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Abstract When a high dimension system of ordinary differential equations is solved numerically, the computer memory capacity
may be exhausted. Thus, for such systems, it is important to incorporate low memory usage to some other properties of the scheme.
In the context of strong stability preserving (SSP) schemes, some low-storage methods have been considered in the literature. In
this paper we study 5-stage third order 2N∗ low-storage SSP explicit Runge-Kutta schemes. These are SSP schemes that can be
implemented with 2N memory registers, whereN is the dimension of the problem, and retain the previous time step approximation.
This last property is crucial for a variable step size implementation of the scheme. In this paper, first we show that the optimal
SSP methods cannot be implemented with 2N∗ memory registers. Next, two non-optimal SSP 2N∗ low-storage methods are
constructed; although their SSP coefficients are not optimal, they achieve some other interesting properties. Finally, we show some
numerical experiments.
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1 Introduction

Given an initial value problem of the form

d

dt
y(t) = f(y(t)) , t ≥ t0 , (1)

y(t0) = y0 ,

a common class of schemes to solve it are explicit Runge-Kutta (RK) methods. An s-stage explicit RK method is defined by a
strictly lower triangular s× s matrix A and a vector b ∈ Rs. If yn is the numerical approximation of the solution y(t) at t = tn, we
obtain yn+1, the numerical approximation of the solution at tn+1 = tn + h, from

Yi = yn + h

i−1∑
j=1

aijf(Yj) , 1 ≤ i ≤ s , (2)

yn+1 = yn + h

s∑
i=1

bif(Yi) , (3)

where the internal stage Yi approximates y(tn + cih), and, as usual, ci =
∑s−1

j=1 aij .
A naive implementation of a standard explicit RK method requires s + 1 memory registers of length N , where N is the

dimension of the differential problem (1). For systems with a large number of equations, the high dimension of the problem (1)
compromises the computer memory capacity and thus it is important to incorporate low memory usage to some other properties of
the scheme. These ideas have been developed, e.g., in [1,10,14,15,16,30,31], where different low-storage RK methods have been
constructed. The most commonly used low-storage implementations are the ones by van der Houwen [30] and Williamson [31].

Other kinds of low-storage methods have been studied in the context of strong stability preserving (SSP) schemes [8,9,15,22,
28]. These methods were introduced in [24] to ensure numerical monotonicity for problems whose solutions satisfy a monotonicity
property for the forward Euler method. Sometimes it is convenient to write SSP explicit RK methods in the Shu-Osher form,
particularly when the sparse structure of the Shu-Osher matrices allows an efficient implementation with low cost of memory usage.
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In this way, in [15,22] it is proven that some optimal SSP schemes can be implemented with 2N memory registers. However, in most
of the cases, this implementation does not keep the previously computed numerical solution and thus, if the method is implemented
with variable step size, an additional memory register is required. In [15] a deep analysis is done and low-storage methods that
retain the computed approximation at the previous time step are studied. These methods are denoted by 2N∗ and it is found that
first and second order optimal SSP methods are 2N∗ methods. However, for third order schemes, only the 3 and 4 stage ones are
2N∗ methods. On the other hand, third order optimal SSP methods with s = k2 stages, k > 2, are just 2N low-storage methods.
Besides SSP properties, robust explicit RK schemes should also have some additional stability properties. Although the 4-stage
third order optimal SSP scheme can be implemented as a 2N∗ scheme, this method is unique and all its additional properties are
determined.

In this paper we consider 5-stage third order SSP explicit RK methods and exploit their sparse structure in order to get schemes
that can be implemented as 2N∗ methods. Although their SSP coefficients are not optimal, they have some other additional relevant
properties.

The rest of the paper is organised as follows. In section 2 we give a brief introduction to SSP RK methods. Section 3 is devoted
to review low-storage methods that can be implemented in two memory registers. The particular structure of optimal 5-stage third
order SSP methods is analysed in section 4. There we see that these methods cannot be implemented in two memory registers. In
section 5 we obtain numerically some new optimal SSP explicit RK methods that can be implemented as 2N∗ methods. Although
their SSP coefficients are not optimal, they have other remarkable properties. Some numerical experiments show the efficiency of
these new schemes in section 6.

2 Strong Stability Preserving Runge-Kutta methods

In this section we review some known concepts on SSP RK methods that will be used in this paper. These methods are relevant for
dissipative problems (1), that is, problems such that the exact solution satisfies a monotonicity property of the form

‖y(t)‖ ≤ ‖y(t0)‖ , for all t ≥ t0 , (4)

where ‖ · ‖ : RN → R denotes a convex functional, e.g., a norm or a semi-norm. A sufficient condition for (4) is monotonicity
under forward Euler steps

‖ y + h f(y) ‖ ≤ ‖ y ‖ , for h ≤ ∆tFE , (5)

for all y ∈ RN and a fixed ∆tFE > 0 (see, e.g., [19, p. 501] or [13, p. 1-2] for details).
As Yi approximates y(tn+ cih) and usually ci ≥ 0, for dissipative problems it makes sense to require numerical monotonicity,

not only for the numerical solution, but also for the internal stages, that is,

‖Yi‖ ≤ ‖yn‖ , i = 1 , . . . , s , ‖yn+1‖ ≤ ‖yn‖ , (6)

for all n ≥ 0, probably under a stepsize restriction h ≤ ∆tMAX . The seminal papers by Spijker [25,26,27] and Kraaijevanger [19,
20] on numerical contractivity issues for RK schemes, settle a theoretical framework that is valid not only for contractivity but also
for monotonicity.

With a different terminology and notation, the numerical preservation of monotonicity has also been investigated in the context
of hyperbolic systems of conservation laws. In this setting, for different reasons, it is critical to deal with Total Variation Diminishing
(TVD) schemes, and in the pioneering papers [23,24], monotonicity issues for the Total Variation semi-norm are analysed. In these
references, high order methods satisfying (6) when the forward Euler discretization of (1) satisfies (5) are studied. In this context,
these methods are known as SSP methods.

The idea in [20,23,24] is to construct high order schemes by means of convex combinations of forward Euler steps. Thus, RK
schemes (2-3), that in compact form are written as

Y = e⊗ yn + (A⊗ IN )F (Y ) , (7)

with Y = (Y1, . . . , Ys, yn+1)
t ∈ R(s+1)N , F (Y ) = (f(Y1), . . . , f(Ys), 0)

t ∈ R(s+1)N , and

A =

(
A 0
bt 0

)
, (8)

can be expressed as

Y = αr ⊗ yn + (Λr ⊗ IN )

(
Y +

h

r
F (Y )

)
, (9)

where r ∈ R and

αr = (I + rA)−1e , Λr = r(I + rA)−1A . (10)
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If αr ≥ 0 and Λr ≥ 0, where the inequalities should be understood component-wise, then the right hand side of (9) is a convex
combination of yn and forward Euler steps. The radius of absolute monotonicity, also known as Kraaijevanger’s coefficient or SSP
coefficient is defined by

R(A) = sup
{
r | r = 0 or r > 0, (I + rA)−1 exits, and αr ≥ 0, Λr ≥ 0

}
. (11)

If the forward Euler method satisfies condition (5), then, from (9), numerical monotonicity (6) can be proven under the step size
restriction

h ≤ R(A)∆tFE .

In this paper, SSP(s,p) will denote s-stage p-th order SSP schemes. Optimal SSP(s,p) methods, in the sense that their SSP coefficient
is the largest possible one for a given number of stages s and order p, are well known in the literature (see, e.g., [6]).

