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 Multimodal Fuzzy Fusion for Enhancing the 
Motor-Imagery-based Brain Computer Interface 

 

ABSTRACT 

Brain–computer interface technologies, such as steady-state visually evoked potential, P300, and 

motor imagery are methods of communication between the human brain and the external devices. Motor 

imagery–based brain–computer interfaces are popular because they avoid unnecessary external stimulus. 

Although feature extraction methods have been illustrated in several machine intelligent systems in 

motor imagery-based brain–computer interface studies, the performance remains unsatisfactory. There 

is increasing interest in the use of the fuzzy integrals, the Choquet and Sugeno integrals, that are 

appropriate for use in applications in which fusion of data must consider possible data interactions. To 

enhance the classification accuracy of brain-computer interfaces, we adopted fuzzy integrals, after 

employing the classification method of traditional brain–computer interfaces, to consider possible links 

between the data. Subsequently, we proposed a novel classification framework called the multimodal 

fuzzy fusion-based brain-computer interface system. Ten volunteers performed a motor imagery-based 

brain-computer interface experiment, and we acquired electroencephalography signals simultaneously. 
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The multimodal fuzzy fusion-based brain-computer interface system enhanced performance compared 

with traditional brain–computer interface systems. Furthermore, when using the motor imagery-relevant 

electroencephalography frequency alpha and beta bands for the input features, the system achieved the 

highest accuracy, up to 78.81% and 78.45% with the Choquet and Sugeno integrals, respectively. Herein, 

we present a novel concept for enhancing brain–computer interface systems that adopts fuzzy integrals, 

especially in the fusion for classifying brain–computer interface commands. 

 

Index terms: brain-computer interface, electroencephalography (EEG), fuzzy fusion, fuzzy 

integrals, motor imagery 
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I. INTRODUCTION 

Brain-computer interfaces (BCIs) are a method of communication between the human brain and an 

external device. Among existing BCIs, motor imagery (MI) has been popular in recent years as an 

alternative communication pathway, and it is based on an individual voluntarily modulating 

electroencephalography (EEG) signals. In comparison with current existing BCI technologies, such as 

steady-state visually evoked potential [1], [2] and P300, MI-based BCIs have the advantage of avoiding 

unnecessary external stimulus as the commands for controlling the external devices. BCI users can 

individually imagine their movements to trigger the MI-based BCI systems, not by their actual actions. 

Furthermore, EEG dynamics reveal the related brain areas when behaviors are performed by an 

individual during MI-based BCI experiments [3]. Because of the characteristics of this asynchronous 

BCI system [4], a variety of feature extraction techniques have been applied to differentiate between the 

EEG dynamics of left- and right-hand imagination. One of the frequently used algorithms for feature 

extraction in MI-based BCI systems is the common spatial pattern (CSP). However, the variance of 

extracted features from two classes of MI-based EEG data distributed by the CSP means high BCI 

classification accuracy is difficult to achieve with only a single classifier. Despite feature extraction 

methods have been illustrated in several machine intelligent systems in MI-based BCI studies, the 

overall performance remains unsatisfactory because of inter-participant and intra-participant variability. 

Such variability severely affects the discrimination of the methods between left-hand and right-hand MI 

commands. A recent study demonstrated that EEG modulations can be trained through motor learning 

[5]; however, this is time consuming, and the limitations of EEG pattern recognition remain. Other 

studies have applied deep-learning techniques to enhance the performance of MI-based BCI systems [6], 

[7]; nevertheless, an enormous EEG dataset is required for performing such deep-learning techniques. 

Therefore, how to extract the appropriate features and enhance BCI classification accuracy are the 

major challenges for developing an MI-based BCI system, especially among the different varieties of 

dynamic EEG data. Consequently, novel algorithms must be adopted for enhancing BCI performance. 

There is increasing interest in the use of fuzzy integrals [8], [9] because of their wide applicability. 

The most relevant examples of fuzzy integrals are the Choquet [10] and Sugeno integrals [9]. Both 



IEEE Computational Intelligence Magazine 

 4 

make use of a fuzzy measure to consider the relevance of possible coalitions (i.e., the possible links 

existing between data). This feature of fuzzy integrals makes them highly appropriate for applications in 

which fusion of data while considering their possible interactions is a relevant step, such as in cases of 

image processing [11], [12]; classification [13]-[15]; or decision making [16]. Some of the most widely 

used averaging functions, such as weighted means or the ordered weighted averaging (OWA) operators, 

are specific cases of fuzzy integrals (see [8]). 

 Furthermore, several generalizations of the classical notion of fuzzy integrals have been introduced 

in the literatures, specifically relaxing linearity in the definition of the Choquet integral. Of note are the 

CF [15], [17] and CF1,F2 [13] integrals. These generalizations have proven successful in classification 

problems, where they are able to obtain results as effectively as state-of-the-art classifiers (see [13] and 

[15]). An advantage of these generalizations of the Choquet integral is that monotonicity is not required 

as in usual aggregation functions; however, in many cases, the Choquet integral is directionally 

monotone (that is, increasing along a fixed direction, see [18], [19]), which provides it with greater 

flexibility than other fuzzy integrals.  

Considering the advantages, we adopted the fuzzy integrals after classification of the traditional BCI 

system, which can consider possible links between data. Our previous study [20] demonstrated the 

feasibility of implementing the fuzzy integral with particle swarm optimization to improve BCI 

performance. However, the proposed algorithm in reference [20] was only considering the varied 

features of different EEG frequencies, but not considering the features from different classifiers. 

