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Abstract

An effective way of comparing objects is through analysing their similarity (com-
paring their common attributes) or dissimilarity (comparing their differences).
Similarity has been studied in a wide variety of ways, from different points of
view and different disciplines such as psychology, neuroscience or mathematics. A
topic where distance metrics and similarities are used is through fuzzy logic which
permits a human approach to comparison measures, providing a tool that captures
the uncertainty inherent to the perception of distance. In the context of comparison
and similarity, we find an important related concept, that is, feature matching, which
is one of the most used technique in detecting patterns or measuring algorithm
performance.

In this Ph.D. thesis we have studied similarity in the context of fuzzy logic along
with different ways it can be used; among other we found it useful in pattern
extraction in the context of fingerprint analysis, which in this thesis has come to
the development of new concepts, named Restricted Radial Equivalence Functions
(REF) and Radial Similarity Measure (RSM), which models the perceived similarity
between scalar and vectorial pieces of radial data. Moreover, as a more pure
distance analysis in the context of fuzzy logic, we have studied distance measures,
similarity measures and entropies in interval-valued fuzzy sets. To do so, as a
novelty, we have included the width of the interval in the computation of the
measure. This add-on has permitted to be able to connect the uncertainty of the
outputs with the inputs.

Finally, as a complement we have studied an application of our theoretical results
in image processing. In particular, we have used ordered directionally monotone
functions in edge detection problems and consensus techniques to build a new edge
detector. In addition, we have conducted a study about all the different method
presented in the literature for feature matching evaluation quality, resulting in
a novel taxonomy of the different methods and an analysis of their behaviour,
showing that none of the method is better than the others and being equivalent.
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Resumen

Una de las maneras de abordar la comparación entre objetos es mediante el uso
de la similitud (comparando sus atributos comunes) o la disimilitud (comparando
sus diferencias). La similitud ha sido estudiada de maneras muy diversas, desde
muchos puntos de vista y en una variedad de campos tales que la psicología,
la neurociencia o las matemáticas. Uno de los principales temas en los que las
distancias y las similitudes han sido abordadas es a través de la lógica difusa, que
permite implementar una perspectiva humana en las medidas de comparación,
aportando una herramienta que permite capturar la incertidumbre inherente en
la percepción de la distancia. Dentro de este contexto de la comparación y la
similitud, encontramos un concepto relacionado, como es la correspondencia de
características. Este concepto es una de las técnicas más utilizada en la detección
de patrones o la evaluación del rendimiento de un algoritmo.

En esta tesis doctoral hemos estudiado la similitud en el contexto de la lógica difusa
junto con una serie de propuestas en las que tiene cabida. Entre otras, podemos citar
la extracción de patrones en el análisis de huellas dactilares, cuyo estudio ha llevado
en esta tesis al desarrollo de nuevos conceptos como las Funciones de Equivalencia
Restringidas Radiales y las Medidas de Similitud Radiales, que modelan la similitud
percibida entre datos radiales, tanto escalares como vectoriales. Además, como
un estudio más explícito de las distancias en la lógica difusa, hemos abordado
el estudio de las distancias, las medidas de similitud y la entropía en conjuntos
difusos intervalo-valorados. Para ello, hemos incluido la amplitud del intervalo en
el cálculo de las medidas. Esta condición adicional nos ha permitido conectar la
incertidumbre contenida en el intervalo final con la del intervalo inicial.

Finalmente, de manera complementaria hemos estudiado la aplicación de nuestros
resultados teóricos en tareas de procesamiento de imagen. Hemos desarrollado
un detector de bordes mediante el uso de funciones monótonas direccionalmente
ordenadas y técnicas de toma de decisión por consenso. Además, hemos realizado
un estudio que recoge las diferentes técnicas de análisis de calidad para los métodos
de extracción de bordes, resultando en una nueva taxonomía de los diferentes
métodos y un análisis de su comportamiento, mostrando que ninguno de los
métodos es más adecuado que otro, siendo equivalentes entre si.
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1Introduction

„Exploring the unknown requires tolerating
uncertainty.

— Brian Greene
(Theoretical physicist, mathematician)

H UMAN learning is a process carried out ever since early stages of life.
However, far from being an evident process, it has been a matter of
study by many researchers through the ages. These researches have

taken multiple paths and approaches in an attempt to model human learning,
in all its different shapes and times. As of now, we can find a myriad of factors
being involved, including the environment [1], the pre-acquired knowledge (past
experience) [2] and the ability to put it all together to make decisions [3]. The
complexity of the topic has made it necessary to involve many different disciplines
of research in order to explain even the most basic learning-oriented tasks. In
fact, and although the ideal result of all these research efforts would be a global,
computational model for human learning, we can currently only aspire to explain
task-localized human learning.

At a broad level, the human being constantly receives an infinity of stimuli that
permit to learn and acquire experience. Hence, an evident taxonomy for learning
processes can focus on the type of stimulus (or stimuli) that abilitated (or fired
up) the learning process. These stimuli come in different ways, from sensations
to sounds and touch, being visual stimuli one of the learning cornerstones [4].
This dissertation focuses on learning based on visual information, specifically on
producing computational models that attempt to explain one or many of the tasks
involved in vision-based learning.

Learning based on visual information has characteristics which are akin to any other
type of learning, while also having its own special features. As for the former, we
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Fig. 1.1: Figures from the Shepard and Metzler’s experiment on mental rotation. The
experiment shows two equal figures rotated and mirrored (A and B) and a third
one which is impossible to obtain by either rotation or mirroring (C).

find the need of representing information in context-agnostic, invariant manners.
This is referred to by Zadeh as tolerance for imprecision. Humans do not need
to keep a myriad of different images of a singular object to understand that it
is the same object. In the experiment by Shepard and Metzler [5] the mental
perception of objects is analysed with a series of figures (Fig. 1.1) where rotation
and reflection has been applied. The experiment consisted in recovering the time
spent by a person to conclude the equality of objects and how the rotation and
mirroring where obtained, mentally trying to find the same object by modifying it
based on the mental model.

This effort in modelling human visual recognition has not stayed in theoretical or
mildly applied fields. In fact, in recent years, authors have even tried to replicate
early cortical connections in human brains by implementing Convolutional Neu-
ral Networks (CNNs). These works, majorly influenced by the Mental Rotation
Tests [6], aim at modelling human recognition abilities in the Human Visual System
(HVS), specially regarding rotation-, scale- and eccentricity-invariance [7], [8].
These works mostly use line-based draws (e.g., in [9], Korean characters). CNNs
properly replicating human recognition abilities are really appealing, since they
might connect physiological and theoretical understanding of the HVS. However,
would also yield questions due to the hardly-understandable behaviour of CNNs.
For example, as reported by Nguyen, Yosinski and Clune [10], state-of-the-art CNNs
yield aberrant results in object recognition. Such errors are, moreover, yield in
almost-full (> 99%) confidence. As the authors state, their findings raise questions
about the true generalization capabilities of DNNs [10], which are of paramount
importance for the present task. Humans are extremely good at generalization,
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and hence CNNs might find here a limitation in their aim to replicate human
behaviour.

Nevertheless, there are aspects of vision-based learning that make the process
rather different from other learning processes. For example, we have the huge
rate of information a human is able to capture, way superior to that by any other
sense. This has led to extremely complex systems of selective focus and image
simplification, which allow humans to understand scenes through simplification
and abstraction. Another characteristic which makes vision-based learning so spe-
cial is the low quality of the information received, and the extreme proficiency of
humans in overcoming such problems. Humans often capture poorly-presented
visual information, yet being able to make a full comprehension out of it. Reasons
for low quality information might relate to physiological problems, but also to
characteristics of the scene (low luminosity, fog, shades, occlusions), and to other
factors. As a result, visual information often contains errors and doubty items, e.g.,
the same scene can be seen differently by two persons. In addition, the memoriza-
tion process suffers from imperfection as well as the patterns and models stored in
our brain (acquired knowledge), needing a certain tolerance for imprecision [11],
which is to be exploited to better achieve robustness and low solution cost.

Our visual system is capable from tiny points (natural images) to perceive complete
scenes forming groups (shapes as lines, squares or any other form). Many studies
have attempted to propose a framework to explain the enigma of perception (how
we interpret our world), being one of the first and major approximations the Gestalt
Theory [12], [13]. This theory states that we tend to organize what we see into
groups from the most detailed component to larger objects, according to laws that
describe components relations and conflicts, and identify them to some type of
abstraction (model) we already have. For example, some laws of this theory deal
with similarity (colour, shape, texture, etc.) or continuity of direction (Fig. 1.2b),
i.e., looking in a particular direction makes the path we follow go in that direction
even in case of occlusions or when the perception of a shape goes beyond its limits.
An example of how these laws work is depicted in Fig. 1.2a where we see a set of
drawings with different shapes, colours and orientations, instantly differentiating
each of them by grouping their characteristics, and Fig. 1.2b showing how the
perception is influenced by the direction or the colour of the objects.

Other researchers, e.g. Gibson, propose a different model for human vision, clearly
oriented towards a computational model. This line of research states that the
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(a) Perception of grouping by simi-
larity of colour, size and orienta-
tion.

(b) Perception of conti-
nuity in direction.

Fig. 1.2: Illustration showing some laws from the Gestalt Theory [13].

surrounding environment, or context, play an essential role in our perception and
can be divided and analysed at different levels of detail, defining a hierarchy in the
elements. His approach is not centred on understanding the visual system and how
humans obtain the images, but rather focused on the different task of perception,
trying to understand the properties of the environment and what is perceived. For
Gibson, perception implies to detect the information that best describes the main
environmental properties [1]. One of the main questions drawn up by Gibson is
to determine how humans perceive stimulus and build a solid knowledge from a
constant evolving and changing world. This led further on to one of the key topics
in understanding the human visual systems: the extraction of characteristics or
features that represent objects. These characteristics are supposed to be captured
by humans and learning, then used to discern whether an object is the type of
object we think it is. In this way, objects would not be compared from their full
representation, but from the comparison of specific features extracted from them.

In a line similar to Gibson’s, another important theory is that of Marr, where vision is
seen as a process producing a useful description of real world images, removing all
unnecessary information [14]. The vision process is presented as a computational
model referred to as Primal Sketch, which involves four different phases: image
representation, features, information extraction and recognition. In his proposal
Marr states that the primary representation of a raw image is some sort of sketch
where intensity changes, local relations and geometric structures are analysed. In
Marr’s approach to human visual system, the framework proposed present vision
as series of representations, where images (a set of points of intensities) are decom-
posed firstly as a primitive sketch (e.g., edges), then as a more advanced sketch
(e.g., orientations) and finally as a 3D model (hierarchy of spatial organization).
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Comparison

Logic Image

Perception

Fig. 1.3: General scheme of the thesis, representing the three main pillars analysed, Com-
parison, Logic and Image, which serves to build the idea of Perception.

This dissertation inspires from previous theories and focuses on one of the subtasks
with greater importance in them: visual comparison. The ability to compare
information is key for any learning process, since humans are generally unable to
keep in mind perfect copies of informations. Their knowledge is messy, imprecise
and vague, as masterfully presented by Zadeh when advocating for imprecision-
tolerant systems. Humans are able to naturally lead with imprecisions and inexact
information. And the human visual system is not an exception.

In this dissertation we focus our efforts on intensively analysing the idea of human
visual information comparison. It considers its very core, as it is the models that
could embody how humans compare, as well as peripheral issues, as the extraction
of characteristics that are used in such comparisons, or the ability to produce logical
consequences out of the comparison process. All of it heavily oriented towards the
management of uncertainty, which is an unavoidable factor to be taken into account
when understanding human learning (in general) and the human visual system (in
particular). This dissertation is supported by three basic pillars: comparison, logic
and image, as illustrated in Fig. 1.3. We tackle the theory of comparison from a
human based approach and how researchers have tried to mimic the way humans
compare. Then, coupled to comparison and as a tool to represent information,
first in the human reasoning and then in computing, we find logic, and more
precisely human-like approaches. Finally, we put comparison, uncertainty and logic
all together in image analysis, proposing new ways of managing uncertainty in
comparison tasks for computer vision.
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Certainly, ours is not the first effort focusing on the psychological or physiopsy-
chological fundamentals of comparison, since many others share or have shared
interest in understanding how humans compare (in terms of vision, or not). Com-
parison is a fundamental task for human knowledge, being a basic tool for leaning
and producing a model of the surrounding environment, improving and updating
their knowledge by means of comparing objects, situations, persons, etc. Compari-
son has been approached in many research areas as psychology, neuroscience and
mathematics. As appointed out by Attneave [15], the key question might be as
simple as: What makes things seem alike or seem different? There is not an exact and
unique answer, as comparison is very dependent of the context where it is made as
well as of the stimulus it depends of. Moreover, in order to compare things we do
not compare them as a whole, but rather focus on certain details or features, based
on our knowledge or our intuition, that characterize them. As a simple example,
cars are not compared as cars. The comparison is made as a composite of parts that
represent the idea of car: number of seats, type of engine, colour, capabilities, etc.
This example leads to secondary questions, e.g. a better car is a faster one? How
can we answer this questions? And, considering humans could provide quick and
efficient answers to those questions, how is such conclusion reached?

It is acceptable to believe that comparison is based on a dual representation of
information: a new object/feeling/idea to a pre-stored one, hypothetically involving
a list of items to which a new object is to be compared. In order to understand
how humans compare, researchers have always tried to analyse the psychological
relations of closeness, as understood by humans. As said by Shepard [16], humans
are able to say that two words are...closely associated like when we usually associate
the word butter to the word bread although apparently they have nothing in
common or when one of two similar colours is said to be very near to the other.
So, how is this closeness measured? Shepard introduce the notion of psychological
closeness or degree of proximity, that tries to encompass how concepts, attitudes and
stimulus are related.

Shepard’s approach to closeness has led researchers to develop mathematical
concepts for a quantitative analysis of comparison. As a first approach and as a
basic operation with data, we find equality, which indicates whether two objects
are exactly the same. The main problem in equality-based comparison is that if the
elements compared are not equal the result is negative, and does not recover the
idea of degree of proximity from human perception. Humans might see different
objects that look different, yet understand that they are the same object. It is true
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that when humans (since childhood) first compare objects they tend to see if they
are the same (e.g., children try to fit objects with shapes in a box with the shape
of the objects) but they progressively try to learn to identify characteristics that
differentiate them and use them in order to evaluate their similarity. So, how can
we consider the existent variations to obtain how two things are with respect to
each other?

Taking the idea that similarity can be interpreted as a relation of proximity a spatial
representation of the data being analysed is needed. The most common approach
in the literature has been to use a metric space [16], generally an Euclidean space,
to handle object comparison. In this approach, an object is as similar to another as
the value distance between them; hence, comparison reduces to the application
and understanding of the value yield by a metric. A metric is a function that defines
a distance between a pair of objects, and is able to capture the earlier mentioned
proximity in a given universe. This type of functions are characterized by three
axioms, such as:

• Minimality: states that if the distance between two objects is zero this means
that they are the same object;

• Symmetry: demands that the distance between two objects or points is the
same whether we measure on one direction or the contrary;

• Triangle inequality: requires that the shortest distance between two objects is
the straight one.

These properties significantly ease the computation of a similarity value as they
define boundaries to what can be done.

Metrics have been a precious tool to the comparison theory, and very specifically
for computer-based applications [17]. From a mathematical point of view, the
axiomatic representation, which gives some rigidity and mathematical consistency,
provides us a manner to interpret the notion we have of proximity between objects
in a quantitative way, easing the computational process. But from the human
perception point of view the usual axioms are not so evident. Many criticism has
been made to similarity approached in these terms. Starting from the assumption
of an Euclidean space, as stated by Attneave [15], assuming that psychological space
is Euclidean in its character is exceedingly precarious. To other authors that question
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Fig. 1.4: Illustration used by Tversky and Gati [19] to show that in terms of human percep-
tion the triangle inequality does not always hold. A and B are totally different, but
the transition from A to B and from B to C, is perceived as shorter.

that human perception follows metric axioms [18] and doubt about the necessity
of metric conditions for measuring similarity.

The opposition to metric axioms has been backed by fields like psychology and
neuroscience, being one of the main opponents Tversky [20]. Tversky argues
that similarity is an asymmetric relation and comparison is made in a directional
way, and also defend that the triangle inequality not always holds. The symmetry
states that the choice of the subject to be compared conditions the measure. As
presented by Tversky, we use to say “the portrait resembles the person” not “the
person resembles the portrait”. The subject of comparison tend to be the strongest
object and the referent the weakest and the chosen direction in the comparison can
derive in different meanings. In terms of the triangle inequality, the unfulfillment
of this axiom can be clearly seen in the example from Tversky and Gati [19]
in Fig. 1.4, where the different images are used to illustrate that the human
perception does not always follows this property. We can barely relate a man to a
horse, but the relationship through a Minotaur seems rather smooth. Put to raw
mathematical terms, and being the man (a), the Minotaur (b) and the horse (c)
the objects to compare, it might seem that sim(a, c) � sim(a, b) + sim(b, c), with
sim representing the similarity. In order to recover Tversky ideas about the axioms
required for comparison, while maintaining a geometric approach, Krumhansl [21]
propose to add to the measurement of similarity the idea of spatial density. With
the assumption that spatial density affects similarity the violation of certain axioms
is admitted, as with equal distance two points may have a different similarity
depending on the density of the region where they are located.

As a result of these criticisms, other measures inspired by metrics have arisen,
often driven by the relaxation of the metric axioms. For example we found pseudo-
metrics which follows the axioms defined for a metric, except that the identity
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axiom has been modified. In this way, the pseudo-metric will account 0 only if
the elements compared are the same, being possible to have a distance of 0 with
different elements. Or another type of measure known as quasi-metrics which drop
the symmetry axiom. For example, if we consider the time for going from a point A
to a point B crossing mountains, the time spent to cross up hill is not the same as
the one for going down.

The deepest form of relaxation of the metric axioms has given birth to the concept of
Similarity Measure (SM), which is able to encompass different ways of comparing
objects. In fact, as there is not any restriction as compared to distance metrics,
the similarity measure definition is quite vague and usually defined ad-hoc for
the problem to be solved [22]–[24]. Moreover, most of the literature expects no
other restriction to SM than obtaining maximal values when comparing identical
objects.

All the previous forms of comparison affect to 1-vs-1 comparison. However, there
are other physiological tasks that heavily relate to comparison, and do not properly
involve 1-vs-1 confrontation. A clear example of such task is the evaluation of the
heterogeneity within a group of objects. An effort in modelling such situations
is that of informational entropy, focused on the amount of chaos in a series of
events. Entropy is defined by Shannon [25] to measure the missing information, or
the measure of randomness within data; Alternatively, De Luca and Termini [26],
define entropy as a measure of a quantity of information which is not necessarily
related to random experiments giving a global measure of the uncertainty inherent
to a situation. Another type of measures in groups of data are dispersion measures
which are able to capture how the distribution of the data is, e.g., variation,
standard deviation, mean absolute difference, etc. In fact, as pointed out in [27]
dispersion measures are related to multidistances [28], where the concept of
distance measured between two elements is generalized to work with collections of
elements, i.e., to be able to measure how much separated are not only two elements
of a set but any finite list.

Not included in all the previous types of measures for comparison we found other
operators in the extensive analysis of the ordering procedure from Barnett [29],
where comparison plays a key role. He states that the ordering principle is clear
and unambiguous for univariate samples, while ordering multivariate ones in a
clear way is not always possible and some restricted form of ordering...is feasible
and advantageous, like relative order comparison or partial ordering. Also a more
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specific type operator is studied in Eckert and Klamler work [30], namely distance-
based aggregation. This operator is proposed in order to solve the problem of
aggregating multiple objects into one that represents them all, capturing the
intuition of consensus.

To sum up, all these operators depend in fact on the representation of the data being
compared. It is clear that most of the approaches are based on geometric models
and multidimensional scaling [31], as it is convenient from a mathematical point
of view, providing a quantitative description and a parametric representation of the
objects being analysed. Connected to the representation model we also have what
we represent, that is, the features representing objects. These features are what we
need to compare or match in order to measure similarity and their extraction is
one of the comparison’s cornerstone as well as a problematic process [20], because
features can be any property describing an object.

Even if it has driven a large effort on theoretical studies, comparison has an essential
role to play in applications, and its mostly driven by its usefulness. It is part of a
process where learning is the result of comparing previous stored knowledge with a
new stimuli, resulting in decisions. These decisions are at the same time used over
some data to obtain knowledge and hence to learn, but is this new knowledge?
Or it is something underlying that was already known? An example of application
where comparison is a cornerstone is pattern-based decision problems, and in
general, any classification problem or clustering, where data needs to be separated
in groups. Any application which uses real, and hence, imperfect data, is subject to
the needs of comparing in order to generate some type of decision.

It is a clear thought that comparison is at the hearth of decision making and to
go trough, humans use mental tools to represent their thoughts [32], [33]. The
understanding and object representation needs for a way to channel how decision
are made by humans, and since early times researchers have been seeking for an
explanation analysing the models involved and the type of reasoning made in our
brain [34]–[36].

Within all the previous maremagnum of object representations, and axioms tailored
to capture human comparison, there is a centric spot for fuzzy set theory and
related concepts. When describing the world, humans express feelings or interests
with words. When appreciating a piece of art we say that it is a marvellous piece
of art or that we like it a lot. In the case of making decisions, a similar situation
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occurs, for example, if it is raining we take an umbrella, and when it is sunny we
do not. But what do we decide when it drizzles? Do we take the umbrella or not?
Clearly drizzling is not the same as raining, but maybe we are getting wet, but not
as much as if it were really raining. The decision to be taken regarding an umbrella
might be depending upon whether it drizzles "more like it does not rain" or more
"like it rains". This, obviously, relates to partial truths. And, hence, to multivalued
or real-valued truth values. So, it might seem that the natural output of a human
comparison is in fact a partial truth, and hence the very comparison process might
resemble a logic-based procedure, instead of a topology-inspired operator. This can
be further analysed from the point of view of human reasoning.

Many research has been done in order to represent how decisions are made, from
the logical point of view. As a primer approach we found classical logic, which
is somehow a static representation of the truth, where two possible values for a
sentence can be chosen, i.e., true or false, being possible only one of them at the
same time. Then, for a stimuli received, a fact, a sentence, etc. we will be able to
evaluate them with one of the two possible values, obtaining in this way a degree of
truth. The truth values of the classical logic can also take a different representation
in form of numerical values, being the truth value 1 and the false value 0. This
logic leads us to propositional logic going a step forward and permitting to express
natural language situations, which is possible due to a series of statements coupled
to a set of operators. Advanced statements based on individual and indivisible
propositions can be made, mimicking at a basic level the human logic. A possible
example could be:

Premise 1: If it’s raining then it’s cloudy.

Premise 2: It’s raining.

Conclusion: It’s cloudy.

