IFN-γ within the tumor 

environment up-regulates the expression of MHC-I, MHC-II and co-stimulatory 

molecules on tumor and myeloid cells, enhancing cancer cell recognition and 

elimination (Miller et al. 2009; Diehl et al. 2002) (Figure 5 and Figure 6). Hence, 

the immune system exerts a strong selective pressure by which the most 

immunogenic cancer cells are eliminated leaving less immunogenic cancer cell 

variants. This process is called cancer immunoediting. The surviving cancer cells 

exhibit various selected genetic mutations and epigenetic alterations that often 

result in reduced expression of MHC molecules on the cell surface (Zitvogel et 

al.  2006; Dunn et al. 2004), production of immunosuppressive cytokines that 

skew the immune response to a tolerogenic path (Zitvogel et al. 2006) or 

become insensitive to IFNs (Zaretsky et al. 2016). The growth of solid tumors 

favours a hypoxic, nutrient-poor microenvironment that further suppresses 

immune responses (Chang et al. 2015). Therefore, although many cancer 

patients still contain circulating TAA-specific CD4 and CD8 T cells, these have 

been inactivated through mechanisms of peripheral tolerance and by the 

tolerogenic actions of cancer cells (Bakker et al. 1994). 
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Figure 5. Innate and adaptive immune responses to nascent tumors. (A) Tissue 

remodelling from growing tumors induces inflammation, which then attracts 

innate immune cells, such as NK cells and macrophages. NK cells cause tumor 

cell death through IFN-γ and granzyme-containing granules. Macrophages 

secrete cytokines such as IFN or IL12 which potentiate inflammation and enhance 

further infiltration of immune cells including DCs.  

(B) Attack of the innate immune system leads to release of TAAs by necrotic 

cancer cell death. Tumor-infiltrating DCs and macrophages phagocytose TAAs, 

process them into antigenic peptides and present them to T cells on their 

surface, complexed to MHC molecules. Simultaneous recognition of danger 

signals released by cancer cell death leads to DC maturation by up-regulating 

the surface expression of co-stimulatory molecules.  

(C) Matured DCs home to the tumor-draining lymph nodes where they present 

TAAs to T cells in an activatory co-stimulatory context. Cytokine secretion into 

the immunological synapse leads to T cell polarization and acquisition of effector 

functions. CD4 T cells polarise towards T helper (Th1) differentiation, while CD8 

T cells towards cytotoxic T cells (CTL or cytotoxic T lymphocytes). Some CTLs 

further differentiate to T memory cells. 

 (D) Th1 can license CTLs and both effector T cells infiltrate tumors, where they 

recognize and eliminate cancer cells expressing cognate TAAs by direct 

cytotoxicity.  

(E) Surviving cancer cell variants may arise that contain mutations or epigenetic 

alterations that reduce the expression of MHC molecules or become insensitive 

to IFNs. Moreover, if present, MDSCs and Tregs can inactivate T cells, NKs and 

DCs. Tumor growth favours a hypoxic, nutrient-poor microenvironment that 

further suppresses immune responses. 
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4.2.1. The three-signal model of antigen presentation 

Antigen presentation and T cell activation are highly regulated processes 

to prevent autoimmune disorders or excessive inflammation. DCs are 

considered to be the main professional APCs. When DCs encounter pathogenic 

or tumor-associated antigens, they undergo a phenotypic maturation change 

while homing towards secondary lymphoid organs (Goold et al. 2011; Lipscomb 

et al. 2002; Breckpot et al. 2010; Gallucci et al. 1999; Rescigno et al. 1998; 

Ardeshna et al. 2000; Fong et al. 2000). Then, DCs present antigen to CD4 and 

CD8 T cells, depending on whether the antigens are complexed to MHC II or 

MHC I molecules, respectively. MHC I molecules are complexed to peptides 

derived from intracellularly- expressed antigens such as TAAs or viral antigens. 

These antigens are degraded by the proteasome and loaded onto MHC I in the 

endoplasmic reticulum (ER) before transport to the cell membrane (Fong et al. 

2000). MHC I molecules are recognized by CD8 T cells, which can acquire CTL 

effector functions upon antigen encounter. MHC II molecules are complexed to 

antigens that are usually (but not always) phagocytosed by APCs and degraded 

in endosomes, thus representing peptides from extracellular pathogens (Figure 

6). Peptide-MHC II complexes are recognized by CD4 T cells, and depending on 

the various cytokine signals present during antigen presentation, they promote 

T cell polarization into various subtypes. Th1 and Th17 cells are potent 

stimulators of CTL responses among others like antibody ones; Th2 cells aid 

frequently in the initiation of humoral (B cell) immune responses; and Tregs in 

general terms suppress immune responses, dampens inflammation, and may 

promote other immunological responses like IgAs ones (Cong et al. 2009; 

Liechtenstein et al. 2012). An immunological synapse is formed between APCs 

and T cells upon TCR binding to peptide-MHC complexes. This close cell-to-cell 

interaction allows the APC to deliver all needed signals to the T cell to regulate 

its activation, proliferation, and differentiation (Boisvert et al. 2004; Rothoeft et 

al. 2006; Fooksman et al. 2010; Huppa et al. 2010). These T cell-regulating 

signals can be roughly categorized into three types (Figure 6). 
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Signal 1 is initiated by the specific binding of the TCR to the peptide-MHC 

(p- MHC) complex, but this is not usually sufficient for T cell activation. Quite 

the contrary, TCR triggering alone may lead to T cell anergy, characterized by 

limited expansion and unresponsiveness upon further antigen reencounter 

(Chiang et al. 2000; Bachmaier et al. 2000). Further interactions have to be 

provided to activate T cells, which are termed co-stimulatory signals (or signal 

2). These signals are delivered by binding of DC surface ligands with the 

corresponding receptors on the T cell surface. Positive co-stimulation leads to T 

cell proliferation and acquisition of effector capacities, and are mediated by 

interactions such as CD80/CD86 on DCs with CD28/CD27 on T cells (Nurieva et 

al. 2006).  

However, negative co-stimulation can also take place, for example by 

CD80/CD86 binding to the T cell inhibitory receptor CTLA-4. These signals 

generally initiate T cell anergy or Treg differentiation (Fooksman et al. 2010). 

Amongst negative co-stimulation, one of the most important interaction is 

mediated by PD-L1 binding to PD-1 (Karwacz et al. 2011; Latchman et al. 2004; 

Liang et al. 2006; Butte et al. 2007). Hence, the overall activation status of T cells 

will depend on the integration of positive and negative interactions. Immature 

and tolerogenic DCs express low levels of co-stimulatory molecules and higher 

levels of inhibitory molecules. Therefore, antigen presentation by tolerogenic 

DCs will not lead to T cell activation. This is a key regulatory step (immune 

checkpoint) by which undesired immune reactions are kept at bay in the 

absence of a danger signal. For example, pathogens and host-derived danger-

signal molecules can trigger pathogen pattern recognition receptors such as toll-

like receptors (TLRs) on DCs, leading to up-regulation of co-stimulatory 

molecules and p-MHC complexes (Arce et al. 2011; Escors et al. 2008; Nurieva 

et al. 2006). Tumors can also provide these danger signals inducing DC 

maturation and efficacious T cell activation. 

T cells will also be regulated by a “third” signal provided by cytokines 

(cytokine priming or signal 3) (Figure 6). Depending on the context in which DCs 

encounter pathogenic molecules different cytokines will be secreted into the 

immunological synapse (Kapsenberg et al. 1999; Curtsinger et al 2003). CD4 T 
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cells thereby acquire distinct effector phenotypes and functions (Th1, Th2, 

Th17, Treg). IFN-γ, IL1-β, and IL12 secretion by DC will lead to Th1 

differentiation. CD4 Th1 cells are crucial for the effective activation of anti-

tumor CD8 CTL responses and effective anti-tumor responses, which also aid an 

antibody response towards increased IgG2a vs IgG1 in the murine system 

(Curtsinger et al. 2003; Macatonia et al. 1995; Schmidt et al. 2002; Curtsinger et 

al. 1999; Schmidt et al. 1999; Hernandez et al. 2002; Albert et al. 2001).  

On the other hand, the presence of IL4 and IL10 will lead to Th2 

differentiation, polarizing the immune response to an “antibody response” 

enriched in IgG1 vs IgG2a. IL23, TGF-β, IL17, and IL6 may induce Th17 

differentiation. Th17 cells express IL17 and trigger strong pro-inflammatory 

reactions (McGeachy et al. 2007; Bettelli et al. 2006; Lewkowich et al. 2008; 

Sutton et al. 2006; Larsen et al. 2009; Ortega et al. 2009). Finally, Tregs can be 

differentiated in the presence of IL10 and TGF-β (Arce et al. 2011; Rutella et al. 

2006; Escors et al. 2008; Saraiva et al. 2010; O’Garra et al. 2004; O’Garra et al. 

2004). Hence, appropriate cytokine secretion by APCs is crucial for the 

acquisition of the proper effector functions. In the absence of signal 3, T cells 

acquire a tolerogenic phenotype unless antigen levels are sufficiently high 

(Ramanathan et al. 2011; Gerloni et al. 2005). Thus, signal 3 is particularly 

important when antigen levels are low as it amplifies the T cell response. 

TLR ligation can alter cytokine priming. TLR4 induces DC maturation and 

IL12 secretion, leading to stimulation of anti-tumor immune responses (Apetoh 

et al. 2007; Bekeredjian-Ding et al. 2006; Cisco et al. 2004; Breckpot et al. 2009). 

In contrast, TLR2 stimulation preferentially activates ERK (extracellularly 

regulated protein kinase) signalling, prevents DC maturation and stimulates IL10 

secretion (Re et al. 2004, Re et al. 2001; Qian et al. 2006). TLR2 stimulation will 

lead to other type of responses such as Th2, mucosal immunity and in some 

cases to immune regulation (Dillon et al. 2006; Manicassamy et al. 2009). If not 

provided in cis to DC, inflammatory citokines in the medium (in trans) can 

induce up-regulation of MHC and co-stimulatory molecules in DCs, these will 

stimulate T cell proliferation but is not such efficient in confering significant T 

cell effector functions (Kratky et al. 2011; Santini et al. 2000; Sporri et al. 2005; 
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Nolte et al. 2007; Hou et al. 2008). 

Modulating co-stimulation and cytokine production can expand CTL 

responses efficacious for the treatment of cancer (Liechtenstein et al. 2014) or 

infectious diseases (Shimizu et al. 2011), while induction of Treg responses can 

be used to treat inflammatory disorders (Liechtenstein et al. 2012). 

Efficacious activation of CD8 and CD4 Th1 responses would suffice for 

the recognition of tumors, which would be ultimately killed by secreted cytotoxic 

cytokines such as IFN-γ and apoptosis induced by FAS-FASL interactions and 

granzyme B secretion. However, PD-L1 is expressed constitutively in myeloid 

cells and many tumor cells, and inducible in many cell types after exposure to 

pro-inflammatory stimuli. In this way, many tumors can overexpress PD-L1, 

which contributes to the strong inhibition of anti-cancer T cell responses (Dong 

et al. 2002). 

 

 

 

Figure 6. Three-signal model of antigen presentation in the immunological 

synapse. The figure depicts antigen presentation by DCs (left) to T cells (right). 

Peptide-MHC complexes interact with the TCR of the T cell to initiate signal 1. 

Co-stimulatory (CD80/CD86) or co-inhibitory (CD80/PD-L1) ligands on DCs bind 

to their receptors on T cells (CD28, CTLA-4, PD-1), representing signal 2. 

Furthermore, cytokine secretion (Signal 3) By DCs regulates T cell differentiation. 

Cytokine combinations lead to differentiation of several distinct CD4 T helper 
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types, or enhance CD8 proliferation and acquisition of effector activities. 

Activated CD8 cytotoxic T cells will then recognize antigens on tumor cells by the 

MHC-peptide complex and after kill them by direct cytotoxicity including 

secretion of IFN-γ, Granzyme B or Fas/FasL interactions. To counteract the T cell 

attack, tumor cells protect themselves by upregulating PD-L1. 

 
 

4.3. Cytokine therapies 

Cytokines are hormonal autocrine and paracrine modulators in many 

immune processes and can be divided into interleukins (ILs), chemokines, 

interferons (IFNs), tumor necrosis factors (TNFs), mesenchymal growth factors, 

and adipokines. Cytokines are pleiotropic molecules with multiple biological 

functions (Dinarello et al.  2007). Cytokines have been administered to stimulate 

anti-cancer immunity and several are being evaluated including IL7, IL11, IL12, 

IL15, IL21, IL6, TNF-α, GM-CSF, IFN-β and IFN-γ amongst others (Keilholz et al. 

2002). However, their systemic administration can cause serious side effects. 

Some cytokines are too toxic to be used in clinical therapy, or they can even 

promote tumor growth in vivo and activate immunosuppressive mechanisms by 

negative feedback mechanisms (Steding et al. 2011). 

 
4.3.1. IL2 for the treatment of melanoma 

IL2 was one of the first cytokines to be approved by the FDA for 

treating metastatic renal cell carcinoma and metastatic melanoma (Rosenberg 

et al. 2014). High doses can lead to durable, complete, and curative regressions 

but its clinical application remains restricted by its toxicity and expansion of 

CD4+CD25+Foxp3+ Treg cells (Ahmadzadeh et al. 2005). Nevertheless, IL2 can 

be used to expand large numbers of tumor- infiltrating lymphocytes or 

genetically-modified T cells in vitro for transfer therapies that can be highly 

effective for melanomaand other cancer types (Rosenberg et al. 2014). 
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4.3.2. Type I interferon for the treatment of melanoma 

Interferons are classified in three main classes: type I (IFN- α, β, ε, ω, τ 

and κ), type II (IFN-γ) and type III (IFN-λ1, 2, 3 and 4) (Gangaraju et al. 2009). 

Type I IFNs are strong antiviral agents, drivers of immune cell differentiation and 

inducers of cell senescence and apoptosis (Schreiber 2017). Type I IFNs comprise 

a single IFNβ gene and 14 IFNα genes in humans and mice (Van Pesch et al. 2004) 

Type I IFNs signal through a heterodimeric receptor comprising of 

IFNaR1 and IFNaR2 present on the surface of most cells. IFNs activate the 

kinases Janus kinase 1 (JAK1) and tyrosine kinase 2 (TYK2) which phosphorylate 

signal transducer and activator of transcription (STAT1) 1 and STAT2. In addition 

to canonical STAT1/STAT2 signalling, other STATs can be phosphorylated (e.g., 

STAT 3, 5, and 6) as well as phosphatidylinositol 3- kinase (PI3K) and mitogen-

activated protein kinases (MAPK) ERK1/2 and p38. IFNs also activate some 

protein kinase C isoforms (PKCs) and the multifunctional adaptor protein CrkL 

(Schreiber et al. 2017; Terawaki et al. 2011; Hervas- Stubbs et al. 2011; Porritt 

et al. 2015). Together, these signalling networks converge to the activation of 

IFN regulatory factors (IRFs) which complexed with STATs, transactivate IFN-

stimulated genes (ISGs) (Figure 7). 

Type I IFNs possess anti-tumor capacities although they also promote 

negative feedback immunosuppressive mechanisms. For example, IFN-β 

exposure increases indoleamine 2,3-dioxygenase (IDO) and IL10 expression in 

DCs and macrophages, and upregulates expression of immunosuppressive 

receptors (Tsukamoto et al. 2017; Sharma et al. 2015; Terawaki et al. 2011; 

Rozera et al. 1999; Uehara et al. 2017; Benci et al. 2016). Multiple feedback 

mechanisms on the IFN receptor and signal transduction pathways have been 

described, including receptor endocytosis by ubiquitinylation (Schreiber et al.  

2017; Bhattacharya et al. 2014; Kumar et al. 2007; Kumar et al. 2008), disruption 

of receptor heterodimers by USP18 or TYK2 and JAK1 dephosphorylation by 

suppressor of cytokine signalling (SOCS1-3) or Src homology phosphatases 

(SHP1-2) (Chemnitz et al. 2004). Furthermore, protein tyrosine phosphatases 

(PTP) and protein inhibitors of activated STAT (PIAS) dephosphorylate and /or 
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inhibit STATS in the nucleus. In addition to the role of IRF proteins in inducing 

IFN responses, IRF-2 protein is involved in IFN suppression (Porritt et al. 2015). 

Interference with these mechanisms exacerbates IFN-β signalling leading to 

inflammatory disease (Nyman et al. 2000) (Figure 7). 

Type I IFNs are thought to inhibit tumor progression by a combination of 

cell cycle arrest and cell death (Chawla-Sarkar et al. 2001; Gong et al. 2000; 

Rozera et al. 1999). Hence, IFN-β induces the expression of the TNFα family 

member TRAIL that triggers caspase 8 and 3 dependent apoptosis in melanoma 

and breast cancer cells (Bernardo et al. 2013; Chawla-Sarkar et al. 2001). In 

cervical carcinoma, IFN-β causes proliferative arrest and accumulation of the 

anti- apoptotic protein cFLIP and caspase 8 (Apelbaum et al. 2013). Type I IFNs 

can enhance antigen presentation by up-regulating MHC-I and MHC-II, a 

mechanism that counteracts the frequent cancer-associated MHC-I down-

modulation (Schiavoni et al. 2013; Greiner et al. 1984; Fruci et al. 2012; Wang 

et al. 2017). In many instances, IFN-β upregulates TAA expression (Boyer et al. 

1989; Greiner et al. 1984), activates DCs and macrophages to cross-present TAAs 

to T cells and promotes CD8 T cell effector functions (Nguyen et al. 2002; K. 

Shimizu et al. 2001; Rozera et al. 1999; Kalinski et al. 1999). Moreover, IFN-β 

negatively regulates Treg proliferation (Pace et al. 2010; Hashimoto et al. 2014; 

Bacher et al. 2013; Stewart et al. 2013; M. Sharma et al. 2010) and MDSC 

numbers and their immunosuppressive activities. 

The IFN signal transduction pathway in cancer cells is frequently 

inactivated by deletion of type I IFN genes, down-regulation of their receptors, 

inactivating mutations in JAK1 (Shin et al. 2017) and loss of STAT1 and IRF1 

(Katlinskaya et al. 2016; Pietila et al. 2007; Sakaguchi et al. 2003; Bacher et al. 

2013; Lee et al. 2006; Colamonici et al. 1994). Breaking free from type I IFN-

mediated regulation seems to be critical for cancer progression (Shin et al. 2017; 

Medrano et al. 2017). 

The anti-tumor properties of type I IFNs have been exploited during the 

last decades. Improved survival was demonstrated in combination with 

therapies for chronic myeloid leukaemia (CML) (Guilhot et al. 1997) and 

myeloma (Osterborg et al. 2017). However, results in solid tumors including 
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melanoma are not clear-cut (Alberts et al. 2006, Alberts et al. 2008; Nethersell 

et al. 1984).  Other diverse strategies range from the stimulation of tumor cells 

to produce endogenous IFN-α/β or to deliver IFN to the tumor 

microenvironment (Medrano et al. 2017).  

 
4.3.3. Type II interferon for the treatment of melanoma 

IFN-γ consists of a homodimer molecule that binds to two IFN-γ receptor 

1 (IFNGR1) subunits, which is followed by recruitment of IFNGR2 and its pre-

associated JAK 1-2 (Parker et al. 2016) (Figure 7). STAT1 and STAT3 homo-

heterodimers are preferentially phosphorylated and activated by IFN-γ 

signalling, and translocate to the nucleus where they bind gamma activated 

sequence (GAS) elements in IRG promoters (Parker et al. 2016). It was thought 

that its expression was limited to T cells and NK cells (Parker et al. 2016), 

although there is recent evidence that APCs and B cells secrete IFN-γ (Schroder 

et al. 2004). IFN-γ orchestrates leukocyte attraction and directs growth, 

maturation, and differentiation of many cell types, in addition to enhancing NK 

cell activity and B cell functions such as immunoglobulin (Ig) production and 

class switching (Schroder et al. 2004) (Figure 7). 

Similar multiple layer feedback mechanisms to those of type I IFNs have 

also been described for type II IFNs (Porritt et al. 2015). Surprisingly, IFN-γ 

administration has failed for the treatment of melanoma (Franco et al. 2017), 

although patients harboring DNA lesions in the IFN-γ gene, as well as mice 

carrying tumors mutated in IFNGR1 respond poorly to immunotherapy (Gao et 

al. 2016). A possible explanation is that IFN-γ is involved in the effector phase of 

anti-tumour activities. Ipilimumab-treated patients displayed T cells with 

enhanced production of IFN-γ (Gao et al. 2016), so the mutational status of IFN-

γ signaling genes could be a prognostic tool for selection of patients eligible for 

Ipilimumab therapy (Franco et al. 2017). On the other hand, IFN-γ reduces the 

capability of CD8+ T cells to recognize and kill melanoma cells through different 

mechanisms including PD-L1 up-regulation, explaining its dual role as a pro- and 

anti- tumor effector (Cho et al. 2011; Benci et al. 2016) (Figure 7). 
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Figure 7. Type I and II IFN pathways. Type I IFNs, including IFN- and β, signal 

through a heterodimeric receptor comprising of IFNaR1 and IFNaR2 that 

activates the kinases Janus kinase 1 (Jak1) and tyrosine kinase 2 (Tyk2) which 

phosphorylate signal transducer and activator of transcription (Stat) 1 and 

Stat2. In addition to canonical Stat1/Stat2 signalling, other Stats can be 

phosphorylated (e.g., Stat 3, 5, and 6) as well as phosphatidylinositol3- kinase 

(PI3K) and mitogen-activated protein kinases (MAPK) ERK1/2 and p38. IFNs also 

activate certain protein kinase C (PKC) isoforms and the multifunctional adaptor 

protein CrkL (Delgado 2003; Ivashkiv et al. 2015). Together, these signalling 

networks converge to the activation of IFN regulatory factors (IRFs) which 

together with STATs transactivate IFN-stimulated genes (ISGs). These ISGs are 

usually pro-inflammatory, antiviral and anti-tumor mediators. 

 There is only a single type II IFN, IFN-γ. It forms a homodimer that binds 

to two IFN-γ receptor 1 (IFNGR1) subunits followed by recruitment of IFNGR2 

and its pre-associated Janus kinase 1 and 2(JAK) which phosphorylate signal 

transducer and activator of transcription (Stat) 1 and Stat3. They form homo-

heterodimers, witch translocate to the nucleus where they bind gamma 

activated sequence (GAS) elements in IRG promoters(Delgado et al. 2003). 

MAPK proteins, P38 or PKc signaling pathways could be activated too (Agrawal 

et al. 2006). IFN-γ possess antitumour capacities among others.  

Multiple layer feedback mechanisms on the receptor and on its 

activation and signalling have also been described in both IFN types, including 

endocytosis of IFN-I receptors by ubiquitinilation and disruption of receptor 

heterodimers by USP18124 (Kumar et al. 2007; Kumar et al. 2008). IFN I and II-

TYK2 and JAK1 dephosphorylation by suppressor of cytokine signalling (SOCS1-

3) (Ramanathan et al. 2010) and Src homology phosphatase (SHP1-2) 

(Miyamoto et al. 1988). Furthermore protein tyrosine phosphatases (PTP) and 

protein inhibitors of activated STAT (PIAS) dephosphorylate and /or inhibit STATS 

in the nucleus (Sato et al. 1998).  In addition to the role of IRF proteins in inducing 

IFN responses, IRF-2 protein is involved in type I and II IFN suppression.  
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4.4. Tumor vaccines 

Tumor vaccine formulations have been developed in a manner 

analogous to those for conventional infectious diseases. Tumor vaccines can be 

grouped in three types; protein/peptide vaccines, cell-based vaccines, and 

genetic vaccines. 

Protein/peptide vaccines consist of the administration of TAAs or 

their various peptides containing B and T cell epitopes. To utilize peptide-based 

vaccines, the specific antigenic epitopes for particular MHC genotypes need to 

be known beforehand. Consequently, only individual-specific vaccines can be 

prepared for specific MHC types. These peptides are combined with strong 

adjuvants to overcome their intrinsic poor immunogenicity. Even so, clinical 

efficacy remains rather low (Guo et al. 2013; Zhang et al. 2013). 

Tumor cell-based vaccines incorporate whole cancer cells in the 

formulation. This strategy presents several advantages. Firstly, endogenous 

APCs endocytose and process whole cancer cells. Hence, the whole range of 

TAAs can be supplied without previous knowledge on patient-specific class I and 

class II MHC genotypes. Tumor cell-based vaccines can be either autologous 

irradiated cells or allogeneic (from allogeneic tumors or human tumor cell lines). 

Overall, these vaccines have shown disappointing results in Phase III clinical trials 

(Anguille et al. 2014). 

Genetic vaccines are based on delivery of DNA encoding TAAs, 

TAA-derived epitopes or polyantigenic fusion proteins directly to the subject or 

to APCs (genetic immunotherapies). The approaches for delivery of TAA DNA 

vary from bacterial plasmids, or by virus-based vectors. This latter methodology 

present an additional advantage as virus-like particles frequently possess 

immunostimulatory capacities (Liechtenstein et al. 2013; Dullaers et al. 2006). 

The use of DNA encoding multiple epitopes or mutated TAAs can further 

enhance anti-tumor immune responses (Guevara-Patiño et al. 2006; Liu et al. 

2009). While preclinical studies showed good efficacies, their application in 

human therapy has been disappointing. This lack of efficacy is possibly due to the 

absence of adequate co-stimulation during antigen presentation and to tumor-

induced immune suppression (Guo et al. 2013; Bodey et al. 2000). 
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4.5. Adoptive cellular immunotherapies 

This strategy relies on the administration of either autologous or 

allogeneic cancer- specific effector immune cells or antigen-presenting cells to 

elicit therapeutic responses. These cells can be tumor-reactive T cells, 

professional APCs or natural killer (NK) cells (Gato-Canas et al. 2016). 

 

4.5.1. T cell immunotherapies 

Steven Rosenberg and colleagues in the 1980s isolated tumor-

infiltrating lymphocytes (TILs) and expanded them in vitro with IL2. Then, these 

T cells can be re-infused back to the lymphocyte-depleted patient. Although 

promising results were obtained, problems in TILs isolation, expansion and lack 

of complete responses in melanoma were observed (Rosenberg et al. 2011). 

Gene transfer technologies and T cell engineering have enabled 

more versatile approaches, by genetically modifying T cells to target cancer-

specific antigens, via physiological TCRs or chimeric antigen receptors (CARs) 

(Chan et al. 1991; Kochenderfer et al. 2010; Pule et al. 2008; Kakarla et al. 2013; 

Zhang et al. 2014; Rosenberg et al. 2015; Milone et al. 2018; Balmer et al. 2016). 

TCRs are usually cloned from tumor-reactive TILs specific for TAAs with no or 

very limited expression in normal adult tissue (Sharma et al. 2017; Ascierto et al. 