Therefore, we further considered whether fuzzy integrals could compensate for using different EEG 

frequencies and classifiers during classification in the present study. The proposed novel classification 

framework, which named as the multimodal fuzzy fusion (MFF)-based BCI system, is illustrated in 

Section II. The experimental results in Sections III and IV show that adopting fuzzy integrals into the 

BCI system can enhance BCI performance in comparison with traditional BCI systems. Furthermore, 

using the MI-relevant EEG frequency alpha and beta bands as the input features fed into the proposed 

MFF-based BCI system maximized accuracy. Therefore, we present a novel concept of adopting fuzzy 

integrals in a BCI system, especially in the fusion for classifying BCI commands.  
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II. MULTIMODAL FUZZY FUSION-BASED BRAIN COMPUTER INTERFACE SYSTEM 

 

 

 

To enhance MI-based BCI performance, we proposed to apply a multimodal fuzzy fusion framework 

to an MI-based BCI system in this study. Fig. 1 shows the system architecture of the proposed BCI, 

which consisted primarily of two parts: the first part follows the traditional BCI structure, and the other 

part contains the MFF framework embedded into the MI-based BCI. The following sections detail the 

data analysis approaches.  

A. Traditional BCI Structure 

The traditional BCI system structure included four parts: (1) EEG data acquisition and preprocessing, 

(2) fast Fourier transform (FFT), (3) a feature extraction method utilizing the CSP, and (4) control 

command by classifiers. The first step in developing the traditional BCI system was acquiring the EEG 

data from the commercial EEG device and performing band-pass filtering and artifact removal on the 

collected EEG signals. The second step was EEG feature transformation and feature extraction. We 

adopted FFT as the feature transformation to transfer the time-series EEG signals to different frequency 

Fig 1. System architecture of the proposed MFF-based BCI system. 
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bands, including the delta, theta, alpha, and beta bands. Subsequently, the CSP was used for feature 

extraction to extract the maximum spatial separability from the different EEG signals corresponding to 

the control commands. Last, pattern classification was performed on the extracted EEG signals using 

different classifiers to differentiate the commands for controlling the peripheral control device. Data 

analysis for each part is described as follows. 

1.) EEG Data Acquisition and Preprocessing: Thirty-two EEG signals were collected by the 

Neuroscan system developed by Compumedics Ltd. (VIC, Australia). The sensor placements 

followed the standard international 10–20 system, and the reference channels were on the left 

and right mastoids. Contact impedances of all EEG electrodes must be below five kΩ. We 

selected four EEG channels placed at C3, C4, CP3, and CP4 to cover the motor cortex and 

sensorimotor cortex. After data acquisition, EEG signal preprocessing, including band-pass 

filtering with cutoff frequencies above 50 Hz and below 0.5 Hz, was conducted manually using 

the open source toolbox EEGLAB [21], [22]. The concept for the MI-based BCI experiment 

design is described in the Section III. 

2.) FFT: FFT was used in this study to reduce the complexity of discrete Fourier transform 

computation and to rapidly transform the EEG signals into different frequency components. FFT 

analysis transformed the time-series EEG signals in each channel into the frequency range from 

1 to 30 Hz, covering the delta (1-3 Hz), theta (4-7 Hz), alpha (8-13 Hz), and beta (14-30 Hz) 

bands using a 50-point moving window segment overlapping 25 data points. 

3.) CSP: The CSP, which is a well-known mathematical procedure commonly used in EEG signal 

processing, was used in this study to transform multivariate EEG signals into well-separated 

subcomponents with maximum spatial variation [23], [24]. We adopted the CSP to transform the 

MI-based BCI datasets with two classes into a well-separated feature map for classifying BCI 

commands. Thus, the EEG feature vectors of four channels extracted through the CSP with 

different frequency bands respectively in each EEG sample were estimated as the posterior 

probability in the classification step to evaluate MI-based BCI performance. 

4.) Classifications: Three different classifiers, linear discriminant analysis (LDA), quadratic 
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discriminant analysis (QDA) and k-nearest neighbors classification (k-NNC), were adopted to 

classify the transformed MI-based BCI data. Using these classifiers, we observed which 

classification had optimal performance for MI-based BCI classification. LDA is a popular linear 

classification method widely applied in statistics and machine learning. Mean vectors and 

covariance matrices of distinct classes are the main parameters of LDA, which are calculated for 

searching the appropriate discrete features and separating them into two or more classes. QDA is 

a common multivariate classification similar to LDA. Unlike LDA, which employs a linear 

boundary between the data points of distinct classes, QDA separates the estimates of two or 

more classes with a quadric surface. The k-NNC is a nonparametric method for BCI 

classification. An unlabeled testing data point is classified by estimating the k neighbors (k=9 in 

this study) nearest to the testing data point among the training samples. 

The classification accuracies of the MI-based BCI were calculated as the mean of the classification 

result for each sample. Statistical significance was estimated by paired t test, with significance indicated 

by a p value lower than 0.01 (p < 0.01). The posterior probabilities of left-hand and right-hand MI 

acquired from each classifier described previously were then fused using the Choquet or Sugeno fuzzy 

integral through the proposed MFF structure. 

 

B. Multimodal Fuzzy Fusion Framework 

To enhance the BCI performance, we proposed the MFF framwork with the Choquet or Sugeno 

integrals to fuse the posterior probability obtained from the results of different classifiers. We 

considered that the EEG power changes of different frequencies affected the BCI performance more 

than using different classifiers did. Therefore, we implemented the frequency-based fuzzy fusion first 

before implementing the classifier-based fuzzy fusion to enhance the BCI performance for left-hand or 

right-hand classification commands. The following sections define the fuzzy integrals adopted in this 

study. 