In a first approach classical logic could seem a good approximation but it lacks
a possible value in order to represent the existence of uncertainty. To cope with
this inconvenient, in one of the three-valued logics, Łukasiewicz [37] introduced a
third possible truth value as the undecided term. Also in the context of three-valued
logic, partial logic presented by Blamey [38] propose to use, in addition to true
and false values, some sort of partially defined predicates to work with.
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Fig. 1.5: Fuzzy sets representing the transitions between human concepts of temperature
sensations.

Even these types of logic, which consider an uncertainty term, are not able to
capture the human-like, logic-based reasoning. The vagueness of mental represen-
tation carries not well defined linguistic terms, nor boundaries in the definition
of a class of object. An alternative representation would be to use real numbers
to obtain a certain precision when constructing a model. Extending the possible
truth values that can be taken into account we arrive at multi-valued logic where a
finite possible values are considered to represent the degree of truth or even use an
infinite set of values, that is, fuzzy logic.

In fuzzy logic, instead of considering truth values representing the degree of
truth on a statement, membership degree is used. This type of logic comes as a
consequence of the introduction of fuzzy sets by Zadeh [39]. Zadeh states that
“classes of objects...do not have precisely defined criteria of membership“, and that
this imprecision in the definition of classes plays a crucial role in human thinking.
Then, a fuzzy set is a class that can take a membership value in a continuous set of
real numbers in the interval [0, 1]. In Fig. 1.5 we can see the fuzzy sets representing
the sensations of temperature, having soft transitions between changes. Further
on fuzzy sets have been extended to consider variations in the specific manner in
which membership (for sets) and truth (for logic) is represented. Zadeh introduced
in [40] interval-valued fuzzy sets, which considers the definition of the set by
representing the membership degree as an interval in the [0, 1] range instead of
only one number in that same range. Even more, Zadeh introduced Type-2 Fuzzy
Sets where both the lower and upper membership degree are represented by
intervals. Many more generalizations of the idea of fuzzy set have raised from this
theory, among others, Intuitionistic Fuzzy Sets [41], for which Attanasov introduce,
coupled to the membership degree, the concept of non-membership degree, being
able to capture more uncertainty as it quantifies how many of a variable does not
correspond to a given set.
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From a philosophical vision, fuzzy sets and its generalizations are a tool that permit
a human approach to quantify phenomenons. As humans use words to express
their reasoning and conclusions, from the premises extracted or learned. In this
sense, Zadeh [42] present Fuzzy Logic as a tool to be able to compute with words
and express propositions and object features in natural language, just like humans
do.

In the particular context of fuzzy logic, comparison and, specifically, similarity have
been defined by Zadeh as a generalization of the notion of equivalence. Many other
authors have since studied its properties or its relation with perception [18]. As
indicated by Zadeh, considering fuzzy sets as a linguistic representation, permits to
interpret similarity with a semantic meaning, being able to mimic the human logic
decision process in comparison tasks.

Literature contains different proposals to construct similarity measures in the
context of fuzzy logic, mostly based on metrics adapted to fuzzy concepts. Among
other, those based on the Minkowsky r-metric [43], like the (d2)2 proposed by
Kacprzyk [44], or the dissemblance index by Kaufman and Gupta [45] (a deeper
analysis and further examples are shown in [46], [47]). A particular way of
constructing SM is by means of Restricted Equivalence Functions (REF) [48]
which permits the comparison of membership degrees, i.e., working with fuzzy
information and hence with uncertainty.

Theory of comparison, in the context of fuzzy set theory, also relates to tasks
other than pure comparison. For example, it relates to data ordering through a
hypothetical triangular inequality, or to entropy, trough a multiple comparison. In
fact there is a relation between all this concepts, and usually the notion of metric,
due to its mathematical applicability, has been used as a similarity/dissimilarity
measure. All of these concepts have been used in a variety of application topics, as
image understanding [49], data clustering [50] or analysis of proximities [16].

As we have said earlier, humans receive a large quantity of information, mainly
trough visual stimuli, forming an image of the real world. The acquisition process
of the human visual system (HVS) consist in an optical transformation made in the
eye, that makes the optical flow to be projected on the retina and then passed to the
visual cortex [51]. From this optical flow the HVS is capable of extracting simple
sketches and patterns building a mental model, used further on in comparison
tasks and hence in the learning process. In contrast to the HVS, the digital model
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of the natural vision, mimicked by images captured through camera sensors, are a
discretization of the real word represented as a matrix where each point (pixel)
contains colour information. Due to the inherent uncertainty of the discretization
process, which can transmit errors, generating artefacts and deformation or capture
partial information, interpreting pixel values is a complex task. There is a need
for new tools being able to consider this uncertainty and that permit to process
information as humans do.

We are in a great momentum, where digital imagery has acquired a great impor-
tance, as images are everywhere and are at the very centre of knowledge. Even if
mostly all the imagery produced in the world has a social and recreation purpose,
there exist other core subjects in the society such as industrial, security [52], [53]
or medical applications [54], where image analysis plays an important role. In
these specific fields, the use of images has been usually oriented to task supervised
by humans, where their knowledge plays an essential role; until now, when the
great increase in image quantity and quality, comes paired with unmanageable
amounts of information and hence with the need of an automatic or semi-automatic
processing. For this reason, we focus our analysis in image processing.

As we want computers/machines to see like humans, both comparison and human-
like logical processing are tools to achieve our goal. Being able to perceive like
humans implies understanding the wide variety of images that exists, applying
the right tools to the right images. Images goes from the usual and well known
grey-scale or colour images to binary ones (used in matching phases, e.g., contour
groundtruth images), or more specific types as the ones found in the medical con-
text [55] (magnetic resonance, ultrasound, tomography, etc.), hyper-spectral imag-
ing, e.g.in agriculture [56], [57], and very specific cases as orientation maps [58]
used, e.g. in fingerprint analysis. All this variety of images lead us to ask ourselves
what is an image? And, what makes and image to be an image?

On one hand we have the raw information, captured by sensors or generated by
somebody, on the other hand what can be extracted, the features/characteristics
that permit further processing, comparison and understanding [59]–[62]. The cru-
cial point about images is not the image by itself or how it is represented but what
it contains, and the availability of the correct comparison tools to extract and use
the knowledge enclosed in it. In fact, a large variety of descriptors can be extracted
from images to use them in comparison task and image interpretation, among
other, we found texture [63] information as well as edges and contours [64]. This
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is why there is a need of new approaches for image processing, more specifically,
different ways of managing the inherent uncertainty, specific to each type of image,
and being able to use it in comparison tasks.

Uncertainty in images can come in a variety of forms [65], [66], as patterns are not
clearly defined; images can be corrupted during the acquisition process, objects in
the image or the knowledge about them can be doubtful, or presented in ambiguous
terms, etc. Joining the very nature of images with comparison and fuzzy logic,
which is meant to deal with uncertainty, has been proved to provide an interesting
approach that has lead many researchers to investigate this topic [67]. Different
applications can be considered using fuzzy sets, from image enhancement [68] to
edge detection and segmentation [69]. Moreover, comparison within the image
context cover a extent of applications, from low-end to high-end processing, such
as face recognition [70], image classification [71], boundary matching [72], image
clustering [73] or deep convolutional neural networks for image labelling [74].
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1.1 Motivation and Problem Statement

Digital image data has become an important piece of information in our world
and needs an automatic processing to extract knowledge. The main problem with
images is that the data they contain does not mean anything by itself, and when
comparing data we have to manage the uncertainty inherent to this specific type
of data. As a way to works as close as possible to human perception and how
the human visual system works and manage the uncertainty, we want to join and
work together with different topics, namely comparison, fuzzy logic and computer
vision. We have tackled some aspects of digital processing, where fuzzy logic has
an important role to play. From the most basic extraction of features of an image to
the quality evaluation of a solution done by an automatic technique we need to
manage uncertainty and comparison.

In the context of fuzzy sets, a common way to compare is through Similarity
Measures (SM) [75], which, among other methods, can be constructed by means
of aggregation functions [76] and Restricted Equivalence Functions (REF) [48].
These approaches perform well in scalar data and normal conditions. But, to
the best of our knowledge, when considering other data types, e.g., radial data,
there are no studies quantifying the similarity in a radial universe. Moreover
there exist no framework established to work with this type of data and only
some proposed solutions adapted to a specific problem [77]–[80], but that in any
case are interpretable in relation to adapt the human perception. To capture the
essence of radial data, where the perception of increasing the distance between
points makes the similarity to be smaller we adapted the concepts of REF and
SM to radial data and analysed its behaviour. Also in the SM and REF context
we propose another approach to capture the uncertainty in interval-valued data.
Until now, for interval-valued data, in most of the cases only a partial order is
considered, not permitting to recover the fundamental notions of fuzzy set theory,
such as aggregation functions, implications, etc. This particular situation may lead
to incomparable intervals and hence situations where monotonicity needs to be
weakened. Moreover, to the best of our knowledge, there is no proposal considering
the width of the interval in order to be able to capture the uncertainty between the
input and output interval.

While analysing comparison aspects in fuzzy logic and images, to close the complete
image processing framework, we finish our work with a new way of extracting
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features in the context of edge detection and the construction of a taxonomy for
different feature matching methods in edge extraction quality evaluation.

The main difficulty in edge detection arises from the inherent process of capturing
real word information. An edge can be regarded as a location in which a big
enough jump between neighbour pixel intensities happen. However, even this basic,
loose definition can be criticized, since it would not consider situations as textures
(where edges should not be detected) or hallucinated boundaries [81] (where
boundaries appear with little or no intensity contrast). Many attempts have been
done to define a framework for edge detection, being one of the most important
the one presented by Bezdek [82], who propose four phases: conditioning, feature
extraction, blending and scaling. Our efforts in edge detection techniques are mainly
focused on the feature extraction step, that can be seen as an operation where the
information received from each pixel is converted into problem-specific information.
Even if this information is usually interpreted with gradient magnitudes, we also
consider gradient direction in our proposal. We study the viability of using Ordered
Directionally Monotone functions to fuse pixel neighbourhood information and
build a feature map. The main advantage of this type of functions is that they are
monotonic along different directions over the decreasingly ordered input vector,
recovering the importance of the intensity differences.

Finally to close the analysis of the role of comparison in the image context we
review the most relevant boundary matching techniques for edge quality evaluation,
comparing their performance and seeking for the existence of a real impact over
the evaluation depending on the approach used.

1.1 Motivation and Problem Statement 17



1.2 Objectives

The main objective of this thesis is to explore new ways of working with
uncertainty for different types of data, considered from the point of view of
human perception, in comparison tasks with a particular analysis in image
processing.

In order to gain this objective we present some sub-objectives:

• Develop new concepts of similarity measures for different data types

• Define the concept of Restricted Equivalence Function and Similarity Measure
to deal with radial data.

• Construct new distance measures and entropies for interval-valued data con-
sidering the with of the interval, understood as a measure of the uncertainty
linked to that data, and using admissible and total orders.

• Present a new methodology to use the new concepts for radial data in the
context of fingerprint analysis.

• Develop a new edge detector method based on ordered directionally mono-
tone functions and consensus techniques.

• Build a taxonomy and compare the different quality evaluation matching
methods for boundary detection.
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1.3 Thesis Structure

This thesis is structured in two main parts. The first one (Chapter 2) is devoted to
present the different concepts developed trough the Ph.D. thesis work analysing
each one of the papers done for the research. We present each of the new concepts
developed along with applications in the context of computer vision, comparing
the results obtained with other methods from the literature.

Following the different applications and data types, we summarize all the theoretical
concepts developed throughout this thesis and present a series of conclusions along
with some future research lines.

The last part (Chapter 3) present all the papers developed during this thesis. Each
one of the publications is accompanied by its status, the journal where it has been
submitted, its impact factor and the text of the paper. The following papers are the
ones associated with this thesis:

• A framework for radial data comparison and its application to fingerprint
analysis [83]

• Width-based interval-valued distances and entropies [84]

• Similarity between interval-valued fuzzy sets taking into account the width
of the intervals and admissible orders [85]

• Ordered directional monotonicity in the construction of edge detectors [86]

• A survey on matching algorithms for boundary image comparison and evalu-
ation [87]

• Optical images-based edge detection in Synthetic Aperture Radar images [88]
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2Phd thesis report

„Information is the resolution of uncertainty.

— Claude Shannon
(Mathematician)

I N this chapter we expose the different concepts developed throughout this
Ph.D. thesis detailing a series of preliminary concepts, an in depth analysis and
some conclusions of each of the papers that conform this thesis. Then some

general conclusions and future research lines are outlined.

2.1 A framework for radial data comparison
and its application to fingerprint analysis

In this work we address the problem of working with radial data in the context
of comparison. We study the similarity of scalar and non-scalar radial data and
present the new concepts of Radial Restricted Equivalence Functions (RREF) and
Radial Similarity Measures (RSM) as a new way of measuring distances for radial
data.

Radial data is very often treated in computer vision problems, in a wide variety of
forms, e.g., angular, vector or tensorial data [89]. The utility of radial data requires
well-defined tools to work with, e.g., when comparing data.

Due to the specificity of this type of data and to be able to do some type of
processing over it, there is a need for some conventions that we have used through
this work.
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In order to tackle the fact that two angles indicate the same direction, e.g., π
2 and

5π
2 , we propose an equivalence relation R. Let a, b ∈ R. Then, aRb if and only if
a = b+ 2kπ, where k ∈ Z. In this way, the equivalence class [a] = {b | bRa} is a set
that contains all the data sharing the same direction. Then, a semiopen interval
having a width of 2π (i.e., whose interval is [ω, ω + 2π[) is the quotient set (i.e., it
contains only one element of each equivalence class). A particular case of quotient
set, which is the most frequent in radial data are [0, 2π[ and [−π, π[

The quotient that we work with in this thesis is the following, Ω = [0, 2π[ and
we define on Ω the classical operations sum, a ⊕ b = [a + b], and difference,
a 	 b = [a − b], where [t] denotes the only element z ∈ Ω such that zRt. Then
under these conditions, we refer to mirroring as the mapping: m : Ω −→ Ω such
that m(a) = a⊕ π.

For the sake of our proposal to compare radial data on the quotient set Ω, we need
the general definition of metric:

Definition 1 A function d : U → R+ is called metric on U if it satisfies the following:

(D1) d(a, b) = 0 if and only if a = b;

(D2) d(a, b) = d(b, a) for all a, b ∈ U ;

(D3) d(a, c) ≤ d(a, b) + d(b, c) for all a, b, c ∈ U .

Radial data come with interesting characteristics for the field of similarity. In fact,
while we increase de farness of two elements it can occur that we are making them
closer. This apparent contradiction, which only occurs in linear data, is inherent to
radial data.

The main contributions of this work are the definition of the concepts od RREF and
SM and a way of construct them from automorphisms in the unit interval.

Definition 2 [48] A mapping r : [0, 1]2 → [0, 1] is said to be a Restricted Equivalence
Function (REF) associated with the strong negation n if it satisfies the following:

(R1) r(x, y) = r(y, x) for all x, y ∈ [0, 1];

22 Chapter 2 Phd thesis report



(R2) r(x, y) = 1 if and only if x = y;

(R3) r(x, y) = 0 if and only if {x, y} = {0, 1};

(R4) r(x, y) = r(n(x), n(y)) for all x, y ∈ [0, 1];

(R5) For all x, y, z, t ∈ [0, 1], such that x ≤ y ≤ z ≤ t then r(y, z) ≥ r(x, t).

Note that (R5) means that, for all x, y, z ∈ [0, 1], if x ≤ y ≤ z then r(x, y) ≥ r(x, z)
and r(y, z) ≥ r(x, z).

Definition 3 [75] A mapping s : [0, 1]k × [0, 1]k → R+ is called k-ary Similarity
Measure (SM) associated with the strong negation n if it satisfies the following:

(S1) s(x, y) = s(y, x) for all x, y ∈ [0, 1]k;

(S2) s(x, n(x)) = 0 if and only if xi ∈ {0, 1} for all i ∈ {1, . . . , k} and n(x) =
(n(x1), . . . , n(xk));

(S3) s(z, z) = max(x,y∈[0,1]k) s(x, y) for all z ∈ [0, 1]k;

(S4) For all x, y, z, t ∈ [0, 1]k, if x ≤ y ≤ z ≤ t then s(y, z) ≥ s(x, t) where x ≤ y
implies that xi ≤ yi for all i ∈ {1, . . . , k}.

Similarly to what happens for REFs, the property (S4) is equivalent to: For all
x, y, z ∈ [0, 1]k, if x ≤ y ≤ z then s(x, y) ≥ s(x, z) and s(y, z) ≥ s(x, z).

Similarity Measures (SMs) can be constructed in different ways, although the
most popular method originates from the combination of REFs and aggregation
functions [76].

Definition 4 A mapping rθ : Ω2 → [0, 1] is called a Restricted Radial Equivalence
Function (RREF) associated with the metric d if it satisfies the following:

(RR1) rθ(a, b) = rθ(b, a) for all a, b ∈ Ω;
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(RR2) rθ(a, b) = 1 if and only if d(a, b) = 0;

(RR3) rθ(a, b) = 0 if and only if d(a, b) is maximum;

(RR4) rθ(a, b) = rθ(m(a),m(b)) for all a, b ∈ Ω;

(RR5) For all a, b, c, d ∈ Ω, if d(b, c) ≤ d(a, d), then rθ(b, c) ≥ rθ(a, d).

Definition 4 is not a direct extension of Definition 2 to radial data. The differences
arise from the use of distances in (RR5) instead of orders (as in (R5)). Even
considering this change, which is due to the inherent interpretation of orders for
radial data, we understand that the semantics and sense of REFs are preserved.

Proposition 1 Let rθ be a RREF associated with the metric d∗. For all a1, b1, a2, b2 ∈
Ω, if d∗(a1, b1) = d∗(a2, b2) then rθ(a1, b1) = rθ(a2, b2).

In this work, we only consider RREFs associated with the angular metric d∗(a, b) =
min(|b− a|, 2π − |b− a|).

Following the construction of REFs, we also define a new possible construction
method for RREFs, which is also based on automorphisms.

Proposition 2 Let ϕ and ψ be automorphisms of the intervals [0, 1] and [0, π], respec-
tively. The mapping t : Ω2 → [0, 1] given by

t(a, b) = ϕ−1
(

1 −
(

1
π
ψ (d∗(a, b))

))
(2.1)

is a RREF.

Definition 5 A mapping sθ : Ωk × Ωk → R+ is said to be a k-ary Radial Similarity
Measure (RSM) associated with the metric d∗ if it satisfies the following:

(SR1) sθ(a,b) = sθ(b,a) for all a,b ∈ Ωk;

(SR2) sθ(a,b) = 0 if and only if d∗(ai, bi) = π for all i ∈ {1, . . . , k};
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(SR3) sθ(c, c) = Maxa,b∈Ωksθ(a,b) for all c ∈ Ωk;

(SR4) For all a,b, c,d ∈ Ωk, if d∗(a,d) ≥ d∗(b, c) then sθ(a,d) ≤ sθ(b, c), where
d∗(a,d) ≥ d∗(b, c) implies that d∗(ai, di) ≥ d∗(bi, ci) for all i ∈ {1, . . . , k}.

Then, using the same methodology as in SM, to construct RSMs we use RREFs, to
aggregate their results.

Proposition 3 Let rθ be a RREF and let f be a k-ary aggregation function such that
f(x) = 0 if and only if xi = 0 for all i ∈ {1, . . . , k} and f(x) = 1 if and only if xi = 1
for all i ∈ {1, . . . , k}. The function sθ[f,rθ ] : Ωk × Ωk, given by

sθ[f,rθ ](a,b) = f(rθ(a1, b1), . . . , rθ(ak, bk)) (2.2)

is a k-ary radial similarity measure that satisfies

• sθ[f,rθ ](a,b) = sθ[f,rθ ](b,a) for all a,b ∈ Ωk;

• sθ[f,rθ ](a,b) = 0 if and only if d∗(ai, bi) = π for all i ∈ {1, . . . , k};

• sθ[f,rθ ](a,b) = 1 if and only if ai = bi for all i ∈ {1, . . . , k};

• For all a,b, c,d ∈ Ωk, if d∗(a,d) ≥ d∗(b, c) then sθ[f,rθ ](a,d) ≤ sθ[f,rθ ](b, c),
where d∗(a,d) ≥ d∗(b, c) implies that d∗(ai, di) ≥ d∗(bi, ci) for all i ∈ {1, . . . , k}.

• sθ[f,rθ ](a,b) = sθ[f,rθ ](m(a),m(b)) for all a,b ∈ Ωk wherem(a) = (m(a1), . . . ,m(ak)).

In addition to the theoretical advances presented in this work, we present a possible
application where the new concepts are used. Particularly we use RREF and RSM in
singular point detection for fingerprint analysis. Fingerprint-based authentication
consists in analysing ridges present in our fingertips in order to find patterns. These
local patterns are known as minutiae, and are usually bifurcations, discontinuities
or ridge breaks [90], [91]. There exist two main type of local patterns in our
fingertips that automated systems look for: cores and deltas. Then the process of
finding those anomalies in the fingertips of an individual being and compare it with
another one is known as matching [92].
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Fig. 2.1: Schematic representation of the proposed framework for singular point detection
using orientation templates and radial similarity measures, namely Template-based
singular point detection (TSPD).

The complete process of our proposal is represented in Fig. 2.1. The different steps
of the TSPD are the following:

1. Dividing the image into non-overlapping blocks.

2. Segmenting the image using the previous calculated blocks.

a) Normalizing the image to a desired mean and variance, 100 and 1000,
respectively [91].

b) Segmenting the fingerprint and the background, by assigning to the
latter those blocks for which the variance of the pixel intensities is
greater than 30 [91].

3. Calculating the orientation map over the segmented image.

a) Computing the gradient at each pixel of the image (e.g., using Sobel
masks) [93].

b) Since the gradients are computed for each pixel and the result of a
single pixel may not be reliable enough, the OM is smoothed to get
more accurate orientations. In order to do so, the technique by Kass and
Witkin [94] is used.
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c) Creating the OM from the regularized orientations.

4. Creating the SqOM by multiplying by two the values in the OM.

5. Detecting singular points.

a) Computing the similarity map for each template. This is done by com-
paring the elements of the SqOM and those in each templates using the
RSMs.

b) Fusing the similarity maps corresponding to each type of SP. This is done
by obtaining, at each block, the maximum response for the cores and, in
parallel, for the deltas.

c) Selecting cores and deltas. This is done by taking the two points with
the highest local response for core and delta similarity map in parallel.

We have tested our proposal with well-known state of the art approaches as Poincaré
and Liu.