2016). This approach is MHC-restricted and ineffective for tumors with 

downregulated MHC. To overcome this limitation, CAR technology was 

developed by Eshhar and collaborators in 1993. This strategy relies on 

genetically engineering T cells to express single chain antibodies (scFv) targeting 

tumor cell surface antigens linked to intracellular signalling adaptors from the 

TCR signalosome. This approach has evolved with time, and it has been 

extensively reviewed elsewhere (P. Sharma et al. 2017). CAR T cells do not 

depend on MHC restriction and possess enhanced T cell functions (P. Sharma et 

al. 2017). CARs targeting CD19 have shown significant clinical success in B cell 

malignancies (Maude et al. 2014). Other approaches improve T cell effector 

functions independently of MHC recognition by physically linking T cells to 



50 
 

cancer cells, such as the expression of bispecific T cell engagers (BITEs), a 

recombinant molecule made of two scAbs of different specificities fused by a 

peptide linker. BiTEs have shown therapeutic efficacy in tumor/bearing 

humanized mice and in some clinical trials with patients with non-solid tumors 

(Horn et al. 2017; Yu et al. 2017; Dao et al. 2015). 

 
4.5.2. Dendritic cell (DC) immunotherapies 

Autologous DCs can be generated ex vivo in large numbers by 

retrieving monocytes by apheresis and inducing their differentiation with 

recombinant GM-CSF, IL4 and other cytokines (Inaba et al.  1992; Zhou et al. 

1996). DCs can then be either directly loaded with TAAs or expressed from a 

variety of vectors. Classically, DCs are loaded with antigenic peptides, although 

this approach depends on the previous knowledge of epitopes for specific MHC-

restriction. Moreover, the duration of antigen presentation is limited in time 

(Escors et al. 2013; Escors et al. 2014). 

To achieve sustained antigen processing and effective 

presentation, DCs need to be matured by incubation with TLR agonists such as 

LPS and analogues, or by other means including genetic modification (Van Lint 

et al. 2014). This last approach has been used in our group by expressing 

modulators of intracellular signalling pathways associated to TLR ligands. For 

example, lentivector expression of NF-κB and p38 activators such as NIK or KSHV 

Vflip, or the constitutively active MKK6 EE mutant leads to DCs maturation and 

enhance their immunogenicity (Rowe et al. 2009; Enslen et al.  1998; Zhang et 

al. 2013; Arce et al. 2012; Liechtenstein et al. 2013). Expression of dominant 

negative mutants such as MEK1 NES AA that interferes with ERK 

phosphorylation also matures DCs (Burnet et al. 1970). Expression of 

immunostimulatory cytokines such as IL12 is a very effective approach as well 

(Esslinger et al. 2002; Goyvaerts et al. 2015). Direct immunization with 

lentivectors targeted to DCs in vivo has worked well in pre-clinical models (Yang 

et al. 2008). 
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Inhibitory signals in DCs can also be interfered. Thus, PD-L1 

silencing in DCs inhibits TCR down-modulation in T cells and strengthens their 

association to APCs and cancer cells (Liechtenstein et al. 2014; Fife et al. 2009;  

Karwacz et al. 2011, Karwacz et al. 2012) hyperactivating and enhancing T cell 

multifunctionality (Liechtenstein et al. 2014; Karwacz et al. 2011; Pen et al. 

2014). 

Autologous DC and CTL cell transfer therapies in their various forms have 

demonstrated some clinical success and are susceptible of combination. Indeed, 

the combined use of autologous tumor-lysate loaded DCs with TIL transfer leads 

to clinical responses in advanced melanoma patients (Poschke et al. 2014). 

 

 

5. IMMUNOLOGICAL BARRIERS IN MELANOMA 

 
5.1. Failure of classical immunotherapies 

Anti-cancer immunotherapy has been classically developed following 

conventional rationales based on the experience with infectious diseases. 

Despite encouraging results from extensive pre-clinical work, translation into 

the clinic has been characterized more for failures until recently. The key 

difference between classical vaccination approaches and cancer 

immunotherapy is the distinct nature of tumors and their relationship with the 

immune system. Tumor cells form complex tissues that recruit other cell types 

as a result of an initial inflammatory response (Gato-Canas et al. 2016). Tumor 

cells respond to the initial immune attack by triying to counteract antitumor 

inflammation. Tumor-secreted factors suppress anti-tumor effector cells and 

skew infiltrating immune cells to a suppressive phenotype (Hanahan et al. 

2011).  

Furthermore, cytokines and factors produced by growing tumors alter 

myelopoiesis in the bone marrow (BM), leading to the differentiation of 

immunosuppressive myeloid cells which are released to the systemic circulation 

(Rabinovich et al. 2007; Gabrilovich et al. 1996). In addition, inflammation up-

regulates immune checkpoint molecules such as PD-L1, that inhibits cytotoxic T 
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cells by engaging with PD-1 expressed on the surface of antigen-experienced T 

cells. Hence, the expansion of MDSCs and the up-regulation of PD-L1 represent 

two major immunological barriers for anti-cancer immunotherapy. Indeed, the 

recent development of immune checkpoint inhibitors has demonstrated that it 

is possible to achieve truly efficacious cancer immunotherapies. In this Ph.D. 

thesis, I have studied these two major barriers to identify novel targets and ways 

to improve cancer immunotherapies, while at the same time gaining knowledge 

on their biological mechanisms of action. 

 

 
5.2. Myeloid-derived suppressor cells (MDSC) 

Cancer-related natural suppressor cells were first described in 1989 in 

tumor-bearing mice as immature cells of myeloid origin that accumulated in 

tumors and stimulated their vascularization and immune evasion (Talmadge et 

al. 2013). Nowadays, these cancer-induced immunosuppressive myeloid cells 

are termed myeloid-derived suppressor cells (MDSCs) by most investigators. 

MDSCs are comprised of myeloid progenitors and precursors at various stages 

of differentiation (Condamine et al. 2011). Their phenotypic characterization 

remains rather controversial due to cell heterogeneity, investigator-dependent 

phenotypic marker profiles, and tumor-dependent variability. Indeed, MDSCs 

are phenotypically similar to their immunogenic counterparts, such as 

monocytes and neutrophils. Hence, their immunosuppressive activity still 

remains as their key characteristic. Moreover, MDSC-like cells can be found in 

stress conditions exerting physiological functions such as prevention of tissue 

damage and stimulation of wound healing caused by inflammation (Youn et al. 

2010; Bronte et al. 1998). 

MDSCs are classified in two subtypes. MDSCs with a monocytic-like 

phenotype are called monocytic MDSCs (m-MDSCs) and are characterized in 

mice as CD11b+ Ly6Glow/- Ly-6Chigh (Bronte et al. 2000; Youn et al. 2008). 

MDSCs exhibiting a granulocytic-like morphology are called granulocytic MDSCs 

(g-MDSCs) and are characterized in mice as CD11b+ Ly6Ghigh Ly-6Clow/- 

(Bronte et al. 2000; Youn et al. 2008). There is evidence from the Gravilovich 
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group and our own group that murine g-MDSC arise from m-MDSC after a 

maturation process, possibly regulated by HIF1-α-dependent epigenetic 

inhibition of retinoblastoma protein (Corzo et al. 2010; Liechtenstein et al. 

2014). In humans, their phenotype is rather controversial, but they are mostly 

described as expressing CD33, CD11b and low or no HLA-DR (Almand et al. 

2001). CD11b+ CD33+ HLA-DR-/low CD15- CD14+/low correspond to m-MDSCs 

(Youn et al. 2008; Filipazzi et al. 2007), while CD11b+ CD33+ HLA-DR-/low CD15+ 

CD14- CD66b+ correspond to g-MDSCs (Slavin et al. 1979; Ko et al. 2009; Youn 

et al. 2008). Several research groups propose additional markers to describe 

human MDSC (Talmadge et al. 2013; Elliott et al. 2017). 

MDSCs show high phenotypical and functional plasticity, which further 

complicates their classification, isolation, and study. Many variables including 

growth factors, cytokines, chemokines, hypoxia, and glucose levels influence 

their differentiation, accumulation, and function (Gabrilovich et al. 2012). The 

exact combination of signals and mechanisms influencing MDSC accumulation, 

function, and activation remain a subject of current investigation (Gabrilovich et 

al. 2012; Talmadge et al. 2013). 

Nonetheless, MDSC accumulation correlates with cancer progression 

(Solito et al. 2011; Almand et al. 2000) and metastasis (Steding et al. 2011; Diaz-

Montero et al. 2009). There is an inverse correlation between MDSC numbers 

and T cell numbers in tumor-bearing mice (Joice et al. 2014). MDSC depletion 

restores NK and T cell function and numbers in murine models and patients (Li 

et al. 2009; Thaci et al. 2014b; Srivastava et al. 2012; Thaci et al. 2014a). MDSCs 

induce NK cell anergy (Li et al. 2009), and there is evidence demonstrating 

inhibition of effector T cells by both antigen-specific and non-specific 

mechanisms. MDSC-dependent antigen-specific T cell suppression is probably 

mediated during antigen presentation through negative co-stimulation and by 

immunosuppressive cytokines, leading to T cell anergy, apoptosis or Treg 

differentiation (Figure 6). This mechanisms is similar to that of tumor-infiltrating 

tolerogenic DCs. Antigen non-specific inhibition relies on secretion of 

immunosuppressive cytokines such as IL10 and TGF-β, depletion of essential 
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aminoacids such as L-arginine by arginase-1 and/or iNOS (Liechtenstein et al. 

2014) activity or tryptophan by IDO (Gabrilovich et al. 2009), and secretion of 

reactive oxygen and nitrogen species (ROS, RNS and NO) by NOX2 or iNOS 

respectively (Nagaraj et al. 2007; Corzo et al. 2009). These mechanisms can also 

induce Tregs (Gabrilovich et al. 2009; Escors et al. 2010; Nagaraj et al. 2007). 

Extensive interaction exists between MDSCs and tumour cells. MDSCs help 

tumour cells escape the immune system and aid in progression, angiogenesis, 

and metastasis by secreting cytokines, chemokines, and matrix 

metalloproteinases (MMPs) (Liu et al. 2012) (Figure 5). Tumour cells on the 

other hand positively enhance MDSC differentiation from the BM. 

Nonetheless, counteracting their activities strongly enhances anti-

cancer treatments (Sevko et al. 2013). Early observations in cancer patients 

demonstrated that the concentration of peripheral blood MDSCs were 

positively correlated with tumor burden and clinical stage; surgical removal of 

tumors decreased circulating MDSCs numbers (Diaz-Montero et al. 2009; Zhang 

et al. 2013; Almand et al. 2001). Many of the current studies demonstrating the 

efficacies of MDSC-targeted therapies are in murine models or early clinical 

trials. Treatment strategies can be categorized as, some examples are showed 

(Table 1): 

1. Inhibiting MDSC development and expansion: stem cell factor 

blockade by sorafenib (Sevko and Umansky 2013) ; multi kinase inhibitors like 

sunitinib (Ko et al. 2010); JAK2/STAT3 blockade by curcumin or docetaxel  (Lin 

et al. 2010); VEGF inhibition (Fricke et al. 2007); migration blockade by or CSF-

1, (Priceman et al. 2010) or MMP9 (Gnant et al. 2015; Diel et al. 1998; Markowitz 

et al. 2014; Guan et al. 2015); CCR2 (Wang-Gillam et al. 2016), CCR5 (Yang et al. 

2018) and IL8 Inhibitors (Alfaro et al. 2016) and vemurafenib (Curtin et al. 2005). 

2. Differentiating MDSCs into more mature cells: ATRA, IL12 (Repka et 

al. 2003; Ansell et al. 2002; Pen et al. 2013) and PI3K inhibitors (Galloway et al. 

2016; Davis et al. 2017). 

 

3.  Inhibiting MDSC function: via NO inhibition by phosphodiesterase 

(Diaz-Montero et al. 2009) /nitroaspirin (Molon et al. 2011), or ARG-1 inhibition 
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by L-NAME (Reisser et al. 2002) /COX2 inhibitors (Fujita et al. 2011). 

 

4. MDSC destruction: cytotoxic agents like 5-fluorouracil (Vincent et al. 

2010), doxorubicin (Diaz-Montero et al. 2009), gemcitabine (Suzuki et al. 2005), 

cisplatin (Elias et al. 2015), HSP90 inhibitors (Rao et al. 2012) or anti IL13 

(Kalinski et al. 2017). 
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Table 1. Current treatment strategies of MDSC inhibition categorized by 

general mechanisms of action. CSF: colony stimulating factor, COX-2: 

cyclooxigenase-2, HSP: heat shock protein, iNOS: inducible nitric oxide synthase, 

IL: interleukin, JAK: janus kinases, L-NAME: N-nitro-L-arginine methyl ester, 

MMP-9: metalloproteinase-9, MDSC: myeloid derived suppressor cell, PDE-5: 

phosphodiesterase-5, PGE: prostaglandin E, RNS: reactive nitrogen species, ROS: 

reactive oxygen species, STAT: signal transducer and activator of transcription, 

VEGF: vascular endotelial growth factor, CCR2/5: C-C chemokine receptor type 

2/5. 

 
 
However, MDSC differentiation and functions are still poorly 

understood. This is due to the difficulty of isolating them from the tumor, which 

requires very large numbers of mice (Maenhout et al. 2014; Escors et al. 2013; 

Condamine et al. 2014; Thaci et al. 2014b; Youn et al. 2008; Schouppe et al. 

2013; Corzo et al. 2010). Isolation from the spleen (Corzo et al. 2010; Maenhout 

et al. 2014) yields MDSCs that do not faithfully resemble tumor-infiltrating 

subsets. Large batches of intra-tumor MDSCs purified by standard procedures 

are usually contaminated with other myeloid cells, do not proliferate well ex 

vivo, lack plasticity of differentiation and are prone to apoptosis (Youn et al. 

2008; Escors et al. 2013; Condamine et al. 2014). 

Therefore, the molecular study of MDSCs is certainly a challenge. Our 

group devised a highly efficient, rapid and economic method to produce very 

large numbers of MDSCs ex vivo that resembled melanoma-infiltrating subsets 

without inducing tumors in mice (Liechtenstein et al. 2014) (Figure 8). This 

system allowed the study of MDSC biology in controlled conditions at a very low 

cost. 
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Figure 8. Simulation of tumor environment for the ex vivo differentiation of 

MDSCs from BM cultures. Schematic representation of the generation of MDSCs. 

Scheme of the lentivector construct co-expressing murine GM-CSF and 

puromycin resistance genes. Cancer cell lines are transduced with the lentivector 

LV-GMCSF-puroR. Conditioning medium (CM) is collected from GM-CSF-

expressing cells to simulate myelopoiesis within a tumor environment. BM cells 

from healthy C57/Bl6 mice were cultured in the presence of CM for minimum 5 

days. LTR, long terminal repeat; SFFV, spleen focus-forming virus promoter; 

moGM-CSF, mouse GM-CSF gene; Puromycin R, puromycin resistance gene; UBI 

p, ubiquitin promoter; SIN, self-inactivating LTR. 

 
 
In a previous publication that was the basis of this PhD thesis, we initially 

compared these MDSCs to no-neoplastic counterparts and to conventional DC 

using quantitative proteomics and systems biology approaches (Liechtenstein 

et al. 2014). Differentially activated/deactivated pathways caused by cell type 

differences and by the melanoma tumor environment were identified 

(Liechtenstein et al. 2014). MDSCs increased the expression of trafficking 

receptors to sites of inflammation and tumors like c-type lectins, adhesion or 

TLR-associated molecules. MDSCs showed enhanced expression of proteins 

involved in endocytosis and vesicle trafficking, that are linked to the activity 
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of intracellular signaling pathways known to be active in M DSCs (SRC, 

Ras, Stat3, NF-Kb, MAPK…). An increased expression of nucleous 

proteins involved in transcription,splicing and translation was 

observed, which indicates that MDSCs were in an active metabolic 

state, that are furthermore linked to NOS/ROS production and responses to 

hypoxia. In order to obtain energy (as aerobic ATP production in down 

modulated) lipid metabolism is increased by ApoB receptor, Perilipin 3 or 

mitochondrial proteins. All those processes generates highly toxic metabolites, thus, 

detoxification enzymes and ROS scravenger proteins such as P450 reductase or 

Sod2 are upregulated. Differences between tumor enviroment pointed to an 

adaptation to oxidative stress. Neoplasic MDSC upregulate antoxidant enzymes like 

Sod1 and peroxiredoxin 6. Furthermore they increase aminoacid synthesis by D3-

phosphoglycerate dehydrogenase. This study provided more than 60 novel 

potential MDSC-specific therapeutic targets and confirmed known targets such 

as P405R, STAT3 (Emeagi et al. 2013), Sod2 (Hartmann et al. 2013) and S100 

proteins (Qin et al. 2014) (Figure 9). 
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Figure 9: Comparative quantitative proteomics between ex vivo B16-MDSCs 

and conventional immature DCs using Protein Pilot (A) Schematic diagram 

integrating the biological relationships and pathways inferred from the up-

regulated proteins in B16- MDSCs using String 9.1, DAVID and Panther programs. 

All significantly increased proteins are indicated, grouped according to cell 

location. Arrows indicate direct pathways between the indicated protein groups. 

In dark blue, detoxifying enzymes. Proteins within green boxes indicate pathways 

which are predicted to be activated from biological interactions of the up-

regulated proteins. (B) Same as a, but representing differences caused by the 

tumor environment as highlighted after comparing non-neoplastic 293T- MDSCs 

with melanoma-specific B16-MDSCs. 

 
 
To derive human MDSCs in vitro, the starting material is frequently 

peripheral blood mononuclear cells (PBMCs), as the isolation of bone marrow 

precursors is an invasive procedure and not practical for these studies. So the 

differentiation efficiency is much lower compared to murine models, as these 

cells are fairly differentiated to start with.  

 In addition, MDSCs isolated from patients are still poorly characterized 

it is challenging to compare ex vivo differentiated MDSCs with their natural 

counterparts. Therefore, the detailed differentiation and characterization of 

human MDSCs populations is still at very early stages. We are working on that 

issue and maybe soon we are able to obtain human MDSC in an easily, cheap 

and efficiently way. Once, this system is ameliorated, human MDSCs could be 

generated by patient-specific tumor cells and high troughtput analyses could be 

done in order to describe new potential therapeutic targets. 
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5.3. Programmed death-1 ligand 1 (PD-L1)/programmed death-1 

(PD-1) interactions 

T lymphocyte activity is regulated by immune checkpoint interactions. 

Growing tumors harness these inhibitory signals to stop T cell cytotoxicity. My 

Ph.D. thesis will focus on PD-1/PD-L1 interaction, a classical research model in 

our group. 

 
5.3.1. PD-1 and PD-L1 structure, expression and signal 

transduction 

Programmed cell death (PD-1) is a member of the CD28 superfamily 

expressed on T cells after activation (Michael et al. 2017). PD-1 is also expressed 

at low levels on double-negative (CD4-CD8) T cells in the thymus, Tregs, activated 

natural killer T cells and in B cells. There are reports on its expression by 

monocytes and immature Langerhans´cells (Michael et al. 2017), and also by 

some cancer cells including human and murine melanoma (Kleffel et al. 2015). 

This latter claim is rather controversial. PD-1 is a type I transmembrane protein 

consisting on an extracellular N- terminal immunoglobulin variable-like region 

(IgV), a stalk that separates the IgV domain from the plasma membrane, a 

transmembrane domain, and a cytoplasmic tail containing tyrosine-based 

signaling motifs. These motifs consist of an immunoreceptor tyrosine-based 

inhibition motif (ITIM), and an immunoreceptor tyrosine-based switch motif 

(ITSM) (Michael et al. 2017), (Figure10A). These motifs regulate PD-1 signal 

inhibitory functions. More specifically, PD-1 recruits SHP phosphatases to its 

ITIM and ITSM motifs, thereby inducing dephosphorylation of TCR-associated 

kinases such as ZAP70 and PI3K. Consequently, downstream intracellular 

pathways are terminated such as AKT, ERK, and PKCƟ. In addition, PD-1 on 

antigen-activated T cells participates in the internalization of the TCR which 

restrains T cell activities during the exponential phase of T cell expansion 

((Michael et al. 2017; Burnet et al. 1970). This mechanism involves the 

transcriptional up-regulation of E3 ubiquitin ligases of the CBL family, 

consequent ubiquitination and down modulation of the TCR facilitating T cell 

disengagement from APCs (Figure 10A). 
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PD-L1 is a type I transmembrane protein which belongs to the B7 family 

of molecules that regulate antigen presentation to T cells. PD-L1 is expressed 

constitutively by professional APCs and on a wide variety of non-hematopoietic 

cell types, including vascular endothelial cells, pancreatic islet cells, and in cells 

from immune-privileged sites such as the placenta, testes, and eye. PD-L1 

expression can be up-regulated by proinflammatory cytokines including type I 

and type II interferons, tumor necrosis factor (TNF-α), and VEGF2 or induced in 

some PD-L1-negative cell types (Karwacz et al. 2012; Arasanz et al. 2017). It is 

likely that PD-L1 up-regulation at inflammation sites represents a natural 

negative feedback mechanism to restrain T cell activities and minimize collateral 

damage. Many studies have shown that PD-L1 expression is transcriptionally 

regulated by distinct stimuli depending on the cell type, physiological and 

pathological conditions. For example, the PDL1 expression is regulated by Sox2 

in hepatocellular carcinoma (Zhong et al. 2017), STAT3 in human glioma (Kumar 

et al. 2014) and STAT1 in multiple myeloma (Liu et al. 2007). The variety of 

mechanisms that regulate PD-L1 expression is a reflection of roles that this 

molecule is playing in physiological conditions depending on location and cell 

type. 

PD-L1 belongs to the immunoglobulin superfamily, and hence it presents 

an immunoglobulin-like extracellular part, followed by a transmembrane 

domain and a short intracytoplasmic domain (Figure 10B). The extracellular 

domain is composed of an Ig variable (V) distal region and an Ig constant (C) 

proximal region. The variable region shows a standard Ig-like domain which 

includes complementarity determining-like regions (CDRs). PD-L1 binds to PD-1 

in a 1:1 stoichiometry through its V-domain in analogy to antigen recognition by 

antibodies and TCRs (Zak et al. 2015). Interestingly, and in contrast to PD-1, 

there are very scarce studies on intracellular signal transduction events induced 

by PD-L1. Indeed, no obvious sequence motifs in the intracytoplasmic domain 

have been either predicted or identified up until now (Gato-Cañas et al. 2017; 

Azuma et al. 2008) (Figure 10B). 
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In 2008 Azuma et al. provided evidence that PD-L1 possessed intrinsic 

capacities to transmit signals to cancer cells that protected them from T cell-

mediated killing independently from its direct inhibitory action towards T cells 

through PD-1 binding (Azuma et al. 2008). Firstly they tested the susceptibility of 

cancer cell lines to T cell-mediated killing in the presence or absence of anti-PD-

L1 antibodies using cancer cells that expressed a PDL1 molecule in which its 

intracellular domain was replaced by GFP (Azuma et al. 2008). Later, by using T 

cells expressing signal-null PD-1 to prevent its signaling  in co-culture studies 

with cancer cells, the authors demonstrated that the protective action of PD-

L1´s “molecular shield” was absolutely dependent on the intracellular domain 

of PD-L1, whether it engaged PD-1 or not. Nevertheless, Azuma and cols could 

not determine the exact molecular pathways by which PD-L1 was exerting its 

protective activities, nor its motifs regulating signal transduction (Azuma et al. 

2008). Chang et al. 2015 demonstrated that tumors derived from sarcoma cells 

consume large quantities of glucose, depleting the tumor microenvironment of 

glucose (Geng et al. 2008; Palmer et al. 2015). Treatment of cancer cells with a 

PD-L1 blocking antibody or silencing PD-L1 with shRNA inhibited the AKT/mTOR 

signaling axis, leading to reduced translation of mRNAs encoding glycolytic 

enzymes (Palmer et al. 2015). These results strongly suggested that PD-L1 

molecules were regulating the metabolism of cancer cells by controlling 

intracellular pathways such as AKT/mTOR. Shortly after, it was again 

corroborated that PD-L1 delivered intracellular signals in the absence of T cells 

which regulated the mTOR pathway in murine B16 melanoma and ID8agg 

ovarian cancer cells (Clark et al. 2016). However, this study did not directly 

address whether PD-L1 was exerting these effects through signaling or not. 
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Figure 10. PD-1-PD-L1 structure. (A) PD-1-dependent T cell inhibitory 

mechanisms. In the figure, the two main inhibitory mechanisms exerted by PD-

1 ligation are depicted. The TCR complex including the co-stimulatory molecule 

CD28 is associated closely to PD-1, which is up-regulated following antigen 

presentation. SHP phosphatases associate with the phosphorylated ITIM and 

ITSM motifs in the cytoplasmic domain of PD-1, as shown in the figure. These 

proteins de-phosphorylate and inhibit kinases mediating TCR signal transduction 

such as ZAP70 and PI3K (blue arrows). Downstream intracellular pathways are 

terminated as exemplified in the figure with AKT, ERK, and PKCƟ. This 

mechanism is probably activated after the recognition of target cancer cells to 

limit T cell effector activities. The second major mechanism plays a key 

regulatory role during antigen presentation to and activation of naïve T cells. It 

involves the transcriptional up-regulation of CBL E3 ubiquitin ligases as shown, 

that trigger TCR endocytosis by its ubiquitination. Hence, TCRs are removed from 

the T cell surface, facilitating their disengagement from APCs (red arrow). ITM, 

immunoreceptor tyrosine-based activation motif; ITSM, immunoreceptor 

tyrosine-based switch motif. α and β, TCR alpha and beta chains; CBL, casitas B-

lineage lymphoma protein. (B) PD-L1 intracellular signaling. The figure 

represents the main mechanisms by with PD-L1 intrinsically transmits signals to 

tumor cells or APCs before publication of the data from this PhD thesis. PD-L1 

signals inhibit apoptosis and increase mTOR-AKT signaling leading to elevation 

of glucose consumption, inhibition of autophagy inhibition and increased 

proliferation. 
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5.3.2. PD-L1/PD-1 interactions within the tumor environment 

A significant number of tumors constitutively express PD-L1 or can up-

regulate PD-L1 in response to an inflammatory environment (Thomas 

Condamine and Gabrilovich 2011) leading to inhibition of T cell functions and 

cytotoxicity (Fife et al. 2009; Katarzyna Karwacz et al. 2011; Herrmann et al. 

2015; Gato-Cañas et al. 2017). Indeed, oncogenic activation of pathways such 

as AKT-mTOR, EGFR, MEK-ERK signaling axis and possibly the MAPK p38 pathway 

contribute to PD-L1 up-regulation (Lastwika et al. 2016; Minchom et al. 2017; Ota 

et al. 2015; Noh et al. 2015). Genomic amplifications containing the gene 

encoding PD-L1 are also frequently selected in cancer cells, and likely linked to 

increased PD-L1 levels (Straub et al. 2016). PD-L1 expression is also enhanced 

by hypoxia (Noman et al. 2014; Ruf et al. 2016; Chang et al. 2016) and regulated 

through epigenetic mechanisms. For example, microRNA 513 down-modulates 

PD-L1 mRNA translation in human cholangiocytes (Gong et al. 2010) and 

microRNA 152 in gastric carcinoma (Wang et al. 2017). In some cases, the 

structure of the 3´UTR of its mRNA is disrupted in several cancer types, which 

constitutively increases PD-L1 expression levels in cancer cells (Kataoka et al. 