1.) Choquet Fuzzy Integral Fusion: The Choquet integral is a generalization of the usual notion of 

an integral that involves the use of fuzzy (nonadditive) measures. In a discrete setting, if 
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𝑔𝑔: 2𝑁𝑁  → [0,1] (where 𝑁𝑁 = {1, . . . ,𝑛𝑛}) is a fuzzy measure (a set-valued increasing function 

such that 𝑔𝑔(∅) = 0   and 𝑔𝑔(𝑁𝑁) = 1 ), the Choquet integral is an aggregation function 

𝐶𝐶𝑔𝑔: [0,1]𝑛𝑛 →  [0,1] defined, for each 𝒙𝒙 = (𝑥𝑥1,𝑓𝑓𝑓𝑓𝑥𝑥𝑛𝑛) ∈  [0,1]𝑛𝑛   and each membership 

function ℎ, as: 

𝐶𝐶𝑔𝑔(ℎ) =  ∑ �ℎ�𝑥𝑥(𝑖𝑖)� −  ℎ�𝑥𝑥(𝑖𝑖−1)��𝑛𝑛
𝑖𝑖=1  ⋅   𝑔𝑔�𝐴𝐴(𝑖𝑖)�,    [𝑴𝑴−𝑪𝑪𝑪𝑪]    (1) 

where �ℎ�𝑥𝑥(1)�, … ,ℎ�𝑥𝑥(𝑛𝑛)�� is an increasing permutation on the input �ℎ(𝑥𝑥1), … , ℎ(𝑥𝑥𝑛𝑛)�; that 

is, 0 ≤  ℎ�𝑥𝑥(1)� ≤  …  ≤  ℎ�𝑥𝑥(𝑛𝑛)� , with the convention that ℎ�𝑥𝑥(0)� = 0 , and 𝐴𝐴(𝑖𝑖) =

{(𝑖𝑖), … , (𝑛𝑛)} is the subset of indices of 𝑛𝑛 − 𝑖𝑖 + 1 largest components of �ℎ(𝑥𝑥1), … ,ℎ(𝑥𝑥𝑛𝑛)�. 

The Choquet integral combines the inputs in such a manner that the importance of the 

different groups of inputs (coalitions) may be considered [8]-[10]. By assigning importance to 

all possible groups of criteria, the Choquet integral offers greater flexibility for modeling the 

aggregation. Because, as stated in the introduction, the weighted arithmetic mean and OWA 

operators are special cases of the Choquet integral, Choquet integral-based aggregation 

functions represent a larger class of aggregation functions. Recall that, given a vector  (w1 , …, 

wn) Є [0,1]n  with  w1 + … + wn = 1, the OWA operator associated to this vector is the function 

OWA: [0,1]n  [0,1] defined by 

𝑶𝑶𝑶𝑶𝑶𝑶�𝑥𝑥1  , … , 𝑥𝑥(𝑛𝑛)�  =  𝑤𝑤1𝑥𝑥(1) +  … + 𝑤𝑤𝑛𝑛𝑥𝑥(𝑛𝑛)                                         (2) 

where x(1) ≥ …≥ x(n) is a decreasing reordering of the inputs (x1, …, xn) [8]. Notably, for any 

fuzzy measure, the Choquet integral is an averaging aggregation function. 

To generalize the Choquet integral to obtain a pre-aggregation function (i.e., a function with 

the same boundary conditions as an aggregation function but that is only increasing along some 

fixed direction; see [18], [19]) , we considered two distinct approaches. 

CASE A  

A first approach is to replace the product with a more general operation F [15]. In this sense, 

for a fuzzy measure 𝑔𝑔: 2𝑁𝑁 →  [0,1]  and a function 𝐹𝐹: [0,1]2 →  [0,1], we define the 𝐶𝐶𝐹𝐹 

integral as the function 𝐶𝐶𝑔𝑔𝐹𝐹: [0,1]𝑛𝑛 →  [0,1]  given by 
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𝐶𝐶𝑔𝑔𝐹𝐹(ℎ) =  ∑ 𝐹𝐹 �ℎ�𝑥𝑥(𝑖𝑖)� −  ℎ�𝑥𝑥(𝑖𝑖−1)�, 𝑔𝑔�𝐴𝐴(𝑖𝑖)��𝑛𝑛
𝑖𝑖=1                   (3) 

where �ℎ�𝑥𝑥(1)�, … ,ℎ�𝑥𝑥(𝑛𝑛)�� is an increasing permutation on the input �ℎ(𝑥𝑥1), … , ℎ(𝑥𝑥𝑛𝑛)�; that 

is, 0 ≤  ℎ�𝑥𝑥(1)� ≤  …  ≤  ℎ�𝑥𝑥(𝑛𝑛)� , with the convention that ℎ�𝑥𝑥(0)� = 0 ; and  𝐴𝐴(𝑖𝑖) =

 {(𝑖𝑖), … , (𝑛𝑛)} is the subset of indices of 𝑛𝑛 − 𝑖𝑖 + 1 largest components of �ℎ(𝑥𝑥1), … ,ℎ(𝑥𝑥𝑛𝑛)�. 

If 𝐹𝐹(𝑥𝑥, 𝑦𝑦) = 𝑥𝑥 ⋅ 𝑦𝑦, then we recover the standard Choquet integral as given by [M-C1]. For a 

general choice of F, the function 𝐶𝐶𝑔𝑔𝐹𝐹 is not required to be an aggregation function, because 

monotonicity can be violated. If the function 𝐹𝐹 is such that either 

(i) 𝐹𝐹(0, 𝑥𝑥) = 0  and  𝐹𝐹(𝑥𝑥, 1) = 𝑥𝑥, or 

(ii) for all  𝑥𝑥 ∈  [0,1],  𝐹𝐹(0, 𝑥𝑥) = 0,  𝐹𝐹(1,1) = 1, and  𝐹𝐹  is  (1,0)-increasing (i.e.,  

𝐹𝐹(𝑥𝑥′,𝑦𝑦) ≥  𝐹𝐹(𝑥𝑥,𝑦𝑦)  if  𝑥𝑥′ > 𝑥𝑥  for every 𝑦𝑦 ∈  [0,1]), 

then, for any fuzzy measure  𝑔𝑔 , the  𝐶𝐶𝐹𝐹  integral defined by (3) is a pre-aggregation function 

(which is not generally an aggregation function). This is the case if we take as 𝐹𝐹 the the 

Hamacher t-norm 

𝑇𝑇𝐻𝐻(𝑥𝑥,𝑦𝑦) = �
0,   if  𝑥𝑥 = 𝑦𝑦 = 0

𝑥𝑥𝑥𝑥
𝑥𝑥+𝑦𝑦−𝑥𝑥𝑥𝑥

, otherwise                     (4) 

We denote the resulting function as [M-C2]. 