With this work we arrive to two main conclusions. We have made an important
contribution, adapting the concepts of REF and SM to radial data. The new concepts
that arose, namely RREF and RSM, are able to capture the nature of radial data
while retaining the behaviour and semantics of the original operators. Moreover,
we have proved the usefulness of the new concepts and their validity in a complex
context as fingerprint analysis

This section of the thesis is associated with the following publication:

• C. Marco-Detchart, J. Cerron, L. De Miguel, C. Lopez-Molina, H. Bustince,
and M. Galar, “A framework for radial data comparison and its application to
fingerprint analysis”, Applied Soft Computing Journal, vol. 46, pp. 246–259,
2016
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2.2 Width-based interval-valued distances
and entropies

In this paper, we study the behaviour of entropies and distance measures in the con-
text of interval-valued fuzzy sets. These two concepts are well-known approaches
in the comparison theory and widely used notions in the fuzzy sets theory. Our pro-
posal in this work has mainly two novelties. The first one consists in using the width
of intervals in order to connect the uncertainty of the output with the uncertainty
of the inputs. And the second one lies in bringing in total orders when working
between intervals, instead of partial ones, being able to recover for interval-valued
set-ups some of the advantages of the notions of monotonicity. The construction of
distance measures and entropies is done trough the aggregation of interval-valued
restricted dissimilarity functions and interval-valued normal EN -functions.

The main concepts developed in this work are the following.

Proposition 4 Let α ∈]0, 1[, let M : [0, 1]2 → [0, 1] be an idempotent symmetric
aggregation function and let d : [0, 1]2 → [0, 1] be a restricted dissimilarity function.
Then, the function dIV : L([0, 1])2 → L([0, 1]) given by

dIV (X,Y ) =
[

min
(
d (Kα(X),Kα(Y )) , 1 −M(w(X), w(Y ))

)
,

min
(
1, d (Kα(X),Kα(Y )) +M(w(X), w(Y ))

)]
(2.3)

is an IV restricted dissimilarity function w.r.t. any admissible order ≤T L. Moreover,
dIV is w-preserving.

The construction method given in Proposition (4) can be simplified with some
additional assumptions on M and d.

Corollary 1 Let α ∈]0, 1[, let M : [0, 1]2 → [0, 1] be an idempotent symmetric
aggregation function such that M(x, y) ≤ min

(
(1 − α)x + αy, αx + (1 − α)y

)
for

all x, y ∈ [0, 1] and let d : [0, 1]2 → [0, 1] be a restricted dissimilarity function such
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that d(x, y) ≤ |x− y| for all x ∈ [0, 1]. Then, the function dIV : L([0, 1])2 → L([0, 1])
given by

dIV (X,Y ) = [d (Kα(X),Kα(Y )) , d (Kα(X),Kα(Y )) +M(w(X), w(Y ))] (2.4)

is an IV restricted dissimilarity function w.r.t. any admissible order ≤T L. Moreover,
dIV is w-preserving.

Proposition 5 Let n : [0, 1] → [0, 1] be a strong negation with equilibrium point e.
Let α, β ∈]0, 1[, β 6= α and N : L([0, 1]) → L([0, 1]) be a strong IV negation w.r.t.
≤α,β with equilibrium point ε and such that Kα(ε) = e. Let EN : [0, 1]2 → [0, 1] be a
normal EN -function w.r.t. n. Then, the function ENIV : L([0, 1]) → L([0, 1]) given
by

ENIV (X) =
[
max

(
0, EN (Kα(X)) − w(X)

)
,

max
(
EN (Kα(X)) , w(X)

)]
(2.5)

is an IV normal EN -function w.r.t. N . Moreover, ENIV is w-preserving.

Corollary 2 Let ≤XY be the Xu and Yager order and N : L([0, 1]) → L([0, 1]) be an
IV strong negation w.r.t. ≤XY with the equilibrium point ε such that ε+ ε = 1. Let
EN : [0, 1]2 → [0, 1] be a normal EN -function w.r.t. a strong negation n with the
equilibrium point e = 1/2 such that EN (x) ≥ 1 − |2x− 1| for all x ∈ [0, 1]. Then, the
function ENIV : L([0, 1]) → L([0, 1]) given by

ENIV (X) =
[
EN

(
X +X

2

)
− w(X), EN

(
X +X

2

)]
(2.6)

is an IV normal EN -function w.r.t. N . Moreover, ENIV is w-preserving.

Then using w-preserving IV aggregation functions w.r.t. ≤α,β we can construct and
IV entropy.

Proposition 6 Let U = {u1, . . . , un} and let N : L([0, 1]) → L([0, 1]) be a strong IV
negation w.r.t. a total order ≤T L. Let MIV : (L([0, 1]))n → L([0, 1]) be an idempotent
IV aggregation function w.r.t. ≤T L satisfying MIV (X1, . . . , Xn) = 0L if and only if
X1 = . . . = Xn = 0L. Let ENIV : L([0, 1]) → L([0, 1]) be an IV normal EN -function
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w.r.t. N (given by Definition ??). Then, the function E : IV FS(U) → L([0, 1]),
defined by:

E(A) = MIV

(
ENIV (A(u1)) , . . . , ENIV (A(un))

)
for all A ∈ IV FS(U), is an IV entropy on IV FS(U) with respect to the strong IV
negation N .

We study the conditions under which the function ENIV given by Equation (2.5)
can be used in the previous proposition to obtain an IV entropy.

Corollary 3 Let U = {u1, . . . , un} and α, β ∈]0, 1[ with β 6= α. Let MIV :
(L([0, 1]))n → L([0, 1]) be an IV aggregation function w.r.t. ≤α,β defined by two
aggregation functions M1,M2, as in Proposition 2. Let ENIV : L([0, 1]) → L([0, 1])
be an IV normal EN -function given in terms of a normal EN -function EN , as in
Proposition 5, with N a strong IV negation w.r.t. ≤α,β with an equilibrium point ε.
Let E : IV FS(U) → L([0, 1]) be a function defined by:

E(A) = MIV

(
ENIV (A(u1)) , . . . , ENIV (A(un))

)
for all A ∈ IV FS(U). Then

(i) E satisfies axiom (E1), if

M1(x1, . . . , xn) = 0 if and only if x1 = . . . = xn = 0.

(ii) E satisfies axiom (E2), if M1 and M2 are idempotent.

(iii) E satisfies axiom (E3) w.r.t. ≤α,β .

(iv) Let M2 be idempotent. Then, for all A ∈ IV FS(U), w(A(u1)) = . . . =
w(A(un)) implies w(E(A)) = w(A(u1)).

With the approach presented in this work we are getting an interval-valued output,
which permits to recover the uncertainty of the input interval and maintain the
interval-valued representation.

Once we have defined the new expressions to work with both distance measures
and entropy preserving the width of the interval we focus our attention on the
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Fig. 2.2: Comparison of the different approaches for thresholding an image compared with
the groundtruth provided by the dataset.

application part. One of the well-studied processes in the literature of computer
vision is image segmentation, which consists in the extraction of partitions from
an image (regions sharing common characteristics) that represent the objects in
it [95]. Segmenting an image, is done by assigning the same label to all the pixels
(with the same properties) representing the possible object to whom they belong.
Segmentation can be as fine or coarse as the number of labels we want to assign to
the image.

To prove the validity of the theoretical concept presented in this work we put it to
the test by using it in the context of image thresholding, as being one of the usual
and most basic techniques to label an image [96]. The thresholding process consists
in finding the grey intensity value that best separates two regions (background and
object) of an image.

We obtain these two regions by using a modified version of the algorithm presented
by Huang and Wang [97] for working with interval-valued data, which is illustrated
in Algorithm 1.

Algorithm 1 Algorithm for thresholding an image using entropy.
Input: Image I with L intensity values.
Output: Image threshold t.

1: for each level of intensity t, (t = 0, t = 1, . . . , L− 1) do
2: Build k fuzzy sets Q1

t . . . Q
k
t ;

3: Build an IVFS Q̃t from the fuzzy sets Q1
t . . . Q

k
t ;

4: for each q ∈ {0, . . . , L− 1} do

5: µQ̃t
(q) =

[
T
(
µQ1

t
(q), . . . , µQk

t
(q)
)
, S
(
µQ1

t
(q), . . . , µQk

t
(q)
)]

,
with T a t-norm and S a t-conorm.

6: end for
7: Compute the entropy of each of the L interval valued fuzzy sets Q̃t;
8: end for
9: Select the threshold t with the smallest entropy.;
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In the different experiments made in this work, where we vary the construction
method for the fuzzy sets of step 2, we can see that our new entropy expression
behave quite similarly to other expressions in the literature. When only using REF
membership function our new entropy is comparable, while when combining REF
and triangular membership functions, our expression does not perform well and
remain just under other expressions. Finally, when adding to the membership
function construction S-Z functions, our entropy is the best performer.

For comparison purposes we test our new entropy definition versus well-known
expressions of the literature as Sambuc’s indetermination index [98], Kacpryzk and
Smidzt expression [99] and Vlachos and Sergiaidis expression [100].

Moreover we have put to the test our approach with classical methods for thresh-
olding as Otsu [101], Area-based [102] and Tizhoosh [103] (the specific parameters
for each one of the approaches are detailed in the paper in Section 2.2). A visual
example of the results obtained with the different approaches is shown in Fig 2.2.

With this work we have approached a different type of data and managed to define
an expression for interval-valued dissimilarity functions and interval-valued EN -
functions. One of the important achievements of this work is that the two concepts
introduced have been defined taking into account a total order between intervals,
which have lead to the construction of interval-valued distances and entropies.

This section of the thesis is associated with the following publication:

• Z. Takác̆, H. Bustince, J. M. Pintor, C. Marco-Detchart, and I. Couso, “Width-
based interval-valued distances and fuzzy entropies”, IEEE Access, vol. 7,
pp. 14 044–14 057, 2019
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2.3 Similarity between interval-valued fuzzy
sets taking into account the width of the
intervals and admissible orders

In this study we present a new type of similarity measures between interval-valued
data. The new construction method is based on two novelties. On one hand, we
construct the new similarity expression with respect to a total order for intervals.
On the other hand, we consider the width of the interval in order to manage the
uncertainty of the output linked to the one from the input.

In order to be able to define the new similarity measure for interval-valued fuzzy
sets we need to define restricted equivalence functions and aggregation functions
in the interval-valued setting.

Definition 6 Let ≤L be an order on L([0, 1]). An interval-valued restricted equiv-
alence function w.r.t. the order ≤L is a function RIV : L([0, 1])2 → L([0, 1]) such
that:

1. RIV (X,Y ) = 0L if and only if {X,Y } = {0L, 1L};

2. RIV (X,X) = [1 − w(X), 1] for all X ∈ L([0, 1]);

3. RIV (X,Y ) = RIV (Y,X) for all X,Y ∈ L([0, 1]);

4. If X,Y, Z ∈ L([0, 1]) are such that X ≤L Y ≤L Z and w(X) = w(Y ) = w(Z),
then RIV (X,Z) ≤L RIV (X,Y ) and RIV (X,Z) ≤L RIV (Y, Z).

Note that the previous definition is does not preserve the with of the intervals but
is a preliminary step to define a w-preserving IVREF.
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Theorem 1 Let α ∈]0, 1[, let M : [0, 1]2 → [0, 1] be an idempotent symmetric aggre-
gation function and let R : [0, 1]2 → [0, 1] be a restricted equivalence function. Then,
the function RIV : L([0, 1])2 → L([0, 1]) given by

RIV (X,Y ) =
[

max
(
0, R (Kα(X),Kα(Y )) −M(w(X), w(Y ))

)
,

max
(
R (Kα(X),Kα(Y )) ,M(w(X), w(Y ))

)]
(2.7)

is an IV restricted equivalence function w.r.t. any admissible order ≤T L. Moreover,
RIV is w-preserving.

When constructing an IVREF any REF R and any idempotent symmetric aggregation
function M can be used in Equation (2.7). Then if additional assumptions are
imposed to R and M Equation (2.7) can be simplified.

Corollary 4 Let α ∈]0, 1[, let M : [0, 1]2 → [0, 1] be an idempotent symmetric
aggregation function such that M(x, y) ≤ min

(
(1 −α)x+αy, αx+ (1 −α)y

)
for all

x, y ∈ [0, 1], and let R : [0, 1]2 → [0, 1] be a restricted equivalence function such that
R(x, y) ≥ 1−|x−y| for all x, y ∈ [0, 1]. Then, the functionRIV : L([0, 1])2 → L([0, 1])
given by

RIV (X,Y ) =
[
R (Kα(X),Kα(Y )) −M(w(X), w(Y )), R (Kα(X),Kα(Y ))

]
(2.8)

is an IV restricted equivalence function w.r.t. any admissible order ≤T L. Moreover,
RIV is w-preserving.

In order to construct IV-aggregation functions preserving the width of the interval,
w.r.t. ≤α,β , the following two properties are needed:

Given an aggregation function M : [0, 1]n → [0, 1],

(P1) M(cx1, . . . , cxn) ≥ cM(x1, . . . , xn) for all c ∈ [0, 1], x1, . . . , xn ∈ [0, 1].

(P2) M(x1, . . . , xn) ≤ 1 −M(1 − x1, . . . , 1 − xn) for all x1, . . . , xn ∈ [0, 1].

Theorem 2 Let α, β ∈ [0, 1], β 6= α. Let M1,M2 : [0, 1]n → [0, 1] be aggregation
functions such that M1 is strictly increasing, M1(x1, . . . , xn) ≥ M2(x1, . . . , xn) for all
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x1, . . . , xn ∈ [0, 1], M1 or M2 satisfies property (P1) and M1 or M2 satisfies property
(P2). Then MIV : (L([0, 1]))n → L([0, 1]) defined by:

MIV (X1, . . . , Xn) = Y, where

Kα(Y ) = M1 (Kα(X1), . . . ,Kα(Xn)) ,

w(Y ) = M2 (w(X1), . . . , w(Xn)) ,

for all X1, . . . , Xn ∈ L([0, 1]), is an IV aggregation function with respect to ≤α,β .

Moreover, if M2 is idempotent, then MIV is w-preserving.

Once we have defined an w-preserving IV-aggregation we can construct an IV-
similarity preserving the width of the interval. The construction is done inspired by
the concept of SM in [48], relaxing the second and fourth axioms as in Definition 6
and aggregating IVREFs.

Definition 7 . Let ≤L be an order on L([0, 1]) and M : [0, 1]n → [0, 1] be an
aggregation function. A width-based interval-valued similarity measure on IV FS(U)
w.r.t. ≤L, associated with M is a mapping SM : IV FS(U) × IV FS(U) → L([0, 1])
such that, for all A,B,A′, B′ ∈ IV FS(U),

(SM1) SM (A,B) = SM (B,A);

(SM2) SM (A,A) =
[
1 −M

(
w(A(u1)), . . . , w(A(un))

)
, 1
]
;

(SM3) SM (A,B) = 0L if and only if {A(ui), B(ui)} = {0L, 1L} for all i ∈ {1, . . . , n};

(SM4) If A ⊆ A′ ⊆ B′ ⊆ B w.r.t. ≤L and w(A(ui)) = w(A′(ui)) = w(B′(ui)) =
w(B(ui)) for all i ∈ {1, . . . , n}, then SM (A,B) ≤L SM (A′, B′), where, for
A,B ∈ IV FS(U), A ⊆ B w.r.t. ≤L if A(ui) ≤L B(ui) for every ui ∈ U .

Theorem 3 Let MIV : (L([0, 1]))n → L([0, 1]) be a decomposable IV aggregation
function w.r.t. ≤L associated with ML and MU where ML is self-dual, and let
MIV (X1, . . . , Xn) = 0L if and only if X1 = . . . = Xn = 0L. Let RIV : L([0, 1])2 →
L([0, 1]) be an IV restricted equivalence function w.r.t. ≤L. Then the function SML

:
IV FS(U) × IV FS(U) → L([0, 1]) defined by:

SML
(A,B) = MIV

(
RIV (A(u1), B(u1)) , . . . , RIV (A(un), B(un))

)
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Left image Right image Groundtruth Disparity map

Fig. 2.3: Left and right cones image and groundtruth proposed in the dataset Middlebury
along with the disparity map obtained.
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Fig. 2.4: Comparison of the raw disparity maps obtained with IV-REF and after applying
refinement and outlier detection techniques

for all A,B ∈ IV FS(U) is a width-based IV similarity measure on IV FS(U) w.r.t.
≤L associated with ML.

On the second part of this work we present a possible application of the new
concepts defined. We use the construction process presented for IV-similarity
measures preserving the interval to create an approximation of the binocular
human vision. That is,we present a stereo matching application using w-preserving
IV-REF. To catch the correspondent points from the two images we compare blocks
of the images and build a disparity map which give the depth at which each object
is located.

The correspondence procedure to build the disparity map is exposed in Algorithm 2
and the different images involved are shown in Fig. 2.3.

In step 7 each of the similarities obtained for each colour channel using a width-
based IV similarity, i.e.SMR

(A,B), SMG
(A,B), SMB

(A,B), are aggregated using
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Algorithm 2 Algorithm for constructing a disparity map using IV-similarity mea-
sures.
Input: Left anf right colour images fl, fr, an IV-similarity measure SM .
Output: Disparity map fd.

1: IV-fuzzify the images fl, fr, getting three IVFSs for each image, one for each
colour channel.

2: for each pixel (x, y) of fr do
3: Select a window of size n×m around the pixel;
4: for each possible y′ until the maximal disparity (provided by the dataset) do
5: Select a window of size n×m around the pixel (x, y′);
6: Calculate the IV-similarity between the two windows, in each of the three

colour channels using the similarity SM ;
7: Aggregate the values of the IV-similarities for each colour according to

Equation (2.9).
8: end for
9: Calculate the disparity between windows taking the pair of windows of

greatest similarity according to the order relation �α,β with α = 1;
10: end for
11: Create the disparity map with each of the disparities obtained for each position

(x, y);

different alternatives as the weighted mean, the arithmetic mean, the product, the
geometric mean, the harmonic mean, the median, the maximum and the minimum.
Finally, as proposed in [104] the different similarities are aggregated using Eq 2.9,
appearing to be the best performer.

SMT (A,B) = 0.299 · SMR
(A,B) + 0.587 · SMG

(A,B) + 0.114 · SMB
(A,B) (2.9)

We test our approach over the Middlebury dataset and compare it with classical
methods from the literature as SSD [105], SAD [106], NCC [107] o ZNCC [108].
In addition to the classical proposals we test our method to the previous work
from Galar et al.using interval-valued fuzzy sets [109]. In addition, as an im-
provement of our method and not focusing only on raw disparity maps we analyse
the improvements obtained applying a refinement procedure, seeing the result in
Fig. 2.4

Within this work we conclude that the new definition for IV-REF and IV-SM works
with a total order and are able to relate the uncertainty between the extremes of
the intervals. The use of these new expressions in a stereo matching application
have shown that they provide a high benefit in the raw disparity map extraction
with respect to the usual techniques.

2.3 Similarity between interval-valued fuzzy sets taking into account the width of the intervals 39



This section of the thesis is associated with the following publication:

• H Bustince, C Marco-Detchart, J Fernandez, C Wagner, J. Garibaldi, and Z
Takáč, “Similarity between interval-valued fuzzy sets taking into account the
width of the intervals and admissible orders”, Fuzzy Sets and Systems, 2019
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2.4 Ordered directional monotonicity in the
construction of edge detectors

In the present work we propose the construction of two edge detectors by means of
Ordered Directionally monotone functions. In addition we build a consensus edge
detector combining both of our proposals with other methods from the literature.
For the construction of the edge detector we follow the framework proposed by
Bezdek et al. [82]:

(S1) Conditioning: Smooth the image applying a Gaussian filter.

(S2) Feature extraction: Obtain a feature image by means of ordered directionally
monotone functions.

(S3) Blending: Thin the feature image using the non-maximum suppression proce-
dure [110].

(S4) Scaling: Binarize the feature image with the hysteresis method [111].

The main proposal of this work is centred in ((S2)) step, using two construction
methods to obtain OD-monotone functions that measure the local intensity variation
from pixel to pixel within a neighbourhood.

We use the Corollary 5 (Corollary 8 in the paper) to present two alternative
constructions for feature extraction.

Corollary 5 Let p > 0. Let G : [0, 1]n → [0, 1] be defined, for x ∈ [0, 1]n and σ ∈ Pn

such that xσ(1) ≥ . . . ≥ xσ(n), by

G(x) =
(
a+

n∑
i=1

bixσ(i)

) 1
p

, (2.10)

for some a ∈ [0, 1] and ~b = (b1, . . . , bn) ∈ Rn such that 0 ≤ a+ b1 + · · · + bj ≤ 1 for
all j ∈ {1, . . . , n}. Then G is OD ~r-increasing for every non-null vector ~r such that
~b · ~r ≥ 0.
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To extract the local features we work with an 8-neighbourhood around each position
(x, y) (i.e. neighbours from (x− 1, y − 1) to (x+ 1, y + 1)). Then each one of the
values needed in (S2) is computed as:

x1 = |a(x,y) − a(x−1,y−1)|, . . . , x8 = |a(x,y) − a(x+1,y+1)|

These differences are ordered in a decreasing way obtaining:

~r = (xσ(1) , xσ(2) , xσ(3) , xσ(4) , xσ(5) , xσ(6) , xσ(7) , xσ(8))

and then an ODM function is applied to each position in the image, with different
a, p, and

#»

b parameters. On both of the proposals we maintain a = 0 and 1
p =

0.30.

For the first ODM construction (Case 1) we use the following
#»

b :

~b =



 xσ(1)
8∑

i=1

xσ(i)

, . . . ,
xσ(7)

8∑
i=1

xσ(i)

,
xσ(8)

8∑
i=1

xσ(i)

 if
8∑

i=1
xσ(i) 6= 0

(0, . . . , 0) otherwise.

While for the second proposed construction (Case 2) we maintain the same previous
parameters and change

#»

b as follows:

~b =
(

1
8

(
1 −

∣∣∣∣xσ(1) − median
i∈{1,...,8}

{xi}
∣∣∣∣) , . . . , 1

8

(
1 −

∣∣∣∣xσ(8) − median
i∈{1,...,8}

{xi}
∣∣∣∣)) ;

Finally as a complementary experiment in order to improve the behaviour of
our edge detector we propose the construction of a consensus edge detector by
combining our two construction methods with well-known edge detectors in the
literature like Canny [110], gravitational approach [112], [113], fuzzy morphology
approach [114] and Structured Forests method [115].

From this work we can conclude that the use of ODM functions to measure the
change of intensity between pixels in a neighbourhood overcomes the Canny
method and most of the literature method. Only the Structured Forest surpasses
our proposal, when used independently. When the consensus construction is used
to extract edges then our method is the best performer.
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This section of the thesis is associated with the following publication:

• C. Marco-Detchart, H. Bustince, J. Fernandez, R. Mesiar, J. Lafuente, E.
Barrenechea, and J. M. Pintor, “Ordered directional monotonicity in the
construction of edge detectors”, Fuzzy Sets and Systems,
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2.5 A survey on matching algorithms for
boundary image comparison and
evaluation

In this work we have studied different approaches for boundary quality evalua-
tion and performed a quantitative analysis of their behaviour. Boundary image
evaluation is a crucial step in order to know how a boundary detection process
performs. The most extended way of evaluation is by comparing a boundary ex-
traction method to what a human has defined as a correct solution (groundtruth).
In recent years boundary evaluation has been approaches as a classification prob-
lem. Boundary matching is really a binary classification where each pixels is to be
labelled as a boundary or not. Then as we are dealing with a classification problem
the usual quality measures can be used: True Positives (TPs), True Negatives (TNs),
etc.

