
Twofold binary image consensus
for medical imaging meta-analysis

C. Lopez-Molina1,3, J. Sanchez Ruiz de Gordoa2,
V. Zelaya-Huerta2, and B. De Baets3

1 Dpto. Automatica y Computacion, Universidad Publica de Navarra,
Pamplona, Spain

carlos.lopez@unavarra.es
2 NavarraBiomed, Servicio Navarro de Salud/Osasunbidea

Pamplona, Spain
3 KERMIT, Dept. Data Analysis and Mathematical Modelling

Ghent University, Gent, Belgium

Abstract. In the field of medical imaging, ground truth is often gath-
ered from groups of experts, whose outputs are generally heterogeneous.
This procedure raises questions on how to compare the results obtained
by automatic algorithms to multiple ground truth items. Secondarily, it
raises questions on the meaning of the divergences between experts. In
this work, we focus on the case of immunohistochemistry image segmen-
tation and analysis. We propose measures to quantify the divergence in
groups of ground truth images, and we observe their behaviour. These
measures are based upon fusion techniques for binary images, which is
a common example of non-monotone data fusion process. Our measures
can be used not only in this specific field of medical imagery, but also
in any task related to meta-quality evaluation for image processing, e.g.
ground truth validation or expert rating.
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1 Introduction

Data fusion pursues rather different goals in very disparate contexts. An com-
mon goal is to produce a reduced (compact) representation of a certain amount
of data objects. Whichever specific technique the fusion is based upon, and
whichever data objects are to be fused, reduction is the main goal in most fusion
processes. However, fusion can lead the way to some other subsidiary goals just
as interesting as reduction. For example, the result of a fusion process can be
used as starting point to study the data to be processed, including its individ-
ual and group characteristics. Otherwise said, it can be used for data analysis,
specifically to generate metadata (data about data).

The application of data fusion techniques to produce metadata is certainly
not novel; in this regard, a relevant example is the standard deviation. The



Fig. 1. Subimages extracted from Immunohistochemistry (IHC) images. The upper row
displays regions without artifacts affected by tau protein, while the lower row displays
artifacts or regions in which the presence of such protein is evident.

arithmetic mean can be seen as procedure to fuse scalar data into a compact
representation with minimal loss of information, such loss being measured as the
sum of the squared distance to the original values. At the same time, it is also a
key to compute the standard deviation, which is a dispersion measurement. Even
when dealing with non-Gaussian distribution of values, the standard deviation
is used as a feature in data meta-analysis. We believe that principles similar
to those by the mean and standard deviation can be ported to scenarios in
which monotonicity plays no role. That is, we believe that fusion of non-standard
data can also be taken as starting point to produce metadata in non-motonote
universes.

In this work we elaborate on images in the context of neurology and neu-
ropathology. This work is part of a research effort on immunohistochemistry
(IHC) images for the measurement of deposits of tau protein in patients af-
fected by Progressive Supranuclear Palsy (PSP). In this research effort, expert
neuropathologists analyze microscope images of brain tissue and perform manual
labelling of the areas affected by tau protein (see Fig. 1). Such binary labelling is
further used to perform quantitative measurements with interest for posthumous
analysis and disease profiling. Since this process is extremely time-consuming,
automatic segmentation methods are being proposed to alleviate the workload
of the pathologists. These methods shall be designed to produce results similar
to those by expert humans. A key problem found in the evaluation and tuning
of such automatic methods is the fact that pathologists often feature severe dif-
ferences of opinion and/or precision. From a computational point of view, they
generate different binary images which shall be taken as ground truth (that is,
perfect solutions) for automatic segmentation algorithms. Of course, the multi-
plicity of ground truth solutions severely hinder the evaluation (and training) of
such algorithms. Understanding and evaluating set-based or multivalued ground
truth is hence a priority for our applied developments.