Remark 1 If A = (aij) and b = (bj) in (8), a necessary condition for R(A) > 0 is aij ≥ 0, and bj > 0 [20, Theorem 4.2]. In this
paper we assume that this sign condition holds. �

2.1 Shu-Osher representations

Expression (9) is a particular case of Shu-Osher representations of a RK method (see, e.g., [12, Section 2]). Given a RK method
with Butcher matrix A, a representation is given in terms of two matrices (Λ, Γ ) such that the matrix I − Λ is invertible and
A = (I − Λ)−1Γ ; the numerical approximation of the RK scheme is written as

Y = α⊗ yn + (Λ⊗ IN )Y + h(Γ ⊗ IN )F (Y ) , (12)

where α = (I − Λ)e. It is well known that the representation of a RK method is not unique.
For explicit RK methods, Y1 = yn and thus the elements αi , i = 2, . . . , s+ 1 , in (12) can be added to the first column of the

matrix Λ. In this way, we obtain an equivalent Shu-Osher representation with α = (1, 0, . . . , 0)t given by

Y1 = yn ,

Yi =
i−1∑
k=1

(λikYk + h γikf (YK)) , i = 2, . . . , s+ 1 , (13)

yn+1 = Ys+1 ,

where Λ = (λij), with
∑i−1

k=1 λik = 1, and Γ = (γij). Below we give two definitions about Shu-Osher representations.

Definition 1 We say that a Shu-Osher representation (Λ, Γ ) of an explicit RK method is canonical if α = (1, 0, . . . , 0)t. �

Adding and subtracting the term r(Γ ⊗ IN )Y , it is possible to write (12) as

Y = α⊗ yn + ((Λ− r Γ )⊗ IN )Y + r(Γ ⊗ IN )

(
Y +

h

r
F (Y )

)
. (14)

For r = R(A), it can be proven [12, Proposition 2.7] that there exist Shu-Osher representations (Λ, Γ ) such that A = (I −Λ)−1Γ

and

Λ ≥ 0 , Γ ≥ 0 , α ≥ 0 , Λ− r Γ ≥ 0 . (15)

For these representations, the right hand side of equation (14) is a convex combination of yn, the internal stages and forward Euler
steps. Observe that the largest value r in (15) that satisfies Λ− r Γ ≥ 0 is given by

r = min
ij

λij
γij

, (16)

that agrees with the SSP coefficient of a RK method defined in the context of TVD schemes (see, e.g., [23]; see too [6] and the
references therein). In other words, these representations are optimal.

Definition 2 Given a RK method with Butcher matrix A, and a Shu-Osher representation (Λ, Γ ) such that A = (I − Λ)−1Γ , we
say that the representation (Λ, Γ ) is optimal if r in (16) is equal to R(A).

Example 1 Given a RK method A, consider r = R(A), the vector αr and the matrix Λr in (10), and define Γr := Λr/r. For the
Shu-Osher representation (Λr, Γr) conditions (15) are fulfilled and thus it is an optimal representation. Observe that, in this case,
Λr − rΓr = 0 and thus (14) is reduced to (9). �
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As it has been pointed out, given a RK method A, in general, there is not a unique optimal representation. The proof of
Proposition 2.7 in [12] gives the required conditions to obtain optimal representations. More precisely, if r = R(A), an optimal
representation (Λ, Γ ) can be constructed by choosing a matrix Λ such that the following inequalities hold,

r(I + rA)−1Ae ≤ Λe ≤ e , (17a)

rA(I + rA)−1A ≤ ΛA ≤ A , (17b)

by defining a matrix Γ as Γ := (I − Λ)A, and imposing that

Λ ≥ 0 , Λ− rΓ ≥ 0 . (18)

With this process, usually the optimal representation is not completely determined and some additional conditions can be imposed
on the coefficients. In section 4.2 we will use this process to construct optimal low-storage representations of an explicit RK method.

Remark 2 As it is pointed out in [16], given a Shu-Osher representation, the RK method is invariant under the transformation (for
any t and i, j > 1)

γik ⇒ γik + tγjk , (19a)

λik ⇒ λik + tλjk , k 6= j , (19b)

λij ⇒ λij − t . (19c)

In section 4.2 we will consider this invariance property. �

For a detailed study on numerical monotonicity and SSP methods, see, e.g., [4,5,7,13,15,17,19,29]. Efficient SSP RK methods
have also been analysed in [8,9,22,24,28]; see too [6] and the references therein.

2.2 Optimal SSP methods

In this section we review some well known optimal explicit RK SSP methods (see, e.g., [19]). We are particularly interested in the
sparse structure of the optimal canonical Shu-Osher representations.

Optimal SSP(s,1) methods have SSP coefficient r = s. The corresponding Butcher coefficients (A, b) are

aij =
1

s
, 1 ≤ j < i ≤ s ; bi =

1

s
, 1 ≤ i ≤ s ,

and the optimal canonical Shu-Osher form for these schemes is

Λ =



0 0 · · · · · · 0

1 0
. . .

. . .
...

0 1
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 1 0


, Γ =



0 0 · · · · · · 0
1
s 0

. . .
. . .

...

0 1
s

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 1
s 0


. (20)

Observe that they have non trivial entries just in the first subdiagonal. Optimal SSP(s,2) methods have SSP coefficient r = s − 1
and their Butcher coefficients (A, b) are

aij =
1

s− 1
, 1 ≤ j < i ≤ s ; bi =

1

s
, 1 ≤ i ≤ s .

The optimal canonical Shu-Osher representation is

Λ =



0 0 · · · · · · 0

1 0
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . . 1
. . .

...
1
s · · · 0 s−1

s 0


, Γ =



0 0 · · · · · · 0
1

s−1 0
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . . 1
s−1

. . .
...

0 · · · 0 1
s 0


. (21)

The sparse structure of these matrices is quite similar to the one in (20), where only the first subdiagonals are nontrivial, but now
the first column of Λ contains an element different from zero, namely λs+1,s = 1/s.
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With regard to third order schemes, the optimal SSP(3,3) method has SSP coefficient r = 1. Below we show the Butcher
tableau and the Shu-Osher matrices for this method.

0 0 0 0

1 1 0 0
1
2

1
4

1
4 0

1
6

1
6

2
3

, Λ =


0 0 0 0

1 0 0 0
3
4

1
4 0 0

1
3 0 2

3 0

 , Γ =


0 0 0 0

1 0 0 0

0 1
4 0 0

0 0 2
3 0

 . (22)

These are the coefficients of the optimal SSP(4,3) method, with SSP coefficient r = 2.

0 0 0 0 0
1
2

1
2 0 0 0

1 1
2

1
2 0 0

1
2

1
6

1
6

1
6 0

1
6

1
6

1
6

1
2

Λ =


0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
2
3 0 1

3 0 0
0 0 0 1 0

 , Γ =


0 0 0 0 0
1
2 0 0 0 0
0 1

2 0 0 0
0 0 1

6 0 0
0 0 0 1

2 0

 . (23)

Observe that the sparse structure of the Shu-Osher forms in (22) and (23) is the same as the one in (21): some elements in the first
column of Λ are different from zero and, in the rest of the columns, only the first subdiagonal element is nontrivial; for matrix Γ
only the first subdiagonal contains elements different from zero.

For s = n2 stages, with n > 2, optimum third order SSP methods with SSP coefficient r = n2 − n have been found in [15,
Theorem 3]. For these schemes, matrices Λ and Γ have a sparse structure: for matrix Λ, one element in the (1+(n−1)(n−2)/2)-
th column is different from zero and, in the rest of the columns, only the first subdiagonal is nontrivial; in matrix Γ only the first
subdiagonal contains elements different from zero.

As far as we know, a detailed study on the sparse properties of optimal canonical Shu-Osher form for optimal SSP(s,3) methods
with s ≥ 5 and s 6= n2 has not been done.

3 Low Storage 2N and 2N∗ methods

Low-storage RK methods are very desirable to solve problems where memory management considerations are at least as important
as stability considerations. In the literature, different approaches to reduce the memory computer usage of forward RK methods
have been proposed [1,2,3,8,9,14,15,16,22,28,30,31].

A naive implementation of an explicit s-stage RK method requires s+1 memory registers. However, more efficient implemen-
tations are possible if some algebraic relations on the coefficients are imposed. Most of these efficient implementations are based
on the ideas of Williamson [31] and van der Houwen [30]. Although in very different way, in both cases it is possible to implement
these RK methods in two memory registers, and they are usually called 2N schemes, where N is the dimension of the differential
problem (1).