We can put boundary matching and quality evaluation in mathematical terms. In
this work, we consider all the images to have a dimension of M ×N , so that the
set of positions is Ω = {1, . . . ,M} × {1, . . . , N}. Then a binary image can be seen
both as a mapping Ω → {0, 1} and as a subset of Ω.

Let Ecd and Egt represent a candidate and a ground-truth boundary image, re-
spectively. Classification-based approaches to boundary quality evaluation are
focused on generating a confusion matrix when comparing Ecd (usually extracted
by automated method) with Egt (probably defined by a human). In this context
a false positive (FP) is a boundary pixel in Ecd with no correspondence in Egt,
while a false negative (FN) is a pixel in Egt that is not represented in Ecd. With
these statistical values most of the authors choose the Fα-measure to evaluate the
closeness of Ecd to Egt. The Fα-measure is given by:

Fα = PREC · REC

α PREC +(1 − α) REC

with PREC = TP
TP + FP and REC = TP

TP + FN , where α is a parameter modulating the
relevance of PREC and REC
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In order to avoid a too strict count of correct correspondence the techniques used
to build confusion matrices permit to take into account a certain spatial tolerance
in the boundary pixel matching.

In order to extract those measures, different approaches exist in the literature. In
this work we review them and build a taxonomy based on their initial inspiration
and nature. We classify them in four main strategies and experiment with one
technique of each type:

• Distance-based Matching (DbM) using the Euclidean metric.

This approach consists in validating those boundary pixels in a candidate
image (Ecd) which are close enough (under a threshold) to the ground-
truth image (Egt).

• Area-based Matching (AbM) using a circular structuring element.

This matching technique base its process in considering an area of
influence around the boundary pixels, quantifying the pixels as correct
boundaries when the areas of both Ecd and Egt overlap. The area of
influence is defined as a radius around boundary pixels and acts as the
threshold.

• Correspondence-based Matching (CbM) using the CSA algorithm [116].

This strategy acts as a one-to-one matching between the boundary pixels
in Ecd to those in Egt considering a given tolerance to count valid pixels.

• Pixelwise validation (Pv) using the constraints by Estrada and Jepson [72].

This approach use the boundary pixels surroundings of both images, Ecd

and Egt, to decide the validity of the boundaries in Ecd.

In our study we perform three experiments using images provided by the BSDS500
set [64]:

• First experiment: We measure the Pearson correlation between the F0.5 values
obtained with each one of the considered matching techniques.
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• Second experiment: We measure the Equal-Sorting Ratio (ESR) between two
measures, q1, q2, over a set of triplets of unrepeated ground truth images
(Egt, Ecd1, Ecd2). The ESR is the ratio of triplets which satisfies q1(Egt, Ecd1) ≥
q1(Egt, Ecd2)) if and only if q2(Egt, Ecd1) ≥ q2(Egt, Ecd2)).

• Third experiment: We repeat the first and second experiment but compar-
ing an automatic boundary extraction (Canny method) with human-made
solutions (ground-truth).

For each one of the experiments we test the considered approaches with different
tolerance distances t = {2.5, 5, 10} and analyse how this parameter affects the
matching process.

After the completion of the work we can conclude that there is not a substantial
difference between the different strategies and all of them perform with similar
results even though their nature are substantially different. The two main events
that can affect the quality of the evaluation are, on one hand, that the maximum
tolerance distance to consider as correct a boundary is quite high, and on the other
hand, that the boundary image to evaluate contain a higher number of spurious
elements near the real boundaries.

This section of the thesis is associated with the following publication:

• C Lopez-Molina, C. Marco-Detchart, B De Baets, Member, H Bustince, and S.
Member, “A survey on matching algorithms for boundary image comparison
and evaluation”, IEEE Transactions on Image Processing,
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2.6 Optical images-based edge detection in
Synthetic Aperture Radar images

In this work we tackle the problem edge detection for Polarimetric Synthetic Aper-
ture Radar (PolSAR) images. We modify the gravitational edge detection proposed
by Lopez-Molina et al. [112] using a variation in the neighbourhood selection.
Concretely we use the approach proposed by Fu et al. [117]. Because of the lack of
specifically designed techniques for SAR imagery [117] on of the possibilities to
work with this type of data is to adapt techniques from classical imagery. The main
problem with SAR images lies in speckle, which can be approached by adapting
the properties of optical images technique to that of the SAR images or pre-process
SAR images by filtering them and apply the original techniques.

In classical imagery when going through edge detection a unique band is considered,
that is, we are dealing with grey-scale images. SAR imagery is composed of more
than one band, recovering information from different polarizations. This variety of
information permits to compensate the possible presence of speckle noise. Then,
we have to tackle the fact that we need to aggregate information, but this task can
be done at different moments in the process.

We consider two processing alternatives:

• DAB: edge Detection on non-binary images, Aggregation of the resulting
non-binary images, Binarization.

• ADB: Aggregation of non-binary images, edge Detection on the resulting
non-binary image, Binarization.

Along with those approaches we analyse in the pre-processing step the use of
different filters. Among others, we experiment with the well-known Enhanced Lee
filter [118] and the filter proposed by Torres et al. [119].

Within this work we can conclude that the use of both filtering and an adapted
neighbourhood approach along with the aggregation of the different SAR image
bands improve the reduction of speckle noise and hence permit the extraction of
better defined edges.
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This section of the thesis is associated with the following publication:

• G. P. Silva, A. C. Frery, S. Sandri, H. Bustince, E. Barrenechea, and C. Marco-
Detchart, “Knowledge-Based Systems Optical images-based edge detection in
Synthetic Aperture Radar images”, Knowledge-Based Systems, vol. 87, pp. 38–
46, 2015
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2.7 Conclusions

In this Ph.D. thesis we have analysed uncertainty in the context of comparison
and managed to propose new ways of working with it and take it into account,
analysing the effects of the new concepts in image processing. To do so we have
studied different mathematical aspects of the comparison theory and presented
some expressions to deal with different types of data and applications.

On one hand, we have dealt with uncertainty in the context of radial and interval-
valued data and measured similarity over this specific type of data, studying the
specificities of each of them. In this particular case we have studied different
aspects, among others, the needed properties to take into account when dealing
with radial data and the use of a total order for intervals as well as the preservation
of the with of the interval considered.

On the other hand, we have studied the particular case of edge detection and
performed and adaptation of the gravitational technique for edge detection to work
with a specific case of Polarimetric Synthetic Aperture Radar (PolSAR) images. Also
in this context we have studied the use of OD monotone functions to deal with
feature extraction in images. With these experiment we show that our methods
surpasses the Canny method and combining it with other edge detection approaches
to build a consensus detector we obtain the best performance.

Finally, as a closing work, and to study the role of comparison in the evaluation
of boundary detection we have studied the different matching methods of the
literature used to compare a solution obtained for boundary detection and a real
solution made by an expert. The different feature matching techniques analysed
showed that they are equivalent, while the tolerance distance is not too high or
there is not to much noise (spurious elements) near real boundaries.
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2.8 Future research lines

From the experience gathered in the development of this dissertation, it seems
clear that there is no universal, generic framework for comparison tasks. In fact,
such a framework might not be reachable, considering the differences introduced
in the comparison task by factors such as cardinality of data, uncertainty, or even
application-related restrictions. Anyhow, we consider it would be a fair goal and,
regardless of the difficulties I preview, it should be tackled.

In order to ease the task of producing this framework, an evident option is to merge
the developments which we already published in a generalization effort. As an
example, an intermediate framework could be considered to embrace both interval-
data and radial data. Such an effort would lead to comparison tools with great
application in geometrical problems, as well as a great asset for computer vision
problems. As an idea, the radial data framework could be adapted to consider an
interval-valued representation. This would open a great horizon of possibilities in
terms of concepts and discussions on how to interpret, e.g. interval-valued angles
or orientations, also permitting the incorporation of OD-monotone functions.

From a practical point of view, there is a list of applications which could benefit
from the mathematical developments presented in this dissertation. For example,
the use of radial comparison measures could be ported to multichannel images, in
which gradients are multichannel. As well as, it could be also adapted to multi-scale
or self-adapting approaches. In this regard, comparison measures shall be used
not only for pattern matching, but also for other tasks, e.g. texture measurements
or denoising. Such tasks should not only restrict to application-neutral computer
vision, and might be also oriented towards problem-specific operators.
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2.9 Conclusiones (versión en español)

En esta tesis hemos analizado la incertidumbre en el contexto de la teoría de la com-
paración y propuesto nuevas formas de trabajar con ella y considerarla, analizando
los efectos de los nuevos conceptos desarrollados en tareas de procesamiento de
imagen. Para ello hemos estudiado diferentes aspectos matemáticos de la teoría
de la comparación y presentado una serie de expresiones para poder trabajar con
diferentes tipos de datos y aplicaciones.

Por un lado, hemos trabajado con la incertidumbre en el contexto de datos radiales
e intervalo-valorados y medido la similitud en estos tipos de datos, estudiando
las especificidades de cada uno de ellos. Para ello, hemos estudiado diferentes
aspectos, entre los que encontramos las propiedades específicas a tener en cuenta
cuando trabajamos con datos radiales y el uso de ordenes totales para intervalos
así como la conservación de la amplitud del intervalo considerado.

Por otro lado, hemos estudiado una adaptación del algoritmo gravitacional para
detección de bordes para poder trabajar con el caso específico de imágenes de Radar
de Apertura Polarimétrica Sintética (PolSAR en inglés), y hemos estudiado también
el uso de funciones monótonas direccionalmente ordenadas para la extracción de
características en imágenes. Los experimentos realizados en este contexto muestran
que los métodos propuestos superan la método de Canny y a su vez, combinando
nuestra propuesta con otros extractores de bordes para construir un detector basado
en el consenso obtenemos los mejores resultados.

Finalmente, como trabajo de clausura, hemos estudiado los diferentes métodos
de evaluación de calidad de la literatura utilizados para la comparación de una
solución obtenida en extracción de bordes y su solución real dada por un experto.
Las diferentes técnicas de comparación de características analizadas resultan ser
equivalentes, mientras el valor de tolerancia no sea demasiado alto o no haya
demasiada presencia de ruido (elementos extraños) cerca de los bordes reales.
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applied  to fingerprint  analysis.  First,  we study  the  similarity  of  scalar  and  non-scalar  radial  data,  elab-
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1. Introduction

The ability to quantify the similarity between two  objects in a
given universe is a pillar in applied fields of research. Historically,
this quantification has been based on metrics, which are able to
capture, in a sensible (and coherent) manner, the proximity of any
two objects in a measurable universe. Metrics hold very interesting
properties, specifically triangular inequality, which preserves the
notion that the shortest path between two objects is the straight
one. However, they also impose the need for the representation of
the objects in a metric space, as well as notions (e.g., transitivity),
which are not natural in certain scenarios [1].

When it comes to measuring dissimilarity between multivalued
data, Lp metrics often come as a straightforward option; the most
relevant case is p = 2, which recovers the Euclidean metric. The Lp

metric has been long criticized, specially regarding its low accu-
racy in capturing perceptual dissimilarities. For example, Attneave
stated that the assumption that the psychological space is Euclidean

∗ Corresponding author.
E-mail addresses: cedric.marco@unavarra.es (C. Marco-Detchart),
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carlos.lopez@unavarra.es (C. Lopez-Molina), bustince@unavarra.es (H. Bustince),
mikel.galar@unavarra.es (M.  Galar).

in its character is exceedingly precarious [2]. Obviously, there exist
other metrics yielding more (perceptually) accurate measurements
of dissimilarity, specially when they are designed for well-defined
scenarios [3,4]. The debate about the restrictivity of the requisites
imposed by metrics is still open [5]. Literature contains both practi-
cal [6], and theoretical criticisms. Authors as Tversky [7] or Santini
and Jain [5] criticized the necessity of imposing metric conditions
to Similarity Measures, as well as the representation of objects in
metric spaces, given that they are often missing in human under-
standing. Tversky [7,8] also revisited the necessity of symmetry and
the directional nature of comparisons in certain scenarios. Finally,
the low representativity of the values given by metrics for large-
range comparisons has also been under debate [9,10].

Different mathematical theories have tackled the modelling of
similarity with tools other than metrics, leading to what Zadeh
referred to as a vast armamentarium of techniques for comparison
[11]. In fact, even axiomatic representations of non-metric com-
parison frameworks have appeared in the literature (e.g., [7] for
set-based similarity, or [12,13] for T-indistinguishability). In the
context of fuzzy set theory, a range of authors have elaborated on
the semantic interpretation of similarities and dissimilarities [5],
since Zadeh introduced similarity as an extension of equivalence
[11]. This is natural, considering that the concepts of proximity and
similarity (as well as ordering or clustering) are strongly related
to human interpretation, and hence prone to be tackled in fuzzy

http://dx.doi.org/10.1016/j.asoc.2016.05.003
1568-4946/© 2016 Elsevier B.V. All rights reserved.
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Fig. 1. Examples of singular points detected on fingerprints extracted from the NIST-4 dataset [19]. The deltas, represented as triangles, are triangular-like ridge confluences,
while cores, represented as circles, take place at curly ridge structures.

terms. A large variety of proposals have appeared for modelling
both similarity and dissimilarity; in this work we focus our inter-
est on two of them: Restricted Equivalence Functions (REFs) for the
comparison of membership degrees and Similarity Measures (SMs)
for the comparison of fuzzy sets on discrete universes [14].

In  this paper we propose a definition of the concept of REFs
and SMs  for radial data. This study is motivated by the increas-
ing relevance of radial data in real applications, especially in those
demanding the extraction of information by means of computer
vision techniques. Very often, computer vision handles radial data
in different flavours (e.g., angular, vector or tensorial data [15]) and
consequently demands well-defined operators for different tasks,
including data comparison. Typically, the study of radial data has
been restricted to radial statistics, which mostly study the fitting
and analysis of well-known distributions on radial set-ups. To the
best of our knowledge, there are no studies on the quantification of
the similarity of elements in a radial universe. This situation has led
many researchers to use ad-hoc operators to deal with the special
conditions of the data, instead of creating a framework in which
different operators can be encompassed. For this reason in this
work we develop a framework aiming at easing the comparison
of radial data. More specifically, we define Restricted Radial Equiv-
alence Functions (RREFs), as well as Restricted Similarity Measures
(RSMs), which attempt to mimic  the behaviour of REFs and SMs  in
radial universes.

As  a case of study, we present an application of RREFs and RSMs
to biometric identification, specifically to singular point detection
in fingerprint recognition [16]. Fingerprints can be seen as a set of
ridges (lines) that represent the relief of the skin in the fingertip
surface. Hence, their analysis is often based on studying the line
patterns in a local or semi-local basis. Within fingerprint analy-
sis, a fundamental operation is the detection and localization of
the so-called Singular Points (SPs), which are structural singulari-
ties in the ridges (see Fig. 1). SP detection is often related to specific
occurrences in the orientation of the ridges of neighbouring regions,
which are usually found using semi-local analysis [17] or complex
convolution filters [18].

On this account, a simple yet effective framework for SP detec-
tion is presented in this paper by means of RREFs and RSMs,
which shows the usefulness and flexibility of these new meas-
ures. Furthermore, other well-known SP detection algorithms have
been used as a baseline for performance evaluation [20,21]. In this
comparative analysis we have considered two different types of
databases: NIST-4 database [19], the most commonly used finger-
print database and synthetic fingerprint databases generated by
SFinGe.1

The remainder of the work is as follows. In Section 2 we review
the concepts of REF and SM,  as well as some standard notation
on radial data. Section 3 is devoted to introduce the concepts of

1 Synthetic Fingerprint Generator: http://biolab.csr.unibo.it/sfinge.html.

RREF and RSM. Both RREF and RSM are used in Section 4, in which
we present our proposal for SP detection in fingerprints. Section 5
includes an experimental study in which we illustrate the perfor-
mance of our SP detection method, compared to other well-known
methods in the literature. Finally, Section 6 gathers some conclu-
sions and a brief discussion on potential future evolutions of our
method.

2. Preliminaries

Among the areas in which fuzzy set theory has played a rele-
vant role, data similarity modelling is one of the most prominent.
The reason is that the natural concepts of similarity, closeness or
likeliness are inherently bounded to human interpretation. Hence,
different proposals have appeared to effectively model the compar-
ison of pieces of information. Among these, we  find fuzzy metric
spaces [6], with interesting advantages over classical metric spaces
in terms of interpretability [22] or equivalence and Similarity Meas-
ures [14], which we take as inspiration to develop measures that
can handle radial data. Next, we  recall the concepts of REF and SM.

Definition 1. A continuous, strictly decreasing function n : [0,
1] → [0, 1] such that n(0) = 1, n(1) = 0 and n(n(x)) = x for all x ∈ [0,
1] (involutive property) is called strong negation.

Definition 2. [14] A mapping r : [0, 1]2 → [0, 1] is said to be a
Restricted Equivalence Function (REF) associated with the strong
negation n if it satisfies the following:

(R1)  r(x, y) = r(y, x) for all x, y ∈ [0, 1];
(R2) r(x, y) = 1 if and only if x = y;
(R3)  r(x, y) = 0 if and only if {x, y} = {0, 1};
(R4) r(x, y) = r(n(x), n(y)) for all x, y ∈ [0, 1];
(R5)  For all x, y, z, t ∈ [0, 1], such that x ≤ y ≤ z ≤ t then r(y, z) ≥ r(x,

t).

Note that (R5) means that, for all x, y, z ∈ [0, 1], if x ≤ y ≤ z then
r(x, y) ≥ r(x, z) and r(y, z) ≥ r(x, z).

REFs attempt to capture the perceived similarity between two
values in [0, 1], which in fuzzy set theory usually represent mem-
bership degrees. It is usual to construct REFs from a pair of
automorphisms of the unit interval, as proposed in [14], although
alternative methods have also been studied [23].

Definition 3. A continuous, strictly increasing function ϕ : [a,
b] → [a, b] such that ϕ(a) = a and ϕ(b) = b is called automorphism
of the interval [a, b] ⊂ R.

Proposition 1. [14] Let ϕ1, ϕ2 be two automorphisms of the interval
[0, 1]. Then

r(x, y) = ϕ−1
1 (1 − |ϕ2(x) − ϕ2(y)|)

is a REF associated with the strong negation n(x) = ϕ−1
2 (1 − ϕ2(x)).
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Fig. 2. Restricted Equivalence Functions (REFs) created from automorphisms in the unit interval as in Proposition 1.

Example. Let ϕ1(x) = x and ϕ2(x) = √
x, then

r(x, y) = 1 − |√x − √
y| (1)

is a REF associated with n(x) = (1 − √
x)2.

Fig. 2 contains the visual representation of several REFs con-
structed following Proposition 1. Note that in this work we are
referring to REFs in the original sense, although the concept has
been exported to, e.g., interval data [24]. While REFs are useful
to compare scalar data (membership degrees), Similarity Meas-
ures were developed to compare non-scalar data. Even though the
measures were initially designed to compare fuzzy sets on discrete
universes, they can be further applied to many other objects (e.g.,
vectors or matrices). Similarity Measures were originally proposed
by Liu [25] and its definition is trivially applied to [0, 1]k.

Definition 4. [25] A mapping s : [0,1]k × [0,1]k → R
+ is called

k-ary Similarity Measure (SM) associated with the strong negation
n if it satisfies the following:

(S1) s(x, y) = s(y, x) for all x, y ∈ [0, 1]k;
(S2) s(x, n(x)) = 0 if and only if xi ∈ {0, 1} for all i ∈ {1, . . ., k} and

n(x) = (n(x1), . . ., n(xk));
(S3) s(z, z) = max

(x,y ∈ [0,1]k)
s(x,y) for all z ∈ [0, 1]k;

(S4) For all x, y, z, t ∈ [0, 1]k, if x ≤ y ≤ z ≤ t then s(y, z) ≥ s(x, t) where
x ≤ y implies that xi ≤ yi for all i ∈ {1, . . ., k}.

Similarly to what happens for REFs, the property (S4) is equiv-
alent to: For all x, y, z ∈ [0, 1]k, if x ≤ y ≤ z then s(x, y) ≥ s(x, z) and
s(y, z) ≥ s(x, z).

Similarity Measures (SMs) can be constructed in different ways,
although the most popular method originates from the combina-
tion of REFs and aggregation functions [26].

Definition 5. A mapping f : [0, 1]k → [0, 1] is called k-ary aggre-
gation operator if it satisfies the following:

(AO1) If xi = 0 for all i ∈ {1, . . ., k}, then f(x) = 0;
(AO2) If xi = 1 for all i ∈ {1, . . ., k}, then f(x) = 1;
(AO3) f is increasing in all of its arguments.

Proposition 2. [14] Let r be a REF and let f be a k-ary aggregation
function such that f(x) = 0 if and only if xi = 0 for all i ∈ {1, . . ., k} and
f(x) = 1 if and only if xi = 1 for all i ∈ {1, . . ., k}. The function s[f,r] : [0,
1]k × [0, 1]k 	→ [0, 1], given by

s[f,r](x,y) = f (r(x1, y1), . . ., r(xk, yk)) (2)

is a k-ary Similarity Measure which satisfies the following:

• s[f,r](x, y) = s[f,r](y, x) for all x, y ∈ [0, 1]k;
• s[f,r](x, n(x)) = 0 if and only if xi ∈ {0, 1} for all i ∈ {1, . . ., k} and

n(x) = (n(x1), . . ., n(xk));
• s[f,r](x, y) = 1 if and only if xi = yi for all i ∈ {1, . . ., k};
• For all x, y, z, t ∈ [0, 1]k, if x ≤ y ≤ z ≤ t then s[f,r](y, z) ≥ s[f,r](x, t)

where x ≤ y implies that xi ≤ yi for all i ∈ {1, . . ., k};
• s[f,r](x, y) = s[f,r](n(x), n(y)) for all x, y ∈ [0, 1]k.

Next, we include some conventions on the use of radial data
that will hold in the remainder of this work. In order to face those
cases in which two angles represent the same direction (e.g., �/2
and (5�)/2), an equivalence relation R is defined.

Let a, b ∈ R. We say that aRb if and only if a = b + 2k�, where
k ∈ Z. In this way, the equivalence class [a] = {b | bRa} is the set
containing all the data associated with the same direction. In the
same way, any semiopen interval whose width is 2� (i.e., an interval
of the form [ω,ω + 2�[) is the quotient set (a set which contains one
element and only one of each equivalence class). In particular, the
intervals [0, 2�[ and [−�, �[ are the most frequently used quotient
sets in radial data.