We propose to fuse the binary images produced by neuropathologists using
the Twofold Consensus Ground Truth (TCGT, [4]). Our approach is rather dif-
ferent to that by other binary image fusion techniques (e.g. [2, 9]), in the sense
that we avoid the statistical counting of visual items, and rather focus on the spa-
tial interpretation of coincidences and divergences. The TCGT takes as input a
set of binary images and yields a set-valued consensus based on the coincidences
and divergences in the input images. The resulting set allows for a compact rep-
resentation of the input set of images, and also for the quantification of some
of its characteristics. In this regard, we attempt to quantify two facets of the
ground truth images. Firstly, we intend to quantify heterogeneity of the set of
ground truth images, since it could be related to the difficulties faced by neu-
ropathologists in the labelling of the original image. Secondly, we aim to evaluate
the dissimilarity (degree of coincidence and divergence) of a ground truth image
w.r.t. a group og ground truth images. In a sense, the first question relates to
the group dispersion or heterogeneity, while the second one relates to the one-
to-many dissimilarity of the images. Note that, although initially designed to
elaborate on binary edge images, the TCGT can be ported to scenarios in which
binary images hold different semantics.

The remainder of this work is organized as follows. In Section 2 we introduce
the idea of weak and strong consensus, together with the Twofold Consensus
Ground Truth. The usefulness of this concept is explained in Section 3, in which
we develop the application for the meta analysis of IHC ground truth. Finally,
Section 4 features some conclusions and future lines of research.

2 Twofold consensus ground truth

2.1 Preliminary Notations

In this work we consider images to have some fixed dimensions M×N , so that
Ω = {1, . . . ,M}×{1, . . . ,N} represents the set of positions in an image. The set
of all binary images is denoted B, and can be dually seen as the set of mappings
Ω 7→ {0, 1}, or as the power set ℘(Ω). Individual binary images will be referred
to with upper case (e.g. E, I), while bold-faced upper case is reserved for sets
of images (e.g. A = {A1, . . . , An}).

In this work we consider positive information in binary images to be rep-
resented by 1’s, while negative information takes 0’s. When it comes to the
processing of binary images, we can use a dual signal-logical interpretation of
this fact. Hence, apart from image-oriented operators, we use the classical set-
theoretic operations on binary images, namely intersection (∧), union (∨), and
inclusion (⊆, ⊂). The symbols ∩ and ∪ are reserved for the intersection and
union of sets of images, respectively. According to the reference works on binary
image morphology [1, 8], the dilation of a binary image A by some structuring
element K is given by DK(A) = {c ∈ Ω | c = a+ b for some a ∈ A and b ∈ K}.



2.2 Strong and weak consensus on binary images

Binary images are a very common format to express the output of image process-
ing tasks, despite being barely useful to represent visual information in human
terms. This holds, for example, for object recognition or binary segmentation.
The nature and shape of the information in a binary image can greatly diverge
from task to task, examples being regions (for object recognition or salient re-
gion identification), lines (for boundary detection), points (for critical point de-
tection), etc. In many of such cases there is a need to combine different images,
either to fuse ground truth images [9] or to fusion different candidate images
generated by different algorithms. In [4] we present a technique for binary im-
age fusion, namely the Twofold Consensus Ground Truth (TCGT). Due to the
variable understanding of the term consensus, our technique narrows down its
goals to three facts, enunciated as follows:

G1. Preserving discordances: The consensus should represent non-unanimous fea-
tures in the images.

G2. Highlighting agreement : The consensus must point out those aspects on
which the original images agree, either positively (features appearing at all
images) or negatively (those appearing at none).

G3. Keeping original images as perfect : As long the input images are the only
source of ground truth, the result of the fusion must somehow include them.
This guarantees that any automatic method performing exactly as a the
sources (probably, humans) is evaluated as perfect.

The TCGT is supported by two different consensus operators, namely the
strong and weak consensus.

Definition 1 The strong consensus image of a set of binary images I = {I1, . . . , Ik}
is the binary image sT (I) defined as

sT (I) = DT (I1) ∧ DT (I2) ∧ . . . ∧ DT (Ik) , (1)

where DT (Ii) denotes the dilation of image Ii using the structuring element T .

Definition 2 The weak consensus image of a set of binary images I = {I1, . . . , Ik}
is the binary image wT (I) defined as

wT (I) = DT (I1) ∨ DT (I2) ∨ . . . ∨ DT (Ik) , (2)

where DT (Ii) denotes the dilation of image Ii using the structuring element T .

The strong and weak consensus of a set of images materialize as the tightest
and loosest agreement that can be reached given a set of binary images I. In
this sense, they resemble the upper and lower bounds of interval-valued data,
or the boundaries of rough sets [6]. Note that their result is influenced by a
structuring element T . This element is used, in the present context, to consider
the variable position of the same objects when delineated by different experts.
The characteristics of T must fit the conditions of the specific problem. For
example, if we consider a spatial tolerance of 7 pixels, T might be a disk with
radius 7. If the task allows for no tolerance at all, then a radius 1 disk can be
used to perform no dilation in the generation of the strong and weak consensus.