More recently, in the context of SSP methods, low-storage implementations have been obtained from the sparse structure of the
Shu-Osher form (12) of optimal SSP methods [9,15,22]. As we have seen in Section 2.2, this is the case for SSP(s,1), SSP(s,2),
SSP(3,3), SSP(4,3) and SSP(n2, 3) schemes. In this combined analysis, some optimal SSP RK methods turn out to be optimal also
in terms of the storage required for their implementation.

In some cases, the sparse structure of the Shu-Osher matrices in (12) enables a 2N low-storage implementation. However, some
of these low-storage schemes do not retain yn, the previous time step approximation, and they require a third memory register to
save this value. Recall that, if yn is retained during all the step, it can be used to check some accuracy or stability condition (e.g.,
for a variable stepsize implementation) without additional memory usage. To differentiate both low-storage schemes the following
definition is given in [6, Section 6.1.3].

Definition 3 Given a 2N low-storage RK method, we say that the RK method is a 2N∗ low-storage scheme if yn, the numerical
solution of the previous step, is retained. �

In this paper we consider RK methods with a canonical Shu-Osher representation of the form

Λ =



0 0 0 0 0 0
1 0 0 0 0 0
λ31 1− λ31 0 0 0 0

... 0
. . . 0 0 0

λs1 0 0 1− λs1 0 0
λs+1,1 0 0 0 1− λs+1,1 0


, Γ =



0 0 0 0 0 0
γ21 0 0 0 0 0
0 γ32 0 0 0 0

0 0
. . . 0 0 0

0 0 0 γs,s−1 0 0
0 0 0 0 γs+1,s 0


(24)

These methods generalize the non-zero structure of schemes (21-23) where the nonzero coefficients are on the first column of Λ
and the first subdiagonal of Γ and Λ. Schemes (24) allow the 2N∗ implementation given in Algorithm 1 below.

The second memory register, namely q2, is needed to store the numerical solution yn required at the end to get yn+1. From
(21-23), it can be concluded that the optimal SSP(s,2), SSP(3,3) and SSP(4,3) schemes are 2N∗ low-storage methods [6,15].
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Algorithm 1 2N∗ implementation of scheme (24)
1: q1 = y
2: q2 = q1
3: q1=q1+γ21*h*f(q1)
4: for i = 2 to s do
5: q1= λi+1,1*q2 +(1-λi+1,1)*q1+ γi+1,i*h*f(q1)
6: end for
7: y=q1

Besides, the implementation of schemes (24) allows us to get a closer insight on the construction of the numerical approxima-
tion, where repeated forward Euler steps and averaged evaluations are sequentially performed. Observe that line 3 in Algorithm 1
is a forward Euler step. Furthermore, in line 5, if λi+1,1 = 0 for some i, then a forward Euler step is given.

In particular, as λi,1 = 0 for i = 3, . . . , s for optimal SSP(s,2) methods (21), these schemes consist of s− 1 repeated forward
Euler h/(s−1)-steps, followed by a last averaged evaluation at tn+h in order to obtain a second order approximation. For optimal
SSP(4,3) method (23), as λ3,1 = λ5,1 = 0, it consists of 2 repeated forward Euler h/2-steps and an averaged evaluation of the
previous stages at tn + h/2. Additionally, a final forward Euler h/2-step is done.

As it has been pointed out above, the canonical Shu-Osher matrix Λ for the optimal SSP(n2,3) contains a nontrivial element in
the (1 + (n− 1)(n− 2)/2)-th column and thus they do not belong to the 2N∗ low-storage class (24); as it is proven in [15], they
can be implemented in 2N memory registers.

As far as we know, a detailed study on low-storage properties of optimal s-stage third order SSP methods with s ≥ 5 and s 6= n2

has not been done. For s = 5, optimal third order SSP schemes have been found by numerical search in [22,28]; furthermore,
numerically optimal schemes can be constructed with the code RK–Opt [18]. In the next section we study optimal 5-stage third
order SSP methods and analyse their low-storage properties.

4 Optimal 5-stage third order SSP methods

In this section we study the structure and low-storage properties of optimal SSP(5,3) schemes. First, we deal with the Butcher
tableau of these schemes trying to obtain a closed form for some coefficients. Next, we study their Shu-Osher representations and
analyse how many memory registers are required for their implementation.

4.1 Butcher coefficients of optimal SSP(5,3) methods

Different optimal SSP(5,3) methods have been numerically constructed in the literature [6,22]. At this moment there is a package,
named RK-Opt, that can be used to obtain optimal SSP(s, p) schemes [16,18]. Several runs of this code for s = 5 and p = 3
show that there is a family of optimal SSP(5,3) schemes. In this section, we study this family of methods aiming at obtaining some
insight in its structure that allows us to prove their low-storage properties.

From [20, Theorem 5.2], we know that the SSP coefficientR(A) for optimal SSP(5,3) schemes is the real root of the polynomial

x3 − 5x2 + 10x− 10 = 0 . (25)

If we denote r = R(A), the stability function is given by

R(z) = δ1

(
1 +

z

r

)
+ δ2

(
1 +

z

r

)2
+ δ3

(
1 +

z

r

)5
, (26)

where
δ1 =

1

4

(
r2 − 6r + 10

)
, δ2 =

1

3

(
−r2 + 5r − 5

)
, δ3 =

1

12

(
r2 − 2r + 2

)
.

Reorganizing terms, and using that r is the root of the polynomial (25), the stability function (26) is reduced to

R(z) = 1 + z +
z2

2
+
z3

6
+

z4

12r
+

z5

60r2
. (27)

The coefficients of z4 and z5 in (27) are equal to btA2c and btA3c, respectively, and thus, optimal SSP(5,3) schemes must satisfy
the conditions

btA2c =
1

12r
, btA3c =

1

60r2
. (28)

Furthermore, optimal SSP(5,3) schemes must also satisfy the well known third order conditions

bte = 1 , btc =
1

2
, btc2 =

1

3
, (29)

btAc = 1

6
. (30)
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In order to go deeper on the properties of SSP(5,3) methods, we have run several times the code RK-Opt [16,18]. For all the
schemes obtained, we have observed the following identities for the Butcher coefficients:

a21 = a31 = a32 =
1

r
, a41 = a42 = a43 , a52 = a53 . (31)

Thus, we conclude that the Butcher tableau for optimal SSP(5,3) methods has the following structure

0 0 0 0 0 0

c2
1
r 0 0 0 0

c3
1
r

1
r 0 0 0

c4 a41 a41 a41 0 0

c5 a51 a52 a52 a54 0

b1 b2 b3 b4 b5

(32)

Furthermore, in the different runs of the code RK-Opt, we have also noticed that the coefficient b3 is always the same concluding
that it only depends on r. With this information and conditions (28-30), we will obtain b3 and some other relationships between the
coefficients of these schemes.