In this work we consider the quotient set �= [0, 2�[ and we
define on � the classical operations sum (⊕) and difference (�),
given by a ⊕ b = [a + b] and a � b = [a − b] where [t] denotes the only
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element z ∈ � such that zRt. Under these conditions, we refer to
mirroring as the mapping: m : � −→ � such that m(a) = a ⊕ � .

In order to properly explain our incoming proposal on the quo-
tient set �, we present the general definition of metric.

Definition 6. A function d : U → R
+ is called metric on U if it

satisfies the following:

(D1)  d(a, b) = 0 if and only if a = b;
(D2)  d(a, b) = d(b, a) for all a, b ∈ U;
(D3) d(a, c) ≤ d(a, b) + d(b, c) for all a, b, c ∈ U.

3. Comparison of radial data

As reported by Fisher [27], radial data has been a subject of anal-
ysis since mid-18th century. However, most of the literature on
radial data is based on adapting the usage of distributions to the
circular set-up, probably because data analysis for natural sciences
was the field in which radial data was first studied [28,29].

One  of the open problems in radial data is data comparison. In
fact, to the best of our knowledge, no explicit mention to the quan-
tification of similarity between two angles has been performed in
the literature. There have been concepts such as the sample median
direction [27] or the sample modal direction [30], and metrics such
as the angular metric on [0, 2�[ (d*(a, b) = min(|b − a|, 2� − |b − a|)),
which represents the amplitude of the shortest arc encompassing
two angles. However, no development has been made on inter-
pretable measures able to adapt to human perception or evaluation.
This section is devoted to develop functions that are able to measure
the perceived similarity between scalar and vector angular data.
Section 3.1 covers the comparison of scalar radial data, whereas
Section 3.2 covers the comparison of vector radial data.2

3.1. Restricted Radial Equivalence Functions

The comparison of linear data has produced a vast amount of
literature, despite coming from a relatively simple concept. The
concept of similarity becomes much more intricate when applied
to radial data. In this section we define operators that model the
comparison of elements in a radial context �, all inspired by the
operators in Section 2.

Definition 7. A mapping r� : �2 → [0, 1] is called a Restricted
Radial Equivalence Function (RREF) associated with the metric d
if it satisfies the following:

(RR1)  r�(a, b) = r�(b, a) for all a, b ∈ �;
(RR2) r�(a, b) = 1 if and only if d(a, b) = 0;
(RR3) r�(a, b) = 0 if and only if d(a, b) is maximum;
(RR4) r�(a, b) = r�(m(a), m(b)) for all a, b ∈ �;
(RR5) For all a, b, c, d ∈ �, if d(b, c) ≤ d(a, d), then r�(b, c) ≥ r�(a, d).

Definition 7 is not a direct extension of Definition 2 to radial data.
The differences arise from the use of distances in (RR5) instead of
orders (as in (R5)). Nevertheless, this change is due to the difficul-
ties in the interpretation of orders in radial universes. Despite this
modification, we believe that the spirit and semantics of RREFs are
those of REFs.

2 There exist in the literature certain controversy w.r.t. the most adequate name
of  radial data, including angular data or radial data. In this manuscript we  adhere to
radial.

In this work, we only consider RREFs associated with the angular
metric d*(a, b) = min(|b − a|, 2� − |b − a|) but many other metrics are
also eligible, e.g.,:

d(a, b) =

⎧⎨
⎩

0 if a = b,

� if d∗(a, b) = �,

�/2 otherwise.

Proposition 3. Let r� be a RREF associated with the metric d*. For
all a1, b1, a2, b2 ∈ �, if d*(a1, b1) = d*(a2, b2) then r�(a1, b1) = r�(a2,
b2).

Proof. Let a1, b1, a2, b2 ∈ � such that d*(a1, b1) = d*(a2, b2).
According to (RR5), d*(a1, b1) ≤ d*(a2, b2) implies r�(a1, b1) ≥ r�(a2,
b2). Analogously, d*(a2, b2) ≤ d*(a1, b1) implies r�(a2, b2) ≥ r�(a1,
b1) so the equality holds.�

Corollary 1. Let h : �2 → [0, 1]. If h satisfies (RR5) with respect to
the metric d* then it also satisfies (RR4).

Proof. Trivial by Proposition 3 since d*(a, b) = d*(m(a), m(b)).�

Following the construction of REFs, we also define a new
possible construction method for RREFs, which is also based on
automorphisms.

Proposition 4. Let ϕ and   be automorphisms of the intervals [0,
1] and [0, �], respectively. The mapping t : �2 → [0, 1] given by

t(a, b) = ϕ−1
(

1 −
(

1
�
 (d∗(a, b))

))
(3)

is  a RREF.

Proof. Direct by the properties of the metric d*.�
Some  examples of RREFs constructed as in Proposition 4 are

included in Fig. 3.

3.2.  Radial Similarity Measures

Definition  8. A mapping s� : �k × �k → R
+ is said to be a k-ary

Radial Similarity Measure (RSM) associated with the metric d* if it
satisfies the following:

(SR1)  s�(a, b) = s�(b, a) for all a, b ∈ �k;
(SR2)  s�(a, b) = 0 if and only if d*(ai, bi) = � for all i ∈ {1, . . .,  k};
(SR3)  s�(c, c) = Maxa,b ∈ �ks�(a, b) for all c ∈ �k;

(SR4)  For all a, b, c, d ∈ �k, if d*(a, d) ≥ d*(b, c) then s�(a, d) ≤ s�(b,
c),  where d*(a, d) ≥ d*(b, c) implies that d*(ai, di) ≥ d*(bi, ci)
for  all i ∈ {1, . . .,  k}.

RSMs can be constructed from RREFs, aggregating their results
over each element, as it is done for SMs.

Proposition 5. Let r� be a RREF and let f be a k-ary aggregation
function such that f(x) = 0 if and only if xi = 0 for all i ∈ {1, . . .,  k}
and f(x) = 1 if and only if xi = 1 for all i ∈ {1, . . .,  k}. The function
s�[f,r� ]

: �k × �k , given by

s�[f,r� ]
(a, b) = f (r�(a1, b1), . . .,  r�(ak, bk)) (4)

is  a k-ary Radial Similarity Measure that satisfies

• s�[f,r� ]
(a, b) = s�[f,r� ]

(b, a) for all a, b ∈ �k;

• s�[f,r� ]
(a, b) = 0 if and only if d*(ai, bi) = � for all i ∈ {1, . . .,  k};

• s�[f,r� ]
(a, b) = 1 if and only if ai = bi for all i ∈ {1, . . .,  k};
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Fig. 3. Restricted radial equivalence functions created as in Proposition 4 from automorphisms in the unit interval (ϕ) and in [0, �] ( ).

• For  all a, b, c, d ∈ �k, if d*(a, d) ≥ d*(b, c) then s�[f,r� ]
(a, d) ≤

s�[f,r� ]
(b, c), where d*(a, d) ≥ d*(b, c) implies that d*(ai, di) ≥ d*(bi,

ci) for all i ∈ {1, . . .,  k}.
• s�[f,r� ]

(a, b) = s�[f,r� ]
(m(a), m(b)) for all a, b ∈ �k where

m(a) = (m(a1), . . .,  m(ak)).

4. Template-based Singular Point Detection

In this section we present a SP detection method based on
RSMs and RREFs. Section 4.1 introduces the problem of SP detec-
tion, while Section 4.2 presents the template based SP detection
method and Section 4.3 outlines the resulting algorithm.

4.1.  Fingerprint classification and singular point detection

Fingerprint-based identification is the most popular type of bio-
metrical identity authentication systems. These systems carry out
the authentication analysing the ridge patterns in the surface of
the fingertips. There are two main tasks that can be performed in
the context of fingerprint analysis, namely identification and veri-
fication. The former term refers to the localization of an individual
in a database by the usage of an input fingerprint. The latter term
refers to confirming whether an input fingerprint corresponds to a
certain individual in the database. In both cases, having an accurate
way to perform one-to-one fingerprint comparisons is critical [31].

The most common approach to decide whether two fingerprints
are produced from the same fingertip is to compare local ridge
features, usually, the so-called minutiae, which are local discon-
tinuities or anomalies in the ridge pattern [32,33]. Examples of
minutiae are ridge breaks and bifurcations. The whole process of
deciding whether two fingerprints belong to the same individual is
known as matching [34,35,31,36].

Fingerprint  matching is not trivial, and very often demands a
certain computational effort. This is not a problem in fingerprint
verification (since the input fingerprint is only compared with those
corresponding to the claimed identity), but it becomes critical in
fingerprint identification. For this reason, several strategies have
been developed to minimize the number of comparisons to be per-
formed. Among them, the most used one is classification [16,37,38],
which consists of classifying each fingerprint according to the gen-
eral structure of its ridges. In this way, when an input fingerprint
has to be matched, it only need to be compared with those belong-
ing to the same class. Although different classification schemes for
fingerprints have been proposed, most of the authors in fingerprint
analysis use the five major classes in the Henry system [39], namely
arch, tented arch, left loop, right loop, whorl. Examples of these five
classes can be found in Fig. 4. As a result of this division, the

number of comparisons in an identification process can be drasti-
cally reduced. Nonetheless, this task also holds great responsibility.
If a fingerprint is misclassified, the system will not be able to per-
form a correct identification or it may  lead to an increase in the
computational effort due to the greater number of comparisons
that must be carried out.

Fingerprint  classification is often defined as the problem of
learning a classifier able to determine the class to which a (previ-
ously unseen) fingerprint belongs to. In order to do so, the classifier
is usually learned from a set of labelled fingerprints. Fingerprints
are classified using global features from the ridge flow, instead of
local ones as it is done in fingerprint matching. Hence, fingerprint
classification consists of two  well-differentiated steps3: (a) feature
extraction, where fingerprints are processed to obtain their feature
vector, and (b) classification, where a classifier associates such vec-
tor to one of the classes. In this work we  focus on the first one; more
specifically, on the detection of the so-called singular points (SPs),
which are the most commonly used feature for classification.

SPs  are locations of the fingerprint in which abnormal ridge
patterns occur. In a fingerprint, two types of SPs can be found:
cores (where ridges tend to converge) and deltas (where the ridge
flow diverges). The importance of these features for classification
is clear, given that the classes in the Henry system can indeed be
described in terms of SPs:

• Arch:  There are no SPs, since the ridges flow horizontally produc-
ing  a small bump in the center of the fingerprint.

• Tented  Arch: There is one core and one delta, and the delta is under
the  core. The ridge flow is similar to that of the Arch type, but at
least  one ridge shows high curvature.

• Left  Loop: One core and one delta, and the delta is underneath
and  on the right of the core. One or more ridges flow from the
left  side, curve back, and disappear again to the left margin of the
fingertip.

• Right Loop: There is one core and one delta, and the delta is under-
neath  and to the left of the core. One or more ridges flow from the
right  side, curve back, and disappear again on the right margin of
the fingertip.

• Whorl: There are two  cores and two  deltas, and at least one of its
ridges  makes a full turn around the center of the fingerprint.

A proper description of SPs might be sufficient for the classifi-
cation of a fingerprint, by using a fixed rule-based strategy [17,41].
Still, learning-based approaches to classification have also been
proposed [42,43,21]. In general, it is accepted that accurate SP

3 We refer to [16,37] for a detailed review on the topic.
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Fig. 4. Examples of fingerprint for each of the five classes in the Henry classification system. These fingerprints have been created using the SFinGe tool [40,39].

detection is required in order to reach the highest possible accu-
racy in the posterior classification process. Note that, apart from
their relevance in fingerprint classification, SPs are also used for
some other processes on fingerprints, e.g., fingerprint alignment
with respect to a reference point [44] (usually a core point).

Despite  the importance of SPs, their extraction is still an
open problem for which proposals are constantly being presented
[16,45,46]. Most of such proposals are based on the semi-local anal-
ysis of the so-called Orientation Map  (OM), which is a block-based
description of the ridge flow in a fingerprint [47] (see Fig. 5(b) for
an example). The most relevant proposal for SP detection is the
Poincarè method [20]. In this method, each of the blocks in the Ori-
entation Map  is assigned a Poincarè index, which is computed as
the total rotation of the orientations around it. This index deter-
mines the presence of a SP, as well as its type (i.e., either core or
delta). A popular approach, also based on OMs, is the one proposed
by Nilsson and Bigun [18]. Additionally to the usage of complex
filters, an interesting novelty in [18] resides in the use of Squared
OMs (SqOM) [48], which are obtained by multiplying by 2 the ori-
entation at each block of an OM.  This simple representation of the
OM has the key advantage of producing rotation-invariant patterns
at SP locations. Fig. 5 illustrates how SPs look in both conventional
and Squared Orientation Maps.

In our SP detection framework we aim at exploiting the high
visibility of SPs in squared OMs. More specifically, we propose
to use a template-based approach to SP detection which con-
sists of comparing templates of SPs with the actual occurrences
of SqOMs. In this context, RREFs and RSMs become crucial, allow-
ing the comparison of the directions in the SqOMs with those
in the templates. Forthcoming sections provide details on our
method.

4.2. Template-based Singular Point Detection

Template matching procedures are recurrent solutions in digital
image processing. The reason is that the only a priori informa-
tion needed for such procedures is an expression of the goal
(which stems from the definition of the problem) and a compar-
ison measure able to quantify the similarity between the input
data and the template. Examples of template based methods for
image processing are some low-level feature detectors [49–51], or
composite object detectors (e.g., the eye detector in [52]). More-
over, despite template matching is conceptually simple, it has also
evolved into rather complex theories, among which we  can list, for
example, mathematical morphology [53]. In this section we present
a framework for SP detection based on templates, which is referred
to as Template-based SP Detection method (TSPD method). To the
best of our knowledge, no author has proposed to use templates
to represent SPs, probably due to the lack of reliable comparison
methods that can handle the matching score. The most similar
approach is the usage of complex filters [21], which are convolved
with the complex representation of the OM.  Notice that we also
include this method as baseline performer in the experiments. From
our point of view, template-matching is a natural way to search for
SPs, as long as the definition of SP is vague and based on human
perception.

Any template matching-based framework is composed of three
nuclear components: (a) an appropriate representation of the
input data, (b) templates describing the patterns to be searched
in terms of the input data, and (c) a reliable tool to quantify the
similarity between both representations. Since our framework is
deeply based on mimicking human perception, our aim is to main-
tain all three components as faithful as possible to the human

Fig. 5. Whorl image generated with SFinGe (a), together with its Orientation Map  (OM) (b) and Squared Orientation Map  (SqOM) (c). We  have considered a size of block of
12  × 12 pixels to optimize the visibility of each block.
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Fig. 6. Examples of delta SP templates generated as in Eq. (6) with different values of ˛.

comprehension of the problem. Consequently, we elaborate on
the ridge-like representation of fingerprints (a) and templates (b),
while employing RSMs for (c).

(a) Fingerprint representation using Orientation Maps. The most
obvious  representation for SP detection is the fingerprint image
itself,  since that is all the information humans need to locate SPs.
However,  this representation is inconvenient, and would dra-
matically  hinder the representation of the template. The reason
is  that, despite the fact that humans take as input the original
image,  the location of SPs is based on the analysis of the ridges.
That  is, the humans automatically convert the tone-based rep-
resentation  of the fingerprint into a ridge-based one.

The  representation of the ridges in an image has been often
studied,  and most of the authors agree on using OMs  [47]. These
maps  divide the fingerprint images into disjoint blocks, assign-
ing  to each of them a unique orientation given by the majority
ridge  orientation of its pixels. The best-known approach to OM
extraction  is the gradient method [45]. In this method, the
orientation of the ridges is computed pixel-wise as the per-
pendicular to the gradient direction. In Fig. 5 we  display the
OM  of a whorl type fingerprint. We  observe how cores take ori-
ented  cup-like patterns, which are dependent on the specific
orientation of each SP, and deltas produce triangular orientation
patterns.

In  this work we use the SqOMs, which are better fitted than
OMs  to our goals. This representation, as shown in Fig. 5,
produces  interesting changes in the representation of SPs. More
specifically,  it creates a rotation-invariant representation of
cores,  which are represented as either clockwise or anticlock-
wise  streams. Regarding deltas, the situation is not as positive,
since  their appearance does not become rotation-invariant. In
any case, using SqOMs simplifies the design of the templates,
and  is kept as standard representation in our framework.

(b) Templates for SP representation. The templates in our framework
must  be a minimal set such that it completely captures the way
in  which SPs appear (or are perceived) in a SqOM. Cores manifest
themselves as either clockwise or anticlockwise sequences of
orientations,  so there is only need for two templates. Moreover,
these  templates can be functionally represented in a very simple
manner.

Let  the origin (0, 0) represent the center of a template T of size
(2n  + 1) × (2n + 1). The orientation at a position (x, y) ∈ [−n, n]2

of a core template is given by

T(x, y) =
{

atan2 (y, x) if it is a clockwise core, and

atan2  (−y, −x) if it is an anticlockwise core,
(5)

where atan2 (y, x) is the well-known sign-sensitive version of
the arctangent of y/x, i.e., the angle of the vector (x, y) with
respect  to the positive x-axis. Note that the center of the tem-
plate  has no value, and hence contains no information for the
matching  process.

With  respect to deltas, the problem becomes trickier. In a gen-
eral  manner, a delta is represented as a triangular pattern in the

OM,  and becomes a symmetric pattern with vectors opposing
each  other in two orthonormal directions in the SqOM (see
Fig.  5). None of those representations is rotation invariant, and
consequently an orientation-dependent template must be cre-
ated to represent delta SPs. The orientation at a position (x,
y)  ∈ [−n, n]2 of a delta SP template with orientation  ̨ ∈ [0, �]
is  given by

T˛(x, y) = atan2(−(cos(˛)y − sin(˛)x), sin(˛)y + cos(˛)x). (6)

Fig. 6 displays the delta SP template for different values of ˛.
In  such images we can observe how the pattern is composed of
two  orthonormal axis, one acting as an attractor to the origin,
the  other one being a repeller to it.

According to the previous template definitions, there are two
decisions  to be made on the set of templates. The first decision
affects  the number of delta SP templates to be used, i.e., the
number  of different values of  ̨ to produce a pattern. One can
foresee  that a greater number of templates will lead to more
accurate  detections, although it might also lead to a better fit-
ting  of abnormal ridge occurrences that do not correspond to
SPs  as well as a higher computational effort. The second deci-
sion  relates to the size of the templates. Indeed the size of the
templates  must be dependent upon the size of the blocks in
the  SqOM, as well as upon the expected granularity of the fin-
gerprint  capturing process. These parameters are discussed in
Section 5.3.

(c) Comparison of SqOMs and templates. The comparison of SqOMs
and  templates is done in the simplest possible manner. For
each  template we  produce a similarity map  with the same
dimensions as the SqOM. Each position of such similarity maps
corresponds  to the value yielded by the RSM between the
template  and the neighbourhood of the block. Finally, all the
similarity  maps corresponding to the same type of SP are fused
using  the max  operator. In this way, we  obtain two  graded rep-
resentations  of the presence of SPs, one for each type of SP.

4.3. Proposed algorithm

The  ideas in Section 4.2 outline the complete algorithm for the
detection of SPs in fingerprints.

Note  that the algorithm is presented without giving the specific
parameters used to make it as general as possible. Furthermore,
these parameters must be chosen depending on the characteristics
of the images in which it is applied. For this reason, the complete
parameter specification used in this paper is shown in Section 5.3.
This algorithm is composed of the following phases, which are also
schematically represented in Fig. 7:

1. Dividing the image into non-overlapping blocks.
2.  Segmenting the image using the previous calculated blocks.

2.1.  Normalizing the image to a desired mean and variance, 100
and 1000, respectively [33].
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Fig. 7. Schematic representation of the proposed framework for singular point detection using orientation templates and Radial Similarity Measures, namely Template-based
Singular Point Detection (TSPD).

2.2. Segmenting the fingerprint and the background, by assign-
ing to the latter those blocks for which the variance of the
pixel intensities is greater than 30 [33].

3. Calculating the Orientation Map  over the segmented image.
3.1.  Computing the gradient at each pixel of the image (e.g., using

Sobel masks) [45].
3.2. Since the gradients are computed for each pixel and the

result of a single pixel may  not be reliable enough, the OM
is smoothed to get more accurate orientations. In order to
do so, the technique by Kass and Witkin [48] is used.

3.3. Creating the OM from the regularized orientations.
4. Creating the SqOM by multiplying by two the values in the OM.
5. Detecting singular points.

5.1.  Computing the similarity map  for each template. This is
done by comparing the elements of the SqOM and those in
each templates using the RSMs in Section 3.2.

5.2. Fusing the similarity maps corresponding to each type of
SP. This is done by obtaining, at each block, the maximum
response for the cores and, in parallel, for the deltas.

5.3. Selecting cores and deltas. This is done by taking the two
points with the highest local response for core and delta
similarity map  in parallel. They are considered as a SP if they
overall a threshold (Table 2).

Regarding computational times of the new technique, it is worth
mentioning that it is comparable to the others methods we have
used, Liu and Poincarè. All the methods compared share the same
computational process. They go trough the fingerprint image exe-
cuting a series of operations to get local maximums (SPs). One
of the differences between the new method and Liu’s method is
that it does not use multi-scale image processing. This leads to a
speed increase in execution time, but we consider it negligible. The
segmentation step and the creation of the OM are common to all
the methods and the complexity of the singular point extraction is
equivalent to Liu’s method. It may  be a slight increase in complexity
but it is imperceptible.

5. Experiments

The TSPD method has qualitative advantages compared to other
traditional methods, e.g., the simplicity of the process and its visu-
alization. However, it also demands a quantitative verification. In
this section we check the quantitative performance of our method
compared to that of the most relevant SP detection methods in the
literature. In Section 5.1, we review the datasets we  have used in
the comparison. Section 5.2 covers the details on the quantifica-
tion of the results, whereas Section 5.3 contains a detailed review
of the setting and parametrization of the SP detection methods. The
results, as well as a brief discussion, are included in Section 5.4.

5.1. Datasets

This experiment uses fingerprints from two different sources.
The first one is National Institute of Standards and Technology
Special Database 4 (NIST-4) [19]. This database contains rolled-ink
fingerprints from the FBI (Federal Bureau of Investigation) and is,
historically, the most used benchmark in the fingerprint classifi-
cation literature. NIST-4 contains 4000 fingerprints (of 512 × 480
pixels) taken from 2000 fingertips. Hence, there are two  captions
of each fingerprint. Note that in NIST-4, as well as in most of the
available databases, there is no ground truth with respect to the
position and type of the SPs. On this account, we have manually
labelled the first 1000 fingerprints from NIST-4 database to evalu-
ate the proposed method. Labelling has been carried out according
to the specifications given in the specialized literature and has been
thoroughly revised by multiple reviewers. In order to ease the pro-
cess of evaluating further proposals, our ground truth is available at
[54]. For illustrative purposes, Fig. 1 shows three fingerprints from
NIST-4, together with the corresponding ground truth data.