2.3 The Twofold-Consensus Ground Truth

From goals G1-G3, is is evident that the consensus must be expressed as a set
or multivalued object. Otherwise, it could not allocate the different images we
attempt to fuse (as required in G3). The consensus shall not be an image in
℘(Ω), but a subspace in ℘(Ω). We seek the set of images which (a) contain all
of the positive information in which all ground truth images agree on and (b)
does not include positive information not featured by any ground truth image.

Definition 3 The consensus of a set of binary images I is the set of images
cT (I) defined as

cT (I) = {B ∈ B | B ⊆ wT (I) and sT (I) ⊆ DT (B)} . (3)

The consensus set satisfies some practical properties, which we review in
Section 2.4. Also, it has some interesting theoretical properties:

(i) For any I ∈ ℘(B), it holds that I ⊆ cT (I). This guarantees goal G3.
(ii) For any I ∈ ℘(B), it holds that cT (I) = cT ({sT (I), wT (I)}).
(iii) For any I ∈ ℘(B), it holds that cT (I) = cT (cT (I)).
(iv) For any I ∈ ℘(B) and B ∈ B, it holds that B ∈ cT (I) if and only if cT (I) =

cT (I∪{B}). Hence, the information in images within the set does not exceed
that in the set itself.

(v) For any I ∈ ℘(B), cT (I) defines a connected subspace of B, i.e., for any
B1, B2 ∈ cT (I), there exists a sequence of images B∗

1 , . . . , B
∗
r in cT (I), so

that B∗
1 = B1, B∗

r = B2, and two consecutive images B∗
i and B∗

i+1 only
differ in one pixel.

2.4 Visual properties of the set consensus

The set cT (I), which we refer to as TCGT in the remainder of this work, has
interesting visual properties related to the information in the images in I.

The first property is that of information combination. This property refers to
the ability to combine information from different ground truth images, meaning
that the resulting set selectively picks information from each image. An example
can be found in Fig. 2. Considering the original image in Fig. 2(a), two humans
have created the ground truth images S1 and S2 in Figs. 2(b)-(c). The strong and
weak consensus of the set of images are included in Figs. 2(d)-(e). The candidate
image in Fig. 2(f), which is a selective combination of the images S1 and S2,
actually belongs to their TCGT (i.e., D ∈ cT ({S1, S2})). This illustrates how the
TCGT is able to implicitly produce derived information from the combination
of divergent solutions. Otherwise said, images which are not in the original set,
but similar to (or composed of parts of) them, are included in the TCGT.

Although the example in Fig. 2 is intentionally simplistic, we can observe
that, in the definition of the set-valued consensus, we construct something much
more powerful than a closed list of images. There is an actual, yet implicit,
knowledge construction process.



(a) Original image (b) Solution S1 (c) Solution S2

(d) sT ({S1, S2}) (e) wT ({S1, S2}) (f) Candidate D

Fig. 2. Example of information fusion using the Twofold Consensus Ground Truth.
We have (a) an image, (b,c) two hand-made segmentations from it, (d,e) the strong
and weak consensus images and (f) a candidate image. The candidate image belongs to
cT ({S1, S2}), although it does not match any of the original images. The structuring
element T used for the dilation is a disk of radius 5.

The example in Fig 2 involves the presence or absence of information in a
binary image. However, it is also interesting to analyze the alterations in such
information, may they be due to contamination, errors or simple interpretation.
Regarding this, an interesting property of the TCGT is the smart tolerance for
spatial displacements.

The TCGT of a set of images includes images containing objects that do
not coincide exactly with those delineated by humans in the generation of
the ground truth. Moreover, it implicitly discriminates variations as accept-
able/unacceptable not only based upon their magnitude (how different), but
also upon their congruence of that variation with the existing variations in the
original images in I. That is, the acceptance of an object depends upon the
amount of spatial variation, but also upon its direction.