First, we consider conditions (28) and (30). For a RK method of the form (32) they are equivalent to

60 b5 a54 a41 − 1 = 0 , (33a)

36 r b5 a54 a41 + 12 b4 a41 + 12 b5 a52 − r = 0 , (33b)

18 r2 b5 a54 a41 + 18 r b4 a41 + 18 r b5 a52 + 6 b3 − r2 = 0 . (33c)

From these equations, simple computations allow us to obtain

b3 =
r2

60
, b4 a41 + b5 a52 =

r

30
. (34)

As optimal SSP methods usually have sparse Shu-Osher matrices we study the sparsity of the optimal canonical representation
(Λr, Γr) for a scheme of the form (32) with b3 given by (34). In this process, we observe that the coefficients γ53 and γ64 in matrix
Γr are close to zero for all the optimal SSP(5,3) schemes obtained with the code RK-Opt [18]. This means that the equalities

b4 = a54 b5 r , a52 = a41 a54 r (35)

hold and, consequently, we assume they are true for optimal SSP(5,3) schemes. Finally, from (35) we obtain that a54r = b4/b5 =
a52/a41. In this way, we get b4a41 = b5a52, and together with (34) we find that

b4 a41 = b5 a52 =
r

60
. (36)

Summarizing, optimal SSP(5,3) schemes belong to a 5-parametric family of methods (32), where b1, b2, b4, b5 and a51 are the
free parameters, with

a41 =
r

60 b4
, a52 =

r

60 b5
, a54 =

b4
b5 r

, b3 =
r2

60
. (37)

For this 5-parametric family, we have not imposed the three order conditions (29) yet, that in this case are given by

b1 + b2 + b4 + b5 +
r2

60
− 1 = 0 , (38a)

a51b5r + b2 + b4 +
7r2

60
− r

2
= 0 , (38b)

b5

(
a51 +

b4
b5r

+
r

30b5

)2

+
b2
r2

+
r2

400b4
− 4

15
= 0 . (38c)

After this analysis, the construction of optimal SSP(5,3) schemes is easier. Observe that there are at least two free parameters that
can be used to improve some other relevant properties (e.g., error constants) of the method. In this paper, we will restrict the study
to low-storage implementations.

In the following examples we show how the free parameters can be used to obtain a specific pattern in the Butcher tableau (32)
of optimal SSP(5,3) schemes.

Example 2 In [22] an optimal SSP(5,3) method is obtained by numerical optimization; its Butcher tableau is of the form (32) with
a51 = a52 and b1 = b2. The three remaining coefficients, namely b2, b4 and b5, can be obtained from the order conditions (38).
Then, by using (37), the scheme in [22] is recovered. The coefficients of this method are shown in the Appendix section (see (56)).

�
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Example 3 If we impose b1 = a51, b2 = a52, and b4 = a54, then the last row of the Butcher matrix A coincides with vector
(b1, b2, b3, b4, 0). From the expression of a54 in (37), we obtain that b5 = 1/r and thus b3 = a52. Using that r is the root of
polynomial (25), after some computations, we obtain an optimal SSP(5,3) method of the form (32) with

a41 =
r3 + 20

3r4
, b1 = a51 =

5
(
r2 + 32r − 38

)
12r (r3 + 20)

, b2 = b3 = a52 =
r2

60
, b4 = a54 =

r5

20 (r3 + 20)
, b5 =

1

r
.

The coefficients of this scheme are given in the Appendix section (see (57)). �

Remark 3 In this section, we have shown that optimal SSP(5,3) methods belong to the 5-parametric family of methods (32) satis-
fying (37). From now on, we will refer to this family as the 5-parametric family of methods. Observe that the order conditions (29)
(namely, (38)) have not been imposed to this family. �

4.2 Shu-Osher low-storage form of optimal SSP(5,3) methods

In this section we study optimal canonical Shu-Osher representations for the 5-parametric family of methods above (see Remark 3).
Remember that optimal SSP(5,3) schemes belong to this family. Our goal is to determine the minimum number of memory registers
required for implementing them.

As it has been pointed out in Example 1, for r = R(A), an optimal representation is given by Λr in (10) and Γr := Λr/r. For
the 5-parametric family of methods, the canonical form of this optimal representation is given by

Λ̃ =



0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

λ̃41 0 r2

60b4
0 0 0

λ̃51 0 0 b4
b5

0 0

λ̃61 λ̃62 0 0 b5r 0

 , Γ̃ =



0 0 0 0 0 0
1
r 0 0 0 0 0
0 1

r 0 0 0 0
0 0 r

60b4
0 0 0

γ̃51 0 0 b4
b5r

0 0

γ̃61 γ̃62 0 0 b5 0

 , (39)

where

λ̃41 = 1− r2

60b4
, λ̃51 = 1− b4

b5
, λ̃61 = 1− b2r − b5r +

r3

60
, λ̃62 = r

(
b2 −

r2

60

)
, (40a)

γ̃51 = a51 −
r

60b5
, γ̃61 = b1 − b2 − rb5

(
a51 −

r

60b5

)
, γ̃62 = b2 −

r2

60
. (40b)

Observe that this representation is not like the 2N∗ low-storage form (24). Remember that, for the optimal representation in
Example 1, inequalities (15) are satisfied. Particularly, λ̃i1 ≥ 0, for i = 4, 5, 6; λ̃62 ≥ 0; γ̃i1 ≥ 0, for i = 5, 6; γ̃62 ≥ 0, and
λ̃51 − rγ̃51 ≥ 0.

In order to obtain a sparse optimal Shu-Osher representation we follow the constructive proof of Proposition 3.12 in [12]. Thus
we consider a lower triangular matrix Λ = (λij) with arbitrary coefficients, and we define Γ = (I − Λ)A and α = (I − Λ)e.
First, we impose inequality (17b) component-wise. It turns out that for some components the upper and lower bound is the same
and thus the middle term is determined. Next, we impose conditions on Γ to obtain a sparse matrix such that only the first subdi-
agonal is nontrivial (see (24)). Finally, we move elements of vector α to the first column of Λ to obtain the canonical form with
α = (1, 0, . . . , 0)t. Proceeding in this way, and using the order condition bte = 1, we obtain the canonical representation

Λ =



0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

λ41 0 r2

60b4
0 0 0

λ51 λ52 0 b4
b5

0 0

λ61 λ62 λ63 0 b5r 0


, Γ =



0 0 0 0 0 0
1
r 0 0 0 0 0

0 1
r 0 0 0 0

0 0 r
60b4

0 0 0

0 0 0 b4
b5r

0 0

0 0 0 0 b5 0


, (41)

where

λ41 = 1− r2

60b4
, (42a)

λ51 = 1− b4
b5
− r

(
a51 −

r

60b5

)
, λ52 = r

(
a51 −

r

60b5

)
, (42b)

λ61 = 1− b1r − b5r + r2b5a51 , λ62 = r

(
b1 − b2 − rb5

(
a51 −

r

60b5

))
, λ63 = r

(
b2 −

r2

60

)
. (42c)

From the order conditions (38a-38b), and using that r is the root of the polynomial (25), we obtain that

λ61 =
1

10

(
−r3 + 5r2 − 10r + 10

)
= 0 .
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Observe that Λ ≥ 0 and Γ ≥ 0 in (41) imply that Λ−rΓ ≥ 0. Thus, in order to obtain a representation with optimal SSP coefficient
r we only require λ41, λ51, λ52, λ62, λ63, b4 and b5 to be non negative. Observe that

λ41 = λ̃41 ≥ 0 , λ51 = λ̃51 − r γ̃51 ≥ 0 , λ52 = r γ̃51 ≥ 0 , λ62 = r γ̃61 ≥ 0 , λ63 = λ̃62 ≥ 0 .

Consequently, (41-42) is an optimal canonical representation of any first order method of the 5-parametric family of schemes. In
particular, it is a canonical representation for optimal SSP(5,3) methods.

Remark 4 The optimal canonical Shu-Osher form for the 5-parametric family has the sparse structure (39). As it has been pointed
out in Remark 2, the Shu-Osher representation of a RK method is invariant under the transformation (19). Precisely, this transfor-
mation can be used to obtain a subdiagonal matrix Γ . For example, in order to transform the element γ̃62 in (39) into a zero, we
have to make (19a) equal to zero, this is γ̃62 + tγ̃32 = 0, to get t = −rγ̃62. With this value of t we have to transform the elements
λ̃62 and λ̃63 in Λ̃ according to (19b) and (19c), respectively. If we repeat this process for elements γ̃51 and γ̃61 in Γ̃ , we finally
obtain the Shu-Osher representation in (41) for the 5-parametric family of schemes. �

Shu-Osher representations of the form (24) can be implemented with 2N∗ memory registers. This is not the case for the optimal
SSP(5,3) methods as we see in the following lemma.