CASE B 

Considering the distributivity of the product, the standard Choquet integral [M-C1] can be 

written as (5) 

𝐶𝐶𝑔𝑔(ℎ) =  ∑ �ℎ�𝑥𝑥(𝑖𝑖)� ⋅   𝑔𝑔�𝐴𝐴(𝑖𝑖)� −  ℎ�𝑥𝑥(𝑖𝑖−1)� ⋅   𝑔𝑔�𝐴𝐴(𝑖𝑖)��𝑛𝑛
𝑖𝑖=1               (5) 

To further generalize the Choquet integral, we can replace the product in both terms inside the 

summation in the previous expression by two general different operations: F1 and F2 [13], [17]. 

If these two operations are such that  

(i) 𝐹𝐹1  is  (1,0)-increasing (i.e., F(x,y) ≥ F(z,y) whenever x > z), 

(ii) 𝐹𝐹1(0,𝑦𝑦) = 𝐹𝐹2(0,𝑦𝑦)  for every  𝑦𝑦 ∈  [0,1], 

(iii) 𝐹𝐹1(1,1) = 1, and 

(iv) 𝐹𝐹1 ≥  𝐹𝐹2, 
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then the resulting  𝐶𝐶𝐹𝐹1,𝐹𝐹2 integral is a pre-aggregation function. In particular, this is the case if 

we take 𝐹𝐹1 = 𝐹𝐹2 = 𝑚𝑚𝑚𝑚𝑚𝑚; that is,  

𝐶𝐶𝑔𝑔
𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚(ℎ) =  ∑ 𝑚𝑚𝑚𝑚𝑚𝑚 �ℎ�𝑥𝑥(𝑖𝑖)�,𝑔𝑔�𝐴𝐴(𝑖𝑖)�� −  𝑚𝑚𝑚𝑚𝑚𝑚 �ℎ�𝑥𝑥(𝑖𝑖−1)�,𝑔𝑔�𝐴𝐴(𝑖𝑖)��𝑛𝑛

𝑖𝑖=1  ,  [𝑴𝑴−𝑪𝑪𝑪𝑪]     (6) 

This function, contrary to the case of the usual Choquet integral, is not averaging; that is, its 

output is not required to be between the minimum and maximum of the inputs.  

2.) Sugeno Fuzzy Integral Fusion: As aforementioned, another fruitful generalization of the usual 

Lebesgue integral is the Sugeno integral [8], [9]. Given (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) ∈ [0,1]𝑛𝑛 , the Sugeno 

integral over the set 𝑨𝑨 = {𝑥𝑥1, … , 𝑥𝑥𝑖𝑖, … , 𝑥𝑥𝑛𝑛} of a membership function ℎ with respect to the 

fuzzy measure (confidence) 𝑔𝑔 is defined as (7) 

𝑆𝑆𝑔𝑔(ℎ) = 𝑠𝑠𝑠𝑠𝑠𝑠
𝛼𝛼∈[0,1]

 [𝑚𝑚𝑚𝑚𝑚𝑚 (𝛼𝛼,𝑔𝑔(𝑨𝑨 ∩ 𝐹𝐹𝛼𝛼)] ,    [𝑴𝑴− 𝑺𝑺𝑺𝑺].         (7) 

where 𝐹𝐹𝛼𝛼 =  { 𝒙𝒙 ∣  ℎ(𝒙𝒙) ≥  𝛼𝛼 } . If we use the same notation as in the case of the Choquet 

integral, we can define the Sugeno integral as a function given by 

𝑆𝑆𝑔𝑔(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑚𝑚𝑚𝑚𝑚𝑚 �ℎ�𝑥𝑥(𝑖𝑖)�,𝑔𝑔�𝐴𝐴(𝑖𝑖)��  ∣ 𝑖𝑖 = 1 … ,𝑛𝑛}  ,                 (8) 

where �ℎ�𝑥𝑥(1)�, … ,ℎ�𝑥𝑥(𝑛𝑛)�� is an increasing permutation on the input �ℎ(𝑥𝑥1), … , ℎ(𝑥𝑥𝑛𝑛)�; that 

is, 0 ≤  ℎ�𝑥𝑥(1)� ≤  …  ≤  ℎ�𝑥𝑥(𝑛𝑛)� , and 𝐴𝐴(𝑖𝑖) =   {(𝑖𝑖), … , (𝑛𝑛) } is the subset of indices of 

𝑛𝑛 − 𝑖𝑖 + 1  largest components of �ℎ(𝑥𝑥1), … ,ℎ(𝑥𝑥𝑛𝑛)�. 

With this definition, if we consider the case  ℎ(𝑥𝑥) = 𝑥𝑥  for every  𝑥𝑥 ∈  [0,1],  𝑆𝑆𝑔𝑔  is an 

averaging aggregation function.  