2016). Therefore, there is abundant experimental evidence on the correlation 

between high PD-L1 expression and tumor progression and aggressiveness.  

PD-L1 tumor expression strongly correlates with poor prognosis (Gato- 

Cañas et al. 2017) although not in all tumor types. Overall, the experimental 

evidence points to PD-L1 intrinsic signal transduction as a means to interfere 

with pro-apoptotic stimuli and enhance cancer cell proliferation. Furthermore, 

in 2008 Takeshi et al. proposed PD-L1 as a universal anti-apoptotic receptor 

(Azuma et al. 2008). The authors of this study demonstrated that PD-L1 

expression makes cancer cells refractory to Fas-induced apoptosis, resistant to 

the protein kinase inhibitor Staurosporine and to T cell cytotoxicity following 

binding to PD-1 (Azuma et al. 2008). 
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5.3.3. PD-L1/PD-1 blockade in human anti-cancer therapy 

Monoclonal antibodies (mAbs) that block immune checkpoints can 

restore the anti-tumor activities of cytotoxic T cells (Ito et al. 2015).  

The first clinically efficacious activities for anti-PD-L1 and anti-PD-1 

antibodies were demonstrated in 2012 by Topalian et al. (Brahmer et al. 2010, 

Brahmer et al. 2012) since then anti PD-1 or anti PD-L1 antitibodies have been 

approved for an increasing number of cancers such as melanoma, lung cancer, 

and gastric adenocarcinoma, just to mention a few.  

Antibodies approved for human clinical use include nivolumab and 

pembrolizumab anti–PD-1 agents (Ansell et al. 2015; Robert et al. 2014), and 

atezolizumab, durvalumab, avelumab as anti–PD-L1 (Gato-Canas et al. 2016). 

There are still ongoing many phase II or III clinical trials in numerous cancers. 

 

The first to show significant therapeutic efficacies in human melanoma 

was ipilimumab, a CTLA-4-specific antibody that blocks its interaction with CD80 

(Peggs et al. 2006; Quezada et al. 2006; Herrmann et al. 2014; Walker et al. 2011; 

Pardoll et al. 2012; Hodi et al. 2008; Postow et al. 2015; Weber et al. 2013; 

Tomasini et al. 2012). Focussing on melanoma treatment aproved by the FDA 

and in clinical use, Nivolumab has demonstrated highly durable tumor 

regressions (>1 year) with good safety profiles in metastatic melanoma 

(Topalian et al. 2012; Ansell et al. 2015; Topalian et al. 2014). Pembrolizumab 

has an optimized Fc region that minimizes antibody-dependent cellular 

cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) (Moreno et 

al. 2015) with durable responses for advanced melanoma (Hamid et al. 2013). 

Both have superior clinical effects and a better safety profile than 

chemotherapy and ipilimumab monotherapy (Robert et al. 2014; Weber et al. 

2015). Both antibodies are approved as first-line agents in melanoma 

patients(Force et al. 2017; Barnhart et al.  2015), and pembrolizumab recently 

in lung cancer in monotherapy and in combination with platinum chemotherapy  

(Gandhi et al. 2018). Furthermore, last year, the FDA approved pembrolizumab 

for all type of solid tumors with microsatellite instability that have progressed 

with previous treatments (https://www.fda.gov/). Nivolumab is being used in 

https://www.fda.gov/
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combination therapy with ipilimumab increasing survival rates (Wolchok et al. 

2013) in metastasic melanoma and renal cell carcinoma. (Figure 4).  

 

5.3.4. Resistance to PD-L1/PD-1 blockade 

Two major challenges remain for an optimal management of anti-cancer 

therapies. First, a significant number of patients who are refractory to the 

initial application of the treatment (intrinsic resistance). Secondly, tumor 

progression from cancer cells that have acquired resistance by several means 

after an initial phase of objective responses. Possibly, the major goal in oncology 

is the identification of patients who will benefit from therapies and the 

identification of the mechanisms leading to acquired resistance. Some 

mechanisms of adaptive resistance to PD-L1/PD-1 blockade therapy have 

been described. For example, upregulation of alternative immune checkpoints 

such as TIM-3, to compensate for the PD-1 blockade in T cells (Koyama et al. 

2016; Kim et al. 2016; Shaked et  a l .  2016). The loss of beta2-microglobulin 

(ß2m) through inactivating mutations leading to the elimination of MHC I 

surface expression (Restifo et al. 1996). A role for ß2m in acquired resistance 

to PD-1 blockade in melanoma was recentlysupported by a study reporting a 

ß2m truncating mutation in relapsing lesions (Zaretsky et al. 2016). 

Evaluation of the cancer secretome by proteomics is helping in the 

identification of resistance to immune checkpoint blockade (Skalnikova et al. 

2017; Choi et al. 2012). Recently, several candidate biomarkers have been 

identified that correlate with clinical benefit, including the apelin receptor 

(APLNR) (Patel et al. 2017). Other immune-related genes have been 

demonstrated to be required for efficacious immunotherapies including antigen 

presentation (PD-L1, CD47) and IFN gamma signalling molecules (PTPN2, STAT1, 

JAK1, IFNGR2, IFNGR1, or JAK2) (Manguso et al. 2017). 

An intact interferon signal transduction pathway in cancer cells seems to 

be required for the efficacy of PD-L1/PD-1 blockade therapy. Inactivating 

mutations in JAK1/2 genes were linked to the failure of PD-L1 up-regulation in 

cancer cells, becoming refractory to therapy (Zaretsky et al. 2016; Shin et al. 

2017). The authors of these studies hypothesized that lack of adaptive PD-L1 
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expression was also the cause of primary resistance to PD-1 blockade (Shin et 

al. 2017). 

 
 

 
6. LENTIVECTOR-BASED GENETIC IMMUNOTHERAPIES 

 
In this Ph.D. thesis, lentiviral vectors (lentivectors) are used for genetic 

immunotherapy and as gene-modifying tools. Lentivectors have been 

extensively reviewed elsewhere (Escors et al. 2013; Trono et al. 2000; Escors et 

al. 2010), and here they will only briefly explained for understanding the context 

of the experiments in which they have been used. 

 

6.1. Lentivector structure and production 

Most lentivectors are derived from the HIV-1 genome devoid of 

virulence and replication genes, leaving space for insertion of promoter 

sequences and genes of interest. These vectors have been improved to achieve 

a high degree of biosafety (He and Falo 2007). Most of them are self-inactivating 

lentivectors, in which most of the U3 promoter region is eliminated following 

integration into the target DNA (Zufferey et al.1998), and thereby reducing the 

likelihood of producing replication-competent viruses (Figure 11). 

Lentivectors are usually assembled in 293T cells and secreted to the cell 

culture supernatants following co-transfection of three plasmids: the transfer 

vector plasmid, the packaging plasmid, and the envelope plasmid. The transfer 

vector will produce an RNA encoding the whole vector that will be packaged by 

the structural and non-structural proteins encoded by the packaging plasmid. 

The envelope plasmid will produce a membrane glycoprotein that will cover the 

lentivector particle conferring the desired specificity for different cell receptors 

(Figure 11). 

The packaging plasmid used in this thesis (p8.91) encodes the HIV-1 gag-

pol, rev, and tat genes under the control of the cytomegalovirus early promoter 

(CMV), but lack accessory genes (vif, vpr, vpu, nef) (Zufferey et al. 1997) (Figure 

11). 
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The envelope plasmid used in this thesis is the pMDG and encodes the 

vesicular stomatitis virus G protein (VSV-G) under the control of the CMV 

promoter. VSV-G pseudotypes the lentivector particle conferring the vector a 

wide species and cell type tropism (Akkina et al. 1996; Naldini et al. 1996; Yee 

et al. 1994) (Figure 11). 

The transfer lentivector plasmid used in this thesis is the pSIN vector as 

shown in Figure 11 (Escors et al. 2008). Summarizing, this is a second 

generation, self-inactivating lentivector that contains the spleen focus-forming 

virus promoter (SFFV) followed by the gene of interest. This vector was used as 

the basis for constructing the pDUAL and the pHIV-SIREN lentivector plasmid 

series (Figure 11). Briefly, the pDUAL lentivector contains the SFFV and the 

human ubiquitin promoters to co-express two genes. A pDUAL version 

containing a PD-L1-targeted microRNA was designed by Liechtenstein et at 

(Liechtenstein et al. 2014). The pHIV-SIREN plasmids contain the U6 promoter 

to express shRNAs, and the phosphoglycerate kinase promoter (PGKp) to 

express selection genes (antibiotic resistances) (Gato-Cañas et al. 2017) (Figure 

11). 

An “all-in-one” CRISP/CAS9-sgPD-L1 lentivector was generously donated 

by Prof. Karine Breckpot from the Free University of Brussels (Belgium) to 

disrupt the PD-L1 gene (Figure 11D). 
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Figure 11. Lentivector structure and production. (A) The three lentivector 

production plasmids are shown. The packaging plasmid contains the structural 

and enzymatic genes from HIV required for reverse transcription, integration, 

and assembly, such as Gag-Pol- Rev-Tat. The envelope plasmid encodes VSV-G 

in this case. The transfer vector plasmid lacks all the genes that are provided in 

trans by the packaging plasmid. In this figure the transfer vector is the we use a 

pSIN vector that contains long-terminal repeats or LTRs (U3- R-U5), including a 

self-inactivating 3’ end LTR (SIN-R-U5) and an expression cassette. This cassette 

is made of the spleen focus-forming virus (SFFV) promoter controlling the 

expression of the gene of interest. Ψ, Rev response element (RRE), central 

polypurine flap (cPPT) and woodchuck post-transcriptional response elements 

(WPRE) are shown. 

 (B) pDUAL lentivector contains two promoters to co-express two different 

genes, the SFFV and the human ubiquitin promoter. A version was generated to 

include a PD-L1-targeted microRNA. 

 (C) The pHIV-SIREN plasmid contains the U6 promoter to express shRNAs and the 

SFK promoter encoding the selection antibiotic or other gene of interest.  

(D) “All-in-one” lentivector plasmids to eliminate expression of PD-L1 by 

disrupting the gene using CRISPR-Cas9 technology. The plasmid was generously 

donated by Prof. Karine Breckpot. 
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6.2. Lentivectors for genetic cancer immunotherapy 

Subcutaneous lentivector injection transduces human and mouse APCs 

(Esslinger, Romero, and MacDonald 2002) and displays significant T cell 

adjuvant activities by providing TLR ligands to APCs (Breckpot et al. 2007; 

Breckpot et al. 2010; Esslinger et al. 2003; Rossetti et al. 2011). Our research 

group has been working during the last years to use them as cancer vaccines. 

Lentivectors have a good biosafety profile for their application in human 

therapy. For example, integration-deficient lentivectors remain in the nucleus 

as episomes (Hu, Dai, and Wang 2010; Yanez-Munoz et al. 2006) to prevent 

genotoxicity in human therapy (Hu et al.  2010; Yanez-Munoz et al. 2006). There 

is now extensive experience in production of clinical grade lentivector batches 

with high biosafety profiles (Levine et al. 2006). Hence, lentivectors have been 

used for the treatment of HIV and in human gene therapy clinical trials (X-linked 

adrenoleukodystrophy, β-thalassaemia, and advanced leukaemia) without 

major concerns (Cartier et al. 2009; Levine et al. 2006; Tebas et al. 2013; 

Cavazzana-Calvo et al. 2010; Porter et al. 2011; Kalos et al. 2011). 

Lentivectors are used in two ways for genetic cancer immunotherapies. 

First, they can modify T cells to express TCRs of interest or chimeric antigen 

receptors (CARs). Complete remissions in 90% of relapsed and refractory acute 

lymphoblastic leukemia (ALL) patients were achieved using lentivector-modified 

T cells (Maude et al. 2014). Secondly, lentivectors induce immune responses by 

direct administration as they transduce preferentially conventional DCs leading 

to transgene expression, processing and antigen presentation in draining lymph 

nodes (Goyvaerts et al. 2015). Hence, lentivector transduction of DCs (Bukrinsky 

et al. 1993; Naldini et al. 1996) does not affect their viability or antigen 

presenting capabilities (Breckpot et al. 2003; He et al. 2005; He et al.  2006; 

Gruber et al. 2000; Zarei et al. 2002; Dyall et al. 2001; Karwacz et al. 2012). Direct 

transfer of transduced DCs achieves prolonged in vivo antigen presentation in 

murine models, increasing the potency and duration of CTL responses (He et al. 

2006). 
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Escors et al demonstrated that DCs could be effectively transduced and 

matured using lentivectors that expressed MAPK kinase and IFN-pathway 

activators, or ERK inhibitors, thereby boosting anti-lymphoma immunity in 

murine models (Escors et al. 2008). 

The co-expression of some of these DC molecular activators with a PD-

L1-targeted microRNA using lentivectors further enhanced their 

immunogenicity (Karwacz et al. 2011). A new generation of lentivector vaccines 

was also engineered by Lienchtestein et al. co-expressing melanoma antigens, 

the PD-L1 microRNA, and various T cell-polarizing cytokines (Liechtenstein et al. 

2014). The combination of IL12 expression with PD-L1 silencing counteracted 

MDSC suppressive activities and significantly enhanced anti-melanoma 

immunity in prophylactic and therapeutic vaccination strategies (Liechtenstein 

et al. 2014). The group of Prof. Breckpot developed a fusion gene of IFNβ with 

the ectodomain of TGFBR-II (a TGF-β trap), called Fβ2. Its expression from a 

mRNA vaccine reduced tumor cell proliferation, enhanced DC antigen 

presenting capabilities and reduced MDSC suppressive activities (Van der 

Jeught et al. 2014). 

Considering previous results from our group, in this Ph.D. thesis I 

designed lentivector plasmids to study PD-L1 biology and related signal 

transduction pathways, engineering vaccines with superior efficacies against 

melanoma, and modify MDSCs. 
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7. Ph.D. AIMS 

 
The main goals of this Ph.D. thesis were the study of two major immunological 

barriers for melanoma immunotherapy and the identification of novel therapeutic 

targets. In the first part, I characterize and identificate PD-L1 intracellular signaling 

motifs and their anti-interferon functions. In the second part, I describe MDSCs 

proteome and specific signaling pathways involved in its suppressive function. The 

specific aims of the Ph.D. are: 

1. Identification of the mechanisms of melanoma resistance to interferon 

cytotoxicity mediated by PD-L1 intracellular signalling. 

 

2. Quantitative study of the proteome of melanoma-specific MDSC for the 

identification of potential therapeutic targets. 
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SUMMARY 

PDL1 blockade produces remarkable clinical responses, thought to occur 

by T cell reactivation through prevention of PDL1-PD1 T-cell inhibitory 

interactions. Here we find that PDL1 cell-intrinsic signaling protects cancer cells 

from interferon (IFN) cytotoxicity and accelerates tumor progression. PDL1 

inhibited IFN signal transduction through a conserved class of sequence-motifs 

that mediate crosstalk with IFN-signaling. Abrogation of PDL1 expression or 

antibody-mediated PDL1 blockade strongly sensitized cancer cells to IFN 

cytotoxicity through a STAT3/caspase-7 dependent pathway. Moreover, somatic 

mutations found in human carcinomas within these PDL1 sequence-motifs 

disrupted motif-regulation resulting in PDL1 molecules with enhanced protective 

activities from type I and type II IFN cytotoxicity. Overall, our results reveal a 

mode of action of PDL1 in cancer cells as a first line of defence against IFN 

cytotoxicity. 

 

INTRODUCTION 

Programmed death 1 ligand 1 (PDL1) is a member of the B7 family of co-

stimulatory/co-inhibitory molecules expressed by a wide variety of cell types 

including tumors (Sharpe et al., 2007). PDL1 is a transmembrane protein 

consisting of an immunoglobulin-like extracellular part, followed by a 

transmembrane domain and a short intracytoplasmic domain. Programmed 

death 1 (PD1) is its prototypical receptor, which is expressed mainly by effector 

immune cells such as B and T cells (Freeman et al., 2000; Zak et al., 2015). 

However, PDL1 can also bind CD80 (Butte et al., 2007). The physiological role of 

PDL1 is to maintain peripheral tolerance and contribute to antigen presentation 

to T cells by dendritic cells (Karwacz et al., 2011; Sharpe et al., 2007). In neoplastic 

conditions, PDL1 tumor expression strongly correlates with increased 

progression and poor prognosis, being an indicator of resistance to conventional 

treatments such as chemotherapy and radiotherapy. 

It is widely accepted that PDL1 protects cancer cells by engaging with PD1 

expressed on the surface of activated cytotoxic T cells (Fife et al., 2009). This 

engagement is strongly inhibitory to T cells leading to decreased effector 



81 
 

activities. As a consequence, PDL1-engaged PD1 in T cells interferes with the T 

cell receptor (TCR) signalosome stopping T cell cytotoxic activities and production 

of cytokines such as interferons (IFNs) (Fife et al., 2009; Karwacz et al., 2011). 

Recent evidence suggests that PDL1 can activate intrinsic signals in the absence 

of PD1 that enhance cell proliferation and survival through the inhibition of 

autophagy and mTOR activation (Clark et al., 2016; Chang et al., 2015). However, 

in contrast to PD1, there is still very little evidence for specific signal transduction 

events induced by PDL1. No obvious sequence motifs in the intracytoplasmic 

domain with signal transduction capacities have been either predicted or 

identified so far (Azuma et al., 2008). 

PDL1/PD1 blockade therapy has achieved unprecedented therapeutic 

clinical success for a variety of cancers including melanoma. PDL1/PD1 blocking 

antibodies cause the recovery of T cell anti-tumor cytotoxicity and production of 

IFNs that inhibit tumor cell growth and survival. Therefore, a significant number 

of treated patients experience long-lasting anti-tumor responses (Hodi et al., 

2016). However, a large number of patients are still intrinsically resistant to anti-

PDL1/PD1 therapy, or exhibit tumor progression after a period of therapeutic 

responses. Recently, it has been shown that inactivating mutations in JAK1, JAK2 

and β2-microglobulin genes in cancer cells are responsible for primary and 

acquired resistance to anti-PD1 therapy in a cohort of cancer patients (Shin et al., 

2017; Zaretsky et al., 2016). As IFN signals are potent transcriptional 

transactivators of PDL1, these mutations inhibited PDL1 upregulation in cancer 

cells. The authors proposed that the loss of PDL1 up-regulation abrogated the 

antitumor efficacy of PDL1/PD1 blockade in these patients (Sharma et al., 2017).  

Here we demonstrate that PDL1 expression represents a direct line of 

defense for cancer cells by transducing signals that counteract IFN signal 

transduction within cancer cells. Moreover, we demonstrate that the PDL1 

intracytoplasmic domain is essential for its protective functions through the 

activity of regulatory non-classical signal transduction motifs.  
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RESULTS 

IFNβ expression coupled to PDL1 silencing is lethal to melanoma cells 

To engineer an immunogenic cell-based cancer vaccine, we attempted to 

generate a B16F10 melanoma cell line with silenced PDL1 that would secrete 

IFNβ. To achieve this, we cloned the IFNβ gene into a lentivector expressing a 

PDL1-targeted microRNA (µPDL1) and a puromycin selection gene previously 

described (Karwacz et al., 2011; Liechtenstein et al., 2014a) (Figure 1A). 

Strikingly, although puromycin-resistant cells could be obtained, these cells died 

within one or two weeks of culture. To identify the component conferring 

lethality, the IFNβ gene was expressed with or without µPDL1 (Figure 1A). 

Interestingly, it was possible to generate B16 cell lines expressing high levels of 

secreted IFNβ (6 ng/ml) only in the absence of µPDL1. As these cells had very high 

surface PDL1 protein expression (Figure 1B), this indicated that PDL1 

upregulation could be an adaptation to survival from sustained IFNβ signaling. 

These results suggested that cancer cells may utilize PDL1 expression to 

negatively regulate IFN signal transduction. To confirm that toxicity associated to 

PDL1 silencing was mediated through enhanced IFNβ signaling, B16 cells with a 

silenced type I IFN receptor (B16-IFNAR1KD) were generated using lentivector 

delivery of shRNA. Additionally, B16 cells overexpressing a PDL1 mutant with 

reduced complementarity to the µPDL1 (B16-PDL1) were also generated to 

strengthen PDL1 signaling (Figure 1C). B16-IFNAR1KD cells proliferated well 

whether they expressed IFNβ or IFNβ-µPDL1 confirming that lethality was 

conferred by IFN signal transduction (Figure 1C). Importantly, PDL1 

overexpression in B16 cells overcame the inhibitory effects of IFNβ and the 

lethality of the IFNβ-µPDL1 combination (Figure 1C). Type I IFN receptor is a 

homodimer of IFNAR1 and IFNAR2 molecules, of which IFNAR1 is essential for 

signal transduction (Ragimbeau et al., 2003). As B16-PDL1 cells showed levels of 

surface IFNAR1 and IFNAR2 expression comparable to unmodified B16 cells 

(Figure 1C and not shown), we concluded that PDL1 interfered with IFNβ-signal 

transduction rather than causing IFNAR down-modulation. 
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Figure 1. PDL1 protects melanoma cells from IFNβ toxicity. (A) Lentivector 

expression vectors used in the studies. LTR, long terminal repeats; SFFV, spleen 

focus forming virus promoter; PDL1, microRNA targeting murine PDL1; UBIp, 

ubiquitin promoter; PuroR, gene conferring puromycin resistance. (B) Expression 

of surface PDL1 in B16 cells treated with recombinant IFNβ or transduced with 

the IFNβ-expressing lentivector. Data shown as flow cytometry histogram plots. 
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Numbers and percentages indicate mean fluorescent intensities and percentage 

of positive cells compared to the unstained (US) control. (C) Left, flow cytometry 

histograms for PDL1 or IFNAR1 surface expression (as indicated) in the B16 cell 

lines as shown on the right of the histograms. Numbers and percentages indicate 

mean fluorescent intensities and percentage of positive cells. Right, Bar graphs 

representing the mean relative number of cells with error bars (standard error of 

the means) after two weeks of puromycin selection following transduction of the 

indicated B16 cell lines (bottom of the graphs) with lentivectors co-expressing 

IFNβ-PuroR or IFNβ-µPDL1-PuroR. Data obtained from 10 independent 

experiments. (D) Left, flow cytometry histograms for PD1 surface expression in 

the indicated B16 cell lines on the right of the plots. Numbers and percentages 

indicate mean fluorescent intensities and percentage of positive cells. PD1C, 

indicates a PD1 protein lacking the intracytoplasmic signaling domain. On the 

right, bar graphs representing the mean relative number of cells with error bars 

(SEM) after two weeks of puromycin selection following transduction of the 

indicated B16 cell lines (bottom of the graphs) with lentivectors co-expressing 

IFNβ-PuroR or IFNβ-µPDL1-PuroR. Data was obtained from 4 independent 

experiments. (E) Flow cytometry histograms for surface expression of PDL1 (left) 

or IFNAR1 (right) on the indicated cell lines on the right of the plots. Numbers and 

percentages indicate mean fluorescent intensities and percentage of positive 

cells. PDL1C, PDL1 protein without the intracytoplasmic region.  (F) Bar graphs 

representing the mean relative number of cells with error bars (standard error of 

the means) after two weeks of puromycin selection following transduction of the 

indicated B16 cell lines (bottom of the graphs) with lentivectors co-expressing 

IFNβ-µPDL1-PuroR. Relevant statistical comparisons are indicated within the 

graphs from three independent experiments. ** and ***, indicate very significant 

(P<0.01) and highly significant (P<0.001) differences.  
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PDL1 signal transduction counteracts IFNβ toxicity 

To test whether the engagement of PDL1 with its receptor PD1 would 

deliver a protective signal against IFNβ cytotoxicity, B16 cell lines were generated 

that constitutively expressed high levels of PD1 or a mutant with a deletion of its 

intracytoplasmic domain (PD1C) incapable of signal transduction (Figure 1D). 

Both B16-PD1 and B16-PD1C cells significantly overcame the inhibitory effects 

of IFNβ expression, for which only the PD1 extracellular part was required but 

not its intracytoplasmic signaling domain. As expected, expression of IFNβ 

together with PDL1 silencing was still lethal to B16-PD1 and B16-PD1C cells 

(Figure 1D). These results demonstrated the requirement of PDL1 to transmit a 

survival signal that is nevertheless potentiated by PD1 engagement.   

To assess whether PDL1 possessed intrinsic signal transduction capacities 

that protected against IFNβ toxicity, B16 cells overexpressing a deletion mutant 

lacking the intracytoplasmic domain (B16-PDL1ΔC) were generated. This PDL1 

mutant did not have the target sequence for µPDL1 and was efficiently expressed 

on the cell surface. Again, PDL1ΔC overexpression did not alter the surface 

expression of IFNAR1 (Figure 1E and not shown). Unlike the wild-type version, 

the overexpression of PDL1ΔC did not overcome the lethality conferred by the 

co-expression of IFNβ with µPDL1 (Figure 1E). Considering these data, we 

concluded that PDL1 counteracts IFNβ cytotoxicity by signal transduction 

through its intracytoplasmic domain. 

 

Conserved motifs within the intracytoplasmic domain of PDL1 regulate 

protection from IFNβ cytotoxicity  

We then thoroughly analyzed the PDL1 intracytoplasmic domain using 

several bioinformatics tools. PDL1 presents a strongly amphiphilic 

intracytoplasmic domain without any obvious signaling domains (Figure S1). 

After extensive searches using different databases and algorithms, only 

MotifFinder produced a positive hit with a domain present in a bacterial and 

eukaryotic DNA-dependent RNA polymerase β subunit (Figure S1). No sequences 

related to signal transduction were found, suggesting that PDL1 is using non-

conventional signaling motifs. 
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Therefore, to identify PDL1 signal transduction functional domains we 

reasoned that these would be phylogenetically conserved. The intracytoplasmic 

region of 10 mammalian PDL1 molecules were aligned including the 

corresponding sequence from salmon as a divergent control (Figure 2A). Three 

conserved sequences were identified that we termed “RMLDVEKC”, “DTSSK” and 

“QFEET” motifs. PDL1 undergoes ubiquitination which leads to its destabilization 

(Lim et al., 2016), and we found that lysines 271 and 280 within RMLDVEKC and 

DTSSK motifs were putative targets for this post-translational modification 

according to the application of a random forest algorithm (Radivojac et al., 2010)  

(Figure 2A). To test the functionality of these domains, B16 cells lacking PDL1 

(B16-PDL1KO) were generated using CRISPR/Cas9 (supplemental figure 2). Then, 

a PDL1 gene was constructed to prevent its cleavage by Cas9 through mutation 

of the CRISPR/Cas9 target site while conserving the wild-type aminoacid 

sequence (PDL1wt).   PDL1wt and mutants with deletions of each motif were 

expressed in B16-PDL1KO cells (Figures 2A, S2). Two additional PDL1 mutants with 

conservative lysine-to-arginine substitutions were generated to eliminate the 

possibility of PDL1 undergoing ubiquitination within the intracytoplasmic domain 

(Figure 2A). All PDL1 mutants were efficiently transported and expressed on the 

cell surface, as assessed by flow cytometry following surface staining with PDL1-

specific antibodies (Figure S2). Then, the inhibitory activities of recombinant IFNβ 

over these B16 modified cell lines were tested by real-time monitoring of cell 

growth/viability (ACEA RTCA). An IFNβ concentration of 10 ng/ml was chosen as 

it caused at least 50% growth inhibition to B16-PDL1wt cells as assessed by RTCA. 