Proposition 1 The optimal SSP(5,3) methods are not 2N∗ low-storage schemes of the form (24).

Proof Consider a canonical Shu-Osher representation of the form (41) and assume that λ52 = λ62 = λ63 = 0. In this case,

a51 =
r

60b5
, b1 = b2 =

r2

60
.

Inserting these values into the order conditions (38a-38b), we get that

b4 =
r

20
(10− 3r) , b5 =

1

10

(
r2 − 5r + 10

)
=

1

r
,

where we have used that r is the root of the polynomial (25). Now, the order condition btc2 = 1/3, given in this case by (38c), is
reduced to

3r4 − 40r3 + 175r2 − 330r + 250 = 0 . (43)

But (43) is different from zero for r = R(A) and, consequently, the order condition cannot be fulfilled. �

Nevertheless, some optimal SSP(5,3) methods can be implemented in 3N memory registers, as we see in the following propo-
sition.

Proposition 2 Consider a Shu-Osher representation of the form (41). If the coefficients λ52 = λ62 = 0, or the coefficient λ63 = 0,
then the scheme can be implemented in 3N memory registers.

Proof Below we show the corresponding 3N implementations for the case λ52 = λ62 = 0 (left) and λ63 = 0 (right).

Algorithm 2 case λ52 = λ62 = 0
1: q1 = y
2: q2 = q1
3: for i = 1 to 2 do
4: q1= q1+h*f(q1)/r
5: end for
6: q3=q1
7: for i = 3 to 4 do
8: q1= λi+1,1*q2+λi+1,i*q1+γi+1,i*h*f(q1)
9: end for

10: q1=λ61*q2+λ63*q3+λ65*q1+γ65*h*f(q1)
11: y=q1

Algorithm 3 case λ63 = 0
1: q1 = y
2: q2 = q1
3: q1=q1+h*f(q1)/r
4: q3=q1
5: q1=q1+h*f(q1)/r
6: q1= λ41*q2+λ43*q1+γ43*h*f(q1)
7: for i = 4 to 5 do
8: q1= λi+1,1*q2+λi+1,2*q3+γi+1,i*h*f(q1)
9: end for

10: y=q1

When λ52 = λ62 = 0 (left), a third register q3 is needed to store the third stage required to compute yn+1. However, when
λ63 = 0 (right), the third register is needed to store the second stage we need at the end of the step. �

Some optimal SSP(5,3) methods considered in this paper can be implemented in 3N memory registers:

– Scheme (56), constructed in [22], has λ52 = λ62 = 0 and λ63 6= 0;
– Method (57), constructed in this paper, has λ63 = 0;
– Method (58), constructed with the code RK-Opt, has λ52 6= 0, λ62 6= 0 and λ63 = 0.

However, the optimal SSP(5,3) scheme (59), constructed with the code RK-Opt, has λ52 6= 0, λ62 = 0 and λ63 6= 0. Consequently,
more than 3N registers are required to be implemented.
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5 Five-stage third-order 2N∗ Explicit Runge-Kutta methods

In this section we consider 5-stage schemes with sparse Shu-Osher form (24)

Λ =


0 0 0 0 0 0
1 0 0 0 0 0
λ31 1− λ31 0 0 0 0
λ41 0 1− λ41 0 0 0
λ51 0 0 1− λ51 0 0
λ61 0 0 0 1− λ61 0

 , Γ =


0 0 0 0 0 0
γ21 0 0 0 0 0
0 γ32 0 0 0 0
0 0 γ43 0 0 0
0 0 0 γ54 0 0
0 0 0 0 γ65 0

 . (44)

Our goal is to construct a 5-stage third order 2N∗ low-storage scheme with the largest possible SSP coefficient. We will use an
additional fifth stage to improve, not only the SSP coefficient, but also other relevant properties.

The Butcher tableau for the 9-parameter RK methods (44) is given by

0 0 0 0 0

γ21 0 0 0 0

(1− λ31) γ32 0 0 0

(1− λ41)(1− λ31)γ21 (1− λ41)γ32 γ43 0 0

(1− λ51)(1− λ41)(1− λ31)γ21 (1− λ51)(1− λ41)γ32 (1− λ51)γ43 γ54 0

b1 b2 b3 b4 b5

(45)

where

b1 = (1− λ61)(1− λ51)(1− λ41)(1− λ31)γ21 , b4 = γ54(1− λ61) ,

b2 = (1− λ61)(1− λ51)(1− λ41)γ32 , b5 = γ65 .

b3 = (1− λ61)(1− λ51)γ43 ,

If we define the new parameters

u =
1

(1− λ61)(1− λ51)(1− λ41)(1− λ31)
, v =

1

(1− λ61)(1− λ51)(1− λ41)
,

w =
1

(1− λ61)(1− λ51)
, x =

1

(1− λ61)
,

then the Butcher tableau for method (45) can be written as

0 0 0 0 0 0

ub1 ub1 0 0 0 0

v(b1 + b2) vb1 vb2 0 0 0

w(b1 + b2 + b3) wb1 wb2 wb3 0 0

x(b1 + b2 + b3 + b4) xb1 xb2 xb3 xb4 0

b1 b2 b3 b4 b5

(46)

and the Shu-Osher representation (44) is given by

Λ =



0 0 0 0 0 0

1 0 0 0 0 0
u−v
u

v
u 0 0 0 0

v−w
v 0 w

v 0 0 0
w−x
w 0 0 x

w 0 0
x−1
x 0 0 0 1

x 0


, Γ =



0 0 0 0 0 0

b1u 0 0 0 0 0

0 b2v 0 0 0 0

0 0 b3w 0 0 0

0 0 0 b4x 0 0

0 0 0 0 b5 0


. (47)

Observe that Λ ≥ 0 if and only if

u ≥ v ≥ w ≥ x ≥ 1 . (48)

Consequently, the maximum value in each column of the Butcher tableau (46) is the subdiagonal one. As

R(A) ≤ 1

max{aij , bj}
,

From (48) we get that

R(A) ≤ 1

max{ub1, vb2, wb3, xb4, b5}
.
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5.1 Construction of 5-stage third order SSP methods SSP53_2N∗1 and SSP53_2N∗2

Method SSP53_2N∗1 : Having in mind that methods (47) can be implemented in 2N∗ memory registers, we look for the optimal
third order SSP method in this family. We have used standard numerical optimization techniques to get the 9 unknowns in (47),
namely bi, i = 1, . . . , 5;u, v, w, x. More precisely, we have solved the following optimization problem.

Maximize r subject to:

bi ≥ 0 , i = 1, . . . , 5 ,

u ≥ v ≥ w ≥ x ≥ 1 ,

Third order conditions (29-30) .

(49)

The optimum SSP coefficient r = 2.18075 is obtained when u = v = w = 2.33320 and x = 1. This means that the method
consists in three FE-steps, and average for the fifth stage and a last FE-step to get the numerical solution. The Butcher coefficients
for this method are

0 0 0 0 0 0

0.443568 0.443568 0 0 0 0

0.73468 0.443568 0.291111 0 0 0

1.00529 0.443568 0.291111 0.270613 0 0

0.541442 0.190112 0.124769 0.115984 0.110578 0

0.190112 0.124769 0.115984 0.110578 0.458558

(50)

The expanded coefficients and the Shu-Osher matrices for this method are given in the Appendix (see (60)). Observe that the largest
value in the Butcher tableau is b5 = 1/r.

For method (50), the 2-norm of the coefficients in the leading term of the local error (see, e.g., [11, p. 158]), namely

1

4!