To generalize the Sugeno integral, we can replace the minimum by a more general function 

𝐹𝐹: [0,1]2 →  [0,1] [18]. Thus, given a function  𝐹𝐹: [0,1]2 →  [0,1]  and a fuzzy measure 𝑔𝑔, 

the  𝑆𝑆𝐹𝐹  integral is the function  𝑆𝑆𝑔𝑔𝐹𝐹  given by 

𝑆𝑆𝑔𝑔𝐹𝐹(ℎ) = max{ 𝐹𝐹 �ℎ�𝑥𝑥(𝑖𝑖)�,𝑔𝑔�𝐴𝐴(𝑖𝑖)�� ∣ 𝑖𝑖 = 1, … ,𝑛𝑛}                   (9) 

where  �ℎ�𝑥𝑥(1)�, … ,ℎ�𝑥𝑥(𝑛𝑛)��  is an increasing permutation on the input  �ℎ(𝑥𝑥1), … , ℎ(𝑥𝑥𝑛𝑛)�; 

that is , 0 ≤  ℎ�𝑥𝑥(1)� ≤   …  ≤  ℎ�𝑥𝑥(𝑛𝑛)� , and  𝐴𝐴(𝑖𝑖) =   {(𝑖𝑖), … , (𝑛𝑛) }   is the subset of 

indices of  𝑛𝑛 − 𝑖𝑖 + 1  largest components of  �ℎ(𝑥𝑥1), … ,ℎ(𝑥𝑥𝑛𝑛)�. 
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If  𝐹𝐹  is  (1,0)-increasing, and 𝐹𝐹(0,𝑦𝑦) = 0  for every 𝑦𝑦 ∈ [0,1], and  𝐹𝐹(1,1) = 1, then 

the resulting function  𝑆𝑆𝑔𝑔𝐹𝐹  is a pre-aggregation function for every fuzzy measure. Specifically, 

this is the case if we take  𝐹𝐹(𝑥𝑥, 𝑦𝑦) = 𝑇𝑇𝐻𝐻(𝑥𝑥,𝑦𝑦)  (the Hamacher t-norm), that is, 

𝑆𝑆𝑔𝑔
𝑇𝑇𝐻𝐻(ℎ) = 𝑚𝑚𝑚𝑚𝑚𝑚 { 𝑇𝑇𝐻𝐻 � ℎ�𝑥𝑥(𝑖𝑖)�,𝑔𝑔�𝐴𝐴(𝑖𝑖)�� ∣ 𝑖𝑖 = 1, … , 𝑛𝑛}; [𝑴𝑴− 𝑺𝑺𝑺𝑺]         (10) 

or if we consider the pre-aggregation function (but not the aggregation function)  𝐹𝐹(𝑥𝑥,𝑦𝑦) =

𝐵𝐵𝐵𝐵(𝑥𝑥,𝑦𝑦) = 𝑥𝑥 ⋅  | 2𝑦𝑦 − 1|, that is, if we consider 

𝑆𝑆𝑔𝑔𝐵𝐵𝐵𝐵(ℎ) = 𝑚𝑚𝑚𝑚𝑚𝑚 { ℎ�𝑥𝑥(𝑖𝑖)� ⋅ �2𝑔𝑔� 𝐴𝐴(𝑖𝑖)� − 1� ∣  𝑖𝑖 = 1, … ,𝑛𝑛} , [𝑴𝑴− 𝑺𝑺𝑺𝑺]         (11) 
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III. MOTOR-IMAGERY-BASED BCI DATA COLLECTION AND ANALYSIS 

In this study, ten participants aged 18-29 years without any neurological diseases were recruited in 

the MI-based BCI experiment. Before the experiment, the participants completed an informed consent 

form. The experimental protocol was approved through the Institutional Review Board of Taipei 

Veterans General Hospital (protocol number VGHUST102-G5-2-1). Participants sat in front of a 

monitor, and the instructions of the experimental protocol were shown to them before the experiment 

began. Participants performed the required tasks for the experiment and we acquired their EEG signals 

simultaneously. During the experiment, four EEG channels at C3, C4, CP3, and CP4 were selected for 

EEG data collection. The following sections describe the experimental procedure, BCI data analysis, 

and comparison of classification performance. 

A. Experimental Procedure 

 

 

The experimental procedure is shown in Fig. 2. At the beginning of each trial, the screen was blank 

for two seconds (from 0 to 2 secs). Subsequently, a cross was displayed in the center of the screen for 

another two seconds (from 2 to 4 secs). When the cross disappeared, an arrow pointing either to the left 

or right randomly appeared on the screen for the following 10 seconds (from 4 to 14 secs). Upon seeing 

an arrow pointing to the left, the participant needed to imagine left-hand movement. Conversely, 

participant needed to imagine right-hand movement when the arrow pointed to the right. After finishing 

Fig 2. Flowchart of MI-based BCI experiment. 
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the movement imagery, a picture was displayed on the screen for a random duration (7–10 secs) in 

which participant could rest before the next trial started. One trial was complete when the participant 

finished one movement imaginary activity; in total, there were four separate experiment sessions in this 

study. In the course of the experiment, the participants were instructed to perform four sessions of the 

MI-based experiment task, and each session had 40 trials. A 10-min break period was provided between 

each session. EEG data were recorded with the time interval of the whole experiment according to the 

left-hand and right-hand MI-based experiment tasks as epochs from the C3, C4, CP3, and CP4 channels. 

Therefore, we collected 160 EEG samples totally consisting of four features and two labels to constitute 

the EEG datasets for evaluating the proposed MFF-based BCI system.  

Table I shows the collected trials for the left-hand and right-hand movement imagery from each 

participant. We randomly generated ten datasets consisted of 80 training data points and 80 testing data 

points from the collected trials from each participant. Training data comprised 40 left-hand and 40 

right-hand movement imaginary trials that were randomly selected from each participant’s collection, 

and the remaining trials formed the testing data. We performed holdout validation for the proposed 

MFF–based BCI system. Because each participant had ten datasets, we averaged the accuracy from 

these datasets and investigated the stability of our proposed MFF-based BCI system. The following 

sections present the comparison of the classification performance of various BCI systems. 