CRISPR/Cas9 abrogation of PDL1 (B16-PDL1KO) strongly sensitized B16 cells to 

recombinant IFNβ, and even causing cell death (Figure 2B and 2C) in agreement 

with our initial observations based on IFNβ expression with a lentivector, and also 

discarding potential off-target effects of  µPDL1 (Figure 1). PDL1 with a deleted 

QFEET motif retained its protective capacities. In contrast, removal of the 

RMLDVEKC motif completely abrogated the anti-IFNβ activities (Figure 2B). 

Interestingly, deletion of the DTSSK motif as well as lysine-to-arginine mutations 

within the RMLDVEKC or DTSSK motifs significantly enhanced resistance to IFNβ 

(Figure 2B). These results strongly suggested that DTSSK was a regulatory motif 
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that modulates anti-IFN activities. To confirm this, the conserved D, S, and K 

residues in the DTSSK motif were mutated to alanines and the resulting PDL1 

molecule was expressed well on the surface of B16-PDL1KO cells (B16-DA cells). 

The alanine replacement of these residues showed an enhancement of the 

protective functions of PDL1 against IFNβ, strongly reinforcing the evidence that 

DTSSK was an inhibitory motif of PDL1 protective functions (Figure 2C). 

Overall, we concluded that the RMLDVEKC motif was essential for PDL1 

protection against IFNβ, while the DTSSK motif and the lysines 271 and 280 acted 

as negative regulators. 

 

 

Figure 2. PDL1 protection from IFNβ cytotoxicity is regulated by conserved 

sequence motifs. (A) Alignment of the intracytoplasmic domain from PDL1 

molecules of the indicated species. In red and blue, highly conserved residues. The 

consensus sequence is shown on the bottom, with the three conserved motifs 

within open boxes. Lysines predicted to be capable of undergoing ubiquitination 

are indicated with arrows. Below the alignment, schemes indicating deletions or 

arginine substitutions are shown. (B) On the left, real time monitoring cell growth 
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graphs from B16-PDL1KO cells reconstituted with the deletion mutants shown in 

(A), as indicated. Data is shown as means from two independent cultures. On the 

right, bar graphs plotting the cell index during the last 20 hours for each mutant 

as indicated, using means from duplicates as data for the analyses. (C) As in (B), 

but using B16 cells expressing a PDL1 mutant with DSK residues mutated to 

alanines. Relevant statistical comparisons are indicated within the graph. ***, 

highly significant differences (P<0.001). 

 

STAT3-caspase 7 is the main effector pathway conferring IFNβ lethality to PDL1 

silencing 

Type I IFNs exert their activities by engaging with its receptor 

IFNAR1/IFNAR2 on the cell surface. The main signal cascade depends on the 

recruitment of JAK1 and TYK2 that phosphorylates STAT1, STAT2 and STAT3, 

which associate into STAT1/STAT2 heterodimers or STAT1/STAT1 and 

STAT3/STAT3 homodimers. In addition, type I IFNs cause caspase-dependent 

apoptosis although the exact mechanisms are yet unclear. To identify the 

downstream effectors leading to exacerbated toxicity by lack of PDL1, B16 cell 

lines were generated with a selection of key components of the IFN signal 

transduction pathway silenced (Figure 3A). 

These cell lines were tested in the IFNβ survival assay as described above 

(Figure 1). As expected IFNAR1 and JAK1 silencing abrogated IFNβ toxicity. 

Interestingly, silencing of STAT3 and caspase 7 (CASP7) also reduced IFNβ 

inhibitory effects (Figure 3B). Moreover, lethality of the IFNβ-µPDL1 combination 

was only averted by silencing IFNAR1, JAK1, STAT3 and CASP7 (Figure 3C).  To 

find out whether the absence of PDL1 signals enhanced IFNβ signal transduction, 

the expression of STATs was assessed in B16 and CRISPR/Cas9 PDL1 knockout B16 

cells after IFNβ treatment for 24 h (Figure 3D).  STAT1 and STAT2 were 

upregulated to the same extent in B16 and PDL1KO cells. In contrast, STAT3 levels 

increased only in PDL1KO cells in response to IFNβ. Then, we performed a time-

course assay of STAT3 phosphorylation after IFNβ stimulation. Interestingly, 

STAT3 Y705 phosphorylation was stronger and occurred faster in PDL1KO cells, 

while STAT3 S727 phosphorylation remained unchanged in B16 and in B16-
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PDL1KO cells (Figure 3E). These results indicated that PDL1 signals were inhibiting 

STAT3 Y705 phosphorylation and prevented STAT3 up-regulation.  

Survival assays with caspase-silenced B16 cell lines suggested that 

interference with PDL1 expression was causing cell death in response to IFNβ 

through CASP7. Our results also indicated that cell death was largely caused by 

apoptosis rather than caspase-independent necroptosis, although the 

participation of this last mechanism cannot be completely ruled out. To confirm 

these results RTCA was performed with caspase-silenced B16 cells or caspase-

silenced B16-PDL1KO cell lines in response to recombinant IFNβ (Figure 3F). While 

CASP3 silencing did not abrogate toxicity to recombinant IFNβ, CASP7 silencing 

inhibited IFNβ inhibitory actions. The same results were also observed in B16-

PDL1KO cells although in this assay CASP9 silencing counteracted toxicity as well. 

Then, the expression and processing of effector caspases in B16 cells after 

treatment with recombinant IFNβ was compared to B16-PDL1KO cells. Overall, 

basal expression of CASP3, 7 and 9 were increased in B16-PDL1KO cells, especially 

after IFNβ treatment (Figure 3G). In agreement with the shRNA data, the 

processing of CASP7 was strongly enhanced in B16-PDL1KO following IFNβ 

treatment (Figure 3F). Overall, these data suggested that the effector pathway 

for IFNβ cytotoxicity caused by PDL1 silencing was mainly mediated by a 

reinforced STAT3-caspase 7 pathway.  

 

Antibody-mediated PDL1 blockade abrogates the protective functions of PDL1 

in murine and human cancer cell lines 

To test whether direct blockade of PDL1 could sensitize B16 and other 

murine and human cancer cells to IFNβ, the growth and viability of murine B16, 

CT26 colorectal and 4T1 breast cancer cells were monitored by RTCA in the 

presence of increasing concentrations of a PDL1-blocking antibody or an isotype 

control (Figures 4A, 4B, 4C). PDL1 antibody blockade sensitized all three murine 

cancer cell types to recombinant IFNβ. The same results were obtained with 

human B-RAF mutated melanoma HTB72 cells. Taken together these results 

confirmed that the anti-IFNβ mechanism regulated by PDL1 is conserved in 

murine and human cancer cells. 
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Figure 3. IFNβ enhanced cytotoxicity by PDL1 silencing depends on a STAT3-

caspase 7 pathway. (A) Western blots of the specific signal transduction 

molecules as shown on the left in B16 cell lines constitutively expressing shRNAs 

indicated on top. (B) Bar graphs representing the mean relative number of cells 

with error bars (standard error of the means) after two weeks of puromycin 

selection following transduction of the indicated B16 cell lines (with the indicated 

silenced genes as shown) with lentivectors co-expressing IFNβ-PuroR. (C) Same as 

in (B) but transductions were performed with lentivectors co-expressing IFNβ-

µPDL1-PuroR. (D) Detection by western blotting of the indicated STAT molecules 
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in B16 or B16-PDL1KO cells untreated or treated with IFNβ as shown on top. (E) 

Western blot of STAT3 Y705 phosphorylation (top) at the indicated time points in 

B16 and B16-PDL1KO cells after IFNβ stimulation, as indicated. Western blot 

(bottom) of STAT3 S727 phosphorylation in B16 or B16-PDL1KO cells after IFNβ 

stimulation, as indicated. (F) Bar graphs representing RTCA cell index of the 

indicated B16 cell lines with silenced caspases either in an unmodified or PDL1KO 

background as shown in the graphs in the presence of 10 ng/ml of recombinant 

IFNβ. (G) As in (D) but detection of the indicated caspases. (H) Western blot of 

processed caspase 7 on a time course of B16 or B16-PDL1KO cells treated with 10 

ng/ml of recombinant IFNβ as shown on top. Relevant statistical comparisons are 

indicated within the graphs. *, **, ***, indicate significant (P<0.05), very (P<0.01) 

and highly significant differences (P<0.001), respectively. 

 

 

Figure 4. PDL1 blockade sensitizes murine and human cancer cells to IFNβ. (A) 

Left, RTCA graph of murine B16 melanoma cells in the presence of recombinant 

IFNβ and the indicated concentrations of anti-PDL1 antibody. Right, same data as 

a bar graph with means and standard deviations with error bars (n=4). (B) Same 

as (A) with murine CT26 colorectal cancer cells. (C) Same as (A) with murine 4T1 

breast cancer cells. (D) Same as (A) with human HTB72 melanoma cells. 

Calculated IC50s are shown within the graphs. ***, indicates highly significant 

differences (P<0.001). 
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Somatic mutations in human cancers targeting the DTSSK domain strongly 

potentiate global anti-IFN activities of PDL1 

Our data strongly suggested that cancer cells rely on PDL1 signal 

transduction to counteract IFN toxicity. As this could be relevant for human 

immunotherapy, we studied the somatic mutations within the intracytoplasmic 

domain of PDL1 in human neoplastic malignancies. The COSMIC, ICGC, Intogen 

and TCGA catalogues of somatic mutations in cancer were consulted and several 

mutations leading to aminoacid changes were identified in carcinomas including 

skin and lung cancers. Interestingly, the majority of these (5 out of 7) directly 

affected the human homologue of the DTSSK motif (Figure 5A). To test the 

effects of these mutations over PDL1 protective functions, the two most 

disruptive mutations (D276H and K280N) were introduced into the equivalent 

murine PDL1 gene and B16-PDL1KO cells were transduced to express each 

mutant.  

Then, RTCA was used to monitor the growth/survival of the B16 cell lines 

in the presence of recombinant IFNβ (Figure 5B), IFNα (Figure 5C) and IFN 

(Figure 5D). Consistent with our previous results, these mutations within the 

DTSSK motif strongly enhanced resistance to cytotoxicity mediated by type I and 

type II IFNs, while B16-PDL1KO cells were highly sensitive to IFNs  α, β and . These 

results confirmed the regulatory role of the DTSSK motif by selection of variants 

in human carcinomas that disrupt its inhibitory activity leading to hyperactive 

PDL1 proteins. Moreover, these mutations extended wide protection also from 

IFNs α and . Finally, the inhibitory activity of DTSSK was not exclusively 

dependent on lysine 280 as the D276H mutation also enhanced protective 

activity of PDL1. 
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Figure 5. Somatic mutations in the human DTSSK homologue motif leads to 

hyperactive PDL1 molecules that protect cells from type I and type II IFNs. (A) 

Schematics on the distribution of somatic mutations found within the 

intracytoplasmic domain of human PDL1. In blue, green and red are shown the 

homologous human RMLDVEKC, DTSSK and QFEET motifs. Mutations are shown 

below, with conservative changes in green and non-conservative changes in red. 

The specific carcinomas for which mutations were described are indicated within 

boxes. Numbers represent aminoacid positions in the murine and human PDL1 

molecule. (B) The two most disruptive mutations were introduced in the DTSSK 

murine motif and the resulting PDL1 molecules expressed in B16-PDL1KO cells. On 

the left, RTCA plot of the indicated B16 cell lines expressing the PDL1 mutants 

compared to PDL1wt in the presence of 10 ng/ml of recombinant IFNβ. On the 

right, the same data as bar graphs representing the mean of the normalized cell 

index from duplicate cultures together with standard deviations as error bars. (C) 

As in (B) but with IFNα. PDL1KO indicates B16 cells in which PDL1 was disrupted 

with CRISPR/Cas9. (D) As in (B) but with IFN. Relevant statistical comparisons are 

indicated within the graph. ***, indicates very highly significant differences 

(P<0.001). 

 

PDL1 signal transduction in cancer cells is required for in vivo protection against 

IFNβ 

Our data collectively suggested that PDL1 intrinsic signaling within cancer 

cells would confer resistance to IFNs in vivo independently of its inhibitory role 

over T cells. To prove this, we studied in vivo tumor growth from B16 cells in 

which PDL1 expression or signaling were altered, followed by intra-tumor 

administration of IFNβ expressed by a lentivector or a GFP-expressing control. 

First, groups of mice were subcutaneously inoculated with B16, B16-PDL1 and 

B16 cells harboring a published PDL1-targeted shRNA which reduced the basal 

expression of PDL1 (Broos et al., 2017) (Figure 6A). Then, lentivectors expressing 

either GFP (control) or IFNβ-GFP were injected into tumors 7 and 14 days later. 

Intra-tumor expression of IFNβ-GFP delayed B16 melanoma tumor growth 

(Figure 6A). PDL1 overexpression completely abrogated this sensitivity to IFNβ-
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GFP. In contrast, tumors arising from B16-shPDL1 were highly sensitive to LV-

IFNβ-GFP, resulting in a significant delay in tumor growth and increased survival 

(Figure 6A). We repeated the experiment using B16-PDL1KOcells. As expected, 

tumors arising from B16-PDL1KO cells were highly responsive to intra-tumor 

lentivector delivery of IFNβ-GFP, leading to a highly significant increase in survival 

(Figure 6B). In fact, the lack of PDL1 was sufficient to delay tumor progression 

even in the absence of intratumor expression of IFNβ (Figure 6B).  

These results showed a higher sensitivity in these B16 tumors to IFNβ 

when PDL1 expression was interfered with. However, inhibition of PDL1 

expression in cancer cells could still enhance the cytotoxicity of T cells through 

reduced PDL1-PD1 engagement. Therefore, we carried out the same experiments 

but including a group in which B16-PDL1C cells were inoculated. PDL1 in these 

cells can still engage PD1 on the surface of T cells, but with impaired signal 

transduction within cancer cells (Figure 1). Then, tumors from B16, B16-PDL1 and 

B16-PDL1C were inoculated with lentivectors expressing IFNβ-GFP. As 

expected, PDL1 overexpression in B16 cells very significantly counteracted the 

IFNβ inhibitory effects and accelerated tumor progression (Figure 6C). In 

contrast, expression of PDL1C did not confer resistance to intra-tumor delivery 

of IFNβ. As this mutant can still engage PD1 on T cells, these results indicate that 

PDL1 signal transduction contributes significantly to protection of cancer cells 

from type I IFNs. Overall, these results showed that independently from its role 

in inhibiting cytotoxic T cells, PDL1 provides a first protective barrier to cancer 

cells by interfering with IFN signal transduction. 
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Figure 6. PDL1 intrinsic signaling in cancer cell protects tumors from IFNβ in 

vivo. (A) On the left, tumor growth graphs from injected B16 cells followed by 

intratumor injection with the indicated lentivectors, represented as means of 

tumor surfaces from groups of 6 mice with standard deviations as error bars. The 

middle and right graphs as in the left graph but using the indicated B16 cell lines 

overexpressing PDL1 (B16-PDL1) or B16 cell lines expressing a PDL1-targeted 

shRNA (B16-shPDL1). (B) The growth graph as in (A) but using B16 wild-type or 

B16 PDL1 knock-out cells. The graph on the right represents the time of death of 

each mice from the data shown on the left graph. The cell lines and the injected 

lentivectors are shown on the bottom of the graph. (C) Same as in (B) but using 

B16 wild-type, B16-PDL1 or B16-PDL1C cells which express a PDL1 mutant 
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lacking the intracytoplasmic domain. **, *** indicate very (P<0.05) and highly 

(P<0.001) significant differences, respectively. 

 

DISCUSSION  

IFNs are known to exert anti-tumor effects which include caspase-

dependent apoptosis (Apelbaum et al., 2013), cell growth arrest (Vannucchi et 

al., 2000) and cell senescence (Katlinskaya et al., 2016; Yu et al., 2015). IFNs play 

a critical role in anti-cancer immune responses, and contribute to the efficacy of 

conventional treatments and immunotherapies. There is ample evidence on the 

role that IFNs play in tumor repression, immune editing and progression (Zitvogel 

et al., 2015). Many treatments including chemotherapy and targeted therapies 

need an intact IFN signal transduction pathway in cancer cells to exert their anti-

tumor effects. However, type I IFNs in progressing tumors also drive immune 

editing (Smyth, 2005). In fact, acquisition of inactivating mutations affecting IFN 

signaling could be considered a core mechanism for tumor escape and 

progression. Recently, it has been shown that inactivating JAK1, JAK2 and β2-

microglobulin mutations in cancer cells are responsible for primary and acquired 

resistance to anti-PD1 treatment in a cohort of patients (Shin et al., 2017; 

Zaretsky et al., 2016). The authors of these studies proposed that switching off 

IFN signal transduction prevented the adaptive PDL1 expression in cancer cells, 

becoming functionally PDL1-negative and refractory to PDL1/PD1 blockade. 

However, PDL1 itself can transmit signals without engaging PD1 or CD80 through 

mTOR (Clark et al., 2016; Chang et al., 2015). Here we demonstrate that PDL1 

signal transduction in murine and human cancer cells does in fact represent a 

barrier of protection against IFN cytotoxicity by inhibitory crosstalk with the type 

I IFN signal transduction pathway. It is important to emphasize that basal PDL1 

expression reduces IFN cytotoxicity but does not completely abrogate it. 

Therefore, cancer cells respond to IFNs by up-regulating the surface expression 

of PDL1 possibly as a negative feedback mechanism to regulate IFN signaling. It 

has to be taken into account that IFNs are potent transcriptional activators of 

PDL1 (Zaretsky et al., 2016). 
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PDL1 possesses a short intracytoplasmic region without any obvious 

known domains regulating signal transduction. However, it has been shown by 

others and us that there is PDL1 intrinsic signaling regulating cell growth, survival 

and protection against apoptotic signals (Azuma et al., 2008; Clark et al., 2016; 

Chang et al., 2015; Liechtenstein et al., 2014a). We have identified functional 

regulatory sequence motifs within the intracytoplasmic domain responsible for 

PDL1 protection against IFN. The conserved RMLDVEKC motif is required to 

counteract IFNβ toxicity, while the DTSSK motif and arginines 271 and 280 act as 

negative regulators of PDL1 functions. These sequences constitute non-classical 

signal transduction motifs as they do not resemble any known signal transduction 

consensus. Only the sequence EKCGVEDTSSKNR shows high similarity to a 

domain in DNA-directed RNA polymerase subunit β which interestingly includes 

the DTSSK motif (supplemental figure 1). However, the relevance of this 

observation is unclear. 

 

Our findings also show that PD1 expression protects cancer cells from 

IFNβ toxicity by engaging PDL1. Hence, both PDL1 and PD1 blockade would 

sensitize cancer cells to IFN-mediated cytotoxicity. Furthermore, we found that 

antibody-mediated PDL1 blockade is sufficient to sensitize cancer cells to IFNs. 

Therefore, any adaptation of cancer cells to either inhibit the IFN signaling 

pathway (Shin et al., 2017; Zaretsky et al., 2016) or potentiate PDL1 activities will 

favor their escape from the immune attack. Accordingly, a variety of human 

carcinomas select somatic mutations which affect residues within the inhibitory 

DTSSK motif, thereby increasing the anti-IFN activities of PDL1. These cancer cells 

with hyperactive PDL1 mutants are very likely selected in human malignancies as 

a result of immune editing. 

Summarizing, our data demonstrates that PDL1 signal transduction 

through conserved signaling motifs represents a protective barrier of cancer cells 

against IFN cytotoxicity, which would be reinforced by its inhibitory properties to 

T cells when engaged with PD1. A therapeutic approach such as PDL1/PD1 

blockade would cause rapid cancer cell death due to further sensitization to IFN. 

This situation strongly favors the survival of variants resistant to IFN signal 
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transduction. Therefore, cancer cells with mutated JAK1 or JAK2 kinases are 

intrinsically resistant to IFN toxicity and do not show adaptive PDL1 upregulation 

(Shin et al., 2017; Zaretsky et al., 2016).  

 

EXPERIMENTAL PROCEDURES 

Cells and mice 

Human embryonic kidney (HEK) 293T cells were purchased from the 

American Type Cell Culture Collection (ATCC). Murine melanoma B16F10 cells 

were grown as described (Liechtenstein et al., 2014a). Murine CT26 colorectal 

and 4T1 breast cancer cells were grown in DMEM. Human HTB72 cells were 

grown in RPMI. C57BL/6 female mice were purchased from The Jackson 

Laboratories. Approval for animal studies was obtained from the Animal Ethics 

Committee of the University of Navarra (Pamplona, Navarra, Spain), and from 

the Government of Navarra. When indicated, recombinant IFNβ was added to 

the cell cultures at the appropriate concentrations. Cell growth/survival was 

monitored in real time using xCELLigence real-time cell analysis system (RTCA, 

ACEA Biosciences) by seeding between 3000 to 10000 cells as required, in the 

presence or absence of recombinant IFNβ. Inhibitory concentration 50 (IC50) was 

calculated by RTCA for B16 cell lines with increasing concentrations of 

recombinant IFNβ. Experiments of antibody-mediated PDL1 blockade were 

carried out with anti-PD-L1 MAb (clone 10B5) (Dong et al., 2002). For human 

PDL1 blockade, the in-house phage-display engineered humanized IgG1 

recombinant antibody Plimilumab was used. 

 

Plasmids 

The FB2 fusokine transgene is described in (Van der Jeught et al., 2014) 

and consists on a fusion gene between the murine IFN-β and the ectodomain of 

the TGFβ receptor II. The FB2 transgene was cloned into the pDUAL-p1-PuroR 

vector by standard cloning techniques. This vector contains a PDL1-targeted 

microRNA and it as described in (Liechtenstein et al., 2014a). The IFN-β coding 

sequence was amplified by PCR and cloned into pDUAL-µPDL1-PuroR and pDUAL-

GFP (Liechtenstein et al., 2014a). Likewise, the TGFβRII was amplified by PCR 
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introducing the IFN-β signal peptide for secretion at the 5’ end, and cloned into 

pDUAL-p1-PuroR. When required, the same transgenes were expressed without 

the PDL1-targeted microRNA. The pHIV-SIREN lentivectors (Lanna et al., 2014; 

Liechtenstein et al., 2014b) were used to express short-hairpin RNAs targeting 

the indicated genes (supplemental Table 1) together with blasticidin resistance. 

The PDL1 transgene was ordered from Geneart and includes 7 silent mutations 

(ccaaagatctttatg, mutations in bold and underlined) and 6 silent mutations 

(agaaacgacacgcagttt) at the amino and carboxy termini to prevent its silencing by 

either µPDL1 or PDL1-targeted CRISP/CAS9. PDL1C encodes a carboxy-terminal 

deleted PDL1 gene and was generated by PCR using oligos FW 

(ggatccgccaccatgaggatatttgctggc) and RS 

(cggccgcttattgttttctcaagaagaggaggaccg).  PDL1-deletion and single-point 

substitution mutants were generated by overlap-extension PCR as described 

(Escors et al., 2001) using the PDL1 gene as a template and the indicated 

oligonucleotides (supplemental Table 2). The murine PD1 transgene was ordered 

from Genart and cloned into pDUAL-BlastR which expresses blasticidin resistance 

under the control of the ubiquitin promoter. A carboxy terminus-deleted version 

was also generated by PCR using the FW (ggggggatccgccaccatgtgggtccggcaggtacc) 

and RS (gcggccgcttatgagcagaagacagctagggcccaggc) oligos, followed by cloning 

into pDUAL-BlastR. 

The mouse CD274 (PDL1) sgRNA CRISPR/Cas9 'All-in-One' lentiviral 

transfer vector was used to knock-out PDL1 as described (Broos et al., 2017).  

 

Lentivector production, cell transduction and generation of B16 knock-down 

stable cell lines 

Lentivector production and titration were carried out as described 

(Karwacz et al., 2011; Liechtenstein et al. 2014a; Selden et al., 2007). 

Transduction of the indicated cell lines was carried out with a multiplicity of 

transduction of 10, and transduced cells were selected with the appropriate 

concentration of either puromycin (GIBCO) or blasticidin (GIBCO). Transduced 

cells are then analyzed for the expression of the target of interest either by flow 

cytometry or western blot.  
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Western blotting 

Western blots were performed as described (Escors et al., 2008). 

Polyclonal anti-caspase 3, 7, 9 and anti-processed caspase 3, 7 and 9, and anti-

phosphorylated STAT3 molecules were purchased from Cell Signalling. Mouse 

anti-JAK1, STAT1, STAT2 and STAT3 antibodies were purchased from Cell 

Signaling, and anti-GADPH from Calbiochem. Peroxidase-conjugated polyclonal 

anti-mouse and anti-rabbit antibodies were purchased from DAKO and Cell 

Signaling. 

 

Cell staining and flow cytometry 

Surface and intracellular staining were performed as described previously 

(Escors et al., 2008) using the indicated antibodies. PE-Cy7-conjugated 

streptavidin, APC-conjugated streptatividin, PE-conjugated anti-IFNARI were 

purchased from Biolegend. PE-and FITC-conjugated streptavidin from Invitrogen. 

Biotin-conjugated anti-PDL1 was purchased from eBioscience. APC-conjugated 

anti-PD1 from Miltenyi Biotec.  

 

B16-IFNβ cell survival assays 

The goal of this assay is to quantify viable growing B16 cell lines that 

constitutively express IFNβ following lentivector transduction with IFNβ-PuroR or 

IFNβ-µPDL1-PuroR followed by selection with puromycin. For this assay 100000 

of the indicated transduced or non-transduced cells were plated in 6-well culture 

plates in triplicate. Cells were then transduced at a multiplicity of transduction of 

10. One well was left as a non-transduced control. The next day, puromycin was 

added at 1 µg/ml and surviving cells allowed to grow for two weeks. Surviving 

cells were quantified and represented as a percentage compared to the growth 

of non-transduced, non-treated cells. 
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IFN treatment of PDL1 mutants and real-time living cell monitoring (RTCA) 

The appropriate cell types were seeded at a density of 5000 cells per well 

on two L8 cell culture chambers for xCELLingence RTCA monitoring system (ACEA 

biosciences). Cells were grown in DMEM or RPMI medium with recombinant 

murine or human IFNβ (10ng/ml, eBioscience) as required. Murine IFNα (400 

units/ml) and IFN (10 ng/ml) were purchased from (Peprotech). Growth and 

survival of cell lines were monitored by RTCA for a minimum of 3 days. 