(
1− 12 btAc2, 1− 24 btA2c, 3 (1− 8 bt(Ac · c)), 1− 4 btc3

)
,

is 0.027841, and the stability function is given by

R(z) = 1 + z +
1

2
z2 +

1

6
z3 + 0.027360z4 + 0.001772 z5 . (51)

The stability region for this method (dotted line in left Figure 5.1) is larger than the one for the 4-stage third order optimal SSP
methods (dashed line).
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Fig. 1 Stability regions for schemes SSP53_2N∗
1 (50), SSP53_2N∗

2 (53), SSP53 and SSP43 (left). Stability regions for schemes SSP53_W1, SSP53_W2

and SSP53_vdH (right).
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Method SSP53_2N∗2 : Motivated by the 2N∗ structure of the optimum 4-stage third order SSP method (23), we have considered an
additional stage preserving this low-storage pattern. This is equivalent to consider the case u = v and w = x in 2N∗ methods (47).

Λ =


0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

v−x
v 0 x

v 0 0 0
0 0 0 1 0 0

x−1
x 0 0 0 1

x 0

 , Γ =


0 0 0 0 0 0
b1v 0 0 0 0 0
0 b1v 0 0 0 0
0 0 b3x 0 0 0
0 0 0 b4x 0 0
0 0 0 0 b5 0

 . (52)

These methods are a subclass of methods (47) and consequently can be implemented in 2N∗ memory registers. We have used
numerical optimization techniques analogous to (49) to get the 6 unknowns in (52). Proceeding in this way, we have obtained
numerically the optimum SSP coefficient r = 2.14874 when a21 = a54 = 0.465389. The Butcher coefficients for this method are

0 0 0 0 0 0
0.465389 0.465389 0 0 0 0
0.930778 0.465389 0.465389 0 0 0
0.420414 0.147834 0.147834 0.124746 0 0
0.885802 0.147834 0.147834 0.124746 0.465389 0

0.141147 0.141147 0.119103 0.444339 0.154263

(53)

The expanded coefficients for this method are given in the Appendix (see (61)). Observe that the largest value in the Butcher tableau
is a21 = a32 = a54 = 1/r. The 2-norm of the coefficients in the leading term of the local error is 0.022736, and the stability
function is

R(z) = 1 + z +
1

2
z2 +

1

6
z3 + 0.027360 z4 + 0.001772 z5 .

The stability region is the largest one in Figure 5.1 (continuous line). The left hand side of the absolute stability interval for this
method is −7.26.

For completeness, in Figure 5.1 (right) we show the stability regions of low-storage methods based on van der Houven and
Williamson techniques. Observe that for these schemes the stability intervals are smaller than the ones in Figure 5.1 (left), related
to SSP(5,3) low-storage methods based on Shu-Osher matrices.

6 Numerical experiments

In this section we study the performance of the new 5-stage third order low-storage SSP RK methods, namely SSP53_2N∗1 (50)
and SSP53_2N∗2 (53). Our goal is to study the effective SSP coefficient when a given problem is integrated. For this purpose, we
have considered the hyperbolic Buckley-Leverett equation (54) whose solution is Total Variation Diminishing (TVD).

In order to compare the behaviour of the new methods, we have also considered other 5-stage third order low-storage SSP RK
methods from the literature. Specifically we have dealt with four optimal SSP(5,3) methods, namely the schemes SSP53_R (56),
SSP53_H (57), SSP531 (60) and SSP532 (61). The first three schemes are 3N low-storage methods, while more than three memory
registers are needed to implement the fourth one. Besides, we have also considered two Williamson schemes, namely the methods
SSP53_W1 (62) and SSP53_W2 (63), and the van der Houwen method SSP53_vdH (64). Finally, we have also considered the
method SSP43 (23), the optimum 4-stage third order SSP RK method. References, expanded coefficients and more details about
these methods can be seen in the Appendix section 8.

6.1 Hyperbolic 1-dimensional Buckley-Leverett equation

The hyperbolic 1-dimensional Buckley-Leverett equation is defined by (see, e.g., [5,21])

∂

∂t
u(x, t) +

∂

∂x
Φ(u(x, t)) = 0 , with Φ(u) =

3u2

(1− v)2
. (54)

We consider 0 ≤ x ≤ 1, 0 ≤ t ≤ 1/8, periodic boundary condition u(0, t) = u(1, t) and initial condition

u(x, 0) =

{
0 for 0 < x ≤ 1/2,

1
2 for 1

2 < x ≤ 1 .

We semi-discretize this problem using a uniform grid with mesh-points xj = j∆xwhere j = 1, 2, ..., N and∆x = 1/N ,N = 100.
We denote Uj(t) ≈ u(xj , t) and we approximate (54) by the system of ordinary differential equations

U ′j(t) =
1

∆x
(Φ(Uj−1/2(t))− Φ(Uj+1/2(t))), j = 1, 2, . . . , N, (55)
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where
Uj+1/2(t) = Uj +

1

2
φ(θj) (Uj+1 − Uj) ,

and φ(θ) is the Koren’s limiter defined by

φ(θ) = max

(
0,min

(
2,

2

3
+

1

3
θ, 2θ

))
, where θj =

Uj − Uj−1

Uj+1 − Uj
.

In order to compute the observed SSP coefficient for a given explicit RK, we have integrated (55) with different stepsizes, from
∆t = 2 · 10−3 to ∆t = 10−2. For each step size ∆t, the maximal ratio of the TV-seminorm of two consecutive numerical
approximations, in the time interval [0, 1/8], is computed

µ(∆t) = max

{
‖un‖TV

‖un−1‖TV
| n ≥ 1 ,with n∆t ≤ 1/8

}
.

If µ(∆t) = 1, then the explicit RK method is Total Variation Diminishing (TVD) on the interval [0, 1/8], that is, ‖un‖TV ≤
‖un−1‖TV (see [5] for details).

We have numerically obtained that the forward Euler method is TVD for 0 ≤ ∆t ≤ ∆tobsFE ' 0.0025. For a given scheme A,
we have repeated this computation to obtain the value ∆tobsA such that µ(∆tobsA ) = 1; then the quotient ∆tobsA /∆tobsFE gives the
observed SSP coefficient of scheme A, that we will denote by cobsA .

Stages Order SSP Observed SSP Error Number of
coefficient coefficient constant registers

SSP53_2N∗
1 (50) 5 3 2.1807 2.29 2.78407e-02 2N∗

SSP53_2N∗
2 (53) 5 3 2.1487 2.45 2.27362e-02 2N∗

SSP531 (60) 5 3 2.6506 2.96 1.48757e-02 3N
SSP53_R (56) 5 3 2.6506 2.90 1.66219e-02 3N
SSP532 (61) 5 3 2.6506 2.78 1.81787e-02 ≥ 3N
SSP53_H (57) 5 3 2.6506 2.72 1.98589e-02 3N

SSP43 (23) 4 3 2 2.04 3.60844e-02 2N∗

SSP53_W1 (62) 5 3 1 2.04 2.14944e-02 2N -W
SSP53_W2 (63) 5 3 1.4015 2.20 2.88494e-02 2N -W
SSP53_vdH (64) 5 3 1.4828 1.96 2.55799e-02 2N -vdH

Table 1 Theoretical and observed SSP coefficients, error constant and number of memory registers. Top: new SSP(5,3) 2N∗ low-storage schemes. Middle:
optimal SSP(5,3) schemes. Next-to-last: optimal SSP(4,3) 2N∗ low-storage scheme. End: optimal SSP 5-stage third order 2N Williamson and van der
Houwen low-storage schemes.

In Table 1 we have summarized some information on the schemes considered and the numerical results obtained. For each
scheme we give the number of stages s, the order p, the theoretical and observed SSP coefficients, the ‖ · ‖2-error constant obtained
from the residuals of the p+ 1 order conditions and, finally, the number of memory registers needed for the implementation.

For methods SSP53_2N∗1 and SSP53_2N∗2 the observed SSP coefficient cobsA , 2.29 and 2.45, is better than the theoretical one,
2.18 and 2.15, respectively. This increase is more relevant (14%) for method SSP53_2N∗2 than for method SSP53_2N∗1 (5%).
Observe that the ‖ · ‖2-error constant obtained for method SSP53_2N∗2 is smaller than the one for method SSP53_2N∗1.