 

B. Comparison of the BCI performances between using fuzzy fusion and non-fuzzy fusion 

To evaluate the classification performance of the proposed MFF-based BCI system, we first 

compared the experiment results between using fuzzy fusion and non-fuzzy fusion. Here, non-fuzzy 

fusion BCI was the traditional BCI structure, as shown in Fig. 2. The performances of non-fuzzy fusion 

classifiers, the Choquet and Sugeno integrals, are shown in Fig. 3. In non-fuzzy fusion classifiers, LDA, 

k-NNC, and QDA used five frequency bands, including four independent bands (i.e., delta, theta, alpha, 

and beta bands) and one full-band signal (1-30 Hz). In all three classifiers and all frequency bands, CSP 

projection was conducted to extract the EEG features. 
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TABLE I 
COLLECTED LEFT-HAND AND RIGHT-HAND MOVEMENT IMAGINARY TRIALS FROM 

EACH PARTICIPANT 

Subject no. 
left-hand movement 

imaginary trials 
right-hand movement 

imaginary trials 

1 85 75 

2 85 75 

3 82 78 

4 74 86 

5 74 86 

6 80 80 

7 80 80 

8 80 80 

9 82 78 

10 84 76 

Before applying fuzzy fusion into the traditional BCI system, classification performances of using 

LDA classifier achieved 72.72% accuracy, and using QDA and k-NNC classifiers were below 70% 

accuracy. For the results of using the Choquet integral—one of the fuzzy fusion approaches—three 

cases, namely [M-C1], [M-C2], and [M-C3], were chosen to validate the BCI performance. For another 

fuzzy fusion approach, the Sugeno integral, three cases were chosen, [M-S1], [M-S2], and [M-S3], to 

validate the BCI performance too. 

According to the fuzzy fusion mechanism of the Choquet and Sugeno integrals, the final decision 

was made by integrating classification results of different frequency bands. As shown in Fig. 3, using 

the Choquet [M-C1] and Sugeno [M-S3] integrals achieved the better classification accuracy of 75.93% 

and 76.11%, respectively, outperforming the traditional non-fuzzy fusion BCI system. Furthermore, we 

calculated the information transfer rate (ITR) [25] to evaluate the efficiency of the proposed MFF-based 

BCI system in this study. The index ITR is consisted of the accuracy, computation time, and the number 
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of classes during the classification process. In Table II, ITR in all case of fuzzy fusion [M-C1], [M-C2], 

[M-C3], [M-S1], [M-S2], and [M-S3] were higher than the three non-fuzzy classifiers (i.e., LDA, 

k-NNK and QDC). Applying the case of [M-C1] and [M-S3] integrals could achieve the better ITR of 

39.69 bits per minute and 40.46 bits per minute in Choquet and Sugeno integrals, respectively. 

Therefore, adopting fuzzy fusion could enhance the BCI performance of the system for classifying 

left-hand and right-hand EEG signals. 

 

TABLE II 
INFORMATION TRANSFER RATE OF FUZZY AND NON-FUZZY FUSION 

Non-fuzzy Fusion Fuzzy Fusion 

LDA 
9.15 

(bits/min) 
M-C1 

39.69 
(bits/min) 

M-S1 
33.84 

(bits/min) 

k-NNC 
4.84 

(bits/min) 
M-C2 

38.05 
(bits/min) 

M-S2 
36.65 

(bits/min) 

QDC 
6.94 

(bits/min) 
M-C3 

34.98 
(bits/min) 

M-S3 
40.46 

(bits/min) 

 

Fig. 3 Comparison of BCI system performance between using fuzzy integrals and non-fuzzy 
systems. The p-value of t-test shows the significant difference marked p < 0.05 as “*”, p < 0.01 as 
“**”, and p < 0.001 as “***”. 
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As Fig. 3 shows, in every case, the considered fuzzy integrals provided significantly improved 

performance over that obtained from any of the three classifiers considered in our experiments. 

Furthermore, if we focus on the case of the Choquet integral and the considered extensions, we see that 

the standard [M-C1] and generalized [M-C2] Choquet integrals exhibited identical performance. This 

fact shows that consideration of extensions of the classical Choquet integral provides a promising 

method of tackling the fusion problem because the results can likely be improved through ad hoc choice 

of the fuzzy measure, but this was not the object of this study. This possibility is enhanced by the 

optimal performance of the generalized version of the Sugeno integral. In this case, the three cases of 

[M-S1], [M-S2], and [M-S3] not only outperformed the considered classifiers, but also contrary to the 

case of the Choquet integral, were the best performers. Remarkably, case [M-S3] was significantly more 

effective than all other methods. However, this analysis is only a first approach to the BCI classification 

problem. We intend to develop a deeper analysis to optimize the choice of both measures and operators 

in the different extensions of the Choquet and Sugeno integrals. These rough approaches were sufficient 

to demonstrate that the introduction of nonlinearity (in the case of the Choquet integral) and of general 

operators instead of the minimum (in the case of the Sugeno integral) leads to a relevant improvement 

in the results. 

 

C. Multimodal Fuzzy Fusion for Enhancing the BCI Performance 

In Section III-B, we demonstrated that using fuzzy fusion achieved higher classification accuracy. 

Thus, we intended to fuse the classification results at different frequencies with the same classifier 

(called frequency-based fuzzy fusion, Fb-FF) and then fuse the results from different classifiers (called 

classifier-based fuzzy fusion, Cb-FF). Considering the simultaneous classification of different EEG 

frequencies and classifiers, we called this the MFF framework, as shown in Fig. 2. Fig. 4 presents the 

comparison of BCI performance of the different fuzzy fusion approaches in the MFF-based BCI system 

using the Choquet (Fig. 4(a)) or Sugeno (Fig. 4(b)) integrals. We also compared the classification results 

obtained by fusing different EEG frequencies (Fb-FF) and by using a single frequency with different 

classifiers (Cb-FF). The mechanism of fuzzy fusion here was similar to the process of voting. Five 
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features were applied to fuzzy fusion in the Fb-FF model for making the final decision; only three 

features were applied in the Cb-FF model. 