Even  though NIST-4 is widely accepted, it should also be
mentioned that in this dataset fingerprint classes are evenly rep-
resented, contrary to the reality in real-world databases, in which
their distribution is skewed. Moreover, the representation of rolled-
ink captions is limited, since most of the current applications
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Table  1
Setting of SFinGe for the generation of the three datasets used in the experimental
validation.

Scanner parameters

Acquisition area: 0 . 58′′ × 0 .77′′ (14.6 mm × 19.6 mm)
Resolution: 500 dpi, image size: 288 × 384
Background type: optical
Background  noise: default
Crop  borders: 0 × 0

Generation parameters

Seed: 1
Impression per finger: 25 (only the first one is used)
Class  distribution: natural
Generate  pores: enabled
Save  ISO templates: enabled

Output  settings

Output file type: WSQ

collect fingerprint images using optical sensors. For these rea-
sons, we also consider three additional databases generated with
SFinGe synthetic fingerprint generator [40,39]. Although synthetic,
SFinGe-generated fingerprints reflect in a faithful manner the dif-
ficulties in real scenarios. Moreover, the class distribution can be
adjusted to that in reality, that is, 3.7%, 2.9%, 31.7%, 33.8% and 27.9%
for arch, tented arch, right loop, left loop and whorl, respectively.
Finally, it is relevant that SFinGe itself provides the ground truth
data for the SPs, and hence the evaluation process becomes com-
pletely objective, whereas in NIST-4 there may  be a certain error
due to the manual labelling. The validity of the fingerprint images
produced by SFinGe is, in any case, widely accepted, to the point
that it has already been used in several editions of the fingerprint
verification competition (FVC) [55–59] with results similar to those
obtained with real fingerprint databases.

Aiming at simulating different scenarios, we have used three dif-
ferent quality profiles in the generation of fingerprints with SFinGe.
For each quality profile, we generate 1000 fingerprint images. The
following profiles are considered in our experiments (the rest of
the parameters used in SFinGe tool are presented in Table 1):

• High  quality no perturbations (HQNoPert): High quality finger-
prints  without any kind of perturbation;

• Default:  Middle quality fingerprints with slight localization and
rotation perturbations;

• Varying  quality and perturbations (VQandPert): Fingerprints with
different qualities are included, which are perturbed in location,
rotation  and geometric distortions.

The fingerprints generated for each quality profile are rather
different, and also significantly different from those in NIST-4. Fig. 8

includes one fingerprint for each of the above mentioned quality
profiles. In the remainder of this work, we refer to the datasets
created with profiles HQNoPert, Default and VQandPert as SFinGe
Dataset 1, 2 and 3, respectively.

5.2.  Quantification of the results

In this experiment we  have quantified the performance of
each procedure in correctly and accurately detecting SPs. For each
dataset we  have created a confusion matrix which accounts for the
success and fallout in SP detection. That is, given a dataset, a unique
confusion matrix is completed from the confrontation of the SPs
detected by the automatic method at each image and those in the
ground truth.

After  extracting the SPs for a fingerprint, we first compute
the best-possible matching between the cores in the automatic
solution to those in the ground truth, forcing a one-to-one corre-
spondence. Each matched core in the automatic solution accounts
for as True Positive (TP). Then, each unmatched core in the auto-
matic solution and in the ground truth are tagged as False Positive
(FP) and False Negative (FN), respectively. Finally, in case both the
automatic solution and the ground truth contain less than two
cores, the missing SPs are taken as correct predictions, and con-
sequently are accounted for as True Negatives (TN). The process
is analogous for the deltas, whose results are stored in a separate
matrix. Note that each fingerprint can generate more than two  hits
in the confusion matrix, if SPs are both missed (FNs) and misde-
tected (FPs).

It  should be considered that fingerprint analysis methods do
not necessarily locate a SP at the exact location a human does. This
is due to the discrete nature of data in an image and the scope
of the semi-local analysis of the image needed to locate the SPs.
Consequently, we consider some tolerance in the correspondence
of SPs tagged by the automatic method to those in the ground
truth. For the present experiment, this spatial tolerance is equiva-
lent to 5% of the image diagonal for SFinGe databases and 10% of
the image diagonal for NIST-4 database. The percentage difference
between databases arises from the size of SFinGe and NIST-4 finger-
prints (SFinGe ones are rectangular images, whereas NIST-4 ones
are squared, but also the thickness of the ridges vary due to their
different nature).

The  results generated with the above-mentioned procedure lead
to two  confusion matrices for each dataset, one for cores and one
for deltas. From such matrices, we  have generated different scalar
interpretations of the quality of the results. More specifically, we
consider precision (Prec) and recall (Rec), given by

Prec = TP
TP + FP

and Rec = TP
TP + FN

,  (7)

Fig. 8. Fingerprints generated using SFinGe with different quality profiles.
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respectively. Precision and recall quantify the ability of the auto-
matic method to obtain a reliable and complete collection of SPs,
respectively. They can be combined to produce a scalar represen-
tation of the overall quality of the process. In this work we adhere
to the so-called F-measure, given by

F = Prec  · Rec
0.5Prec + 0.5Rec

.  (8)

Moreover,  we also measure the percentage of fingerprints in
which all the SPs (cores and deltas) have been correctly detected.

5.3.  Experimental procedure

In this experiment, the results of the TSPD method have been
compared with those of the Poincarè method [20], as well as to
those of the one proposed by Liu [21]. The former method has
been selected because it is the most used SP detection method
in literature, whereas the latter method is included because it
holds strong similarities to ours. Aiming at carrying out a fair
comparison, the techniques used for OM computation, smoothing
and segmentation are identical for each of the three SP detection
methods.

Firstly, the image is divided into non-overlapping blocks of
5 × 5 pixels (for SFinGe databases) or 10 × 10 pixels (for the NIST-4
database). The different size between SFinGe and NIST-4 finger-
prints makes it necessary to use different block sizes, since the
ridges of the NIST-4 fingerprints are much thicker than SFinGe ones.
Secondly, the image is segmented (as explained in Section 4.3) to
avoid false SP detections in the ridge abnormalities occurring at
the fingertip boundaries. Thirdly, to compute the gradients for the
OM we use the well-known Sobel operators [60,61], which is the
most common option in fingerprint analysis. The resulting matrix
is the OM,  which is further regularized using a flat mask of 5 × 5
blocks [48]. Notice that we do not use a different size of mask
for NIST-4 fingerprints since the block size used to compute the
OM produces blocks with equivalent information regardless of the
database.

Once the OM is generated, each of the methods needs to be
customized, the details being as follows:

• TSPD  – Regarding the templates, we need to set their size and the
number  of delta SP templates to use. In order to preserve the fair-
ness  of the comparison, we have considered a very basic setup,
which  is the baseline configuration of the method. This configu-
ration  involves only 4 templates (two for each type of SP), all of
them  of 5 × 5 blocks. In the case of the delta SP templates, we  take
˛  ∈ {0, 90}. This is, objectively, the minimum set of templates to
be used.

As  for the RSMs, we consider 9 measures, in order to shed
light  on the impact the RSMs have on the final results. This way,
we  are able to show their flexibility, allowing one to define dif-
ferent  perceived similarities. The RREFs are constructed as in
Proposition  4 from pairs of automorphisms (ϕ,  ) given by

ϕ(x)  = xe1 and  (x) = xe2

�e2−1

where e1, e2 ∈ {0.5, 1, 2}. This leads to 9 different pairs of auto-
morphisms.

Each  combination of automorphisms, together with the thresh-
olds  used for the discrimination of the SPs, is shown in Table 2.
Although  some authors have studied the automatic determina-
tion  of thresholds [62,63], we avoid this step in order to preserve
the  clarity and reproducibility of the experiments. Several

Table 2
List  of configurations of the TSPD used in the experimental validation. For each of
the configurations, we list the exponents (e1, e2) of the automorphisms used in the
construction of the RREF, as well as the threshold used for SP discrimination.

Name e1 e2 Threshold

C1 0.5 0.5 0.70
C2 0.5 1.0 0.85
C3 0.5 2.0 0.95

C4 1.0 0.5 0.55
C5 1.0 1.0 0.70
C6 1.0 2.0 0.85

C7 2.0 0.5 0.35
C8 2.0 1.0 0.60
C9 2.0 2.0 0.75

thresholds have been tested before selecting one that has a pos-
itive  behaviour in all datasets (see Table 2).

• Poincarè  method – This method consists of computing the dif-
ference  between each orientation in a 3 × 3 neighbourhood and
its  clockwise successor. Those differences are further summed
up  to produce the Poincarè index in each block. This index takes
value  0, 1/2 or −(1/2), indicating the absence of a SP, the pres-
ence  of a core or the presence of a delta, respectively. Although
other  authors have used other configurations of the neighbour-
hood  [17,64], specially regarding its size, we maintain the widely
accepted  3 × 3 size.

• Liu’s  method – In this method the SqOM is filtered with first order
complex  filters at different scales. More specifically, the large
scale  filters are used to discriminate the real SPs from spurious
responses, while the fine scale ones determine their precise loca-
tion.  The threshold used for discrimination of SPs is set to 0.7
(this  threshold is manually set to measure the performance of the
method, as those in Table 2). Regarding the scales we  consider,
as  in [21], filters of s × s blocks, with s ∈ {3, 5, 7, 9}.

5.4.  Results

The results obtained for each method and dataset are listed in
Tables 3–6 , including:

• The  values at each position of the confusion matrix (as explained
in  Section 5.2), namely Prec, Rec and F. This information is dis-
played  for cores and deltas separately.

• The  average distance in pixels from the position at which the
matched  SPs where located and their position at the ground truth.
This  information is also listed individually for cores and deltas.

• The  arithmetic mean between the F value for cores and deltas,
namely  Combined F (Comb. F).

• The  percentage of fingerprints for which the method achieved
a  perfect detection (Perfect Detection Percentage, PDP). That is,
the rate of fingerprints for which each method gathered the exact
number  of SPs, all of them being located within the tolerance ratio
of 5% and 10% of the length of the image diagonal, for SFinGe and
NIST-4  fingerprints, respectively.

For each dataset, the best performer at each statistic is boldfaced.
The first fact to be noticed from the results of the experiment

is the great variability of performance across datasets, especially
between NIST-4 and SFinGe datasets. This is due to the low qual-
ity of NIST-4 fingerprints, which often include damaged fingertips,
hand-written annotations on the fingerprint margins, etc. This does
not reduce the representativity of the datasets generated with
SFinGe, since modern sensors for fingerprint recording produce
images that are closer to those by SFinGe than to those in NIST-
4. This variable behaviour has also been shown in previous studies
on the topic [37].
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Table  3
Results gathered by each SP detection method on the NIST-4 dataset (1000 fingerprints).

Quant. Template-based SP detection Poincaré Liu

C1 C2 C3 C4 C5 C6 C7 C8 C9

Cores
TP 897 875 868 853 911 912 867 850 915 759 922
FP  273 147 132 161 266 241 292 138 261 40 329
FN  93 115 122 137 79 78 123 140 75 231 68
TN  776 889 905 878 777 799 756 902 782 982 721

Prec  .767 .856 .868 .841 .774 .791 .748 .860 .778 .950 .737
Rec  .906 .884 .877 .862 .920 .921 .876 .859 .924 .767 .931
F  .831 .870 .872 .851 .841 .851 .807 .859 .845 .849 .823
Avg.  dist. 14.4 13.7 13.8 14.9 14.2 14 15.6 14.3 13.9 13.8 16.4

Deltas
TP  871 844 839 830 874 877 814 837 881 728 767
FP  340 176 159 188 393 351 335 163 426 53 29
FN  102 129 134 143 99 96 159 136 92 245 206
TN  731 884 898 879 682 722 754 897 648 1006 1011

Prec  .719 .827 .841 .815 .690 .714 .708 .837 .674 .932 .964
Rec  .895 .867 .862 .853 .898 .901 .837 .860 .905 .748 .788
F  .798 .847 .851 .834 .780 .797 .767 .848 .773 .830 .867
Avg.  dist. 11.2 10.4 10.3 11.3 11.1 10.6 12.1 11 10.7 13.5 11.5

Total
Comb.  F .815 .859 .861 .843 .811 .824 .787 .853 .809 .839 .845
PDP  56.70 68.10 69.90 63.00 54.50 58.70 48.10 66.90 52.80 66.40 54.50

Table 4
Results gathered by each SP detection method on the Sfinge Dataset 1 (1000 fingerprints, profile HQNoPert).

Quant. Template-based SP detection Poincaré Liu

C1 C2 C3 C4 C5 C6 C7 C8 C9

Cores
TP 1209 1215 1228 1157 1216 1230 1151 1165 1228 1187 1232
FP  1 0 1 0 0 0 16 0 3 0 58
FN  33 27 14 85 26 12 91 77 14 55 10
TN  757 758 757 758 758 758 742 758 756 758 702

Prec  .999 1 .999 1 1 1 .986 1 .998 1 .955
Rec  .973 .978 .989 .932 .979 .990 .927 .938 .989 .956 .992
F  .986 .989 .994 .965 .989 .995 .956 .968 .993 .977 .973
Avg.  dist. 7 6.7 6.4 7 6.8 6.4 7.2 6.9 6.5 4.7 7.2

Deltas
TP  736 725 723 709 747 753 705 714 754 700 717
FP  17 1 3 13 22 17 44 8 28 0 12
FN  32 43 45 59 21 15 63 54 14 68 51
TN  1216 1231 1229 1219 1211 1215 1192 1224 1204 1232 1220
Prec  .977 .999 .996 .982 .971 .978 .941 .989 .964 1 .984
Rec  .958 .944 .941 .923 .973 .980 .918 .930 .982 .911 .934
F  .968 .971 .968 .952 .972 .979 .929 .958 .973 .954 .958
Avg.  dist. 4.4 4.1 4 4.2 4.3 4.3 4.5 4.1 4.3 4.5 4.9

Total
Comb.  F .977 .980 .981 .958 .980 .987 .943 .963 .983 .966 .966
PDP  92.40 93.50 94.30 85.20 93.60 95.90 80.50 87.00 94.60 88.80 89.90

Regarding the NIST-4 dataset, we find that TSPD-C3 is the best
performer, obtaining the greatest PDP (69.90%). Although TSPD-
C2 and TSPD-C8 stay close to this result, configurations such as
TSPD-C7, TSPD-C9 and TSPD-C5 lead to the worst outcome. The rel-
evance of the RSMs is clearly illustrated with these results. Besides,
TSPD-C5 (when ϕ and   are the identity function) is not the best
performer. From this fact, we infer that choosing suitable automor-
phisms on the construction of the RREFs significantly improves the
result of the TSPD method. In Table 3 we also observe that Liu’s
method obtains a PDP similar to our worst configurations (54.50%).
Despite being the best method detecting cores (922), Liu’s method
also produces 329 false cores detections, significantly more than the
Poincarè method (40) and TSPD-C3 (132). The behaviour is opposed

regarding deltas, where the precision of Liu’s method is very high
(29 FPs and 1011 TNs), at the cost of very little recall (767 TPs).4

Otherwise, the method of Poincarè presents a high PDP, but is not
the best performer because of its difficulties in detecting cores (231
FNs) and deltas (245 FNs). From these results, we understand that
TSPD-C3 obtains the best results in general terms, showing the most
equilibrated behaviour between successes (TPs, TNs) and failures
(FPs, FNs).

4 This behaviour of Liu’s method is consistent with that observed by Galar et al.
[37].
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Table  5
Results gathered by each SP detection method on the Sfinge Dataset 2 (1000 fingerprints, profile Default).

Quant. Template-based SP detection Poincaré Liu

C1 C2 C3 C4 C5 C6 C7 C8 C9

Cores
TP 1295 1299 1312 1256 1305 1319 1254 1264 1315 1230 1317
FP  11 9 9 6 11 14 26 6 20 16 76
FN  37 33 20 76 27 13 78 68 17 102 15
TN  659 660 659 663 659 654 648 663 649 655 594

Prec  .992 .993 .993 .995 .992 .989 .980 .995 .985 .987 .945
Rec  .972 .975 .985 .943 .980 .990 .941 .949 .987 .923 .989
F  .982 .984 .989 .968 .986 .990 .960 .972 .986 .954 .967
Avg.  dist. 7.3 6.9 6.7 7.4 7.1 6.7 7.7 7.2 6.7 4.9 7.6

Deltas
TP  713 705 703 685 720 727 670 693 727 651 698
FP  73 31 36 44 87 80 105 38 117 29 18
FN  44 52 54 72 37 30 87 64 30 106 59
TN  1172 1213 1209 1202 1159 1164 1151 1208 1132 1218 1225

Prec  .907 .958 .951 .940 .892 .901 .865 .948 .861 .957 .975
Rec  .942 .931 .929 .905 .951 .960 .885 .915 .960 .860 .922
F  .924 .944 .940 .922 .921 .930 .875 .931 .908 .906 .948
Avg.  dist. 4.8 4.6 4.5 4.9 4.7 4.7 5.2 4.7 4.6 4.8 5.6

Total
Comb.  F .953 .964 .964 .945 .954 .960 .918 .952 .947 .930 .958
PDP  85.60 89.20 90.00 82.70 86.00 88.50 74.50 84.50 84.40 79.30 87.20

Table 6
Results gathered by each SP detection method on the Sfinge Dataset 3 (1000 fingerprints, profile VQandPert).

Quant. Template-based SP detection Poincaré Liu

C1 C2 C3 C4 C5 C6 C7 C8 C9

Cores
TP 1140 1141 1167 1080 1148 1176 1080 1082 1167 1019 1172
FP  27 20 21 15 30 37 30 12 42 26 107
FN  50 49 23 110 42 14 110 108 23 171 18
TN  786 792 791 798 784 776 786 801 772 790 705

Prec  .977 .983 .982 .986 .975 .969 .973 .989 .965 .975 .916
Rec  .958 .959 .981 .908 .965 .988 .908 .909 .981 .856 .985
F  .967 .971 .981 .945 .970 .979 .939 .947 .973 .912 .949
Avg.  dist. 7.1 6.6 6.4 7.1 6.8 6.4 7.3 6.9 6.4 5.1 7.4

Deltas
TP  656 651 649 629 663 669 620 633 670 612 639
FP  96 55 60 67 114 107 111 61 131 34 13
FN  42 47 49 69 35 29 78 65 28 86 59
TN  1212 1250 1245 1237 1195 1200 1197 1244 1176 1274 1290

Prec  .872 .922 .915 .904 .853 .862 .848 .912 .836 .947 .980
Rec  .940 .933 .930 .901 .950 .958 .888 .907 .960 .877 .915
F  .905 .927 .923 .902 .899 .908 .868 .909 .894 .911 .947
Avg.  dist. 4.9 4.6 4.5 4.8 4.8 4.7 5.3 4.7 4.7 4.8 5.4

Total
Comb.  F .936 .949 .952 .924 .935 .944 .904 .928 .934 .912 .948
PDP  83.10 86.60 88.50 77.70 83.10 86.70 72.60 79.30 83.50 74.60 84.70

For the SFinGe datasets, we observe that in Tables 4 and 5, TSPD-
C3 obtains the best PDP results (95.90% and 88.50% respectively),
although in Table 6 the best one is TSPD-C6 (90.00%). The general
trend observed in Tables 4–6 is that the TSPD method is usually
able to outperform both the Poincarè and Liu’s methods, although
certain configurations fail to do so. A remarkable fact is the abso-
lute absence of core FPs when using the TSPD method, which hardly
ever account for more than 30 of such mistakes over 1000 finger-
prints. This leads to high Prec and, as a consequence, to high F. The
situation with the delta SPs is similar as it is for core SPs, but not as
positive for the TSPD method. In Dataset 1, the results are similar
to those of the cores, but the situation changes in Dataset 2 and is
accentuated in Dataset 3.

Summing up, from the results in the present experiment we
consider the TSPD method to be competitive with the contending
methods. Although the TSPD method requires setting the param-
eters of the RSMs and thresholds, similar situations occurs with
most of the SP detection methods (including Liu’s method). Inter-
estingly, the RREF leading to the best results in the TSPD method
is not that constructed with the pair of automorphisms C5, indi-
cating that non-linear modelling of dissimilarity can play a role in
real applications. Specifically, the best-performing version is that
using the pair of automorphisms C3, since it generally outperforms
all of the other versions of the TSPD method in terms of Combined
F and PDP, the SFinGe Dataset 1 being the sole exception to this
fact.
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It is worth noting that the TSPD methods have advantages over
its counterparts other than pure performance. For example, it holds
interesting visualization properties when it comes to error correc-
tion, partly derived from the simplicity of the method. Indeed, we
have not exploited the potential use of multi-scale templates yet
as Liu’s method does.

Attending  at the results obtained by the RREFs and RSMs, we
can state that this extension of the REF and SM concepts considered
in Fuzzy Sets theory is appropriate to deal with radial data. Even
though radial data may  be different from scalar data to some extent,
vagueness and imprecision are inherent to both types of data in real
applications. Hence, concepts from Fuzzy Sets are also interesting
to deal with radial data, as we have shown in this paper. Moreover,
the parametrizable construction proposed in Section 5.3 allows us
to provide a flexible and configurable model, whose results can be
adapted to each application.

6.  Conclusions

This work has two main contributions. First, we  have adapted
the concepts of Restricted Equivalence Function (REF) and Similar-
ity Measure (SM) to radial environments. The resulting operators,
namely Restricted Radial Equivalence Function (RREF) and Radial
Similarity Measure (RSM), capture the expected behaviour and
semantics of the original operators, but at the same time embrace
the cyclic nature of radial data. In both cases, we have analysed its
properties and proposed construction methods. Second, we  have
proved the validity of the operators in a complex scenario, such
as fingerprint analysis. In order to do so, we have presented a
framework for Singular Point (SP) detection based on templates,
which requires the use of RSMs at the template matching stage.
This framework, namely Template-based Singular Point Detection
(TSPD) method, shows promising results and illustrate the useful-
ness of RSMs for the comparison of radial data in scenarios in which
imprecision and ambiguities occur.

We expect to expand the present work in two different lines of
research. As for the theoretical aspects, we aim at adapting to radial
data several other operators with special relevance in fuzzy set the-
ory, e.g., aggregation operators or dissimilarity functions. Regarding
the TSPD method, we intend to improve it by incorporating notions
from multi-scale image processing, as well as by designing self-
adapting RREFs which are able to modify their behaviour depending
on the characteristics of the fingerprint image and/or the ridge
Orientation Map.
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1. Introduction

In recent times, interval-valued fuzzy sets [11] are increasingly used in the same problems as standard type-1 fuzzy 
sets (from now on, simply referred to as fuzzy sets). This is due to the fact that, among other factors, they provide a 
way to represent the uncertainty inherent to the construction of an appropriate fuzzy set to represent a given setting. 
In this way, they may improve the numerical results of applications, as can be seen in [1–6,16,17,27,35]. Since many 
applications of fuzzy sets make use of similarity measures [7,9,10,29] (see also the recent works [14,15]) in order to 
determine the degree of resemblance between fuzzy sets, interval-valued similarities have become also an object of 
interest for some authors [18,24,30,41].