 

Vaccination and tumor experiments 

Experiments were usually performed with six C57BL/6 mice per group. 

Mice were subcutaneously inoculated with 106 of the indicated B16 cell lines. 

Tumor size was monitored every 2 days. When required, tumors were injected 

with 106 lentivector transducing particles expressing IFNβ-GFP or with GFP only 

as a control. Mice were sacrificed when tumor surface was above 150 mm2.  

 

In silico sequence analyses 

PDL1 protein sequences from mouse, human, pig, cow, buffalo, cat, dog 

and salmon were aligned using the multialign tool 

(http://multalin.toulouse.inra.fr/multalin/) (Corpet, 1988). Prediction of 

ubiquitination sites was performed with UbPred tool (http://www.ubpred.org/) 

(Radivojac et al., 2010). The search for conserved protein domains was 

performed with MotifFinder (http://www.genome.jp/tools-

bin/search_motif_lib). The data on somatic mutations in PDL1 from human 

cancers was obtained from the COSMIC (http://cancer.sanger.ac.uk/cosmic) and 

TCGA (https://cancergenome.nih.gov/) databases. The following mutations were 

found: R260C (colon and cecum carcinoma; COSU3769). , R262K (Daud et 

al.,2016) (basal cell carcinoma, COSP39263), I274I (lung, cecum carcinoma and 

melanoma,COSP29675,COSU540,COSU17), I274V (colon carcinoma, COSU144), 

D276H (breast invasive carcinoma, TCGA-AR-A0TX-01; COSU414), D276Y (rectum 

carcinoma), T277K (George et al., 2015) (small cell lung cancer; COSP40339), 

T277S (lung carcinoma,COSP40399) , K280N (cervical squamous cell carcinoma; 

http://www.ubpred.org/
http://www.genome.jp/tools-bin/search_motif_lib
http://www.genome.jp/tools-bin/search_motif_lib
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TCGA-FU-A3HZ-01; COSU415), T290M (pancreas and stomach carcinomas, TCGA-

BR-4362-01; COSU541) and T290T (breast cancer, COSU541). 

 

Statistical analyses 

GraphPadPrism was used for plotting data and statistical analyses. No 

data was considered an outlier. Data from B16-IFNβ survival assay was confirmed 

to be normally distributed, therefore analyzed by two-way ANOVAs with a 

random criterium (inter-experiment variability). Two pair comparisons were 

carried out following the ANOVA analyses using either Bonferroni or Tukey´s tests.  

Tumor growth and survival  data  were analyzed as  descr ibed before  

(Karwacz  et  a l . ,  2011 ) . ACEA RTCA cell index data was analyzed for each 

sample in duplicates and plotted as means and standard deviations. The data was 

highly homogeneous and the data normally distributed. For statistical analyses, 

the cell index data collected at 75, 80, 85, 90 hours of cell growth. The data was 

analyzed by two-way ANOVA with time as a random criterium followed by 

Tukey´s pair-wise comparisons. 
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SUPPLEMENTAL FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1, related to Figure 2A. Bioinformatic analysis of the PDL1 

intracytoplasmic domain. On top, Kyte-Doolittle hydrophathy plot of the 

intracytoplasmic domain of PDL1, with a hydrophobic head containing the 

VRMLDV hydrophobic motif and the hydrophilic tail as shown below the 

hydrophathy plot. Serine and threonine phosphorylatable residues by PKC and 

CKII were predicted and indicated with an arrow. Motifinder produced two 

similarity hits with DNA-dependent RNA polymerase beta subunits as shown 

within red boxes. 
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Figure S2, related to Figures 2, 5 and 6. Surface expression of PDL1 molecules in 

B16-PDL1KO cells. The histograms show flow cytometry data on the surface 

expression of the indicated B16 cell lines expressing PDL1 mutants (on the right of the 

graphs). Percentages and numbers represent percentages of PDL1 positive cells 

relative to the background fluorescence from an unstained control (US), and mean 

fluorescent intensities 
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SUPPLEMENTAL TABLES 

Supplemental Table 1, related to Figures 1, 3 and 6. shRNA sequences cloned into pHIV-

SIREN vectors. 
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Supplemental Table 2, related to Figures 1, 2, 5 and 6. Oligonucleotides used to 

generate PDL1 mutants. 
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ABSTRACT 

Myeloid-derived suppressor cells (MDSCs) differentiate from bone 

marrow precursors, expand in cancer-bearing hosts and accelerate tumor 

progression. MDSCs have become attractive therapeutic targets, as their 

elimination strongly enhances anti-neoplastic treatments. Here, immature 

myeloid dendritic cells (DCs), MDSCs modeling tumor-infiltrating subsets or 

modeling non-cancerous (NC)-MDSCs were compared by in-depth quantitative 

proteomics. We found that neoplastic MDSCs differentially expressed a core of 

kinases which controlled lineage-specific (PI3K-AKT and SRC kinases) and cancer-

induced (ERK and PKC kinases) protein interaction networks (interactomes). 

These kinases contributed to some extent    to myeloid differentiation. However, 

only AKT and ERK specifically drove MDSC differentiation from myeloid 

precursors. Interfering with AKT and ERK with selective small molecule inhibitors 

or shRNAs selectively hampered MDSC differentiation and viability. Thus, we 

provide compelling evidence that MDSCs constitute a distinct myeloid lineage 

distinguished by a “kinase signature” and well-defined interactomes. Our results 

define new opportunities for the development of anti-cancer treatments 

targeting these tumor-promoting immune cells. 

 

 

INTRODUCTION 

Anti-cancer treatments are primarily aimed at causing arrest of tumor cell 

growth or tumor cell death. In recent years, immunotherapy has resurfaced as 

anattractive therapeutic alternative [1]. However, the expansion of 

immunosuppressive cell types in cancer patients strongly interferes with anti-

tumor immune responses. These immunosuppressive cells enhance tumor 

progression/metastasis and counteract classical anti-neoplastic treatments. 

Amongst these, myeloid-derived suppressor cells (MDSCs) are major contributors 

to tumor progression. MDSCs differentiate from precursors within the bone 

marrow (BM) in tumor-bearing hosts. MDSCs distribute systemically and 

infiltrate tumors, where they contribute to tumor progression through a variety 

of mechanisms [2, 3]. However, MDSC differentiation and functions are still 
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poorly understood. This is due to the difficulty of isolating them from tumor-

bearing subjects, or differentiating them in vitro so that they faithfully model in 

vivo cell subsets [4]. Nonetheless, counteracting their activities strongly 

enhances anti-cancer treatments [5]. Thus, finding treatments that would 

specifically eliminate MDSCs could improve the efficacy of anti- cancer therapies. 

While the most valuable source of MDSCs for research is the tumor itself, 

their isolation is still a challenge [4, 6]. Therefore, other sources such as spleen 

or blood are widely used. However, these MDSCs are phenotypically and 

functionally different from tumor- infiltrating subsets [6–9]. To overcome these 

difficulties, we developed an ex vivo differentiation system that produces MDSCs 

modeling tumor-infiltrating subsets (B16-MDSCs) and non-cancerous (NC) 

MDSCs (293T-MDSCs) [8]. These ex vivo MDSCs have been phenotypically and 

functionally validated in B16 melanoma and CT26 colorectal cancer models [8–

11]. 

The use of high-throughput analytical techniques for the identification of 

cellular regulatory pathways and novel molecular targets is on the increase. Two 

independent studies on the proteome of blood and spleen MDSCs have been 

published using LC-MS/MS mass spectrometry and label-free quantification [12, 

13]. Although relevant data was obtained, none of these studies included control 

cell types such as myeloid DCs and NC- MDSCs. Therefore, studies that have been 

published so far have not discriminated pathways associated to cell lineage or the 

tumor environment. 

To overcome these issues, we carried out in-depth proteomic analyses 

comparing myeloid   DCs, MDSCs modeling tumor-infiltrating subsets or modeling 

NC-MDSCs. We found a kinase signature that defined neoplastic MDSCs which 

could be specifically targeted to interfere with MDSC differentiation from 

myeloid precursors. 
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RESULTS 

MDSC lineage-specific interactomes  

iTRAQ-based quantitative proteomics were performed on MDSCs 

modeling melanoma-infiltrating subsets (B16-MDSCs), using immature myeloid 

DC proteomes as a comparative standard to identify melanoma MDSC lineage-

specific interactomes. 3609 proteins were unambiguously identified with an FDR 

lower than1%. Differential protein quantification was performed between DCs 

and B16-MDSCs, and the most affected proteins with a significance level of 0.01 

were used for further analyses (Fig. 1a). Expression of 58 proteins was found up-

regulated in MDSCs while 46 were down- modulated (Fig. 1b and Supplementary 

Table 1). Ingenuity Pathway Analysis was used to reconstruct functional 

interactome maps with differentially expressed proteins. Three distinct 

interactomes resulted from the analyses, with highly detailed interaction 

relationships between nodes (Figs. 2, 3, 4). The top canonical pathways which 

separated B16-MDSCs from DCs were: (1) mitochondrial dysfunction (P = 1.5 × 

10−7); (2) leukocyte extravasation signaling (P = 5 × 10−6), (3) caveolar-mediated 

endocytosis signaling (P = 2.6 × 10−5) and (4) integrin signaling (4 × 10−5). These 

pathways were associated to SRC, FYN and HCK kinases, unambiguously 

identified by mass spectrometry (Supplementary Table 1). Protein interactome 

networks predicted a number of regulatory proteins (hubs) including the PI3K-

AKT signaling axis (Fig. 2). Importantly, SRC kinases controlled changes in the 

cytoskeleton and mitochondrial dysfunction through down-regulation of 

complex I NAPDH dehydrogenase subunits (Figs. 2, 3). These kinases were 

directly associated to various molecular nodes such as calmodulin, Hsp90, α-

catenin and the proteasome (Fig. 4). 

Confidence-based protein networks were reconstructed using STRING 

software [14], with up-regulated or down-regulated proteins. Both high and 

medium confidence links were considered (score >0.4), as the number of 

networks was limited to allow careful confirmation. About 10 distinct protein 

networks were organized around a central group of kinases that included SRC 

family members (Supplementary Fig. 1). These networks were associated to 

production of reactive oxygen species (ROS), protection against oxidative 
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damage, intracellular vesicle trafficking and aminoacid metabolism. Decreases in 

spliceseosomal proteins, carbohydrate metabolism, lysosomal function and MHC 

II antigen presentation were also evident. 

KEGG pathway mapping was applied to up- and down-regulated proteins. 

KEGG analyses showed strong inhibition of cellular processes associated to 

inflammatory disorders and a decrease in metabolism of aminoacids (Fig. 5). 

 

 

Figure 1: Differentially expressed proteins in MDSCs caused by lineage and 

cancer. a. Volcano plots representing the fold-change of identified proteins with 

associated P values from the pair-wise quantitative comparisons of DCs vs B16-

MDSCs (lineage differences, left plot) and NC-MDSCs vs B16-MDSCs (cancer-

regulated differences, right plot). In green, very significantly changed proteins (P 

< 0.01), in blue, significantly changed proteins (P < 0.05) and in red, unchanged 

proteins between the pair-wise comparisons. b. Heat map representing the 

degree of change for the differentially expressed proteins (P < 0.01, 

Supplementary Table 1) between the indicated samples (independent biological 

triplicates are indicated as 1, 2 and 3; DCs, dendritic cells; B16-MDSCs, cancerous 

MDSCs; NC-MDSCs, non-cancerous MDSCs), as shown below. Legend (bottom 

right) indicates color-coded fold-change on Log10 scale. Red and green, up- and 

down-regulated proteins, respectively. 

 



122 
 

Cancer-specific interactomes in MDSCs modeling tumor-infiltrating subsets 

Our ex vivo system generates MDSCs that model tumor-infiltrating (B16-

MDSCs) and non-cancerous NC- MDSCs (293T-MDSCs) [8, 9, 11]. It has to be 

pointed out that NC-MDSCs are not precursors of tumor-infiltrating MDSCs, but 

cells differentiated ex vivo in non-neoplastic conditions as described [8, 9]. Thus, a 

quantitative proteomic comparison between these two subsets was performed to 

highlight cancer-regulated pathways. These analyses uncovered 50 up- and 35 

down-regulated proteins in B16-MDSCs compared to NC-MDSCs, and pathway 

reconstruction was performed using Ingenuity (Fig. 6, Supplementary Table 1). The 

top canonical pathways which differentiated neoplastic from non-cancerous MDSCs 

were: (1) the pentose phosphate pathway (P = 6.4 × 10−8), represented by G6PD, 

PGD and TALDO1 up-regulation; (2) epithelial adherence junction signaling with up-

regulation of EZR, DSTN, tubulin and Rho-like proteins (P = 2.4 × 10−3). The two 

top associated molecular and cellular functions were (1) free radical scavenging and 

oxidative stress responses (P = 1.1 × 10−8) as indicated by up- regulation of SOD2, 

MPO, PRDX, GSTM5 and PARK7 amongst others, and (2) carbohydrate metabolism 

which was associated to the pentose phosphate pathway (P = 2.5 × 10−8). 

Interestingly, Ingenuity protein interaction networks included the kinases ERK1 and 

PKC isoforms as regulatory hubs (Fig. 6). 

Similar results were obtained with STRING software (Supplementary Fig. 

2).  Most notably, up-regulation of the pentose phosphate pathway, changes in 

cytoskeletal proteins and down-modulation of oxidative phosphorylation. 

Results from KEGG pathway mapping highlighted increased glutathione 

metabolism, activation of the pentose phosphate pathway and a decrease in 

spliceosomal proteins (Fig. 7). 
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A kinase signature defines the neoplastic MDSC lineage 

Systems biology analyses delineated a kinase signature of the MDSC 

lineage (AKT and the SRC family, which included SRC, HCK and FYN) and 

neoplastic MDSCs (ERK and PKC kinases). Overall, the expression of FYN, HCK and 

total and phosphorylated SRC agreed with proteomic data, as assessed by flow 

cytometry and immunoblotting. The predicted participation of AKT was also 

confirmed (Fig. 8a). AKT expression was particularly high in MDSCs modeling 

tumor-infiltrating subsets as detected by immunoblotting. ERK1 and PKC 

isoforms were predicted to be differentially expressed in tumor-infiltrating 

MDSCs. While total ERK expression was equivalent between B16-MDSCs and NC-

MDSCs, phosphorylated (active) ERK1 was increased in B16-MDSCs (Fig. 8a). The 

expression of phosphorylated PKC isoforms (phosphorylated pan-PKCs) was 

tested by immunoblot. In agreement with proteomic data and Ingenuity 

analyses, phosphorylated PKCs were present at higher levels in MDSCs modeling 

neoplastic subsets (Fig. 8a). 
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Figure 2: Functional MDSC lineage-specific interactome networks controlled by 

SRC, HCK and AKT kinases. Graph represents functional interactomes constructed 

with Ingenuity Pathway Analysis tool using lineage specific (B16-MDSCs vs DCs) 

differentially expressed proteins, which shows detailed interaction relationships 

between the input nodes (differentially expressed proteins between MDSCs and 

DCs), and regulatory kinases encircled in blue. This interactome links AKT/SRC 

kinases with mitochondrial respiration and dysfunction, protection against 

oxidative stress and extracellular matrix remodeling. Nodes in red, up-regulated 

proteins. Nodes in green, down-modulated proteins. In white, predicted protein 

nodes. A, activation; B, binding; C, causes/leads to; CC, chemical- chemical 

interaction; CP, chemical-protein interaction; E, expression; EC, enzyme catalysis; 

I, inhibition; L, proteolysis; LO, localization; M, biochemical modification; MB, 

group/complex; P, phosphorylation/dephosphorylation; PD Protein-DNA binding; 

PP Protein-Protein binding; PR Protein-RNA binding; RB Regulation of Binding; RE 

Reaction; RR RNA-RNA Binding; T Transcription; TR Translocation. Dash arrows, 

indirect interactions. 

 

AKT and ERK1 specifically contribute to MDSC differentiation from myeloid 

precursors 

To assess the contribution of MDSC-associated kinases to myeloid 

differentiation, a collection of kinase inhibitors were added to myeloid 

precursors committed towards DC or B16-MDSC differentiation. Inhibitors were 

added at concentrations reported to interfere with cancer cell growth. High 

resolution impedance-based real-time cell monitoring (RTCA) was used to 

continuously monitor myeloid differentiation, viability and to calculate IC50s (Fig. 

8b and Table 1) [15]. Overall, all tested inhibitors affected equally to myeloid 

precursors differentiating towards DCs and MDSCs (Table 1).  Treatments with 

the specific AKT inhibitor X or the MEK inhibitor PD0325901 were an exception. 

AKT inhibitor X was highly toxic to precursors differentiating towards MDSCs, 

while differentiating DCs remained unaltered (Fig. 8b and Table 1). Treatment 

with the MEK inhibitor PD0325901 selectively inhibited MDSC proliferation. 
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Overall, comparing the IC50s for differentiating DCs and MDSCs, AKT and MEK-

ERK pathways specifically contributed to MDSC differentiation (Fig. 8c). 

Moreover, myeloid precursors committed to MDSC differentiation died within 

hours of adding the AKT inhibitor, strongly suggesting that AKT was involved in 

survival but not differentiation (Fig. 9a). 

The results with kinase inhibitors were also confirmed with silencing 

shRNAs. Thus, myeloid precursors committed towards MDSC differentiation were 

expanded for three days from BM and transduced with   a lentivector delivering 

immunoblot-validated shRNAs against AKT1 or ERK1 as described [8, 16] (Fig. 9b). 

Transduced myeloid precursors died 48 hours after delivery of the AKT1-specific 

shRNA. Likewise, ERK1 silencing significantly inhibited cell growth. 
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Figure 3: Functional MDSC lineage-specific interactome networks regulating 

cytoskeletal changes and controlled  by SRC kinases. Graph presents functional 

interactomes constructed with Ingenuity Pathway Analysis tool using lineage 

specific (B16-MDSCs vs DCs) differentially expressed proteins, which shows 

detailed interaction relationships between the input nodes (differentially 

expressed proteins between MDSCs and DCs), and regulatory kinases encircled in 

blue. This interactome links SRC kinases with protein transport, mRNA processing, 

cytoskeletal re-organization and decreased glycolysis. Nodes in red, up-regulated 

proteins. Nodes in green, down-modulated proteins. In white, predicted protein 

nodes. A, activation; B, binding; C, causes/leads to; CC, chemical- chemical 

interaction; CP, chemical-protein interaction; E, expression; EC, enzyme catalysis; 

I, inhibition; L, proteolysis; LO, localization; M, biochemical modification; MB, 

group/complex; P, phosphorylation/dephosphorylation; PD Protein-DNA binding; 

PP Protein-Protein binding; PR Protein-RNA binding; RB Regulation of Binding; RE 

Reaction; RR RNA-RNA Binding; T Transcription; TR Translocation. Dash arrows, 

indirect interactions. 

Inhibition of the ERK pathway interferes with MDSC differentiation and 

accelerates DC maturation 

Inhibition of the ERK pathway interfered with MDSC growth. As the MEK 

inhibitor PD0325901 is currently used for the treatment of several human 

cancers in clinical trials, its effects on differentiation of myeloid cell lineages 

was further tested. Thus, the three main myeloid cell populations differentiated 

from bone marrow precursors was quantified by flow cytometry after a week of 

PD0325901  treatment;  Namely,  CD11b+ monocytic myeloid cells (Ly6Chigh 

Ly6Gneg), granulocytic myeloid cells (Ly6C+ Ly6Ghigh) and conventional DCs 

(Ly6C+ Ly6Gneg/low CD11c+) (Fig. 9c). Interestingly, PD0325901 treatment 

accelerated conventional CD11c+ DC differentiation.  At the highest tested 

concentration, the MEK inhibitor was strongly cytotoxic to myeloid cells 

committed to MDSC differentiation, but not to those differentiating towards 

DCs which strongly up-regulated CD11c expression. 
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Overall, these results also confirmed that interference with the ERK 

pathway is inhibitory over MDSCs and promotes conventional DC 

differentiation. 

 

Figure 4: Functional MDSC lineage-specific interactome networks controlled by 

PI3K and CDK2 kinases. Graph presents functional interactomes constructed with 

Ingenuity Pathway Analysis tool using lineage specific (B16-MDSCs vs DCs) 

differentially expressed proteins, which shows detailed interaction relationships 

between the input nodes (differentially expressed proteins between MDSCs and 

DCs), and regulatory kinases encircled in blue. This interactome links PI3K with 
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cell cycle, protein synthesis and transport, survival and proliferation. Nodes in red, 

up-regulated proteins. Nodes in green, down-modulated proteins. In white, 

predicted protein nodes. A, activation; B, binding; C, causes/leads to; CC, 

chemical-chemical interaction; CP, chemical-protein interaction; E, expression; 

EC, enzyme catalysis; I, inhibition; L, proteolysis; LO, localization; M, biochemical 

modification; MB, group/complex; P, phosphorylation/ dephosphorylation; PD 

Protein-DNA binding; PP Protein-Protein binding; PR Protein-RNA binding; RB 

Regulation of Binding; RE Reaction; RR RNA-RNA Binding; T Transcription; TR 

Translocation. Dash arrows, indirect interactions. 

 

DISCUSSION 

High-throughput analyses of biological systems provide a unified view of 

biological processes, and can uncover novel molecular targets. However, sorting 

out meaningful information from large datasets is challenging and relies on 

choosing the right controls. In addition, some biological systems such as MDSCs 

are difficult to work with. Here we characterized the neoplastic B16 melanoma 

MDSC proteome by differentiating MDSCs modeling tumor-infiltrating subsets, 

and quantitatively comparing it with the proteomes of myeloid DCs and MDSCs 

modeling non-cancerous MDSCs. Myeloid DCs and NC-MDSCs provide the 

appropriate controls to discriminate pathways regulated by cell lineage or the 

tumor environment. We performed in-depth quantitative proteomics to 

construct highly detailed MDSC interactome maps. Regulatory networks were for 

the first time unambiguously ascribed to cell lineage or to a neoplastic 

environment. 

Cell lineage differences were highlighted by comparing B16 melanoma-MDSCs 

with myeloid DCs. Mitochondrial dysfunction was a   key   characteristic of 

MDSCs, reflecting a shut-down of oxidative phosphorylation. MDSCs modeling 

non-cancerous subsets provided a convenient standard to discriminate cancer-

specific pathways. Of these, the pentose phosphate pathway was one of the most 

prominent, probably used to produce NADPH for biosynthesis in  the  absence of  

oxidative  phosphorylation.  Decreased   expression of mitochondrial NADPH 
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dehydrogenase, up-regulation of free radical scavenging proteins, and cellular 

stress were hallmarks of neoplastic MDSCs compared to NC-MDSCs. 

As we found that NC-MDSCs differed from neoplastic MDSCs in cell stress 

pathways and inflammatory pathways, it is likely that NC-MDSCs are different to 

other subsets differentiated in non-neoplastic conditions such as cell stress and 

infection. Overall, published data agreed with our proteome maps [17–24]. 

Importantly, neoplastic MDSCs presented a specific kinase signature 

which controlled MDSC-related interactomes and clearly separated them from 

the myeloid DC lineage. While SRC, FYN, HCK, PI3K and AKT kinases differentiated 

MDSCs from DCs, ERK and PKC discriminated neoplastic MDSCs from non-

cancerous subsets. The proteomic and systems biology data was confirmed by 

immunoblot and flow cytometry. Ingenuity analyses also predicted the PKC 

isoforms as a differential feature of neoplastic MDSCs. DCs and NC-MDSCs 

presented lower but detectable levels of phospho-PKC. As we used a pan-

phospho-PCK antibody, we cannot rule out that some specific PKC isoforms 

discriminate neoplastic MDSCs from non-neoplastic counterparts. In fact, this is 

the case of 4T1 breast cancer MDSCs, for which there   is evidence that isoforms 

beta and theta are specifically activated [22]. 

AKT was required for the survival of myeloid precursors differentiating 

into MDSCs, but was dispensable in precursors committed to DC differentiation. 

This is in agreement with the requirement of AKT for    in vivo MDSC expansion 

[25], and with its anti-apoptotic role in hematopoietic cells [26]. Additionally, the 

MEK1 inhibitor PD032591 selectively affected differentiating MDSCs, while DC 

maturation was enhanced according to CD11c up-regulation. The ERK pathway is 

known to keep DCs immature and favor tumor progression [27–29]. Here we also 

demonstrated that ERK contributes to MDSC differentiation. Our results show 

that inhibition of ERK and AKT pathways could enhance anti-tumor immune 

responses by depleting MDSCs and activating DCs. Nevertheless, the other 

differentially expressed kinases may still participate in MDSC functions apart 

from differentiation and survival, which could be susceptible of therapeutic 
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intervention. 

   

Figure 5: KEGG pathway analyses of differentially-expressed proteins in MDSCs 

compared to myeloid DCs. Graph represents the percentage of differentially up- 

or down-regulated (as indicated within the graph) proteins ascribed to the 

indicated KEGG pathways. 
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Figure 6: Functional interactomes with cancer-regulated (B16-MDSCs vs NC-

MDSCs) differentially expressed proteins. Ingenuity Analysis interactome linking 

ERK and PKCs with protection against oxidative stress, mitochondrial electron 

transport and NADPH oxidase activity, the pentose phosphate pathway and ROS 

generation. Regulatory kinases are encircled in blue. Nodes in red, up-regulated 

proteins. Nodes in green, down-modulated proteins. In white, predicted protein 

nodes; A, activation; B, binding; C, causes/leads to; CC, chemical-chemical 

interaction; CP, chemical-protein interaction; E, expression; EC, enzyme catalysis; 

I, inhibition; L, proteolysis; LO, localization; M, biochemical modification; MB, 

group/complex; P, phosphorylation/dephosphorylation; PD Protein-DNA binding; 

PP Protein-Protein binding; PR Protein-RNA binding; RB Regulation of Binding; RE 

Reaction; RR RNA-RNA Binding; T Transcription; TR Translocation. Dash arrows, 

indirect interactions. 
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Figure 7: KEGG pathway analyses of differentially-expressed proteins in MDSCs 

modeling tumor-infiltrating subsets compared to NC-MDSCs. The graph shows 

the percentage of differentially up- or down-regulated (as indicated within the 

graph) proteins ascribed to the indicated KEGG pathways. 
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Figure 8: A kinase signature discriminates MDSCs from DCs. a. Graphs on the 

left, flow cytometry histograms with expression profiles of the indicated kinases 

in DCs, NC-MDSCs and B16-MDSCs. Mean fluorescent intensities for each cell 

population are shown within the graphs. US, unstained control; DC, dendritic 

cells; NC, non-cancerous MDSCs; B16, MDSCs modeling tumor-infiltrating 

subsets. Blots on the right, detection of the indicated kinases by immunoblotting. 