For all the optimal SSP(5,3) methods considered in this paper the observed SSP coefficient cobsA is better than the theoretical
one. This increase is more relevant (11.6%) for method SSP531 than for the other optimal SSP(5,3) methods. Observe that the
‖ · ‖2-error constant obtained for method SSP531 is lower than the error constant obtained for the other optimal SSP(5,3) methods.

Finally, for method SSP(4,3) the observed and the theoretical SSP coefficient are almost identical. However, for SSP53_W1,
SSP53_W2 and SSP53_vdH methods the observed coefficient is significantly better than the theoretical one. Despite this increase,
the observed SSP coefficient is smaller than the ones for the new 2N∗ low-storage methods SSP53_2N∗1 and SSP53_2N∗2 con-
structed in this paper.

7 Conclusions

In this paper we have studied third order explicit SSP RK methods that can be implemented in 2N∗ memory registers; besides the
SSP coefficient of the schemes, we are interested in some other relevant properties. The optimal SSP(4,3) scheme belongs to this
class of methods but, due to its uniqueness, any other relevant properties of the method are determined.

We have studied the family of optimum SSP(5,3) methods and we have proven that they cannot be implemented in 2N memory
registers. Proposition 2 shows us that these methods can be implemented in 3N memory registers just in same cases.

Next, we have constructed new SSP(5,3) 2N∗ low-storage explicit RK schemes. We have exploited the sparse structure of the
Shu-Osher matrices to get SSP(5,3) methods that can be implemented with 2N memory registers, even if we have to retain the
previous time step approximation.

Finally, we have tested the performance of the methods for the Buckley-Leverett equation. With regard to the difference between
the theoretical and observed SSP coefficients, the numerical experiments done show that:
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– For the optimal SSP(4,3) method, the theoretical stepsize restriction for the Buckley-Leverett equation is sharp. However, for
the rest of the methods tested, the observed stepsize restrictions are larger than the ones ensured by the SSP theory.

– For the four optimal SSP(5,3) schemes considered in the paper, the method SSP531 (60), with the largest observed SSP coeffi-
cient, is also the one with smallest ‖·‖2-error constant. Besides, the observed SSP coefficients for the new schemes SSP53_2N∗1
(50) and SSP53_2N∗2 (53) are a 5% and 14% larger, respectively, than the theoretical ones. It turns out that the ‖ · ‖2-error
constant is smaller for scheme SSP53_2N∗2 (53). These facts lead us to conjecture that the smaller ‖ · ‖2-error constant is, the
larger the observed SSP coefficient.

Even though the new methods do not achieve the optimum SSP(5,3) coefficient, namely r = 2.65, the numerical experiments
show that they have good observed SSP coefficient cobsA for the problem tested. Besides, they have other relevant properties, as
large stability region, improving these features with respect to other 2N∗ low-storage SSP RK methods. Furthermore, scheme
SSP53_2N∗2 (53), the one with largest stability interval and smallest ‖ · ‖2-error constant, gives slightly better results than method
SSP53_2N∗1 (50). This fact shows the relevance of these additional properties in the performance of SSP methods.

8 Appendix

In this section we show the coefficients of the methods considered in the numerical experiments: The four SSP53 optimal methods,
the two 2N∗ low-storage schemes obtained in this paper, and finally the Williamson and van der Houwen low-storage type methods.

8.1 Optimal SSP53 schemes

First we give the coefficients of four optimal SSP(5,3) methods considered in this paper, namely SSP53_R, SSP53_H, SSP531 and
SSP532. For all them, the stability function is given in (27) and the SSP coefficient is approximately r = 2.65.

For each method we show the Butcher coefficients and below the Shu-Osher form (Λ, Γ ) such that Λe = (1, 0, 0, 0, 0, 0)t and
matrix Γ is subdiagonal. To get this subdiagonal structure we can use transformation (2) or the expressions in (41-42c). In the first
three methods the sparsity of matrix Λ allows a 3N implementation. However, for the last one, 4N memory registers are needed.

Scheme SSP53_R

This method was numerically obtained in [22]. The 2-norm of the coefficients in the leading term of the local error is 0.0166219.

0 0 0 0 0 0
0.377268915331368 0.377268915331368 0 0 0 0
0.754537830662736 0.377268915331368 0.377268915331368 0 0 0
0.728985661612186 0.242995220537395 0.242995220537395 0.242995220537395 0 0
0.699226135931669 0.153589067695126 0.153589067695126 0.153589067695126 0.23845893284629 0

0.206734020864804 0.206734020864804 0.117097251841844 0.18180256012014 0.287632146308408

(56)

Λ =


0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
λ41 0 λ43 0 0 0
λ51 0 0 λ54 0 0
0 0 λ63 0 λ65 0

 , Γ =


0 0 0 0 0 0
γ21 0 0 0 0 0
0 γ32 0 0 0 0
0 0 γ43 0 0 0
0 0 0 γ54 0 0
0 0 0 0 γ65 0

 .

λ41 = 0.355909775063327 , λ43 = 0.644090224936674 ,
λ51 = 0.367933791638137 , λ54 = 0.632066208361863 ,
λ63 = 0.237593836598569 , λ65 = 0.762406163401431 ;
γ21 = 0.377268915331368 , γ32 = 0.377268915331368 , γ43 = 0.242995220537396 , γ54 = 0.238458932846290 , γ65 = 0.287632146308408 .

Scheme SSP53_H

The 2-norm of the coefficients in the leading term of the local error is 0.019859.

0 0 0 0 0 0
0.377268915331368 0.377268915331368 0 0 0 0
0.754537830662737 0.377268915331368 0.377268915331368 0 0 0
0.782435937433493 0.260811979144498 0.260811979144498 0.260811979144498 0 0
0.622731084668631 0.219153436331987 0.117097251841844 0.117097251841844 0.169383144652957 0

0.219153436331987 0.117097251841844 0.117097251841844 0.169383144652957 0.377268915331368

(57)
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Λ =


0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
λ41 0 λ43 0 0 0
λ51 λ52 0 λ54 0 0
0 0 0 0 1 0

 , Γ =


0 0 0 0 0 0
γ21 0 0 0 0 0
0 γ32 0 0 0 0
0 0 γ43 0 0 0
0 0 0 γ54 0 0
0 0 0 0 γ65 0

 .

λ41 = 0.308684154602513 , λ43 = 0.691315845397487 ,
λ51 = 0.280514990468574 , λ52 = 0.270513101776498 , λ54 = 0.448971907754928 ;
γ21 = 0.377268915331368 , γ32 = 0.377268915331368 , γ43 = 0.260811979144498 , γ54 = 0.169383144652957 , γ65 = 0.377268915331368 .

Scheme SSP531

The coefficients of this method have been obtained with the code RK–Opt [18]. The 2-norm of the coefficients in the leading term
of the local error is 0.014876.

0 0 0 0 0 0
0.377268915331368 0.377268915331368 0 0 0 0
0.754537830662736 0.377268915331368 0.377268915331368 0 0 0
0.488281458487577 0.162760486162526 0.162760486162526 0.162760486162526 0 0
0.788667948667632 0.148318743330765 0.148299726283723 0.148299726283723 0.343749752769421 0

0.196490186861586 0.117097251841844 0.117097251841844 0.271424313309946 0.297890996144780

(58)

Λ =


0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
λ41 0 λ43 0 0 0
λ51 λ52 0 λ54 0 0
0 λ62 0 0 λ65 0

 , Γ =


0 0 0 0 0 0
γ21 0 0 0 0 0
0 γ32 0 0 0 0
0 0 γ43 0 0 0
0 0 0 γ54 0 0
0 0 0 0 γ65 0

 .

λ41 = 0.568582304164742 , λ43 = 0.431417695835258 ,
λ51 = 0.088796463619276 , λ52 = 0.000050407140024 , λ54 = 0.911153129240700 ,
λ62 = 0.210401429751688 , λ65 = 0.789598570248313 ;
γ21 = 0.377268915331368 , γ32 = 0.377268915331368 , γ43 = 0.162760486162526 , γ54 = 0.343749752769421 , γ65 = 0.297890996144780 .