However, two observations can be stated regarding the recent literature about interval-valued similarities, and, more 
generally, about interval-valued fuzzy sets:

1. in most of the cases, only the partial order between intervals is considered;
2. the widths of the intervals are not considered.

In our opinion these two features are obstacles to further development of the theory and applications of interval-valued 
fuzzy sets.

Taking these factors into account, the objective of this paper is to construct similarity measures between interval-
valued fuzzy sets in such a way that:

a) a total order for intervals (not only partial) is used;
b) the widths of intervals are considered.

With respect to objective (a), while in some applications it is not necessary for intervals to be comparable, in other 
cases (e.g. decision making or classification) in order to get a solution, it is important that any two intervals can be 
compared. Furthermore, it is desirable that some well-known notion which provides good results in the fuzzy setting 
and which involve the ordering of elements (such as OWA operators, Choquet integrals and so on) can be generalized 
in a natural way.

Regarding objective (b), we assume that the width of the membership interval of an element in a given set reflects 
the lack of knowledge of the precise membership degree of the element to the fuzzy set. In other words, we adopt an 
epistemic interpretation of the membership interval capturing incomplete information in respect to the actual degree 
of membership. Note that this interpretation is akin to that of a confidence interval and is in contrast to an alternative, 
ontic representation, where the interval itself represents the actual interval-valued membership degree [20]. Thus, 
as we adopt an epistemic interpretation of the membership interval, we assume that there is one actual, real-valued 
membership degree of an element inside the membership interval of possible membership degrees, and consequently 
two elements with the same interval membership need not necessarily have the same (unknown) actual real-valued 
membership degree.

To achieve objectives (a) and (b), we first introduce new definitions of interval-valued aggregation functions and 
interval-valued restricted equivalence functions, both in line with the observations stated above. It is worth pointing 
out that this is the first time in the literature that interval functions are studied according to these observations, and we 
assume that the approach can be utilized in a wide range of problems featuring intervals in the future.

Ideally, the definition of width-preserving interval-valued restricted equivalence functions (IVREF) would have to 
take into account the width of the inputs in every case. In other words, the width of the output interval should always 
be related by some axiom to the width of the input intervals, and not only when the input intervals have the same 
length. In this way, the epistemic interpretation would be fully preserved. However, it is not clear which this relation 
exactly should be and furthermore, how such IVREF could be constructed taking into account the complexity of the 
analysis and the construction when general admissible orders are involved. For this reason, the proposed set of axioms 
provides a first step in the desired direction.

To show the validity of our approach, we present an application using an expression of the proposed interval-valued 
similarity measure taking into account the width of the intervals which provides better results than other methods that 
can be found in the literature. In particular, we describe the application of our similarity in stereo image matching and 
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show that it outperforms the classical methods that make use of interval-valued fuzzy sets but do not take into account 
the width of the membership intervals.

The paper is organized as follows. We start with some preliminaries, then we study the concepts of interval-valued 
restricted equivalence functions and interval-valued aggregation functions preserving the widths of intervals. In Sec-
tion 4, we introduce the definition of width-based interval-valued similarity measures and study different construction 
methods. In Section 5, we present an illustrative example of application of width-based interval-valued similarity 
measures in stereo image matching. We finish with some conclusions and references.

2. Preliminaries

In this section, we introduce several well known notions and results which are necessary for our subsequent devel-
opments.

We start recalling the idea of aggregation function. For more details, see [31].

Definition 2.1. An aggregation function is a non-decreasing function M : [0, 1]n → [0, 1] with M(0, . . . , 0) = 0 and 
M(1, . . . , 1) = 1.

An aggregation function M : [0, 1]n → [0, 1] is called idempotent if M(x, . . . , x) = x for every x ∈ [0, 1], and 
it is called symmetric if M(x1, . . . , xn) = M(xσ(1), . . . , xσ(n)) for every x1, . . . , xn ∈ [0, 1] and every permutation 
σ : {1, . . . , n} → {1, . . . , n}.

Among the most relevant classes of aggregation functions we can mention the following.

Definition 2.2. A t-norm is a symmetric aggregation function T : [0, 1]2 → [0, 1] such that T (x, 1) = x and 
T (T (x, y), z) = T (x, T (y, z)) for every x, y, z ∈ [0, 1].

Definition 2.3. A t-conorm is a symmetric aggregation function S : [0, 1]2 → [0, 1] such that S(x, 0) = x and 
S(S(x, y), z) = S(x, S(y, z)) for every x, y, z ∈ [0, 1].

Among the most significant t-norms we can mention the minimum or the product, whereas among the most relevant 
t-conorms we can cite the maximum or the probabilistic sum SP (x, y) = x + y − xy [31].

In this work we are going to deal with closed subintervals of the unit interval. We denote by L([0, 1]) the set of 
closed subintervals of the unit interval, that is:

L([0,1]) = {[X,X] | 0 ≤ X ≤ X ≤ 1}.
We use capital letters to denote elements in L([0, 1]). The width of the interval X ∈ L([0, 1]) is denoted by w(X), 

where w(X) = X − X. An interval function f : (L([0, 1]))n → L([0, 1]) is called width-preserving (or w-preserving, 
for simplicity) if, for any X1, . . . , Xn ∈ L([0, 1]) such that w(X1) = . . . = w(Xn), it holds that w(f (X1, . . . , Xn)) =
w(X1).

We work on a finite universe U = {u1, . . . , un}. An interval-valued fuzzy set (IVFS) on the universe U is a mapping 
A : U → L([0, 1]). The class of all fuzzy sets in U is denoted by FS(U) and the class of all interval-valued fuzzy sets 
in U by IV FS(U). Given A ∈ IV FS(U), its entropy is defined as

ε(A) =
n∑

i=1

(A(ui) − A(ui)) .

Note that this entropy measures how far from fuzzy sets a given IVFS is, see [8] for more details. In this sense, 
although we have kept the original name of entropy which appears in [8], it is a non-specificity index for interval 
membership grades which differs from the usual fuzzy entropy related to crispness of fuzzy sets.

Another key notion in this work is that of order relation. Recall that an order relation on L([0, 1]) is a binary 
relation ≤ on L([0, 1]) which is reflexive, symmetric and transitive. An order relation on L([0, 1]) is called total or 
linear if any two elements of L([0, 1]) are comparable, i.e., if for every X, Y ∈ L([0, 1]), X ≤ Y or Y ≤ X. An order 
relation on L([0, 1]) is partial if it is not total.
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Although many different orders can be provided in L([0, 1]), we are interested in the lattice extension of the 
ordering in [0, 1], that we will denote by �L and which is the partial order given by:

[X,X] �L [Y ,Y ] if X ≤ Y and X ≤ Y . (1)

It is worth mentioning that with this order, any two degenerate intervals (i.e., intervals of width 0) are comparable. 
In particular, this implies that if the interval-valued fuzzy sets we are going to deal with are in fact fuzzy sets (that is, 
if all the membership intervals have width 0), the order between the interval-valued fuzzy sets is the same as the order 
between the fuzzy sets. In other words, if we use this order (or any extension of it), we can extend algorithms in the 
fuzzy setting which make use of the order in a straightforward way. This is the order relation most widely used in the 
literature [13].

We denote by ≤L any order on L([0, 1]) (which can be partial or total) with 0L = [0, 0] as its minimal element 
(that is, 0L ≤L X for all X ∈ L([0, 1])) and 1L = [1, 1] as its maximal element (that is, X ≤L 1L for all X ∈ L([0, 1])). 
To denote a total order on L([0, 1]) with the same minimal and maximal elements, we use the notation ≤TL.

Example 2.4.
(i) A total order on L([0, 1]) is, for example, the Xu and Yager’s order ≤XY (see [40]):

[X,X] ≤XY [Y ,Y ] if

{
X + X < Y + Y or

X + X = Y + Y and X − X ≤ Y − Y .
(2)

This definition of Xu and Yager’s order was originally provided for Atanassov intuitionistic fuzzy pairs [40].
(ii) Another example of total order is provided by the lexicographical order with respect to the first variable, ≤lex1, 

and with respect to the second variable, ≤lex2, which are defined, respectively, by:

[X,X] ≤lex1 [Y ,Y ] if

{
X < Y or

X = Y and X ≤ Y .

[X,X] ≤lex2 [Y ,Y ] if

{
X < Y or

X = Y and X ≤ Y .

Regarding total orders on L([0, 1]), we are going to consider the so-called admissible orders, whose definition we 
recall now.

Definition 2.5. [12] An admissible order on L([0, 1]) is a total order ≤T L on L([0, 1]) such that it refines the partial 
order �L, that is, for every X, Y ∈ L([0, 1]), if X �L Y then X ≤T L Y .

An interesting feature of admissible orders is that they can be built using aggregation functions, as stated in the 
following result.

Proposition 2.6. ([12]) Let M1, M2 : [0, 1]2 → [0, 1] be two aggregation functions such that for all X, Y ∈ L([0, 1]), 
the equalities M1(X, X) = M1(Y , Y ) and M2(X, X) = M2(Y , Y ) can only hold simultaneously if X = Y . The order 
≤M1,M2 on L([0, 1]) given by

X ≤M1,M2 Y if

{
M1(X,X) < M1(Y ,Y ) or

M1(X,X) = M1(Y ,Y ) and M2(X,X) ≤ M2(Y ,Y )

is an admissible order on L([0, 1]).

Example 2.7.
(i) Xu and Yager’s order is an example of admissible order with M1(x, y) = x+y

2 and M2(x, y) = y.
(ii) The lexicographical orders ≤lex1 (≤lex2) are also examples of admissible orders with M1(x, y) = x (M1(x, y) =

y) and M2(x, y) = y (M2(x, y) = x).
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(iii) More generally, if, for α ∈ [0, 1] we define the aggregation function

Kα(x, y) = (1 − α)x + αy

then, for α, β ∈ [0, 1] with α �= β , we can obtain an admissible order ≤α,β just taking M1(x, y) = Kα(x, y)

and M2(x, y) = Kβ(x, y). Observe that this operator Kα corresponds to Hurwicz’s criterion [26] for balancing 
pessimism and optimism under uncertainty. See [12] for more details.

2.1. Interval-valued aggregation functions with respect to a partial order

The definition of aggregation function has been extended to the interval-valued setting with respect to the order �L

in a straightforward way [28].

Definition 2.8. Let n ≥ 2. An (n-dimensional) interval-valued (IV) aggregation function in L([0, 1]) with respect to 
�L is a mapping MIV : (L([0, 1]))n → L([0, 1]) which verifies:

(i) MIV (0L, · · · , 0L) = 0L.
(ii) MIV (1L, · · · , 1L) = 1L.

(iii) MIV is a non-decreasing function with respect to �L.

Remark 2.9. Note that this definition does not fully recover the usefulness of the usual definition of aggregation 
functions in the real setting (defined with respect to a total order) since there may exist intervals which are not 
comparable by means of the order �L, so the full meaning of monotonicity is lost.

It is quite easy to get IV aggregation functions in the sense of Definition 2.8, as the following examples show.

Example 2.10. ([33]) If A : [0, 1]2 → [0, 1] is an aggregation function, then the function MA : L([0, 1])2 → L([0, 1])
given by

MA([X,X], [Y ,Y ]) = [A(X,Y ),A(X,Y )],
is an IV aggregation function in L([0, 1]) with respect to the order �L.

Moreover, if A, B : [0, 1]2 → [0, 1] are two aggregation functions such that A(x, y) ≤ B(x, y) for each x, y ∈
[0, 1], then

MA,B([X,X], [Y ,Y ]) = [A(X,Y ),B(X,Y )],
is an IV aggregation function in L([0, 1]) with respect to the order �L.

Example 2.11. The following functions are IV aggregation functions in L([0, 1]) with respect to the order �L.

• MIV ([X, X], [Y , Y ]) = [(XY )2, (XY)2],
• MIV ([X, X], [Y , Y ]) = [XY 1/2, (X + Y )/2].

2.2. Restricted equivalence functions

Comparison measures between fuzzy sets can be built using the notion of restricted equivalence functions. We 
recall now this notion. For more details, see [10].

Definition 2.12. A function R : [0, 1]2 → [0, 1] is called a restricted equivalence function (REF) if it satisfies:

1. R(x, y) = 0 if and only if {x, y} = {0, 1} (i.e., if and only if |x − y| = 1);
2. R(x, y) = 1 if and only if x = y;
3. R(x, y) = R(y, x) for all x, y ∈ [0, 1];
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4. If x ≤ y ≤ z, then R(x, z) ≤ R(x, y) and R(x, z) ≤ R(y, z) for all x, y, z ∈ [0, 1].

Example 2.13. For any p ∈ ]0, ∞[, the function Rp(x, y) = 1 − |x − y|p is a REF.

Remark 2.14. It is worth mentioning that, for some of our developments, we can consider the weaker condition

2’. R(x, x) = 1 for every x ∈ [0, 1]

instead of the stronger condition 2 in Definition 2.12. With this condition, we are recovering equivalence functions, 
see [22].

3. Width-preserving interval valued restricted equivalence functions

In this section, we propose a new definition of restricted equivalence functions (REF) in the interval-valued setting 
which takes into account the width of the inputs.

Definition 3.1. Let ≤L be an order on L([0, 1]). An interval-valued restricted equivalence function w.r.t. the order ≤L

is a function RIV : L([0, 1])2 → L([0, 1]) such that:

1. RIV (X, Y) = 0L if and only if {X, Y } = {0L, 1L};
2. RIV (X, X) = [1 − w(X), 1] for all X ∈ L([0, 1]);
3. RIV (X, Y) = RIV (Y, X) for all X, Y ∈ L([0, 1]);
4. If X, Y, Z ∈ L([0, 1]) are such that X ≤L Y ≤L Z and w(X) = w(Y) = w(Z), then RIV (X, Z) ≤L RIV (X, Y)

and RIV (X, Z) ≤L RIV (Y, Z).

Justification of the axioms.
1. Axiom 1. recovers the property required in the definition of REF in the real-valued setting [10].
2. The main difference with respect to the definition of REFs in the fuzzy setting arises in axiom 2. Note that we 

consider that the width of the membership interval of an element in a given set is a measure of the lack of knowl-
edge of the precise (real-valued) membership degree of that element, and it is assumed that the exact membership 
value is a value inside the membership interval. Thus, if two elements have the same interval memberships, this 
does not mean that their corresponding/underlying real-valued degrees of membership are the same. Hence it is 
natural to expect that we can not get less uncertainty when comparing them.

3. Symmetry is a natural requirement also demanded in the real-valued setting.
4. Regarding axiom 4., observe that in the real-valued case, a total order (i.e., the usual order between real numbers) 

is used, and hence any two valued obtained by means of a REF can be compared. If we consider that ≤L is a total 
order, we are also able to compare any two intervals that are obtained as the result of an interval-valued restricted 
equivalence function w.r.t. the order ≤L. Nevertheless, this axiom is more flexible, since also partial orders can be 
considered. By imposing the restriction that w(X) = w(Y) = w(Z), we are recovering the condition demanded 
in the real case, since if X, Y , Z are intervals which consist of a single point, it follows that w(X) = w(Y) =
w(Z) = 0.

Remark 3.2. As noted in the introduction, this definition does not take into account the width of the input intervals in 
every case, but we consider it to be a first step in this direction.

Example 3.3.
(i) A natural example of width preserving interval-valued restricted equivalence functions is the following:

Repis(X,Y ) = {1 − |x − y| | x ∈ X,y ∈ Y } ,

which exactly reflects the epistemic nature of X and Y , and is the interval extension of 1 − |x − y|. Note that, 
even if this function fulfils the four axioms in Definition 2.12, it does not take into account the width of the inputs. 
Note that Repis can also be expressed in terms of the endpoints of the intervals:
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Repis(X,Y ) = [1 − max
(
X − Y ,Y − X

)
,1 − max

(
0,max

(
X,Y

)− min
(
X,Y

))]
.

Furthermore, observe that in this case, if we take two intervals of the same width, as, for instance, X = [0.5, 0.7]
and Y = [0.6, 0.8], the result Repis(X, Y) = [0.7, 1] does not have the same width as the inputs.

(ii) However, it is possible to provide other examples of width preserving interval-valued restricted equivalence func-
tions such that, if the inputs have the same width, the output also has that same width. For instance, the function 
RIV : L([0, 1])2 → L([0, 1]) defined as:

RIV (X,Y ) = [max
(
0,1 − |Kα(X) − Kα(Y )| − 1

2
(w(X) + w(Y))

)
,

max
(
1 − |Kα(X) − Kα(Y )|, 1

2
(w(X) + w(Y))

)]
is, for every α ∈ ]0, 1], an example of IVREF w.r.t. any admissible order.

Note that in a sense this second example can be considered an approach similar to the Repis . We are taking into 
account specific points in the interval by means of Kα operators (without the need for bounds, as is the case for Repis). 
In particular, note that Repis can be written as:

Repis(X,Y ) = [ min
α,β∈[0,1]

(
1 − ∣∣Kα(X) − Kβ(Y )

∣∣) , max
α,β∈[0,1]

(
1 − ∣∣Kα(X) − Kβ(Y )

∣∣)] ,

but we can replace it by the following equivalent expression which depends only on α:

Repis(X,Y ) = [ min
α∈[0,1] (1 − |Kα(X) − K1−α(Y )|) , max

α∈[0,1] (1 − |Kα(X) − K1−α(Y )|)] .

Observe that RIV , which depends on the parameter α, is based on a similar idea as Repis (in the sense that they both 
generalize 1 − |x − y| to intervals) with the distinction that it is constructed directly in line with the intuition behind 
the notion of Kα,β order, i.e., the choice of α naturally depends on the considered order. Moreover, RIV also takes 
into account the width of the inputs intervals whereas Repis does not.

At the same time, if we take α = 0.5 and the intervals X = [0.3, 0.7] and Y = [0.5, 0.7], we obtain IVREF equal 
to [0.6, 0.9], - even though it is possible that the ‘real-value’ of both sets is exactly the same (0.7). On the other hand, 
if we use Repis , we see that the IVREF is equal to [0.4, 1], so we would recover the value 1.

Next we give a result regarding a monotonicity with respect to the widths of the inputs.

Proposition 3.4. Let X, Y ∈ L([0, 1]). If w(X) < w(Y), then, for any admissible order ≤T L, it follows that

RIV (Y,Y ) ≤T L RIV (X,X) .

Proof. It follows straightforwardly from Definition 3.1. �
Let us consider now the construction of examples of width-preserving IVREFs with respect to an admissible 

order. First of all, observe that if we consider and expression of the type RIV (X, Y) = {REF(x, y) | x ∈ X and y ∈
Y }, as the natural interval-valued extension of a real-valued REF function, RIV is a width-preserving IVREF with 
respect to an admissible order only if the second axiom in Definition 3.1 holds, and this happens if and only if 
REF(x, y) = 1 −|x −y|. This means that in order to get general construction methods of examples that can be useful 
for applications, we need to find new construction methods. Furthermore, and in order to build width-preserving 
similarity functions, we are interested in IVREFs which preserve the width of the input intervals if they are the same.

Our first step is the following lemma, which recovers a feature of admissible orders.

Lemma 3.5. Let X, Y ∈ L([0, 1]) be intervals such that w(X) = w(Y). Then

X �L Y if and only if X ≤T L Y

for any admissible order ≤T L.
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Proof. The proof follows from the observation that intervals with the same width are always comparable by the partial 
order �L and admissible orders refine the partial order �L. �

Now we discuss a procedure to build IVREFs which preserve the width of input intervals, and which is based on the 
use of Kα operators. Note that these operators can be viewed as choosing one representative point inside the intervals. 
Thus, in order to ensure that the axioms in the definition are fulfilled, we also must take into account the widths of the 
input intervals.

Theorem 3.6. Let α ∈]0, 1[, let M : [0, 1]2 → [0, 1] be an idempotent symmetric aggregation function and let R :
[0, 1]2 → [0, 1] be a restricted equivalence function. Then, the function RIV : L([0, 1])2 → L([0, 1]) given by

RIV (X,Y ) = [max
(
0,R (Kα(X),Kα(Y )) − M(w(X),w(Y ))

)
,max

(
R (Kα(X),Kα(Y )) ,M(w(X),w(Y ))

)]
(3)

is an IV restricted equivalence function w.r.t. any admissible order ≤TL. Moreover, RIV is w-preserving.

Proof. For simplicity we write R instead of R (Kα(X),Kα(Y )), and M instead of M(w(X), w(Y)). Then (3) can be 
simplified:

RIV (X,Y ) = [max
(
0,R−M

)
,max

(
R,M

)]=
{[R−M,R], if R ≥M,

[0,M], otherwise.
(4)

By (4) it is clear that RIV is well-defined.
Observe that RIV (X, Y) = 0L if and only if R = 0 and M = 0. The former holds if and only if {Kα(X), Kα(Y )} =

{0, 1}, which may happen if and only if {X, Y } = {0L, 1L}. So it follows that w(X) = w(Y) = 0 and we get the first 
condition in Definition 3.1.

The second condition in Definition 3.1 follows from the observations: R(Kα(X), Kα(X)) = 1 and M(w(X),

w(X)) = w(X).
Symmetry of RIV directly follows from the symmetry of R and M .
The fulfilment of the fourth condition in Definition 3.1 w.r.t. any admissible order follows from the monotonicity 

of R, Lemma 3.5, after observing that, if X ≤T L Y ≤T L Z and w(X) = w(Y) = w(Z), then Kα(X) ≤ Kα(Y ) ≤
Kα(Z).

Finally, the fact that RIV is w-preserving directly follows from Equation (4) and idempotency of M . �
We can use any REF R and any idempotent symmetric aggregation function M in Equation (3) to build an IVREF. 

Equation (3) can be simplified if some additional assumptions on R and M are imposed.

Corollary 3.7. Let α ∈]0, 1[, let M : [0, 1]2 → [0, 1] be an idempotent symmetric aggregation function such that 
M(x, y) ≤ min

(
(1 − α)x + αy, αx + (1 − α)y

)
for all x, y ∈ [0, 1], and let R : [0, 1]2 → [0, 1] be a restricted 

equivalence function such that R(x, y) ≥ 1 − |x − y| for all x, y ∈ [0, 1]. Then, the function RIV : L([0, 1])2 →
L([0, 1]) given by

RIV (X,Y ) = [R (Kα(X),Kα(Y )) − M(w(X),w(Y )),R (Kα(X),Kα(Y ))
]

(5)

is an IV restricted equivalence function w.r.t. any admissible order ≤TL. Moreover, RIV is w-preserving.