Adopting the MFF framework exhibited superior performance in the cases [M-C1], [M-C2], and 

[M-C3] of the Choquet integrals and cases [M-S1], [M-S2], and [M-S3] of the Sugeno integrals when 

compared with Fb-FF and Cb-FF models. Moreover, the performances of MFF and Fb-FF models in the 

cases [M-C1], [M-C2], and [M-C3] of the Choquet integrals and the cases [M-S1], [M-S2], and [M-S3] 

of the Sugeno integrals showed statistically significant differences from the Cb-FF models.  

 As shown in Fig. 4(a) and 4(b), the proposed MFF-based BCI system achieved superior accuracy 

when adopting the Choquet integral (75.93%) and Sugeno integral (76.11%%). These results indicated 

the proposed MFF framework could compensate for both posterior probabilities in classification using 

different frequencies and classifiers to yield improved decisions for BCI classification. Another finding 

was that the Fb-FF model outperformed the Cb-FF model. In comparison with the classification of the 

traditional BCI system (Fig. 3), adopting the Fb-FF model can provide better accuracy than the 

traditional BCI system can, but adopting the Cb-FF model cannot. Therefore, we inferred that the 

phenomena associated with the EEG dynamic changes at different frequencies of the neural mechanism 

play crucial roles in BCI classification. Consequently, we further compared the classification results of 

the EEG phenomena of the movement imaginary at different EEG frequencies; this is described in 

Section III-D. 

 

 

 

 

Fig. 4 Comparison of different fuzzy fusion approaches. (A) Choquet fuzzy integral by M-C1, M-C2, 
and M-C3. (B) Sugeno fuzzy integral by M-S1, M-S2, and M-S3. The p-value of t-test shows 
the significant difference marked p < 0.05 as “*”, p < 0.01 as “**”, and p < 0.001 as “***”. 
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D. Motor imagery related EEG features selected in the multimodal fuzzy fusion BCI system 

For real-world BCI applications, the performance sometimes trades off against efficiency (i.e., 

higher accuracy at the cost of fewer features). Selecting the appropriate EEG features for BCI 

classification is a major challenge. According to past MI-based BCI studies [4-7], the alpha and beta 

bands in the motor area are desynchronized while performing movement imagination tasks. Therefore, 

using all bands, the alpha band, the beta band, and both the alpha and the beta bands were considered as 

candidate EEG features for testing the MFF-based BCI system. Fig. 5 compares the classification 

performance of the MFF-based BCI system using those selected EEG features. Fig. 5(a) and 5(b) 

present the results of using the Choquet and Sugeno integrals, respectively. Using the alpha and the beta 

bands for the EEG features exhibited optimal performance among all conditions using either the 

Choquet or Sugeno integrals. Furthermore, the classification when adopting the Choquet integral in the 

alpha and the beta bands exhibited statistically significant differences from those in the beta band in the 

cases [M-C1] and [M-C2] and from those in all bands and the beta band in case [M-C3]. The 

classification results using the Sugeno integrals are shown in Fig. 5(b). Using the alpha band showed 

statistically significant differences from all other conditions in case [M-S1]. Using the alpha and the 

beta bands showed statistically significant differences from those in the beta band in cases [M-S2] and 

[M-S3]. 

 Based on the experiment results and referring to past MI-based BCI studies [4-7, 20], the alpha 

band was regarded as the optimal feature for efficiency-performance balance. These classification 

results were also consistent with past EEG findings for MI tasks. Feeding the alpha and the beta bands 

as the optimal features into the proposed MFF-based BCI system exhibited the best classification 

performance (approximately 80%) regardless of whether using the Choquet or Sugeno integrals. By 

contrast, the classification performance using only the beta had lower accuracy (approximately 65%); 

however, with both the alpha and beta bands used in the proposed MFF BCI system, the classification 

accuracy increased to nearly 80%. Comparison of the classification accuracy is shown in Fig. 5; this 

finding is noteworthy because the proposed MFF-based BCI system optimized performance by 

accessing only one feature (i.e., the alpha band). Based on these findings, real-world application of the 
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proposed MFF-based BCI system is feasible. 

 

 
 

 

 

IV. MFF-BASED BCI SYSTEM PERFORMANCE EVALUATION ON THE BCI COMPETITION DATASET 

A. Benchmark Datasets 

Considering the generalizability and the feasibility of the proposed MFF-based BCI system, we 

adopt the benchmark BCI datasets (i.e., datasets of BCI Competition IV [26]) for evaluating the BCI 

performance in this study. The datasets were collected from the cue-based BCI experimental paradigm 

including four-class (left hand, right hand, foot, and tongue) imaginary task as shown in [26] using 

22-channel EEG signals from nine volunteer participants. Two sessions of imagery tasks were recorded, 

each session consisted of six runs; each run was comprised of 48 trials, yielding totally 288 trials per 

session. Trials from four classes were evenly distributed, which meant each class had 72 trials. 

In order to evaluate the proposed MFF–based BCI system, we analyzed four channels out of the 22 

channels (i.e., channel number 8, 12, 14, 18 of benchmark dataset) EEG data which were associated 

with the motor area and selected left- and right-hand imaginary trials of EEG data. We performed 

hold-out validation as well as section III-A by randomly generating ten datasets from each participant to 

estimate the stability of our proposed MFF–based BCI system. There were 72 training data samples and 

72 testing samples consisted of five features, the delta, theta, alpha, and beta bands and the average 

frequency power from 1 to 30 Hz in each dataset. The CSP filter was calculated with four columns, 

Fig. 5 Comparison of different feature selections. (A) Choquet fuzzy integral by M-C1, M-C2, and 
M-C3. (B) Sugeno fuzzy integral by M-S1, M-S2, and M-S3. The p-value of t-test shows the 
significant difference marked p < 0.05 as “*”, p < 0.01 as “**”, and p < 0.001 as “***”. 
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which were, contained the second and second last columns. The classifiers (i.e., LAD, k-NNC, and 

QDA) were applied to estimate the classification performance and the accuracy from the means of ten 

datasets of each participant was averaged to perform the proposed MFF–based BCI system evaluation. 