Scheme SSP532

The coefficients of this method have been obtained with the code RK–Opt [18]. The 2-norm of the coefficients in the leading term
of the local error is 0.018179.

0 0 0 0 0 0
0.377268915331368 0.377268915331368 0 0 0 0
0.754537830662737 0.377268915331368 0.377268915331368 0 0 0
0.756398701991139 0.252132900663713 0.252132900663713 0.252132900663713 0 0
0.659994122684924 0.188434549340417 0.134873511860921 0.134873511860921 0.201812549622665 0

0.213322822390311 0.166821102311173 0.117097251841844 0.175213758594633 0.327545064862039

(59)

Λ =


0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
λ41 0 λ43 0 0 0
λ51 λ52 0 λ54 0 0
0 0 λ63 0 λ65 0

 , Γ =


0 0 0 0 0 0
γ21 0 0 0 0 0
0 γ32 0 0 0 0
0 0 γ43 0 0 0
0 0 0 γ54 0 0
0 0 0 0 γ65 0

 .

λ41 = 0.331689173378475 , λ43 = 0.668310826621525 ,
λ51 = 0.323099315304423 , λ52 = 0.141970449466930 , λ54 = 0.534930235228647 ,
λ63 = 0.131799489564770 , λ65 = 0.868200510435230 ;
γ21 = 0.377268915331368 , γ32 = 0.377268915331368 , γ43 = 0.252132900663713 , γ54 = 0.201812549622665 , γ65 = 0.327545064862039 .
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8.2 Optimal SSP 5-stage third order 2N∗ schemes

In this section we give the coefficients the two optimal SSP 5-stage third order methods that can be implemented in 2N∗ memory
registers. For each one we show the Butcher coefficients and below the Shu-Osher form (Λ, Γ ) such that Λe = (1, 0, 0, 0, 0, 0)t

and matrix Γ is subdiagonal. In both cases all the entries are in the first subdiagonal and the first column of Λ.

Scheme SSP53_2N∗1

This is the optimum method of the family (44). The coefficient SSP is r = 2.180749177932739 and the stability function is

R(z) = 1 + z +
1

2
z2 +

1

6
z3 + 0.027360346839505386 z4 + 0.0017718595675709542 z5 .

The coefficients of this method have been obtained by solving the optimization problem (49). The 2-norm of the coefficients in the
leading term of the local error is 0.027840660448808976.

0 0 0 0 0 0
0.443568244942995 0.443568244942995 0 0 0 0
0.734679665016762 0.443568244942995 0.291111420073766 0 0 0
1.005292266294979 0.443568244942995 0.291111420073766 0.27061260127822 0 0
0.541442494648948 0.190111792195291 0.124769332407581 0.11598361065329 0.110577759392786 0

0.190111792195291 0.124769332407581 0.11598361065329 0.110577759392786 0.4585575053510519

(60)

Λ =


0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
λ51 0 0 λ54 0 0
0 0 0 0 1 0

 , Γ =


0 0 0 0 0 0
γ21 0 0 0 0 0
0 γ32 0 0 0 0
0 0 γ43 0 0 0
0 0 0 γ54 0 0
0 0 0 0 γ65 0

 .

λ51 = 0.571403511494104 , λ54 = 0.428596488505896 ;
γ21 = 0.443568244942995 , γ32 = 0.291111420073766 , γ43 = 0.270612601278217 , γ54 = 0.110577759392786 , γ65 = 0.458557505351052 .

Scheme SSP53_2N∗2

This is the optimum method of the family (52). The coefficient SSP is r = 2.1487419827223833 and the stability function is

R(z) = 1 + z +
1

2
z2 +

1

6
z3 + 0.029448369208272717 z4 + 0.0019397052596758003 z5 .

The 2-norm of the coefficients in the leading term of the local error is 0.0227362.

0 0 0 0 0 0
0.465388589249323 0.465388589249323 0 0 0 0
0.930777178498646 0.465388589249323 0.465388589249323 0 0 0
0.420413812847710 0.147834007766856 0.147834007766856 0.124745797313998 0 0
0.885802402097033 0.147834007766856 0.147834007766856 0.124745797313998 0.465388589249323 0

0.141147331533922 0.141147331533922 0.119103423338902 0.444338609844587 0.154263303748666

(61)

Λ =


0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
λ41 0 λ43 0 0 0
0 0 0 0 1 0
λ61 0 0 0 λ65 0

 , Γ =


0 0 0 0 0 0
γ21 0 0 0 0 0
0 γ32 0 0 0 0
0 0 γ43 0 0 0
0 0 0 γ54 0 0
0 0 0 0 γ65 0

 .

λ41 = 0.682342861037239 , λ43 = 0.317657138962761 ,
λ61 = 0.045230974482400 , λ65 = 0.954769025517600 ;
γ21 = 0.465388589249323 , γ32 = 0.465388589249323 , γ43 = 0.124745797313998 , γ54 = 0.465388589249323 , γ65 = 0.154263303748666 .

8.3 Williamson and van der Houwen low-storage type methods

In this paper we have also considered some optimal Williamson and van der Houwen low-storage type methods obtained in [28]
and [22]. These are 2N low-storage methods. Our interest relies on the five-stage third-order methods.
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Scheme SSP53_W1

In [28] some optimal Williamson low-storage type method are numerically obtained. Here we show the coefficients of the optimal
5-stages third order method. The SSP coefficient is r = 1 and the stability function is

R(z) = 1 + z +
1

2
z2 +

1

6
z3 + 0.028737614071812287 z4 + 0.0037729266088722306 z5 .

The 2-norm of the coefficients in the leading term of the local error is 0.0214944. and the Butcher coefficients are

0 0 0 0 0 0

0.67892607116139 0.67892607116139 0 0 0 0

0.34677649493991 0.14022991560621 0.20654657933371 0 0 0

0.66673359500982 0.20569370073026 0.18144649137471 0.27959340290485 0 0

0.76590087429032 0.16104646283838 0.19856511041100 0.08890670263481 0.31738259840613 0

0.19215670424132 0.18663683901393 0.22177739201759 0.09623007655432 0.30319904778284

(62)

Scheme SSP53_W2

Below we show the coefficients of the optimal 5-stage third order method numerically obtained in [22]. The SSP coefficient is
r = 1.40154693827206 and the stability function is

R(z) = 1 + z +
1

2
z2 +

1

6
z3 + 0.030867245346137964 z4 + 0.003908575831813585 z5 .

The 2-norm of the coefficients in the leading term of the local error is 0.0288494.

0 0 0 0 0 0

0.713497331193829 0.713497331193829 0 0 0 0

0.133505249805329 0.133505249805329 0.133505249805329 0 0 0

0.980507830804488 0.133505249805329 0.133505249805329 0.713497331193829 0 0

0.566169290867790 0.133505249805329 0.133505249805329 0.149579395628566 0.149579395628565 0

0.133505249805329 0.133505249805329 0.216758180868589 0.131760203399484 0.384471116121269

(63)

Scheme SSP53_vdH

This is the optimal 5-stage third order van der Houwen low-storage method numerically obtained in [22]. The SSP coefficient is
r = 1.482840341885634 and the stability function is

R(z) = 1 + z +
1

2
z2 +

1

6
z3 + 0.030977632110278555 z4 + 0.003801134386056876 z5 .

The 2-norm of the coefficients in the leading term of the local error is 0.02557995243600524.

0 0 0 0 0 0

0.674381436593749 0.674381436593749 0 0 0 0

0.291120326368482 0.174481959220521 0.116638367147961 0 0 0

0.965501762962231 0.174481959220521 0.116638367147961 0.674381436593749 0 0

0.617111102246386 0.174481959220521 0.116638367147961 0.162995387938952 0.162995387938952 0

0.174481959220521 0.116638367147961 0.162995387938952 0.106256369067643 0.439627916624922

(64)
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