Two preparations from the indicated cell populations (top of the immunoblots) 
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were loaded and lanes were labelled as 1 and 2. An immunoblot for GADPH 

detection is shown as a reference control, on the same membrane used for AKT 

detection above. b. Representative real-time cell monitoring (RTCA) results for 

myeloid precursors treated with the indicated concentrations of AKT inhibitor X, 

and grown either in DC-differentiation medium or in B16-MDSC conditioning 

medium as indicated on top. Data is plotted as means of cell index with error bars 

(standard deviations) from duplicate cultures, shown as a function of time. 

Relevant statistical comparisons are shown and indicated with *, **, and *** for 

significant          (P < 0.05), very significant (P < 0.01) and highly significant (P < 

0.001) differences, respectively. c.DC/MDSC IC50 ratios calculated for the 

indicated treatments. Ratios close to 1 (horizontal dotted line) indicate that 

treatments are equally inhibitory over MDSCs and DCs. Ratios higher than 1 

indicate that MDSCs are more sensitive to the specific treatments than DCs. 

 

Table 1: IC50s of small molecule inhibitors over myeloid precursors committed 

towards DC or MDSC differentiation 

 

Inhibitor IC50, DCs IC50, MDSC Targeted kinases 

AKT inhibitor X >100 μM 3.9 ± 0.6 μM AKT 

 
TX1123 

 
3.2 ± 1.4 μM 

 
3.4 ± 3 μM 

SRC 

eEF2-K 

PKA 

Saracatinib 3.5 ± 3.4 μM 8.8 ± 8 μM 
SRC 

FYN 

PP2 46.5 ± 0.7 μM 45.4 ± 2 μM 
FYN 

HCK 

PD0325901 44.7 ± 4.5 nM 6.2 ± 2.8 nM MEK 

SCH772984 86.5 ± 19 nM 21 ± 15 nM ERK1 

VTX-11e 8 ± 0.15 μM 1.3 ± 0.14 μM ERK1 

Gö 6983 5.7 ± 1 μM 5.7 ± 2.3 μM PKCα, β, γ, δ, ζ and μ 

NPC-15437 8 ± 2.3 μM 8 ± 2 μM PKC 
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Figure 9: AKT is required for survival of myeloid cells committed to MDSC 

differentiation, while inhibition of the ERK pathway enhances conventional DC 

differentiation. a. The percentages of viable myeloid precursors treated with the 

indicated concentrations of AKT inhibitor X are indicated as a bar graph with 

standard deviations as error bars. Precursors were committed towards DC or 

MDSC differentiation as indicated on top of the bars. Viable cells were quantified 

following trypan blue staining. Relevant statistical comparisons are shown. b. 

Graph on the left, growth of myeloid cell precursors transduced with a lentivector 
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encoding a control shRNA (shPD1a), or an AKT1-specific shRNA (shAKT1). Data is 

plotted as means and standard deviations as error bars. The same is shown in the 

graph on the right, but delivering an ERK1-specific shRNA (shERK1). Relevant 

statistical comparisons are shown within the graph. b. Phenotype effects of 

sustained MEK inhibition with PD0325901 on myeloid precursors committed to 

MDSC differentiation or to DC differentiation. Ly6C+ cells were gated and the 

Ly6G-CD11c expression profiles are shown in flow cytometry density plots. 

Percentages of CD11c+ myeloid cells after 7 days of culture are highlighted within 

the graphs. ***, very highly significant differences. 

   

MATERIALS AND METHODS 

Cells and mice 

293T, B16F0 cells and BM-DCs were grown as described [8, 27]. Approval 

for animal studies was obtained from the Animal Ethics Committee of the 

University of Navarra,   and   from   the   Government of Navarra. Non-cancerous 

MDSCs (NC-MDSCs, 293T-MDSCs) and B16-MDSCs were obtained from C57BL/6 

murine BM cells as described [8]. 

Drug treatments of myeloid cell cultures and impedance-based real-time living 

cell monitoring (RTCA) 

Myeloid hematopoietic precursors were expanded from BM cells using 

granulocyte-monocyte-colony stimulating factor (GM-CSF), stem cell factor (SCF) 

and leukaemia inhibitory factor (LIF) for 2 to 3 days, following published 

conditions [8, 30]. Then, myeloid precursors were seeded on two L8 cell culture 

chambers for the xCELLingence RTCA monitoring system (ACEA biosciences), at a 

density of 200000 cells per well. DC or B16-MDSC differentiation medium was 

added to myeloid precursors, and treatments were carried out simultaneously in 

duplicates. After 30 min, the indicated chemical inhibitors were added at 

concentrations reported to be cytotoxic to cancer cells. Control well were treated 

with carrier solution (either water or DMSO). The  following  inhibitors  were   

used:  AKT   inhibitor X (Calbiochem), tyrosine kinase inhibitor TX-1123 
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(Calbiochem), MEK inhibitor PD0325901 (SIGMA), ERK inhibitors SCH772984 and 

VTX-11e [31], broad PKC inhibitor GÖ 6983 (Santa Cruz Biotechnology), PKC 

inhibitor NPC-15437 dihydrochloride (Santa Cruz Biotechnology), selective LCK 

and FYN inhibitor PP2 (Santa Cruz Biotechnology), and the SRC and FYN inhibitor 

Saracatinib (MedChem Express). IC50s for each inhibitor were calculated using 

the RTCA data and analysis software, using duplicates for each drug treatment. 

Lentivector production and cell transduction 

Lentivectors    were    produced    and    titrated   by flow cytometry or Q-

PCR as   described   [32].  The   pHIV-SIREN   system   developed   by    our group 

[16]   was   used   as   a   backbone   to clone   the following validated shRNAs 

against ERK1 (GCATGCTTAATTCCAAGGGCTATTCAAGAGATAG 

CCCTTGGAATTAAGCATGTTTTTTACGCGT) and AKT1 

(GTCTGAGACTGACACCAGGTATTTCAAGAG 

AATACCTGGTGTCAGTCTCAGATTTTTTACGCGT). A control shRNA-encoding 

lentivector targeting the human PD1 transcript (SIREN-shPD1a) was used [33]. 

The same shRNAs were cloned into the pSIRACT-GFP shRNA-cloning lentivectors, 

which were derived from pHIV-SIREN constructs by replacing the PGK promoter 

by the Actinin 4 promoter. The lentivector backbone was changed because PGK 

was strongly down-modulated in MDSCs, while actinin4 was strongly expressed. 

Immunoblot 

Immunoblots were performed as described [27]. Anti-GADPH was 

purchased from Calbiochem. Rabbit anti-human HCK was purchased from 

Millipore. From BD bioscience, mouse anti-pan ERK, mouse anti-AKT and mouse 

anti-AKT pT308. From Cell Signaling, rabbit anti-mouse T202/Y204 p-P44/42 

MAPK, phospho-pan-PKC rabbit mAb. Peroxidase-conjugated anti-mouse and 

anti-rabbit antibodies were purchased from DAKO. Membranes were stripped 

and re-probed with antibodies for total and phosphorylated proteins, when 

required. 
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Cell staining and flow cytometry 

Surface and intracellular staining were performed as described previously 

[27] using the indicated antibodies. From BioLegend: Alexa fluor 488-Ly6C, PE-

Cy7-Ly6G, PE-Cy7-streptavidin, APC-streptatividin; From BD Pharmigen: APC-

CD11b, PE-Cy7 anti-mouse CD11c, Rat anti-mouse CD16/CD32, PE-conjugated 

anti-Gr-1, Alexa 647-conjugated anti- PY418 SRC, PE-conjugated ant-AKT1, from 

Invitrogen: APC-CD11c, PE-streptavidin, FITC-streptavidin; from AbDSerotec: PE-

CD62L; From Santa Cruz Biotechnology: PE-conjugated anti-Fyn. From Cell 

Signaling, Alexa 647-conjugated anti-SRC rabbit antibody (clone 36D10) and PE-

conjugated anti-phospho AKT rabbit antibody (Ser473, clone D9E). 

Mass spectrometry-based quantitative proteomics and bioinformatic analyses 

A global experiment was carried out with three biological replicates in 

each experimental condition using B16-MDSC, NC-MDSC and DC cell pellets. The 

specific procedures for sample preparation, proteomic analyses, iTRAQ-based 

proteomic workflows and mass spectrometry using triple-TOF 5600 system (AB 

Sciex) have been published [8]. The mass spectrometry proteomics data were 

deposited to the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange. org) via the PRIDE partner 

repository with the data set identifiers PXD001103 and PXD001106. 

Analyses of raw data (.wiff, AB Sciex) were performed with MaxQuant 

software [34].  For peak list generation, default AB Sciex Q-TOF instrument 

parameters were used except the main search peptide tolerance, which was set 

to 0.01 Da, and MS/MS match tolerance, which was increased up to 50 ppm. 

Minimum peptide length was set to 6. Two databases were used.   A contaminant 

database (.fasta) was firstly used for filtering out contaminants. Peak lists were 

searched against UniProt murine database, and Andromeda was used as    a 

search engine [35]. Methionine oxidation was set as variable modification, and 

the carbamidomethylation of cysteine residues was set as fixed modification. 

Maximum false discovery rates (FDR) were set to 0.01 at protein and peptide 

levels. Analyses were limited to peptides of six or more amino acids in length, 

and considering      a maximum of two missed cleavages. Relative protein 
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abundance output data files were managed using R scripts for subsequent 

statistical analyses and representation. Proteins identified by site (identification 

based only on   a modification), reverse proteins (identified by decoy database) 

and potential contaminants were filtered out. Only proteins with more than one 

identified peptide were used for quantification. For possible quantification data 

rescue, up to one missing value for each group was rescued replacing it by the 

mean of the rest in-group samples. Data was normalized and transformed for 

later comparison using quantiles normalization and log2 transform respectively. 

The Limma Bioconductor software package in R was used for ANOVA analyses. 

Significant and differential data were selected by a p-value lower than 0.01, fold 

changes of <0.77 (down-regulation) and >1.3 (up-regulation) in linear scale. 

These parameters were used for differential expression threshold with volcano 

and profile plots. 

The proteomic information was analyzed using bioinformatic tools. 

Studies with the Kyoto Encyclopedia of Genes and Genomes (KEGGS) Pathway 

mapping tool were performed as described (http://www.genome 

.jp/kegg/tool/map_pathway1. html). The identification of specifically up- or 

dysregulated regulatory/metabolic networks in MDSCs was analyzed with the 

open access STRING (Search Tool for the Retrieval of Interacting Genes) analysis 

tool (v.9.1) [14] and with the Ingenuity Pathway Analysis Tool (Qiagen). 

Statistical analyses 

GraphPad Prism and SPSS software packages were used for plotting data 

and statistical analyses. No data was considered an outlier. Real time cell 

monitoring data (RTCA, ACEA biosystems) was analyzed by exporting the Cell 

Index data as a function of time. It was confirmed that Cell Index in a growing 

population of cells was highly homogeneous and normally distributed at any 

given time-point. Therefore, the data was analyzed by one-way ANOVA and 

Tukey’s pair-wise comparisons. IC50s were estimated for each treatment (using 

three published active concentrations per compound) in duplicates by RTCA, and 

means with standard deviations were obtained. IC50s were also highly 

homogeneous and normally distributed. The relative IC50 ratios for DCs vs 
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MDSCs were also calculated, and compared by one-way ANOVA and Tukey’s pair 

wise comparisons. Cell viability was quantified by trypan blue staining and data 

analyzed by one-way ANOVA and Tukey’s pair wise comparisons. Triplicates per 

treatment were used for the analyses. Growth of myeloid cells transduced with 

lentivectors encoding shRNAs was compared by a two-way ANOVA with “time of 

growth” as a random factor with data from four independent transductions, as 

described previously [8]. 
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SUPPLEMENTARY FIGURES AND TABLE 

 

 

Supplementary Figure S1: STRING functional interactomes with lineage-specific 

differentially expressed proteins (B16-MDSC vs DCs). a. Interactome using 

differentially up-regulated proteins as inputs. Medium (thin lines, score of 0.400) 

and   high (thick lines, score of 0.700) confidence relationships between protein 

nodes are indicated in the graph. Internodal relationships were independently 

confirmed. Proteins were encircled and grouped as interconnected networks 
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(NTs) to facilitate interpretation. A central network of kinases (Kin) is shown in 

the middle, which links the other networks. Networks NT1, NT2, NT3 and NT4 

grouped membrane receptors together with associated signal transduction 

proteins. Networks NT6 and NT7 included S100A protein family members, c-type 

lectins, membrane receptors involved in phagocyte migration to sites of 

inflammation and phagocyte-associated enzymes. NT8 included redox proteins 

associated to reactive oxygen species (ROS) and protection against oxidative 

damage and xenobiotics. NT9 comprised ribosomal proteins and regulators of 

nuclear processes and cell division. NT10 included proteins involved in 

intracellular vesicle trafficking, while NT11 consisted in a network of aminoacid 

metabolic pathways. b. Interactome map grouping differentially down-

modulated proteins involved in splicesosome formation (NT12) and carbon 

metabolism (NT13). c. As in (b) with down-modulated proteins involved in MHC II 

antigen presentation (NT15), lysosomal functions (NT18) and mitochondrial 

complex I (NT19). 

 

 
 
 

Supplementary Figure S2: STRING Functional interactomes with tumor-

regulated (B16-MDSCs vs NC-MDSCs) differentially expressed proteins. a. 

STRING interactomes with up-regulated proteins. Medium (thin lines, score of 

0.400) and high (thick lines, score of 0.700) confidence relationships between 

protein nodes are indicated in the graph. Internodal relationships were 
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independently confirmed. Proteins were encircled and grouped as interconnected 

networks (NTs) to facilitate interpretation. NT20 grouped proteins involved in 

inflammatory receptor signaling and ROS scavenging proteins (SOD2, PARK7, 

MPO). NT21 grouped the pentose phosphate pathway. NT22 contained tubulin 

and myosin, pointing to changes in the cell cytoskeleton. NT23 included proteins 

involved in ribosomal RNA transcription, protein translation, folding and 

proteosomal degradation. NT24 contained proteins involved in membrane 

signaling, membrane structure and cytoskeleton rearrangements. b. As in (a), 

NT25 contained proteins involved in gene expression and splicesosome 

organization. NT26 contained mitochondrial NADH dehydrogenase complex I and 

complex III proteins. NT27 contained cell growth-promoting and signal 

transduction proteins. 
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Annexin A5 Anxa5 24 0, 409148995 6, 08E-07 

Rho guanine nucleotide 

exchange factor 2 
Arhgef2 2 0, 414308614 6, 6E-05 

Lactadherin Mfge8 11 0, 429506653 4, 11E-06 

Annexin A1 Anxa1 25 0, 481617476 6, 04E-05 

Twinfilin-1 Twf1 2 0, 489112815 0, 000865 

Tubulin alpha-1C chain Tuba1c 18 0, 49021701 0, 0008 

Class II 

histocompatibility 

antigen, M beta 1 chain 

 
H2-DMb1;H2-DMb2 

 
2 

 
0, 491533209 

 
8, 1E-05 

H-2 class II 

histocompatibility 

antigen, E-U alpha chain 

 
H2-Ea 

 
5 

 
0, 498582303 

 
8, 08E-06 

H-2 class II 

histocompatibility 

antigen, A-D alpha chain 

 
H2-Aa 

 
4 

 
0, 522877994 

 
6, 45E-06 

Myosin regulatory light 

chain 12B 
Myl12b;Myl9 9 0, 536878005 0, 000273 

Glycogen phosphorylase, 

brain form 
Pygb;Pygm 3 0, 538066216 0, 001733 

Lon protease homolog 2, 

peroxisomal 
Lonp2 2 0, 538215926 0, 000881 

Solute carrier family 35 

member F6 
Slc35f6 2 0, 543109435 0, 003618 

H-2 class II 

histocompatibility 

antigen, E-D beta chain 

  
5 

 
0, 557078509 

 
1, 3E-05 

Asparagine—tRNA 

ligase, cytoplasmic 
Nars 4 0, 565052924 0, 000702 

CD63 antigen Cd63 2 0, 578425521 0, 003113 

Fatty acid-binding 

protein, epidermal 
Fabp5 3 0, 600473325 0, 000207 

H-2 class II 

histocompatibility 

antigen, A-D beta chain 

 
H2-Ab1 

 
9 

 
0, 609153728 

 
7, 78E-05 

Myosin-9 Myh9 111 0, 611970692 0, 000644 

V-type proton ATPase 

subunit d 2 
Atp6v0d2 7 0, 630823671 0, 000251 

Heterogeneous nuclear 

ribonucleoproteins A2/B1 
Hnrnpa2b1 14 0, 63694467 5, 2E-05 

Myosin-14 Myh14 7 0, 642878205 0, 0003 

                                                       B16-MDSC vs DC differentially expressed proteins    

     Protein names                  Gene names                     Peptides                   Fold change                    P value              
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Uncharacterized protein Gm8730;Rplp0 14 0, 648606361 0, 000193 

Neutral cholesterol ester 

hydrolase 1 
Nceh1 7 0, 651305733 4, 73E-05 

Heterogeneous nuclear 

ribonucleoprotein A/B 
Hnrnpab 7 0, 65477646 7, 23E-05 

Monoglyceride lipase Mgll 2 0, 657831546 0, 00342 

Transmembrane 

glycoprotein NMB 
Gpnmb 6 0, 66221021 9, 17E-05 

von Willebrand factor 

A domain-containing 

protein 5A 

 
Vwa5a 

 
4 

 
0, 663896759 

 
0, 001158 

Monoacylglycerol lipase 

ABHD12 
Abhd12 6 0, 677723053 0, 003818 

Ras-related GTP-binding 

protein C 
Rragd;Rragc 2 0, 678167689 0, 004017 

Lysosome membrane 

protein 2 
Scarb2 4 0, 679787707 0, 000251 

Heterogeneous nuclear 

ribonucleoprotein U-like 

protein 2 

 
Hnrnpul2 

 
7 

 
0, 685215928 

 
0, 001169 

Cathepsin D Ctsd 13 0, 691475625 0, 000874 

Putative sodium-coupled 

neutral amino acid 

transporter 10 

 
Slc38a10 

 
3 

 
0, 693741006 

g 
0, 004065 

Signal recognition 

particle subunit SRP68 
Srp68 2 0, 6969969 0, 00223 

Alpha-2-macroglobulin 

receptor-associated 

protein 

 
Lrpap1 

 
20 

 
0, 698359835 

 
0, 000132 

Elongation factor 

1-alpha 1 
Eef1a1;Eef1a2 18 0, 700559018 0, 000256 

Cathepsin S Ctss 6 0, 701751582 0, 001797 

Estradiol 17-beta- 

dehydrogenase 11 
Hsd17b11 4 0, 703096327 0, 000583 

Succinate dehydrogenase 

[ubiquinone] iron-sulfur 

subunit, mitochondrial 

 
Sdhb 

 
9 

 
0, 706493357 

 
0, 000214 

Transforming growth 

factor beta-1 
Tgfb1 2 0, 707417988 0, 002654 

Tropomyosin alpha-3 

chain 
Tpm3;Tpm3-rs7 21 0, 7087286 0, 006006 

                                                       B16-MDSC vs DC differentially expressed proteins    

     Protein names                  Gene names                     Peptides                   Fold change                    P value              
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WASH complex subunit 

strumpellin 
Kiaa0196 2 0, 710467852 0, 006814 

Lysosome-associated 

membrane glycoprotein 1 
Lamp1 4 0, 718359696 0, 003244 

ELAV-like protein 1 Elavl1 5 0, 720005557 0, 000596 

LEM domain-containing 

protein 2 
Lemd2 4 0, 723410824 0, 002332 

Aminopeptidase N Anpep 26 0, 724568989 0, 000451 

Heterogeneous nuclear 

ribonucleoprotein A1 
Hnrnpa1 8 0, 728604525 0, 000505 

NADH dehydrogenase 

[ubiquinone] 1 alpha 

subcomplex subunit 10, 

mitochondrial 

 

Ndufa10 

 

6 

 

0, 730876406 

 

0, 003613 

Heterogeneous nuclear 

ribonucleoprotein H2 
Hnrnph2 6 0, 731481958 0, 000661 

Legumain Lgmn 3 0, 733714602 0, 00072 

ER membrane protein 

complex subunit 1 
Emc1 6 0, 736539664 0, 006507 

Serpin B6 Serpinb6a;Serpinb6 8 0, 739418148 0, 002021 

Nicastrin Ncstn 5 0, 739929041 0, 001134 

Cytoplasmic dynein 1 

heavy chain 1 
Dync1 h1 36 0, 746509337 0, 000733 

Macrophage 

metalloelastase 
Mmp12 11 0, 747676988 0, 003364 

L-amino-acid oxidase Il4i1 4 0, 748410986 0, 003715 

DnaJ homolog subfamily 

C member 11 
Dnajc11 3 0, 74862864 0, 001608 

Glutamine— 

fructose-6-phosphate 

aminotransferase 

[isomerizing] 1 

 

Gfpt1 

 

4 

 

0, 749338067 

 

0, 0075 

Lymphocyte antigen 75 Ly75 4 0, 750276114 0, 007796 

Macrophage mannose 

receptor 1 
Mrc1 18 0, 750401561 0, 003811 

Golgi membrane 

protein 1 
Golm1 2 0, 751319227 0, 001423 

Dipeptidyl peptidase 2 Dpp7 2 0, 751371795 0, 002028 

Vam6/Vps39-like protein Vps39 2 0, 753460592 0, 001331 

                                                       B16-MDSC vs DC differentially expressed proteins    

     Protein names                  Gene names                     Peptides                   Fold change                    P value              
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Amine oxidase [flavin- 

containing] A 
Maoa 3 0, 753928115 0, 007226 

Creatine kinase B-type Ckb 8 0, 754517987 0, 001915 

Nicotinamide 

phosphoribosyltransferase 
Nampt 2 0, 755875358 0, 00465 

Inosine triphosphate 

pyrophosphatase 
Itpa 2 0, 760176881 0, 008895 

Heterogeneous nuclear 

ribonucleoprotein L 
Hnrnpl 7 0, 76047527 0, 001026 

Ribonuclease inhibitor Rnh1 7 0, 760502021 0, 000888 

B-cell receptor-associated 

protein 31 
Bcap31 11 0, 761263852 0, 00613 

NADH dehydrogenase 

[ubiquinone] iron-sulfur 

protein 4, mitochondrial 

 
Ndufs4 

 
5 

 
0, 762621458 

 
0, 005491 

V-type proton ATPase 

subunit E 1 
Atp6v1e1 16 0, 763478047 0, 004022 

Heterogeneous nuclear 

ribonucleoprotein K 
Hnrnpk;Gm7964 12 0, 763856162 0, 005636 

L-lactate dehydrogenase Ldha 13 0, 764291243 0, 000965 

Putative pre-mRNA- 

splicing factor ATP- 

dependent RNA helicase 

DHX15 

 

Dhx15 

 

7 

 

0, 765273038 

 

0, 001402 

Phosphoglycerate 

kinase 1 
Pgk1 18 0, 766086802 0, 007756 

Glycogen phosphorylase, 

liver form 
Pygl 16 0, 766633266 0, 0034 

NADH dehydrogenase 

[ubiquinone] flavoprotein 

2, mitochondrial 

 
Ndufv2 

 
7 

 
0, 76712425 

 
0, 004833 

NADH dehydrogenase 

[ubiquinone] flavoprotein 

1, mitochondrial 

 
Ndufv1 

 
10 

 
0, 769871468 

 
0, 004625 

Mimitin, mitochondrial Ndufaf2 2 1, 30381531 0, 002611 

Mitochondrial import 

receptor subunit TOM70 
Tomm70a 7 1, 304563258 0, 001894 

Ras-related protein 

Rap-1b 
Rap1b;Rap1a 6 1, 307217616 0, 003029 

Tyrosine-protein 

phosphatase non-receptor 

type 1 

 
Ptpn1 

 
12 

 
1, 310480124 

 
0, 001443 

                                                       B16-MDSC vs DC differentially expressed proteins    

     Protein names                  Gene names                     Peptides                   Fold change                    P value              



150 
 

 

 
  

Lactotransferrin Ltf 6 1, 311085 0, 009649 

Vacuolar protein sorting- 

associated protein 33A 
Vps33a 2 1, 317391275 0, 000905 

Mitochondrial import 

inner membrane 

translocase subunit 

Tim8 A 

 

Timm8a1;Timm8a2 

 

2 

 

1, 322616616 

 

0, 003141 

Argininosuccinate 

synthase 
Ass1;Gm5424 9 1, 323069518 0, 004604 

Ferritin Ftl1;Ftl2 10 1, 323319619 0, 001567 

Protein S100-A4 S100a4 3 1, 326852892 0, 002104 

Nucleophosmin Npm1;Gm5611 14 1, 328008535 0, 000918 

Integrin alpha-1 Itga1 5 1, 33234292 0, 008921 

Epidermal growth factor 

receptor substrate 15 
Eps15 4 1, 335132857 0, 007084 

Adenylate kinase 2, 

mitochondrial 
Ak2 9 1, 339117363 0, 000355 

Lamin-B receptor Lbr 10 1, 340226149 0, 002185 

Heme oxygenase 1 Hmox1 7 1, 341204992 0, 00124 

Platelet receptor Gi24 4632428N05Rik 4 1, 350347861 0, 002464 

Transgelin-2 Tagln2 12 1, 351776016 0, 001362 

Low affinity 

immunoglobulin gamma 

Fc region receptor II 

 
Fcgr2 

 
6 

 
1, 366625261 

 
0, 002449 

Leukocyte elastase 

inhibitor A 
Serpinb1a 6 1, 37092156 0, 001528 

Perilipin-3 Plin3 3 1, 373402061 0, 002905 

Superoxide dismutase 

[Mn], mitochondrial 
Sod2 8 1, 373760594 0, 001123 

High affinity 

immunoglobulin epsilon 

receptor subunit gamma 

 
Fcer1g 

 
4 

 
1, 374118744 

 
0, 00872 

Embigin Emb 4 1, 377538576 0, 001189 

Formyl peptide receptor 2 Fpr2 3 1, 379093299 0, 000644 

Cytochrome b5 Cyb5a 6 1, 380498718 0, 001192 

Chromobox protein 

homolog 3 
Cbx3 6 1, 380952591 0, 001884 

Acid sphingomyelinase- 

like phosphodiesterase 3b 
Smpdl3b 4 1, 384287037 0, 002606 
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Protein-arginine 

deiminase type-4 
Padi4 9 1, 40155117 0, 000424 

Protein LYRIC Mtdh 7 1, 406115785 0, 002098 

Bcl-2-like protein 13 Bcl2l13 3 1, 408599571 0, 001685 

H-2 class I 

histocompatibility 

antigen, K-B alpha chain 

 
H2-K1 

 
8 

 
1, 41010511 

 
0, 001533 

Napsin-A Napsa 2 1, 411600269 0, 005092 

Coronin-1A Coro1a 12 1, 414013879 0, 00018 

2-amino-3-ketobutyrate 

coenzyme A ligase, 

mitochondrial 

 
Gcat 

 
2 

 
1, 421520698 

 
0, 006462 

Cyclin-dependent 

kinase 2 
Cdk2 2 1, 426124115 0, 009262 

Plexin domain-containing 

protein 2 
Plxdc2 5 1, 42751035 0, 00033 

Rho GTPase-activating 

protein 1 
Arhgap1 5 1, 428460911 0, 000189 

Histone H1.0 H1f0 3 1, 429352055 0, 00982 

Peroxiredoxin-5, 

mitochondrial 
Prdx5 10 1, 43101649 0, 000163 

Cytochrome b-245 light 

chain 
Cyba 5 1, 432458891 0, 000559 

CD44 antigen Cd44 3 1, 443457084 0, 000215 

Zyxin Zyx 4 1, 444345746 0, 008419 

Cytochrome b-245 heavy 

chain 
Cybb 10 1, 455588804 0, 000222 

Chitinase-like protein 3 Chil3 18 1, 46074136 0, 000102 

Tyrosine-protein kinase 

HCK 
Hck 5 1, 464103351 0, 000238 

Leukocyte surface 

antigen CD47 
Cd47 2 1, 465022748 0, 003868 

C-type lectin domain 

family 6 member A 
Clec4n;Clec6a 2 1, 467063188 0, 00017 

CD177 antigen Cd177 5 1, 473425935 0, 002559 

Lamina-associated 

polypeptide 2, isoforms 

beta/delta/epsilon/gamma 

 
Tmpo 

 
11 

 
1, 476178931 

 
0, 00123 

Glycerol kinase Gyk 2 1, 481175737 0, 000568 

Alpha-actinin-4 Actn4 36 1, 485459058 7, 33E-05 
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ATP-dependent 