Following sections showed the classification of benchmark datasets, and the evaluation of the proposed 

MFF–based BCI system performance. 

 

B. Evaluation of the BCI performances with fuzzy fusion and non-fuzzy fusion 

As the same comparison process in Section III-B, the classification performances of using Choquet 

or Sugeno integrals were shown in Fig. 6. Without applying fuzzy fusion, classification performances of 

all classifiers were below 60% accuracy. The CSP4 method proposed in the reference [26] in which 22 

channel EEG signals were collected achieved 65.20% accuracy. As shown in Fig. 6, the proposed 

MFF-based BCI system of using the Choquet [M-C1] and Sugeno [M-S3] integrals and only 4 channel 

EEG signals achieved the classification accuracy of 64.06% and 63.36%, respectively, demonstrating 

that the proposed fuzzy fusion framework outperformed three non-fuzzy classifiers in accuracy and 

classification performance equivalent with the BCI system in reference [26]. The statistical verification 

between fuzzy fusion and non-fuzzy fusion classification shown significant difference with the p-value 

<0.001 of t-test marked as a white star. The significant difference between non-fuzzy fusion marked 

with one little star “*” indicated p < 0.05, two little stars “**” indicated p < 0.01, and three little stars 

“***” indicated p < 0.001.  

However, our proposed MFF-based BCI system of using only four channel EEG signals is more 

practical and feasible to realize the BCI applications in the real-world environment. Moreover, our 

proposed MFF BCI system enhanced the performance with the data not only collected from our motor 

imagery experiment but also applied from the benchmark datasets revealed that it is potential to perform 

2-class condition and more BCI applications.  
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C. Evaluation of Multimodal Fuzzy Fusion Framework 

As the same comparison process in Section III-C, we further investigate the MFF framework and 

the other different fuzzy fusion approaches such as Fb-FF and Cb-FF models. The proposed MFF–based 

BCI system achieved superior accuracy when adopting the Choquet integral (64.06%) or Sugeno 

integral (63.36%) on the BCI competition datasets (Fig. 7(a) and 7(b)). In the case of comparison with 

the traditional BCI system (Fig.6), adopting the Fb-FF and the Cb-FF model both can provide better 

accuracy than the traditional BCI system on the BCI competition datasets. These results indicated once 

again that fuzzy fusion could enhance the classification performance in accuracy. Another finding was 

the Fb-FF model outperformed the Cb-FF model that demonstrated that different frequencies features 

played the crucial roles in BCI classification. This evidence is showed as the same as in the section 

III-C (Fig. 4). Consequently, we demonstrated that the proposed MFF outperform the optimal 

classification performance either testing on the BCI competition datasets or using our BCI motor 

imaginary datasets for classifying left-hand and right-hand EEG signals. 

Fig 6. Evaluation of BCI system performance between using fuzzy and nonfuzzy integrals. The 
p-value of t-test shows the significant difference marked p < 0.05 as “*”, p < 0.01 as “**”, and 
p < 0.001 as “***”. The marker of white star means the significant difference between all case 
of fuzzy fusion and each non-fuzzy classifier. 
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In this study, we illustrated a two-class classification problem using the proposed MFF-based BCI 

system. Considering the practical applications in the real-world environment, two-class or multi-classes 

MI-based BCI systems were comprehensively adopted into many applications such as controlling a 

wheelchair, unmanned aerial vehicle, and robotic apparatus for stroke rehabilitation [27-29]. In the 

study of 4-class MI-based BCI [30], the accuracy exhibited a significant reduction compared with 

2-class MI-based BCI system. Therefore, we trust that the 2-class MI-based BCI system is more feasible 

and has to promote to human well-being friendly. The major challenges of the MI-based BCI system 

development was to generate the discriminative EEG features from the individual variation of different 

participants. Motor learning [7] can improve the training of MI-based EEG signals, but we still need the 

computational intelligent techniques like the proposed fuzzy fusion methods to enhance the BCI 

performance. 

 

V. CONCLUSION 

In this study, we proposed a novel classification framework called the MFF-based BCI system. 

Two famous fuzzy integrals named the Choquet and Sugeno integrals were implemented into the MFF 

framework after the classification structure of the traditional BCI system to enhance the classification 

performance. The novelty of the proposed MFF framework was to fuse the posterior probabilities 

obtained from both classification results when using different frequencies and classifiers. Fuzzy 

Fig. 7 Comparison of different fuzzy fusion approaches on the BCI competition datasets. (A) 
Choquet fuzzy integrals by M-C1, M-C2, and M-C3. (B) Sugeno fuzzy integrals by M-S1, M-S2, 
and M-S3. The p-value of t-test shows the significant difference marked p < 0.05 as “*”, p < 0.01 as 
“**”, and p < 0.001 as “***”. 
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integrals accounted for the possible relationships between different classification results. Adopting 

fuzzy integrals into the BCI system improved BCI performance over the traditional BCI system. 

Moreover, selecting the alpha and the beta bands in the motor area feeding into the proposed 

MFF-based BCI system achieved the highest accuracy: 78.81% and 78.45% when using the Choquet 

and Sugeno integrals, respectively. Therefore, adopting fuzzy integrals in BCI systems could provide a 

novel method of developing highly accurate BCI systems.  
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