Figure 3 includes a binary image with two ground truth solutions (images S1

and S2 in Fig 3(b)). Note that only the boundaries of the regions are drawn, so
that they can be comfortably compared. In order for an image to be part of the
TCGT, the object it features must be in between those of S1 and S2. Any image
featuring a circle-like region will belong to the TCGT of {S1, S2} as long as its
boundaries are confined between those of S1 and S2. Hence, it is not only the
fact that distorted solutions (in this case, reduced or enlarged circles) do belong
to the TCGT. That distortion is not only measured in terms of distance to the
existing solutions, but also in terms of congruency w.r.t. the divergences already
existing in the TCGT. In this case, a solution created as a slight enlargement of
the circle in S2 (as Et1), or a slight decrease of S1 (as Et2) are not included in
the TCGT. However, greater distortions can be considered within the TCGT,
as long as still confined in between the limits of S1 and S2.



(a) Original Im. (b) S1, S2 (c) sT ({S1, S2}) (d) wT ({S1, S2}) (e) Et1,Et2

Fig. 3. Example of information fusion based on strong and weak consensus images.
We have (a) an image, (b) two hand-made solutions and (c,d) the strong and weak
consensus images, respectively. The candidates in (e) are Et1, a slight shrink of S1, and
Et2, a slight enlargment of S2. We find Et1 /∈ cT ({S1, S2}) and Et2 /∈ cT ({S1, S2}).
In figures (b) and (e) only the limits of the regions are included, for an easier visual
inspection. The structuring element for the dilation is a disk of radius 3.

3 Heterogeneity measurement in immunohistochemistry
imagery

3.1 Imaging in immunochemistry

Immunohistochemistry (IHC) is an imaging method for studying the localization
of antigens in tissue sections (e.g., brain tissue) using antibodies. Different an-
tibodies can be used to demonstrate normal anatomy, protein aggregates, or to
indicate pathological conditions such as apoptotic cells. In the images in Fig. 1
antibodies are used against Tau, a protein normally localized in the axon of
neuron cells that can be pathologically deposited in some neurodegenerative dis-
eases such as Progressive Supranuclear Palsy. The final stage of the tissue is
that in which the regions affected by Tau protein take a distinctive color. The
measurement and analysis of these images relates, hence, to the localization of
pixel clusters with the visual characteristics of the affected regions.

3.2 Heterogeneity measurement in IHC imagery

IHC imaging is a costly technique, specially in terms of the time consumed by
experts. Depending on the expected output of the IHC image analysis, experts
can take hours analyzing and labelling visible artefacts in one image. As an
example, the images from which the patches in Fig. 4 are taken contain around
5 megapixels, and often feature hundreds of size-variable tau-affected regions.
A detailed analysis of these images cannot be tackled in less than few hours
by an expert neuropathologist. Hence, it is very interesting to create automatic
procedures that can measure the amount of tau protein visible in IHC images.
That is, to create algorithms to replace humans in IHC image analysis.

The first problem encountered to design specific image processing algorithms
for IHC is the absence of a large number of reliably-labelled ground truth images.
The reason for this absence is the amount of time required to generate them,
which forces the neuropathologists to perform semi-quantitative analysess based



on quick visual inspection (e.g. mildly affected or very affected). This absence of
ground truth images leads to a dual problem in the context of image processing.
Firstly, the absence of the ground truth makes the segmentation task to be
as poorly defined as replicating the labelling a human would perform. Secondly,
there is very few data the results of the algorithm can be tested against. In these
conditions, any training or comparison effort tends to be overinfluenced by the
specific conditions of the ground truth.

We intend to overcome the lack of ground truth by requiring pathologists to
label small, randomly selected subregions within some images. This would cut
down the amount of time required from the experts, and would give partial, yet
reliable, data about the expected results. Also, this brings a subsidiary problem:
different pathologists produce very different label maps for the same image.
A significant part of the tau-affected artifacts is homogeneously identified as
positive detections. But, there is also a large margin for heterogeneity, especially
related to (a) the margins of the artifacts and (b) the interpretation of some
unclear regions/artifacts. As the size or number of subregions is increased, a
new source of heterogeneous decisions appears: (c) lack of attention or tedium.
As a result, we have highly variable results by each expert, which is in fact a
typical case of multi-valued ground truth.

Problems with multiple ground truth are not unseen in literature, and solu-
tions range from ground truth fusion [2] to performance measure fusion [5]. For
example, for the present problem we can compare the results by an algorithm
to each image labelled by pathologists, then fuse those results to get an aggre-
gated or average performance of an algorithm. However, our goals in this work
are different, and root back to the reasons why heterogeneity appears. Ques-
tions we face when divergent solutions are produced are: Should we consider all
the images in the dataset as equally important, regardless of how heterogeneous
their ground truth images are? What does it mean, having a ground truth set
with very high (alternatively, low) heterogeneity? Could we measure how well
a ground truth fits in a set of ground truth images? Moreover, could we learn
to discard those ground truth solutions that are too different from other ground
truth images? We intend to use the TCGT to quantify the heterogeneity of a
set-valued ground truth; also, to measure the dissimilarity of an ground truth
image w.r.t. a set of ground truth images.