(S)-NAD(P)H-hydrate 

dehydratase 

 
Carkd 

 
2 

 
1, 487792072 

 
0, 004226 

Actin, alpha skeletal 

muscle 
Acta1 17 1, 490499494 0, 001138 

Plasminogen activator 

inhibitor 1 RNA-binding 

protein 

 
Serbp1 

 
7 

 
1, 515466638 

 
0, 000249 

Tyrosine-protein kinase 

Fyn 
Fyn;Yes1 3 1, 524885079 0, 003341 

Sodium/potassium- 

transporting ATPase 

subunit alpha-3 

 
Atp1a3;Atp1a2 

 
13 

 
1, 525120684 

 
0, 002015 

60S ribosomal protein L8 Rpl8 5 1, 526316859 0, 00643 

Urokinase plasminogen 

activator surface receptor 
Plaur 2 1, 529089244 0, 000475 

Vesicle-associated 

membrane protein 4 
Vamp4 3 1, 538993145 0, 001874 

ADP-ribosyl cyclase/ 

cyclic ADP-ribose 

hydrolase 1 

 
Cd38 

 
3 

 
1, 539999685 

 
0, 000433 

60S ribosomal protein 

L24 
Rpl24;Gm17430 4 1, 542903394 0, 009811 

Plasminogen activator 

inhibitor 2, macrophage 
Serpinb2 3 1, 562731137 0, 000522 

60S ribosomal protein 

L13 
Rpl13 3 1, 568815619 0, 000839 

Coagulation factor XIII 

A chain 
F13a1 5 1, 575022778 0, 002436 

Protein S100-A9 S100a9 5 1, 585262138 0, 000482 

C-type lectin domain 

family 10 member A 
Clec10a 9 1, 608439704 0, 000107 

3-hydroxyisobutyryl-CoA 

hydrolase, mitochondrial 
Hibch 2 1, 633954389 0, 002052 

Neuronal proto-oncogene 

tyrosine-protein kinase 

Src 

 
Src 

 
3 

 
1, 641084449 

 
0, 000776 

Macrophage galactose 

N-acetyl-galactosamine 

specific lectin 2 

 
Mgl2 

 
13 

 
1, 648910806 

 
3, 73E-05 

Monocyte differentiation 

antigen CD14 
Cd14 3 1, 649302138 0, 000391 
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Signal-regulatory protein 

alpha 
Sirpa 5 1, 667987603 0, 007842 

High affinity cationic 

amino acid transporter 1 
Slc7a1 2 1, 683193993 0, 002121 

Cathepsin G Ctsg 2 1, 684502903 0, 000662 

Zinc transporter ZIP4 Slc39a4 2 1, 701167303 0, 000458 

Ferritin heavy chain Fth1 3 1, 70872916 4, 24E-05 

Phostensin Ppp1r18 4 1, 734747128 0, 001686 

Myeloperoxidase Mpo 14 1, 739785165 1, 48E-05 

Citrate lyase subunit 

beta-like protein, 

mitochondrial 

 
Clybl 

 
2 

 
1, 812987713 

 
0, 00626 

Brain acid soluble 

protein 1 
Basp1 8 1, 855107248 8, 3E-05 

Carbonic anhydrase 4 Ca4;Car4 10 1, 910244551 4, 79E-06 

Lymphocyte-specific 

protein 1 
Lsp1 12 1, 914761621 2, 34E-06 

Protein DEK Dek 3 1, 924824794 6, 07E-05 

Talin-2 Tln2 7 1, 958388414 0, 002108 

Protein Ahnak Ahnak 95 2, 08080018 2, 1E-06 

60S ribosomal protein 

L14 
Rpl14 3 2, 097473177 0, 00187 

Protein S100-A8 S100a8 6 2, 162403323 6, 12E-05 

Eosinophil peroxidase Epx 16 2, 166652695 3, 09E-05 

Myeloid bactenecin (F1) Ngp 3 2, 254673881 4, 64E-06 

Interferon-induced 

transmembrane protein 3 
Ifitm3 3 2, 270237035 2, 09E-06 
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MCG130182, isoform CRA_a Gm5483 3 0, 589206137 0, 000126 

26S proteasome non-ATPase 

regulatory subunit 5 
Psmd5 2 0, 598593317 0, 000267 

Eukaryotic translation initiation 

factor 4H 
Eif4 h 4 0, 611736747 0, 001747 

CapZ-interacting protein Rcsd1 3 0, 612295734 0, 000745 

Protein S100-A6 S100a6 2 0, 617006908 0, 008245 

Rho GDP-dissociation inhibitor 2 Arhgdib 7 0, 618770272 0, 000466 

Tubulin alpha-4A chain Tuba4a 10 0, 626186143 0, 003667 

Superoxide dismutase [Cu-Zn] Sod1 3 0, 631095674 0, 000772 

Nucleosome assembly protein 

1-like 1 
Nap1l1 5 0, 640182294 0, 004251 

Protein S100-A9 S100a9 5 0, 648160088 0, 001437 

Prothymosin alpha Ptma 3 0, 651999552 0, 00052 

Myosin light polypeptide 6 Myl6 8 0, 656424969 0, 005285 

Astrocytic phosphoprotein 

PEA-15 
Pea15 2 0, 666877728 0, 003191 

DNA-directed RNA polymerases I 

and III subunit RPAC1 
Polr1c 2 0, 67045724 0, 006728 

Glucose-6-phosphate 

1-dehydrogenase X 
G6pdx 13 0, 670989902 0, 001161 

Spermine synthase Sms 2 0, 673833379 0, 005298 

Leukotriene A-4 hydrolase Lta4 h 13 0, 686384982 0, 001508 

Myeloperoxidase Mpo 7 0, 688935214 0, 005634 

Alpha-N-acetylglucosaminidase Naglu 3 0, 6900478 0, 009688 

Eukaryotic initiation factor 4A-I Eif4a1 13 0, 694111659 0, 001646 

Tubulin beta-4B chain Tubb4b;Tubb4a 14 0, 696428165 0, 005599 

Transaldolase Taldo1 10 0, 703041508 0, 001204 

Rho GDP-dissociation inhibitor 1 Arhgdia 5 0, 708523919 0, 002027 

6-phosphogluconate 

dehydrogenase, decarboxylating 
Pgd 13 0, 709492257 0, 003216 

Glutathione S-transferase P 1 Gstp1 3 0, 715568979 0, 006782 

Alanine—tRNA ligase, 

cytoplasmic 
Aars 9 0, 724055571 0, 00406 

T-complex protein 1 subunit 

epsilon 
Cct5 7 0, 725355973 0, 008302 

Destrin Dstn 4 0, 726632332 0, 005658 

Ubiquitin-like modifier-activating 

enzyme 1 
Uba1 16 0, 727024557 0, 005177 
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ATPase Asna1 Asna1 2 0, 72757609 0, 007588 

Ezrin Ezr 26 0, 730834893 0, 005634 

Phosphatidylethanolamine-binding 

protein 1 
Pebp1 3 0, 734400826 0, 005071 

Ribosomal RNA processing 

protein 1 homolog A 
Rrp1 2 0, 738249657 0, 006636 

Transketolase Tkt 11 0, 741843927 0, 00586 

Peroxiredoxin-6 Prdx6 8 0, 743801046 0, 002992 

Protein DJ-1 Park7 5 0, 749901306 0, 007964 

Heat shock protein HSP 90-alpha Hsp90aa1 23 0, 750975375 0, 003701 

Chloride intracellular channel 

protein 1 
Clic1 8 0, 751762163 0, 005866 

40S ribosomal protein S18 Rps18;Gm10260 4 0, 753299597 0, 005027 

Glutathione S-transferase Mu 1 Gstm1 7 0, 753382783 0, 008871 

Ras suppressor protein 1 Rsu1 2 0, 753677287 0, 004846 

Proteasome subunit alpha type-1 Psma1 6 0, 761777735 0, 007526 

Bifunctional purine biosynthesis 

protein PURH 
Atic 9 0, 765684291 0, 00599 

Macrophage scavenger receptor 

types I and II 
Msr1 6 1, 303825752 0, 009559 

Protein Sf3b2 Sf3b2 8 1, 310630121 0, 004769 

Malate dehydrogenase, 

mitochondrial 
Mdh2 10 1, 316433466 0, 005662 

ATP-dependent RNA helicase 

DDX42 
Ddx42 2 1, 326602896 0, 0084 

Beta-1, 4 

N-acetylgalactosaminyltransferase 

1 

 
B4galnt1 

 
5 

 
1, 328280926 

 
0, 003965 

Legumain Lgmn 5 1, 363515033 0, 003449 

E3 UFM1-protein ligase 1 Ufl1 3 1, 368089173 0, 005859 

Brain acid soluble protein 1 Basp1 8 1, 369738842 0, 007428 

Cytochrome b-245 heavy chain Cybb 8 1, 379745693 0, 007504 

NADH dehydrogenase 

[ubiquinone] 1 beta subcomplex 

subunit 8, mitochondrial 

 
Ndufb8 

 
2 

 
1, 379768717 

 
0, 009965 

RNA-binding protein FUS Fus 4 1, 383579198 0, 003469 

Annexin A2 Anxa2 23 1, 387238034 0, 001975 

Hexokinase-2 Hk2 12 1, 391029042 0, 004338 

Protein Ahnak Maoa 82 1, 397110044 0, 003518 
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Succinate dehydrogenase 

[ubiquinone] flavoprotein subunit, 

mitochondrial 

 
Ckb 

 
11 

 
1, 400581193 

 
0, 007454 

Chromodomain-helicase-DNA- 

binding protein 4 
Nampt 5 1, 401800102 0, 004666 

Plasminogen receptor (KT) Itpa 3 1, 417180455 0, 003521 

Thyroid hormone receptor- 

associated protein 3 
Hnrnpl 5 1, 418157791 0, 002434 

Zinc-binding alcohol 

dehydrogenase domain-containing 

protein 2 

 
Rnh1 

 
5 

 
1, 432808549 

 
0, 002205 

Normal mucosa of esophagus- 

specific gene 1 protein 
Bcap31 2 1, 447669214 0, 006718 

Pro-cathepsin H Ndufs4 2 1, 448045875 0, 0024 

Annexin A4 Atp6v1e1 20 1, 469858566 0, 004418 

Isopentenyl-diphosphate Delta- 

isomerase 1 
Hnrnpk;Gm7964 4 1, 484479927 0, 007223 

Heterogeneous nuclear 

ribonucleoprotein U-like protein 2 
Ldha 7 1, 512224046 0, 003377 

Cytochrome b-c1 complex subunit 

Rieske, mitochondrial 
Dhx15 6 1, 514801192 0, 000731 

RNA-binding protein 25 Pgk1 3 1, 519285254 0, 005808 

Lysosome-associated membrane 

glycoprotein 1 
Pygl 4 1, 528207246 0, 005381 

Dhx16 protein Ndufv2 2 1, 535132714 0, 006593 

Probable ATP-dependent RNA 

helicase DDX6 
Ndufv1 2 1, 624024139 0, 006046 

Cell division cycle 5-like protein Ndufaf2 2 1, 657520224 0, 006832 

Lysosome-associated membrane 

glycoprotein 2 
Tomm70a 3 1, 684964459 0, 007944 

ADP/ATP translocase 1 Rap1b;Rap1a 5 1, 714237166 0, 009989 

Epoxide hydrolase 1 Ptpn1 2 1, 800951684 0, 001541 

Metastasis-associated protein 

MTA1 
Ltf 3 2, 002434335 0, 005013 

Arginase-1 Vps33a 10 2, 305826701 4, 13E-06 
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Myosin-4 Myh2;Myh4;Myh1 3 0, 272566219 0, 00017 

Lymphocyte-specific protein 1 Lsp1 6 0, 421060939 0, 000113 

MCG130173 Stfa2l1 2 0, 513643456 4, 06E-05 

2010005H15Rik protein 2010005H15Rik 3 0, 525149229 5, 18E-05 

Chitinase-like protein 3 Chil3 12 0, 550932031 0, 000314 

D-3-phosphoglycerate 

dehydrogenase 
Phgdh 5 0, 564754318 8, 73E-05 

MCG130175, isoform CRA_b BC100530 5 0, 579007568 8, 97E-05 
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DISCUSSION 

 

Tumors escape from the immune attack by several means. In this Ph.D 

thesis I studied two of the mechanisms of tumor escape and disease 

progression; the establishment of immunosuppressive interactions between T 

cells and tumor cells, and the biology of MDSCs. 

 

1. PD-L1 INTRACELLULAR SIGNALLING AS A MECHANISM OF TUMOR 

PROGRESSION 

The first immunosuppressive barrier that I studied was the PD-L1/PD-1 

interaction. The results from this Ph.D thesis have contributed to the 

understanding of this key interaction in two major points. First, PD-L1 

expression in cancer cells contribute to the survival of cancer cells by conferring 

resistance to IFN toxicity. Second, two sequence motifs have been mapped 

within the intracytoplasmic domain of PD-L1 that participate in IFN-β resistance 

by transmitting putative intracellular signals to the cancer cell. 

Surprisingly, very little is still known on the biological mechanisms of 

action of PD-L1/PD-1 interactions, compared to the extent to which PD-L1/PD-

1 blockade is utilized in the clinic.  Although this might be practical for the point 

of view of the patient, the lack of knowledge on how these interactions work 

can make several opportunities for therapeutic interventions to be missed.  

There is a general consensus on the association of PD-L1 expression with 

tumor progression. The direct inhibition of T cells by PD-L1 has a strong 

enhancing effect on tumor progression by counteracting the immunological 

attack. Here, the direct participation of PD-L1 expression in the survival of 

cancer cells was studied. 
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1.1. PD-L1 intracellular motifs 

Before this Ph.D thesis, there was a somewhat surprising lack of studies 

on PD-L1 intracellular signal transduction. Only a very few previous studies 

addressed this issue, some of them in a rather indirect manner. For example, 

there was evidence that PD-L1 intracellular signals to cancer cells favored their 

survival (Azuma et al. 2008), and  regulated cancer cell aerobic glycolysis and 

autophagy through the AKT/mTOR signaling  (Chen et al. 2014; Shi et al. 2013; 

Chang et al. 2016; Palmer et al. 2015; Thompson et al. 2004) (Figures 10 and 

7B). 

Indeed, no signaling motifs had been identified or mapped in the 

intracytoplasmic domain of PD-L1 before. While addressing this issue, we 

decided to employ a classical approach to identify specific motifs with potential 

signal transduction capacities. An alignment of the cytoplasmic region of 10 

mammalian PD-L1 molecules readily highlighted three highly conserved 

sequence motifs. One of these motifs was the “RMLDVEKC” sequence. Its 

removal eliminated the capacities of PD-L1 to counteract IFN-β cytotoxicity, 

leading to cell death. The second motif, the “DTSSK” sequence was a strong 

inhibitor of PD-L1 anti-IFN-β functions. Its removal potentiated the growth and 

survival of cancer cells in the presence of IFN-β, suggesting that it was a negative 

regulator of PD-L1 functions. The third motif “QFEET” could be removed without 

having any functional consequence at least on cell growth and survival. Of note, 

the importance of the RMLDVEKC sequence was also indirectly highlighted by 

two facts: (1) The salmon PD-L1 molecule was a DTSSK/QFEET-deleted version 

of the mammalian counterparts; (2) no somatic mutations were found in 

databases of human cancer genomic sequences affecting any of the residues 

comprising this sequence.  In contrast, most of the mutations affected the 

DTSSK motif. Indeed, considering mutations leading to disrupting aminoacid 

changes, 5 out of the 7 directly affected the human homolog of the inhibitory 

motif DTSSK (Figure 5A Cell Reports). These changes were potentially highly 

disruptive, and I tested two of them in the murine PD-L1 homologue positions 

(D276H and K280N). These mutations disrupted the inhibitory functions of 
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DTSSK, strongly enhancing resistance to type I and type II IFNs. Although there 

was no time to check the other mutations, it is likely that these may disrupt 

DTSSK inhibitory capacities.  

Hence, selected somatic mutations in the PD-L1 gene in human 

carcinomas keep the RMLDVEKC motif unaltered, while disrupting the DTSSK 

inhibitory motif. These cancer cells will probably express hyperactivated PD-L1 

mutants conferring cancer cells stronger resistance to IFN cytotoxicity. In this 

Ph.D thesis, I also tested if alternative sequence motifs could be found using 

bioinformatics databases. Interestingly, only Motif finder 

(http://www.genome.jp/tools-bin/search_motif_lib) identified a sequence in 

the intracellular domain of the murine PD-L1 gene with high similarity to a 

domain present in DNA-dependent RNA polymerase beta subunits. Even more, 

this polymerase-like sequence spanned the two of the motifs found in this Ph.D 

with signal-transduction activities (Figure 12). This result may indicate 

convergence towards a particular structural feature, although this is only 

speculation.  

Other motifs that can affect PD-L1 functions are ubiquitination 

sequences, which may regulate PD-L1 stability. Indeed, cancer cells subjected 

to TNF-α upregulate COP9 signalosome 5 (CSN5), which stabilizes PD-L1 by 

favoring its de-ubiquitination (Lim et al. 2016). It has also been recently shown 

that the stability and functions of PD-L1 are regulated by stabilizing interactions 

with membrane proteins such as CMTM6 and CMTM4 (Mezzadra et al. 2017). 

These proteins inhibit PD-L1 ubiquitination by STUB1 at the plasma membrane, 

preventing its degradation in lysosomes (Burr et al. 2018; Mezzadra et al. 2017).  

Interestingly, the exact lysine residues that get ubiquitinated were not 

identified in any of the previous studies. In this Ph.D thesis I also addressed the 

possibility of ubiquitination to regulate PD-L1 intracellular signaling. There are 

three lysine residues susceptible of ubiquitination, two of them within the 

murine RMLDVEKC and DTSSK motifs, and one of them at the transmembrane-

cytoplasmic interphase. By mutating the RMLDVEKC/DTSSK lysine residues to 

arginines (a similar aminoacid that cannot get ubiquitinated) I found them to be 

http://www.genome.jp/tools-bin/search_motif_lib
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negative regulators of the anti-IFN-β capacities of PD-L1. However, in this thesis 

it was not directly demonstrated whether these lysines do get ubiquitinated. 

Nevertheless, it could be hypothesized that PD-L1 ubiquitination is a major 

regulatory mechanism of its functions by either degrading it and inhibiting signal 

transduction (Sathianathen et al. 2017) or by modulating the recruitment of 

other signaling components (Powles et al. 2018). The existence of this 

regulation is strengthen by our data demonstrating that the inhibitory activity 

of DTSSK also depended on its lysine, and that one selected somatic mutation 

in the human DTSSK homologue disrupted the lysine residue in a cervix 

carcinoma.  It could be interesting to test whether for example STUB1 can 

introduce ubiquitination in lysines 271 and 280 or CSN5 prevent their 

ubiquitination. 

 

 

1.2. PD-L1 cross-talk with interferon signaling in cancer cells  

The elucidation of the exact molecular mechanisms behind the signal 

transduction capacities of the motifs identified in this Ph.D thesis can be 

challenging. It could be possible that kinases or phosphatases physically bind 

these domains either directly or through adaptor proteins that may crosstalk 

with other signal transduction pathways. Proteins belonging to the mTOR 

signaling pathway may be good candidates according to the experimental 

evidence so far. 

Therefore, I decided to approach this problem by first elucidating the 

stage at which PD-L1 interfered with IFN-β signal transduction, a common 

theme utilized by cancer cells for tumor progression. One of such mechanisms 

is IFNAR1 down-modulation, that overcomes oncogene-induced senescence in 

melanoma (Katlinskaya et al. 2016). However, PD-L1 overexpression did not 

alter IFNAR1 and IFNAR2 surface levels in B16 melanoma cells (Figure 1 Cell 

reports). Nevertheless, silencing of IFNAR1 or JAK1 completely protected 

melanoma cells from IFN-β-dependent apoptosis, similarly to the effects 

observed by PD-L1 overexpression (Figure 1 Cell reports).  
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The evidence provided in this thesis shows that lack of PD-L1 enhanced 

STAT3 expression and its tyrosine 705 phosphorylation without affecting STAT1 

or STAT2 after IFN-β stimulation (Figure 3 Cell reports). Pfeffer et al showed that 

non-phosphorylated STAT3 also plays an important role in the IFN I response 

pathway (Pfeffer et al. 2017) and Ren et al proposed that apoptosis caused by 

IFN-β could be driven through STAT3 in breast cancer (Ren et al. 2017).  

Caspases 7 and 9 were strongly up-regulated and required for IFN-β-dependent 

apoptosis (Figure 13, Figure 3 Cell Reports). Recently, our results were 

corroborated by Luo et al. and Garcia-Diaz et al. using shRNA-based or CRISPR-

based genetic screenings, respectively (Garcia-Diaz et al. 2017; Luo et al. 2018). 

JAK1 but not JAK2 was found to be the primary and essential mediator of STAT1, 

STAT3 and STAT5 phosphorylation following IFN-ϒ stimulation, resulting in PD-

L1 upregulation. PD-L1 is transcriptionally up-regulated by STAT1/STAT2 and 

STAT3 (Garcia-Diaz et al. 2017) after IFN exposure. Our data adds that PD-L1 up-

regulation would counteract the apoptotic branch of the IFN-signalling 

pathway, allowing cancer cells to survive. As many studies show that STAT3 and 

STAT5 phosphorylation in cancer cells are indeed pro-tumorigenic, especially 

when induced by JAK2 (Wellbrock et al. 2005; Yu et al. 2016), it could be tested 

whether this is in part caused by the anti-apoptotic effects of PD-L1 up-

regulation. Indeed, these authors propose that PTPN2 (JAK2) inhibitors would 

potentiate JAK1 activities and the enhancement of IFN cytotoxicity (Luo et al. 

2018; Manguso et al. 2017). 

IFN-β induces the expression of TRAIL that triggers caspase 8 and 3 

dependent apoptosis in melanoma and breast cancer cells (Bernardo et al. 

2013; Chawla-Sarkar et al. 2001).  In cervical carcinoma, IFN-β causes 

proliferative arrest and accumulation of the anti-apoptotic protein cFLIP and 

caspase 8  (Apelbaum et al. 2013). Our data shows that STAT3 clearly has an 

anti-oncogenic function by promoting apoptosis through caspases 7 and 9 in 

melanoma cells after IFN-β exposure. 

As mentioned above, this seems to be a discrepancy with other 

published work. Phospho-STAT3 Y705 and sometimes S754 has been linked to 

oncogenic and anti-apoptotic capacities in several cancers (Hsia et al. 2017; 
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Ganguly et al. 2018; Ni 2018; Liu et al. 2018; Zhang et al. 2011; Bowman et al. 

2000; Darnell et al.  2005; Bharti et al. 2013; Couronné et al. 2013; Pencik et al. 

2016). Inhibition of the STAT3 pathway counteracts tumor progression in vitro, 

in vivo and in some clinical trials. Some examples are  a phase I study of an oral 

STAT3 inhibitor OPB-31121, in patients with advanced solid tumours witch 

concluded preliminary antitumour activity and safety of it (Oh et al. 2015) and 

a phase I clinical trial of an oral STAT3 direct inhibitor (C188-9) for patients with 

advanced cancers that is currently on 

(https://clinicaltrials.gov/ct2/show/NCT03195699).  

 These discrepancies could have several explanations. First, STAT3 could 

have different functions within cancer cells, depending on the initiating 

stimulus. In our case, IFN-β is the initiating stimulus and its antitumor and pro-

apoptotic functions through JAK/STAT pathway are well-known. Second, STAT3 

can be phosphorylated in several sites, and here our data strongly suggests that 

tyrosine 705 phosphorylation is directly linked to apoptosis. Other authors link 

this phosphorylation to anti-apoptotic responses (Ganguly et al. 2018; Zhang et 

al. 2011). However, it could well be that specific combinations of 

phosphorylated/non-phosphorylated sites may confer differential functions to 

STAT3. Third, STAT3 could play a dual role by having a pro-apoptotic function 

first, but triggering a pro-tumorigenic effect by further causing PD-L1 

transcriptional up-regulation. Indeed, there is evidence that lentiviruses-

transduced-microRNA-3127-5p expression leads to PD-L1 elevation and 

suppresses autophagy through increase STAT3 phosphorylation, promoting 

human non-small lung cell carcinoma growth. However, the specific mechanism 

by which this mircroRNA achieves these effects were not described by the 

authors of the study (Tang et al. 2018). Other studies have demonstrated that 

STAT3 is involved in PD-L1 upregulation in several cancers (Fujita et al. 2015; 

Horlad et al. 2016). Our data corroborate those results but points to caspase 7 

mainly and caspase 9. Four, other factors that were not studied in this thesis 

may also influence the outcome. For example, in head and neck cancer STAT3 

SUMOylation increases STAT3 Y705 phosphorilation (Zhou et al. 2016). Other 

pathways such as MAPKs, PI3K, or NF-B cooperate with JAK/STAT signaling 
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(Gough et al. 2008). IFNs also activate some protein kinase C isoforms (PKCs) 

and the multifunctional adaptor protein CrkL (Schreiber al. 2017; Suda et al. 

2012; Barbosa et al. 2014). The contribution of some of these pathways was 

part of this PhD thesis, which is currently undergoing.  