We propose to use the TCGT for the generation of metadata about a IHC
imagery dataset. Firstly, we want to measure the heterogeneity of a set of solu-
tions. Normally, these measures are constructed from the analysis of one-to-one
distances. However, we can also exploit the fact that the TCGT explicitly ma-
terializes the coincidences and divergences in a set of binary images.

Definition 4 Let I = {Ii, . . . , In} be a set of binary images. The heterogeneity
of I is given by

HT (I) = 1− |sT (I)|
|wT (I)|

where wT and sT are the weak and strong consensus, as in Section 2, and | · | is
the number of featured (1-valued) pixels in an image.



Definition 4 has one major problem: The use of a quotient makes the measure
oblivious of the number of pixels in which divergence of opinion exists. Let an
extreme case be that in which I is a set such that I1, . . . , In−1 contain one (same)
featured pixels and In contains one (extra) featured pixel. We have H(I) = 0.5,
despite the very subtle difference between images. This problem is partially due
to the orientation of the consensus towards the featured information (assuming
it is more important than the non-featured one). In this case, two pixels are
more important that all of the remaining ones. Still, it feels confusing that a
difference of one pixel in one image can have such great impact in the output
yielded by the heterogeneity measure.

We propose an alternative version of the heterogeneity measure that solves
the aforementioned problem.

Definition 5 Let I = {Ii, . . . , In} be a set of binary images. The scaled hetero-
geneity of I is given by

H∗
T (I) =

|wT (I) \ sT (I)|
|Ω|

where wT and sT are the weak and strong consensus, as in Section 2.

There is a list of differences between H and H∗. The most important one
is probably the reference for scaling, since they both map to [0, 1] (ignoring the
undefined case with wT ((I)) = ∅). However, they also feature some coincidences.
If all images in I are equal, then HT (I) = H∗

T (I) = 0. Also, they both reach
maximum values when sT (I) = ∅, although a further analysis of such cases
sheds light on a significant difference. In case of HT , HT (I) = 1 if and only if
sT (I) = wT (I) = ∅, except (again) for the undefined case in which all images
in I are empty. However, for H∗

T , the maximum heterogeneity is reached when
sT (I) = ∅ and wT (I) = Ω.

In our interpretation, the dissimilarity of an image w.r.t. a set of images can
be put in terms of the heterogeneity of a set. In fact, to the variation of the
heterogeneity when a set is altered.

Definition 6 Let I = {Ii, . . . , In} be a set of binary images, and let B ∈ B be
any binary image. The dissimilarity of B w.r.t. I is given by

δT (B, I) = HT ({B} ∪ I)−HT (I) ,

where HT is a heterogeneity measure, as in Definition 4.

The dissimilarity measure δT is affected by special cases similar to those
generating unexpected outputs of HT . Hence, we also present the scaled dissim-
ilarity δ∗T .

Definition 7 Let I = {Ii, . . . , In} be a set of binary images, and let B ∈ B be
any binary image. The scaled dissimilarity of B w.r.t. I is given by

δ∗T (B, I) = H∗
T ({B} ∪ I)−H∗

T (I) ,

where HT is a heterogeneity measure, as in Definition 5.
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Fig. 4. Hand-labelled images produced by four neuropathologists on four of the subim-
ages in Figure 1. Neuropathologists have been told to be mark the tau-affected areas
conservatively (column (a)), normally (columns (b,c)), or generously (column (d)).

3.3 Case study: Measurement of tau protein

It is certainly complicated to know whether metadata is faithful to the actual
facts or not [3, 7]. Given the limited amount of space available in the present
work, we intend to do a small experiment to see whether the measures capture
pathologists’ proneness to label more or less regions. Specifically, we induce a
certain bias on neuropathologists, and we check whether our measures are able
to detect and quantify it.