 

 

 

 

Figure 12. PD-L1 domains and cross-talk with interferon signaling in cancer 

cells. (A) The domain structure of PD-L1 is represented in the figure. Ig, the 

extracellular immunoglobulin domain; TM, transmembrane domain. The 

RMLDVEKC, DTSSK and QFEET motifs are represented in the intracytoplasmic 

region of PD- L1. The RNApol-like motif identified by MotifFinder is indicated, 

which contains part of the RMLDVEKC motif and the whole DTSSK motif. Red 

arrows point the inhibitory lysines. (B) The mechanism by which PD- L1 

counteracts interferon-mediated apoptosis is represented in the figure.  A 

function associated to the RMLDVEKC motif is required to inhibit STAT3 

phosphorylation, which in turns stops caspase7-mediated apoptosis. The DTSSK 

motif acts as a negative regulator of the RMLDVEKC motif. 
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1.3.  Consequences of PD-L1-dependent inhibition of the ifn signaling 

pathway in cancer cells 

It is highly likely that PD-L1/PD-1 blockade with antibodies may sensitize 

cancer cells to IFN-β cytotoxicity similarly to silencing or abrogation of PD-L1. 

This has been shown in vitro in this Ph.D thesis by using anti-PD-L1 antibodies. 

Indeed, inactivating mutations in components of the IFNs signal transduction 

pathway enhance cancer progression, pointing to the necessity of disrupting 

this pathway in many cases for tumor progression (Nakanishi et al. 2007; Yao et 

al. 2009; Gao et al. 2016; Zaretsky et al. 2016). Some of these mutations 

contribute to resistance to anti-PD-1 therapy (Shin et al. 2017; Zaretsky et al. 

2016). Other mechanisms of tumor escape include downregulation of IFN 

receptors after ubiquitination by SCF-bTrcp2/HOS E3 ubiquitin ligase (Kumar et 

al. 2003; Splawski et al. 2004; Kumar et al. 2007; Katlinskaya et al. 2016).  

The group led by Dr Antoni Ribas proposed that loss of IFN signaling in 

cancer cells prevented adaptive up-regulation of PD-L1, becoming “PD-L1” 

negative tumors (Zaretsky et al. 2016). These tumors then would be intrinsically 

resistant to PD-L1/PD-1 blockade. However, this idea is difficult to reconcile 

with our current understanding of PD-L1/PD-1 interactions. It would be 

expected that PD-1+ T cells would be “free” to exert their cytotoxic activities 

over PD-L1-negative tumors. The data obtained in this Ph.D thesis offers a 

complementary interpretation. PD-L1/PD-1 blockade would sensitize cancer 

cells to IFN-induced apoptosis leading to cancer cell death. Only cancer cell 

variants with mutations in the IFN signal transduction pathway would be 

selected because no apoptosis will occur, in analogy to the B16 melanoma cells 

with silenced IFNAR1 or JAK1. These cells thrive even in non-physiologically high 

concentrations of IFNs (Gato-Cañas et al. 2017). 

The data presented in this Ph.D thesis also offers mechanistic bases for 

combining PD-L1 blockade and IFN treatment. IFN-β has been used to treat 

melanoma as an adjuvant therapy prolonging survival (Uehara et al. 2017). 

Although most of the evidence suggests that IFNs are not effective at priming T 

cell responses, they are required when produced by T cells as they induce tumor 

cell apoptosis, neoantigen release, destruction of tumor vasculature and 
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increasing immune cell tumor infiltration (Fujimura et al. 2009; Escors et al. 

2013). IFNs possess immunomodulatory activities by the induction of CCL5 and 

CXCR3 ligands (CXCL9-11)  in melanoma, which could play a role in T-cell 

recruitment, enhancing anti-PD-L1 mAb treatment (Hong et al. 2011; Liu et al. 

2015; Kakizaki et al. 2015). Increased tumor destruction by IFN-β provokes the 

priming of neoantigen-specific T-cells that can be mobilized with anti-PD-L1 

mAb (Uehara et al. 2017).  In agreement with this model, in this thesis cancer 

cells expressing a signal-null PD-L1 combined with intratumor delivery of 

lentivector encoding IFN-β was sufficient to counteract tumor growth even if 

PD-L1 could still engage PD-1 on T cells. Indeed, there is not a need to directly 

use IFNs. Type I IFN stimulators have potent anti-cancer activities that synergize 

with PD-L1/PD-1 blockade, including TLR3 agonists and  STING (Stimulator of 

IFN genes) agonists (Woo et al.  2015; Leach et al. 2018; Curran et al. 2016; Allen 

et al 2017; Brockwell et al. 2017). This synergistic effect could be the result of a 

potentiated IFN signal transduction in cancer cells (Ager et al. 2017). Indeed, it 

has been recently demonstrated that murine lung cancer and melanoma tumors 

treated with local radiation activate the IFNβ-MHC I pathway, releasing 

neoantigens and  synergizing with PD-1 blockade (Overwijk et al. 2013). There 

is evidence that radiation induces IFN-β production by tumor infiltrating DCs in 

a B16 melanoma model (Zhao et al. 2013). 

 

 

1.4.  Towards a complete mechanistic model 

A key goal that could not be accomplished in this thesis was the 

immunoprecipitation of PD-L1 protein complexes from cancer cells after IFN-β 

treatment followed by mass spectrometry. Nevertheless, this has been carried 

out from human HEK 293T cells (Huttlin et al., 2015) and found that PD-L1 was 

associated to mTOR and kinases regulating DNA damage (such as ATR and ATM). 

A recent review by our group proposes a mechanism that integrates the results 

from Huttlin et al, and those obtained in this thesis. Briefly, mTOR and ATM 

bound to PD-L1 could associate with and regulate STAT1 and STAT3 and 

indirectly CASP3, CASP9 and CASP7 (Figure 13). Overall, PD-L1 could regulate 
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the anti-apoptotic response by the mTOR-AKT signaling core (Huttlin et al. 

2015). A key question remains whether mTOR, ATM or any of the components 

co-immunocaptured with PD-L1 directly interacts with either RMLDVEKC or 

DTSSK sequence motifs. Or how these putative interactions activate mTOR-AKT. 

Nevertheless, the physical association of each component identified by Huttlin 

et al with PD-L1 will have to be independently validated in future experiments. 

 

 

 

Figure 13: PD-L1 protection from IFNβ toxicity is mTOR dependent. 

STRING functional interactome integrating type I IFN signal transduction 

components and PD-L1-interacting proteins. PD-L1-interacting protein mTOR 

can probably regulate STAT1 and STAT3 and indirectly CASP3, CASP9 and CASP7.  
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2. MDSCs AS A MECHANISM OF RESISTANCE TO IMMUNOTHERAPY 

 
The second theme of my Ph.D. thesis was the molecular study of MDSCs 

using an ex vivo differentiation system developed by our group, and 

quantitative proteomics. These cells are broad suppressors of immune 

responses, and negatively correlate with the efficacy of immune checkpoint 

blockade. 

Using the same datasets obtained in a study published before the start 

of this Ph.D. thesis (Liechtenstein et al. 2014).  The proteomic data was re-

analyzed using MaxQuant, an integrated suite of algorithms specifically 

developed for high-resolution, quantitative MS data, which achieves mass 

accuracy in the part per billion range, a six-fold increase over standard 

techniques (Cox et al. 2008). The top molecular and cellular pathways in MDSC 

modelling melanoma subsets compared to DCs correlated with previous 

analyses by Liechtenstein et al. (Figure 9). The most important were cellular 

growth and proliferation (NPM1, CDK2), cell-to-cell signalling (Ctsg, Icam), 

migration to inflammatory sites (s100), angiogenesis, invasion/metastasis (c-

type lectins), endocytosis (Clta, Actn4) and integrin signalling (TLR). These 

differentially-activated pathways correlated with most of the published 

literature on MDSC (Trikha et al. 2014; Rausch et al.  2012; Wesolowski et al.  

2013; Dilek et al. 2012; Youn et al. 2010; Peranzoni et al. 2010) highlighting their 

importance for the differentiation, migration, and function of MDSCs within 

tumor-bearing hosts. These processes require high energy levels, but 

interestingly MDSCs down-regulated proteins participating in aerobic ATP 

production, aerobic cellular respiration, and glycogen/glucose metabolism, 

relative to BM-DCs. This could be observed by a decrease in expression levels of 

such proteins as coenzyme Q10 (ubiquinone), glycogen phosphorylase (Pygl) 

and phosphoglucomutase-1 (Pgm1).  

Probably as a compensation mechanism, proteins that enhanced lipid 

metabolism (ApoB R, Perilipin-3) were increased in MDSCs, which provides 

energy and contributes to amino acid synthesis (D3-PGDH). This data was also 

confirmed by several other studies highlighting the lipid metabolism in MDSC as 
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an energy source (Boutte et al. 2011; Liechtenstein et al. 2014). However, these 

metabolic pathways produce a large number of toxic metabolites. Thus, MDSCs 

also exhibited high levels of detoxifying enzymes including P450R, ROS 

scavenger proteins such as Sod2 and free radical scavenging proteins (NADPH 

oxidase I). This data was recently corroborated by others (Hossain et al. 2015). 

 

It is important to note that mitochondrial dysfunction by 

downmodulation of NADPH dehydrogenase complex I and III was a 

characteristic of MDSCs compared to conventional DCs, possibly as a reflection 

of the shut-down of oxidative phosphorylation. As expected, and compared to 

conventional DCs, MDSCs showed a decrease in proteins regulating antigen 

presentation by MHC II, including lysosomal proteins and enzymes (Ctsd, 

Lamp1, Lgmn…).MHC I molecule was up-regulated (H2-K1). This may be related 

to MDSC suppressive activities on CD8 T cells (by inducing anergy), which was 

shown to be mediated in an antigen-dependent way (Kusmartsev et al. 2005). 

 

These functions indicate that MDSCs are highly active cells that obtain 

energy from lipid catabolism and as a result protect themselves from oxidative 

stress, in agreement with a previous study by our group and others (Gato-Canas 

et al. 2015; Liechtenstein et al. 2014; Boutte et al. 2011; Hossain et al. 2015; 

Trikha et al. 2014)(Figure 5 and suplem. 1 Oncotarget). 

 
To study functions specifically associated to cancer-regulated pathways 

in MDSCs, we had first to generate MDSCs modelling non-neoplastic subsets, 

which is rather challenging. In a study previous to this Ph.D. thesis, we 

generated these no-neoplasic MDSCs using conditioning medium from the 

supernatant of 293T human cells modified with lentivectors to express GMCSF. 

Using this supernatant, MDSC-like cells can be generated from murine bone 

marrow. 293T cells are human embryonic kidney cells modified to express the 

T antigen of the SV40 virus, and immortalized with an integrated adenovirus. 

Although these are non-cancerous cells per se, they are immortal and of human 

origin. The choice of the producer cell line was not originally made for the 
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purposes described in this Ph.D. thesis, or the published studies. However, it 

was found some years ago that this supernatant generated conditioning media 

that differentiated MDSCs without some of the characteristics typical of cancer-

specific MDSCs (Liechtenstein et al. 2014). Later, I developed a 3T3 murine 

fibroblast-based GM-CSF producer cell line with which I generated similar 

phenotypic and functional results. This 3T3-based model may provide a more 

adequate model for murine non-neoplastic MDSC differentiation. 

 

Nevertheless, using this comparative control, the up-regulation of the 

pentose phosphate pathway (PPP) was one of the most prominent features 

(Figure 6 Oncotarget). This result agrees with the need of obtaining NADPH for 

biosynthesis in the absence of oxidative phosphorylation. Furthermore, the 

decreased expression of mitochondrial NADPH dehydrogenase complex I and III, 

the up-regulation of free radical scavenging proteins (SOD1), responses to 

cellular stress (Peroxiredoxin 6), epithelial adherence junction signaling 

(Tubulin, Myosin), DNA methylation (CHD4) and transcriptional repression 

pathways were all hallmarks of MDSCs modelling melanoma-infiltrating subsets 

compared to non-neoplastic MDSCs (Figure 6 Oncotarget). In addition, the 

glutathione metabolism was also a prominent feature, possibly in coordination 

with the PPP as an energy source, or for participation in the production of 

reactive oxygen and nitrogen species (Figure 7 Oncotarget). 

Overall, published data agree with our results (Hitosugi et al. 2016; 

Aliper et al. 2014; Pilon-Thomas et al. 2011; Sawant et al. 2013; Wu et al. 2012; 

Cheng et al. 2014; Zhang et al. 2017; Zhai et al. 2017; Hammami et al. 2012; 

Sinha et al. 2008;  Youn et al. 2012). 

Importantly, the data provided in this Ph.D. thesis highlights a group of 

kinases that differentiate MDSCs from DCs which included SRC family members 

and the predicted implication of PI3K-AKT signalling axis (Figure 2-4 

Oncotarget). ERK, PKC, and AMPK kinases were predicted to play major roles 

regulating neoplastic-specific MDSC functions, which also agrees with the role 

of these kinases in cells of the tumor microenvironment (Zhai et al. 2017; Pilon-

Thomas et al. 2011; Mao et al. 2017; Slack et al. 2007; Thiel et al. 2007; Barbosa 
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et al. 2014)(Figure 6 Oncotarget). All these analyses provide a unified view of 

biological processes in MDSCs and uncover a large list of molecular targets 

susceptible of therapeutic intervention. Some multi kinase inhibitors were used 

to inhibit MDSC expansion like sunitinib (Ko et al. 2010). 

By silencing or activating genes of interest or inhibiting enzymes, insight 

into each specific pathway over MDSC biology will be gained, followed by 

validation of attractive MDSC-specific targets. 

 
Again, most of the published data agrees with the core MDSC-specific 

kinases as found in this thesis. SRC kinases were predicted to regulate MDSC 

differentiation when compared to conventional DCs, linked to mitochondrial 

dysfunction and changes in the cytoskeleton (Figure 8 Oncotarget). Using broad 

inhibitors of SRC, MDSC differentiation was also inhibited (Figure 8 Oncotarget), 

in agreement with other studies (Aliper et al. 2014; Mao et al. 2017). 

PI3K signalling is known to regulate chemotaxis, phagocytosis, ROS 

production, and apoptosis in macrophages and neutrophils (Trikha et al. 2014). 

Murine and human monocytes can be converted into m-MDSC by activation of 

the PI3K-AKT-mTOR pathway following GM-CSF and IFN-ϒ treatment (Ribechini 

et al. 2017). The PI3K pathway regulates transcription factors that control 

proliferation and survival of MDSCs; it, therefore, has been suggested that PI3K 

may play a central role in controlling MDSCs and that it may be an effective 

MDSC-depleting target (Trikha et al. 2014). Targeting PI3K with an inhibitor 

(NCT02637531) in myeloid cells overcoes resistance to checkpoint blocade 

therapy in various cancers (Henau et al. 2016).  

AKT was predicted to regulate melanoma-specific MDSCs activity and 

proliferation according to our data, in agreement with most studies (Figure 4 

Oncotarget) (Liu et al. 2012; Zhu et al. 2014; Zhai et al. 2017).  

AKT and MEK/ERK inhibitors are being tested in human clinical trials for 

the treatment of several cancers (Arce et al. 2011; Arce et al. 2012; Escors et al. 

2008) (NCT01781429 , NCT01392521, NCT01229150, NCT01668017 )  We 

confirmed that inhibition of the ERK pathway preferentially affected MDSCs 

over conventional DCs (Figure 8, 9 Oncotarget). In our data, ERK upregulation 

https://clinicaltrials.gov/ct2/show/NCT02637531
http://cancerdiscovery.aacrjournals.org/lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT01781429&atom=%2Fcandisc%2F8%2F2%2F184.atom
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discriminated neoplastic from non-neoplastic MDSCs, in agreement with other 

published studies (Fang et al. 2015). Protein kinase C (PKC) proteins were also 

upregulated in MDSCs modelling neoplastic subsets (Figure 6 Oncotarget) them 

are involved in MDSC suppressive cascade (Wang et al. 2016) and identified in 

other interactome analyses (Aliper et al. 2014).

Interestingly, AMPK appeared as another core regulatory kinase of 

MDSC functions, in agreement with Hammami et al. (Figure 6 Oncotarget) 

(Hammami et al. 2012). AMPK is induced by hypoxia, low glucose levels, or H2O2 

oxidation and counteracts metabolic stress as it plays a crucial role in NADPH 

homeostasis (Kang et al. 2015). 

Changes in mitochondria were remarkable. The MDSC mitochondrial 

machinery was turned to high ROS production, while MDSCs up-regulated 

protective proteins towards oxidative damage. Indeed, ROS can also drive the 

carbohydrate flux to the PPP. Hydrogen peroxide can activate by oxidation 

G6pdx, which is up-regulated in our melanoma MDSCs (Figure 6 Oncotarget) 

(Hitosugi et al. 2016). G6pdx is a key regulatory enzyme of the PPP and its 

activation increases NADPH levels and can thereby counteracts ROS damage 

(Hitosugi et al. 2016). It is worth noting that similar processes take place in 

cancer cells, which exhibit mitochondrial metabolic reprogramming, production 

of ROS and glucose metabolism through the PPP (Martin- Bernabe et al. 2014). 

Overall, the detrimental effects of ROS and RNS on NK and T cells are well 

established, which potentiate immune suppression in the tumor 

microenvironment by MDSCs and other tumor-infiltrating myeloid cells. 

The data presented in this Ph.D. thesis includes several different proteins 

related to MDSC activities that could be targeted. These include HSP70, HSP90 

(Figure 1-3 Oncotarget), shown to expand and activate MDSCs following pro-

inflammatory responses (Ociennikowska et al. 2015; Diao et al. 2015). HSP90 

inhibitors are used to deplete MDSC (Rao et al. 2012). Retinoblastoma (Rb) 

regulates m-MDSC to g-MDSC differentiation (Youn et al. 2013), and the S100 

family of UP-regulated MDSC proteins. These last family of proteins participate 

in MDSC migration to sites of inflammation (KO et al. 2010; Sinha et al. 2008) 
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and enhanced ROS production (Gabrilovich et al. 2012). 

Several studies have analyzed MDSCs by mass spectrometry or gene 

expression arrays in different experimental models (Boutté et al. 2011; Burke et 

al. 2014; Chornoguz et al. 2011), particularly of circulating and peripheral 

MDSCs which differ significantly from tumor-infiltrating subsets (Aliper et al. 

2014). A study compared splenic and tumor-infiltrating MDSCs by gene arrays, 

further emphasizing the difference between these MDSC populations. This 

study predicted key transcription factors, kinases, and proteases within the 

MDSC populations following the inferred interactomes from the gene expression 

arrays (Aliper et al. 2014). While it is important to assess MDSCs in vivo, the use 

of our ex vivo MDSCs substantially facilitates their study and use.  

 

 
3. COMBINATION OF THERAPIES TARGETING BOTH BARRIERS 

 
Therapeutic targeting of the MDSC pathways could be used in 

combination with PD-L1/PD-1 blockade. Preclinical studies indicate that this is 

a promising approach (Clavijo et al. 2017; Meyer et al. 2014; Martens et al. 2018; 

Ajona et al. 2017). Indeed, these strategies may synergize as some studies show 

that PD-L1 blockade attenuates the suppressive activity of MDSCs (Toor and 

Elkord 2018). Some examples of these strategies are enumerated as follows: 

PI3K targeting with PD-1 inhibitors in murine models of colorectal and breast 

cancers (Kim et al. 2014); Anti-PD-L1 efficacy enhanced by Inhibition of MDSCs 

with a selective inhibitor of PI3Kδ/γ (Yang et al. 2015); PI3Kδ/γ inhibition and 

PD-L1 blockade in head and neck cancer (Medsker et al. 2016); depletion of g-

MDSC with CXCR2-specific antibodies and anti-PD-1 in a murine 

rhabdomyosarcoma (Highfill et al. 2014); MDSC depletion with anti-GR-1 

antibody in combination with anti-PD-1 antibody in glioma (Kamran et al. 2017); 

and histone deacetilases with anti-PD-1 or anti-PD-L1 in lung and renal 

carcinoma models or small cell lung cancer (Orillion et al. 2017; Briere et al. 

2018). Other strategies combine several anti-MDSC agents, some of them are 

multi-kinase inhibitors, in combination with PD-L1/PD-1 blockers with positive 
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outcomes in several experimental models (Guan et al. 2017; Yang et al. 2018; 

Larkin et al. 2015; Zhou et al. 2018). These last studies corroborate the 

importance of kinase activities in MDSCs function and survival as I have 

concluded in this thesis. 

In contrast, few studies have targeted MDSC in combination with 

immune checkpoint inhibitors in cancer patients yet (Martens et al. 2018; 

Meyer et al. 2014; Noelle et al. 2014; J. Zhou et al. 2018; Eissler et al. 2016). A 

summary of some MDSC-targeting approaches with immune checkpoint 

inhibition in clinical trials is shown in Table 2. 

 

 
 
 

Table 2. Combination therapies of MDSC inhibition or depletion and Immune 

Checkpoint Inhibitors. Specific examples of studies using combination of anti-

MDSC with immune checkpoint inhibitors are enumerated. NSCLC,no-small-cell-

lung-cancer; CXCR2, IL8receptor; PI3K, phosphatidylinositol-3-kinase; VISTA, V-

domain Ig suppressor of T cell activation; CSF1R, colony stimulating factor 1 

receptor; LY6G, Lymphocyte antigen 6 complex locus G6D; Ab,antibody; 

Inh,inhibitor; HDAC, histone deacetylase; MEK, mapkinase; CCR5, chemokine 

receptor type 5; CCRK,cell cycle-related kinase; CDK,cyclin-dependent kinase; 

IL18,interleukin. 
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CONCLUSIONS 
 
 
CONCLUSIONS PART I 
 

1. PD-L1 delivers intrinsic intracellular signals to cancer cells that promote 

their growth and survival. It represents a barrier against IFN cytotoxicity 

that can reinforce its inhibitory properties to T cells when engaged to 

PD-1 on T cells. 

 

2. PD-L1 contains two phylogenetically conserved sequence motifs within 

its carboxy terminus which regulate signal transduction capacities and 

cross-talk with the IFN signal transduction pathway in cancer cells. 

Somatic mutations affecting the inhibitory DTSSK motif are selected in 

some human carcinomas that disrupt its regulatory functions and 

hyperactivate PD-L1 anti-IFN activities. 

 
3. PD-L1 inhibits IFN signal transduction in cancer cells at the STAT3 

phosphorylation step and inhibits IFN-dependent apoptosis mainly 

affecting caspase 7 expression. 

 

4. Intrinsic signal activities of PD-L1 contribute to tumor progression in vivo 

and protect cancer cells against IFNs in the tumor environment. 

 
5. PD-L1 silencing or blockade with antibodies is sufficient to sensitize 

cancer cells to IFNs. Therefore, any adaptation of cancer cells to either 

inhibit the IFN signaling pathway or potentiate PD-L1 activities will favor 

their escape from the immune attack. 
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CONCLUSIONS PART II 
 

1. Differential proteomes from conventional ex vivo-differentiated murine 

DCs and MDSCs resembling melanoma tumor-infiltrating and no-

tumoral subsets have been obtained and quantitatively compared. 

 
2. MDSC-specific targets affecting MDSC differentiation and functions 

were identified. 

 
3. MDSCs exhibit an altered metabolism adapted to energy consumption 

in the absence of oxygen, high production of ROS and NOS species, and 

activation of protective pathways against oxidative stress. 

 

4. MDSCs express a core of specific kinases that regulate their 

differentiation from conventional DCs (AKT, PI3K, and SRC) or their 

immunosuppressive functions within the tumor environment (ERK, PKC, 

AMPK). 

 
5. MDSC-specific kinases can be targeted with inhibitors that selectively 

affect MDSCs and not conventional DCs in vitro. 

 
 

OVERALL CONCLUSION 
 

I propose that targeting/depleting MDSCs in cancer patients could be a 

prerequisite for initiation of immune checkpoint therapies. 

Additionally, enhancenment of IFN responses in combination with PD-

L1 blockade should improve therapeutic responses in human patients 

compared to monotherapies. 
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CONCLUSIONES 

 

CONCLUSIONES PARTE I 
 

1. PD-L1 transmite intrínsecamente señales intracelulares a las células 

cancerosas que promueven su crecimiento y supervivencia. Representa 

una barrera frente la citotoxicidad del IFN y puede reforzar sus 

propiedades inhibitorias frente las células T cuando se une a PD-1 en las 

células T. 

2.  PD-L1 contiene dos motivos en su secuencia filogenéticamente 

conservados dentro de su extremo carboxi que regulan las capacidades 

de transducción de señal e interaccionan con la vía de transducción de 

señal de IFN en células cancerosas. Las mutaciones somáticas que afectan 

el motivo inhibidor de DTSSK se seleccionan en algunos carcinomas 

humanos, estos alteran sus funciones reguladoras e hiperactivan las 

actividades anti-IFN de PD-L1. 

3.  PD-L1 inhibe la transducción de señal de IFN en células cancerosas en la 

el paso de fosforilación de STAT3 e inhibe la apoptosis dependiente de IFN 

que afecta principalmente a la expresión de caspasa 7. 

4. Las señalizcion intrínseca de PD-L1 contribuye a la progresión tumoral in 

vivo y protege a las células cancerosas contra los IFN en el entorno 

tumoral. 

5. El silenciamiento o bloqueo de PD-L1 con anticuerpos es suficiente para 

sensibilizar las células cancerosas a los IFN. Por lo tanto, cualquier 

adaptación de las células cancerosas para inhibir la vía de señalización de 

IFN o potenciar las actividades de PD-L1 favorecerá su escape del ataque 

inmune. 
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CONCLUSIONES PARTE II  
 

1. Se han obtenido los proteomas de DCs murinas convencionales 

diferenciadas ex vivo y MDSCs de melanoma infiltrantes de tumor y otras 

MDSCs no tumorales y se han comparado cuantitativamente. 

2. Se identificaron dianas específicas de MDSC que afectan la diferenciación 

y funciones de MDSC. 

3. Las MDSC exhiben un metabolismo alterado adaptado al consumo de 

energía en ausencia de oxígeno, alta producción de especies ROS y NOS, 

y activación de vías protectoras contra el estrés oxidativo. 

4. Los MDSC expresan un núcleo de quinasas específicas que regulan su 

diferenciación de las DC convencionales (AKT, PI3K, SRC) o sus funciones 

inmunosupresoras dentro del entorno tumoral (ERK, PKC, AMPK). 

5. Las quinasas específicas de MDSC se pueden tarjetear con inhibidores que 

afectan selectivamente a los MDSC y a las DC convencionales in vitro. 

 
 
 

  
CONCLUSIÓN GENERAL 
 

Propongo que tarjetear / eliminar las MDSC en pacientes con cáncer 

podría ser un requisito previo para el inicio de las terapias de “immune 

checkpoint inhibitors”.  

Además, la potenciación de las respuestas de IFN en combinación con el 

bloqueo de PD-L1 debería mejorar las respuestas terapéuticas en 

pacientes humanos en comparación con las monoterapias. 
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