In order to complete our experiment we have requested four different neu-
ropathologists to label the four leftmost subimages in Fig. 1. One of the neu-
ropathologists was requested to label the area with tau protein in a conservative
manner, two other were requested to act normally, and the fourth was requested
to label the featured areas in a generous manner. In this way, we expect to have
two extreme ground truth images and two solutions that lie somewhere in the
middle. Of course, pathologists do not take any kind of suggestion on how to
perform their work in a normal situation, neither they have bias on the analysis.
However, it is, in our opinion, a legitimate way to produce binary images whose
behaviour in terms of heterogeneity and dissimilarity is predictable.



Subimage H(I) H(I2−4) H(I1−3) H(I2−3) δ(I1, I2−3) δ(I1, I2−4)

Subimg. A .758 .669 .484 .271 .213 .089
Subimg. B .643 .424 .536 .235 .301 .219
Subimg. C .747 .485 .636 .258 .377 .262
Subimg. D .815 .639 .683 .367 .316 .177

Total .741 .554 .585 .283 .302 .187

(a) Results using heterogeneity and dissimilarity

Subimage H∗(I) H∗(I2−4) H∗(I1−3) H∗(I2−3) δ∗(I1, I2−3) δ∗(I1, I2−4)

Subimg. A .272 .239 .082 .044 .038 .033
Subimg. B .236 .154 .153 .066 .087 .082
Subimg. C .249 .162 .147 .060 .087 .087
Subimg. D .154 .120 .076 .040 .036 .034

Total .228 .169 .114 .053 .062 .059

(b) Results using scaled heterogeneity and dissimilarity
Table 1. Results obtained in the quantification of heterogeneity and dissimilarity of
the sets displayed in Fig. 4. For each subimage, I refers to all of the ground truth
solutions for each image, while Ii−j refers to the images in colums from i to j, both
included. The structuring element T (which is a circle with radius 5) is ommitted from
the formulation in order to ease the interpretation of the table.

The images produced for the experiments are included in Fig. 4. Each row
in the figure corresponds to one of the four leftmost images in Fig. 1, while each
column corresponds to one of the instructions given to the pathologists. Specif-
ically, the leftmost column is the most conservative inspection of the images,
while the rightmost column contains the images in which the neuropathologists
was proner to label tau protein.

We have used the measures presented in Section 3.2, as recap in Table 1. The
standing assumption of our experiment is that images generated under extreme
biases should be identified as such by inspecting the values yielded by our mea-
sures. Table 1 displays the values gathered in different evaluations for the image
sets at each of the rows of Fig. 4.

From the results in Table 1, we can confirm that our measures actually behave
according to the semantics of the images. For example, in terms of heterogeneity,
the values yielded by H or H∗ suffer a severe increase when the set I includes
the images I1 or I4, compared to when it does not. For both H and H∗ the het-
erogeneity of I2−3 is significantly increased by adding the images I1 or I4, which
play the role of extreme cases. This holds for all subimages and heterogeneity
measures. In Table 1 we also observe that δT and δ∗T identify the outlying images
I1 and I4 w.r.t. the neutral images I2 and I3.

It is relevant to mention that, considering the very small size of the exper-
iment, results shall be put to the test in a more complete scenario. Still, it
is rather complicated to find input for metadata evaluation, and typically one
must rely on either experiment-driven data (as in this case), or on questionable
assumptions on the way in which ground truth data was generated.



4 Conclusions

In this work we have tackled the problem of multiple ground truth in medical
imagery, specificaly in immunohistochemistry imagery of brain tissue. We have
questioned the reasons on the divergences between experts when required to label
such images, and proposed four different measures to quantify the heterogeneity
in a set of images, as well as the 1-to-n dissimilarity of images. In order to do
so, we have applied the notions and developments of the Twofold Consensus
Ground Truth (TCGT), a a set-valued operator created for binary image fusion.
This application intends to illustrate how fusion operators in can be used for
purposes other than information aggregation or compression. In our example,
the twofold consensus ground truth is used not only to fusion hand-labelled IHC
images, but also to analyze the heterogeneity in a set of them, as well as to
create one-to-many or many-to-many dissimilarity measures.

Despite the innovative nature of the application, we consider that our work
has a solid, context-agnostic mathematical background. However, it requires
more comprehensive experimental validation, considering the oriented nature
of this research. Hence, the design and analysis of such a experimental setup is
a key future line of research.

References

1. Chen, S., Haralick, R.: Recursive erosion, dilation, opening, and closing transforms.
IEEE Trans. on Image Processing 4(3), 335–345 (1995)
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