Proof. We only need to prove that R (Kα(X),Kα(Y )) ≥ M(w(X), w(Y)) for all X, Y ∈ L([0, 1]), since in that case 
Equation (5) is a special case of Equation (3). Due to the assumptions on M and R, it is enough to show that

1 − |Kα(X) − Kα(Y )| ≥ min
(
(1 − α)w(X) + αw(Y ),αw(X) + (1 − α)w(Y )

)
. (6)

Assume that Kα(X) ≥ Kα(Y ). Then

1 − |Kα(X) − Kα(Y )| = 1 − (1 − α)X − αX + (1 − α)Y + αY

and since
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1 ≥ X − Y = (1 − α)(X − Y ) + α(X − Y ) = (1 − α)(X − X + X − Y ) + α(X − Y + Y − Y ),

we have

1 − (1 − α)X − αX + (1 − α)Y + αY ≥ (1 − α)(X − X) + α(Y − Y ),

hence (6) is satisfied.
Now assume that Kα(X) < Kα(Y ). Then

1 − |Kα(X) − Kα(Y )| = 1 + (1 − α)X + αX − (1 − α)Y − αY

and since

1 ≥ Y − X = (1 − α)(Y − X) + α(Y − X) = (1 − α)(Y − Y + Y − X) + α(Y − X + X − X),

we have

1 + (1 − α)X + αX − (1 − α)Y − αY ≥ (1 − α)(Y − Y ) + α(X − X),

hence (6) is satisfied. �
Remark 3.8. Note that in the previous Corollary we are considering REF functions R which are greater than or equal 
to 1 − |x − y|, so in general, their interval extensions

RIV (X,Y ) = {R(x, y) | x ∈ X and y ∈ Y }
need not satisfy the axioms about width in Definition 3.1. However, we can make use of them to build new examples 
of width-preserving IVREFs, see also Example 3.11 below.

As a consequence, we show in the next Corollary that a width-preserving IVREF built as in Corollary 3.7 does 
not in fact decrease the width of the input intervals, even if the latter are different to each other, and the width of the 
resulting interval depends parametrically on α. Furthermore, if M = max, then the width of the output interval equals 
the maximum of the widths of the input intervals. Note that in the case of Repis this is not the case as, for instance, 
Repis([0.1, 0.9], [0.3, 0.5]) = [0.4, 1].

Corollary 3.9. Consider the interval-valued restricted equivalence function RIV constructed in Corollary 3.7. Then, 
for all X, Y ∈ L([0, 1]), it holds that

min(w(X),w(Y )) ≤ w(RIV (X,Y )) = M(w(X),w(Y )) ≤ min
(
(1−α)w(X)+αw(Y ),αw(X)+(1−α)w(Y )

)
.

Proof. The first inequality follows from the fact that an idempotent aggregation function is always greater than or 
equal to the minimum and the second inequality follows from the property of M assumed in Corollary 3.7. �

We can also prove the following result.

Lemma 3.10. If M1, M2 : [0, 1]2 → [0, 1] are idempotent symmetric aggregation functions, then the function M :
[0, 1]2 → [0, 1] given by

M(x,y) = min(M1(x, y),M2(x, y)),

for all x, y ∈ [0, 1], is an idempotent symmetric aggregation function.

Proof. The proof is straightforward. �
Example 3.11. Let us consider the construction of IVREF given by Corollary 3.7. Observe that the REF Rp defined 
in Example 2.13 satisfies assumption of the corollary: Rp(x, y) ≥ R1 = 1 − |x − y| for all x, y ∈ [0, 1] if and only if 
p ∈ [1, ∞[.
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(i) If we take α = 1/2 and M(x, y) = x+y
2 we get a class of IVREFs w.r.t. any admissible order:

R
p
IV (X,Y ) =

[
Rp

(
X + X

2
,
Y + Y

2

)
− w(X) + w(Y)

2
,Rp

(
X + X

2
,
Y + Y

2

)]

for p ∈ [1, ∞[.
(ii) If we take M(x, y) = min(x, y), a class of IVREFs w.r.t. any admissible order arises:

R
p,α
IV (X,Y ) = [Rp (Kα(X),Kα(Y )) − min(w(X),w(Y )),Rp (Kα(X),Kα(Y ))

]
for p ∈ [1, ∞[ and α ∈ ]0, 1[.

(iii) Let α ∈ [0, 1], it is easy to see that

min
(
(1 − β)x + βy,βx + (1 − β)y

)≤ min
(
(1 − α)x + αy,αx + (1 − α)y

)
for all β ∈ [0, 1] such that max(β, 1 − β) ≥ max(α, 1 − α). Hence, we get a more general class of IVREFs w.r.t. any 
admissible order than that in item (ii), if we take α ∈ ]0, 1[ and

M(x,y) = min
(
(1 − β)x + βy,βx + (1 − β)y

)
for β ∈ [max(α, 1 − α), 1] (or equivalently for β ∈ [0, min(α, 1 − α)]):

R
p,α,β
IV (X,Y ) =

= [Rp (Kα(X),Kα(Y )) − min
(
(1 − β)w(X) + βw(Y ),βw(X) + (1 − β)w(Y )

)
,Rp (Kα(X),Kα(Y ))

]
.

Note that for β = 1 (or equivalently for β = 0), we get the class described in item (ii).

Finally, Theorem 3.6 also allows us to provide conditions to have RIV (X, Y) = 1L.

Lemma 3.12. Let RIV : L([0, 1])2 → L([0, 1]) be defined as in Theorem 3.6. If M(x, y) = 0 if and only if x = y = 0, 
then RIV (X, Y) = 1L if and only if X = Y and w(X) = 0.

Proof. The proof is straightforward. �
3.1. Width-preserving IV aggregation functions

In order to build width-preserving similarity measures, one possibility is to aggregate width-preserving IVREFs in 
a suitable way. Specifically, it is desirable that the considered aggregation function takes into account the width of the 
input intervals.

As a first step towards this, we recall the definition of aggregation function in the interval-valued setting.

Definition 3.13. Let n ≥ 2. An (n-dimensional) interval-valued (IV) aggregation function in L([0, 1]) with respect to 
≤L is a mapping MIV : (L([0, 1]))n → L([0, 1]) which verifies:

(i) MIV (0L, · · · , 0L) = 0L.
(ii) MIV (1L, · · · , 1L) = 1L.

(iii) MIV is a non-decreasing function with respect to ≤L.

We say that MIV : (L([0, 1]))n → L([0, 1]) is a decomposable n-dimensional IV aggregation function associ-
ated with ML and MU , if n-dimensional aggregation functions ML, MU : [0, 1]n → [0, 1] exist such that ML ≤ MU

pointwise, and where

MIV (X1, . . . ,Xn) = [ML

(
X1, . . . ,Xn

)
,MU

(
X1, . . . ,Xn

)]
(7)

for all X1, . . . , Xn ∈ L([0, 1]).
The construction of IV aggregation functions with respect to admissible orders is not a trivial task, see [1]. We 

devote the next results to such a construction.
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Definition 3.14 ([1]). Let c ∈ [0, 1] and α ∈ [0, 1]. We denote by dα(c) the maximal possible width of an interval 
Z ∈ L([0, 1]) such that Kα(Z) = c. Moreover, for any X ∈ L([0, 1]), let

λα(X) = w(X)

dα(Kα(X))

where we set 0
0 = 1.

Proposition 3.15 ([1]). For all α ∈ [0, 1] and X ∈ L([0, 1]) it holds that

dα(Kα(X)) = ∧
(

Kα(X)

α
,

1 − Kα(X)

1 − α

)
,

where we set r
0 = 1 for all r ∈ [0, 1].

A construction method of IV aggregation functions w.r.t. ≤α,β is proposed in the following theorem, which makes 
use of aggregation functions.

Theorem 3.16. Let α, β ∈ [0, 1], β �= α. Let M1, M2 : [0, 1]n → [0, 1] be aggregation functions where M1 is strictly 
increasing. Then MIV : (L([0, 1]))n → L([0, 1]) defined by:

MIV (X1, . . . ,Xn) = Y, where

{
Kα(Y ) = M1 (Kα(X1), . . . ,Kα(Xn)) ,

λα(Y ) = M2 (λα(X1), . . . , λα(X2)) ,

for all X1, . . . , Xn ∈ L([0, 1]), is an IV aggregation function with respect to ≤α,β .

Proof. First observe that w(Y) = λα(Y )dα(Kα(Y )) and Y = Kα(Y ) − αw(Y ), Y = Kα(Y ) + (1 − α)w(Y ). Clearly, 
MIV is well defined. It suffices to show that MIV is an IV aggregation function.

(i) MIV (0L, · · · , 0L) = Y where Kα(Y ) = M1(0, . . . , 0) = 0. Moreover, if α �= 0, then λα(Y ) = M2(1, . . . , 1) = 1
and w(Y) = λα(Y )dα(Kα(Y )) = 1 · 0 = 0. If α = 0, then λα(Y ) = M2(0, . . . , 0) = 0 and w(Y) = λα(Y )dα(Kα(Y )) =
0 · 1 = 0. Hence, Y = [0, 0].

(ii) MIV (1L, · · · , 1L) = Y where Kα(Y ) = M1(1, . . . , 1) = 1. Moreover, if α �= 1, then λα(Y ) = M2(1, . . . , 1) = 1
and w(Y) = λα(Y )dα(Kα(Y )) = 1 · 0 = 0. If α = 1, then λα(Y ) = M2(0, . . . , 0) = 0 and w(Y) = λα(Y )dα(Kα(Y )) =
0 · 1 = 0. Hence, Y = [1, 1].

(iii) Let Xi ≤α,β Yi for all i = 1, . . . , n. Then Kα(Xi) ≤ Kα(Yi) for all i = 1, . . . , n and there are two cases:

1. There exists j ∈ {1, . . . , n} such that Kα(Xj ) < Kα(Yj ). Since M1 is strictly increasing, it follows that

M1(Kα(X1), . . . ,Kα(Xn)) < M1(Kα(Y1), . . . ,Kα(Yn)),

thus MIV (X1, . . . , Xn) <α,β MIV (Y1, . . . , Yn).
2. Kα(Xi) = Kα(Yi) for all i = 1, . . . , n. If β > α, then w(Xi) ≤ w(Yi) for all i = 1, . . . , n, hence λα(Xi) ≤ λα(Yi)

for all i = 1, . . . , n, thus M2(λα(X1), . . . , λα(Xn)) ≤ M2(λα(Y1), . . . , λα(Yn)), consequently MIV (X1, . . . ,
Xn) ≤α,β MIV (Y1, . . . , Yn). If β < α, then w(Xi) ≥ w(Yi) for all i = 1, . . . , n, hence λα(Xi) ≥ λα(Yi) for all i =
1, . . . , n, thus M2(λα(X1), . . . , λα(Xn)) ≥ M2(λα(Y1), . . . , λα(Yn)). As a consequence, MIV (X1, . . . , Xn) ≤α,β

MIV (Y1, . . . , Yn). �
The following construction methods provide IV aggregation functions w.r.t. ≤α,β which preserve the width of 

the input intervals. First of all, given an aggregation function M : [0, 1]n → [0, 1], the following two properties are 
considered:

(P1) M(cx1, . . . , cxn) ≥ cM(x1, . . . , xn) for all c ∈ [0, 1], x1, . . . , xn ∈ [0, 1].
(P2) M(x1, . . . , xn) ≤ 1 − M(1 − x1, . . . , 1 − xn) for all x1, . . . , xn ∈ [0, 1].
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Theorem 3.17. Let α, β ∈ [0, 1], β �= α. Let M1, M2 : [0, 1]n → [0, 1] be aggregation functions such that M1 is strictly 
increasing, M1(x1, . . . , xn) ≥ M2(x1, . . . , xn) for all x1, . . . , xn ∈ [0, 1], M1 or M2 satisfies property (P1) and M1 or 
M2 satisfies property (P2). Then MIV : (L([0, 1]))n → L([0, 1]) defined by:

MIV (X1, . . . ,Xn) = Y, where

{
Kα(Y ) = M1 (Kα(X1), . . . ,Kα(Xn)) ,

w(Y ) = M2 (w(X1), . . . ,w(Xn)) ,

for all X1, . . . , Xn ∈ L([0, 1]), is an IV aggregation function with respect to ≤α,β .
Moreover, if M2 is idempotent, then MIV is w-preserving.

Proof. We first show that MIV is well defined. Observe that

Y = [Y ,Y
]= [Kα(Y ) − αw(Y ),Kα(Y ) + (1 − α)w(Y )] .

Clearly, Y ≤ Y , hence we only need to prove that

1. Y ≥ 0: For α = 0 we have Y = M1(X1, . . . , Xn) ≥ 0 and for α ∈]0, 1] we have

Kα(Y ) = M1 (Kα(X1), . . . ,Kα(Xn)) ≥ αM2

(
Kα(X1)

α
, . . . ,

Kα(Xn)

α

)
≥ αM2 (w(X1), . . . ,w(Xn)) = αw(Y )

where the first inequality follows from the fact that M2 satisfies property (P1) and the second from the observation 
Kα(X) = (1 − α)X + αX ≥ α(X − X) = αw(X) for all X ∈ L([0, 1]).

2. Y ≤ 1: For α = 1 we have Y = M1(X1, . . . , Xn) ≤ 1 and for α ∈ [0, 1[ we have

Kα(Y ) + (1 − α)w(Y ) = M1 (Kα(X1), . . . ,Kα(Xn)) + (1 − α)M2 (w(X1), . . . ,w(Xn)) ≤
≤ M1 (Kα(X1), . . . ,Kα(Xn)) + (1 − α)M2

(
1 − Kα(X1)

1 − α
, . . . ,

1 − Kα(Xn)

1 − α

)
≤

≤ M1 (Kα(X1), . . . ,Kα(Xn)) + M2 (1 − Kα(X1), . . . ,1 − Kα(Xn)) ≤
≤ M1 (Kα(X1), . . . ,Kα(Xn)) + 1 − M2 (Kα(X1), . . . ,Kα(Xn)) = 1

where the first inequality follows from the observation 1 − Kα(X) = 1 − (1 − α)X − αX ≥ (1 − α)(X − X) =
(1 − α)w(X) for all X ∈ L([0, 1]), and the second and third ones from the assumptions of the theorem.

Now we prove that MIV is an IV aggregation function. (i) MIV (0L, · · · , 0L) = Y where Kα(Y ) = M1(0, . . . , 0) =
0 and w(Y) = M2(0, . . . , 0) = 0, hence Y = 0L. (ii) MIV (1L, · · · , 1L) = Y where Kα(Y ) = M1(1, . . . , 1) = 1 and 
w(Y) = M2(0, . . . , 0) = 0, hence Y = 1L. (iii) Let Xi ≤α,β Yi for all i = 1, . . . , n. Then Kα(Xi) ≤ Kα(Yi) for all 
i = 1, . . . , n and there are two cases:

1. There exists j ∈ {1, . . . , n} such that Kα(Xj ) < Kα(Yj ). Then

M1(Kα(X1), . . . ,Kα(Xn)) < M1(Kα(Y1), . . . ,Kα(Yn)),

since M1 is strictly increasing, thus MIV (X1, . . . , Xn) <α,β MIV (Y1, . . . , Yn).
2. Kα(Xi) = Kα(Yi) for all i = 1, . . . , n. If β > α, then w(Xi) ≤ w(Yi) for all i = 1, . . . , n, hence M2(w(X1), . . . ,

w(Xn)) ≤ M2(w(Y1), . . . , w(Yn)), consequently MIV (X1, . . . , Xn) ≤α,β MIV (Y1, . . . , Yn). If β < α, then 
w(Xi) ≥ w(Yi) for all i = 1, . . . , n, thus M2(w(X1), . . . , w(Xn)) ≥ M2(w(Y1), . . . , w(Yn)), consequently 
MIV (X1, . . . , Xn) ≤α,β MIV (Y1, . . . , Yn).
Finally, it is easy to check that MIV is w-preserving from the idempotency of M2. �

To clarify our results, we consider now the case where the aggregation functions that we use to build the width-
preserving IV aggregation function are given by a weighted arithmetic mean. This result will be relevant in the next 
section and for the application.
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Proposition 3.18. Let (v1, . . . , vn) ∈]0, 1]n be a weighting vector with v1 + . . . + vn = 1. Under the assumptions of 
Theorem 3.17, if M1(x1, . . . , xn) = M2(x1, . . . , xn) = v1x1 + . . . + vnxn for all x1, . . . , xn ∈ [0, 1], then MIV is the 
decomposable IV aggregation function associated with ML and MU where ML = MU = M1.

Proof. Let X1, . . . , Xn ∈ L([0, 1]) and MIV (X1, . . . , Xn) = Y . According to Theorem 3.17 we have

w(Y) =
n∑

i=1

viw(Xi) and Kα(Y ) =
n∑

i=1

viKα(Xi).

Taking ML = MU = M1 we obtain

MU

(
X1, . . . ,Xn

)− ML

(
X1, . . . ,Xn

)= n∑
i=1

viXi −
n∑

i=1

viXi =
n∑

i=1

viw(Xi) = w(Y)

and

(1 − α)ML

(
X1, . . . ,Xn

)+ αMU

(
X1, . . . ,Xn

)= (1 − α)

n∑
i=1

viXi + α

n∑
i=1

viXi =
n∑

i=1

viKα(Xi) = Kα(Y ).

Hence, according to Equation (7), MIV is decomposable and associated with ML and MU . �
Finally, we present some properties that hold for the functions MIV : (L([0, 1]))n → L([0, 1]) defined as in Theo-

rem 3.17.

Lemma 3.19. Let MIV : (L([0, 1]))n → L([0, 1]) be defined as in Theorem 3.17.

(i) If
• M1(x1, . . . , xn) = 0 if and only if x1 = . . . = xn = 0 and
• M2(x1, . . . , xn) = 0 if and only if x1 = . . . = xn = 0,
then MIV (X1, . . . , Xn) = 0L if and only if X1 = . . . = Xn = 0L. Moreover, if α �= 0, then the restriction on M2
can be skipped.

(ii) If
• M1(x1, . . . , xn) = 1 if and only if x1 = . . . = xn = 1 and
• M2(x1, . . . , xn) = 0 if and only if x1 = . . . = xn = 0,
then MIV (X1, . . . , Xn) = 1L if and only if X1 = . . . = Xn = 1L. Moreover, if α �= 1, then the restriction on M2
can be skipped.

(iii) MIV is idempotent if and only if M1 and M2 are idempotent.

Proof. The proof is straightforward. �
Example 3.20. A function MIV : (L([0, 1]))n → L([0, 1]) defined as in Theorem 3.17, is a w-preserving IV aggrega-
tion function with respect to ≤α,β , if, for instance:

1. (i) M1(x1, . . . , xn) = M2(x1, . . . , xn) = x1+...+xn

n
for all x1, . . . , xn ∈ [0, 1], or

2. (ii) M1(x1, . . . , xn) = x1+...+xn

n
, M2(x1, . . . , xn) = min{x1, . . . , xn} for all x1, . . . , xn ∈ [0, 1].

4. Width-based interval valued similarity measures

The same arguments that we have used to justify the introduction of IV restricted equivalence functions which take 
into account the width of the intervals are valid for the case of IV similarity measures. For this reason we propose the 
following definition.

98 Chapter 3 Publications: published, accepted and submitted
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Definition 4.1. Let ≤L be an order on L([0, 1]) and M : [0, 1]n → [0, 1] be an aggregation function. A width-
based interval-valued similarity measure on IV FS(U) w.r.t. ≤L, associated with M is a mapping SM : IV FS(U) ×
IV FS(U) → L([0, 1]) such that, for all A, B, A′, B ′ ∈ IV FS(U),

(SM1) SM(A, B) = SM(B, A);

(SM2) SM(A, A) =
[
1 − M

(
w(A(u1)), . . . , w(A(un))

)
, 1
]
;

(SM3) SM(A, B) = 0L if and only if {A(ui), B(ui)} = {0L, 1L} for all i ∈ {1, . . . , n};
(SM4) If A ⊆ A′ ⊆ B ′ ⊆ B w.r.t. ≤L and w(A(ui)) = w(A′(ui)) = w(B ′(ui)) = w(B(ui)) for all i ∈ {1, . . . , n}, 

then SM(A, B) ≤L SM(A′, B ′), where, for A, B ∈ IV FS(U), A ⊆ B w.r.t. ≤L if A(ui) ≤L B(ui) for every 
ui ∈ U .

The definition is motivated by that given in [10]. However, the second axiom is changed in line with Definition 3.1
and the fourth axiom is relaxed in a similar way as the fourth axiom in Definition 3.1.

Now, a construction method of IV similarity measure by aggregation of IVREFs is given.
Recall that an aggregation function M : [0, 1]n → [0, 1] is called self-dual with respect to the standard negation if

M(x1, . . . , xn) = 1 − M(1 − x1, . . . ,1 − xn)

for all x1, . . . , xn ∈ [0, 1].

Theorem 4.2. Let MIV : (L([0, 1]))n → L([0, 1]) be a decomposable IV aggregation function w.r.t. ≤L associated 
with ML and MU where ML is self-dual, and let MIV (X1, . . . , Xn) = 0L if and only if X1 = . . . = Xn = 0L. Let 
RIV : L([0, 1])2 → L([0, 1]) be an IV restricted equivalence function w.r.t. ≤L. Then the function SML

: IV FS(U) ×
IV FS(U) → L([0, 1]) defined by:

SML
(A,B) = MIV

(
RIV (A(u1),B(u1)) , . . . ,RIV (A(un),B(un))

)
for all A, B ∈ IV FS(U) is a width-based IV similarity measure on IV FS(U) w.r.t. ≤L associated with ML.

Proof. (SM1) Directly follows from Axiom 3 of Definition 3.1.
(SM2) Observe that

SML
(A,A) = MIV

(
RIV (A(u1),A(u1)) , . . . ,RIV (A(un),A(un))

)=
= MIV

(
[1 − w(A(u1)),1] , . . . , [1 − w(A(un)),1]

)= [ML

(
1 − w(A(u1)), . . . ,1 − w(A(un))

)
,1
]

=
=
[
1 − ML

(
w(A(u1)), . . . ,w(A(un))

)
,1
]
,

where the second equality follows from Axiom 2 of Definition 3.1, the third from the fact that MIV is decomposable 
associated with ML, MU and the last from the self-duality of ML.

(SM3) Since SML
(A, B) = 0L if and only if RIV (A(u1),B(u1)) = 0L for all i ∈ {1, . . . , n}, which only holds if 

{A(ui), B(ui)} = {0L, 1L} for all i ∈ {1, . . . , n}, (SM3) is satisfied.
(SM4) Follows from Axiom 4 of Definition 3.1 and the monotonicity of MIV . �

Example 4.3. Let us consider the IVREF Repis given in Example 3.3 (i), ML(x1, . . . , xn) = 1
n

n∑
i=1

xi and MU(x1, . . . ,

xn) = max(x1, . . . , xn). Then the assumptions of Theorem 4.2 are satisfied and we obtain the following width-based 
IV similarity measure on IV FS(U):

S(A,B) =
[

1

n

n∑
i=1

(
1 − max

(
A(ui) − B(ui),B(ui) − A(ui)

))
,

max
(

1 − max
(

0,max
(
A(ui),B(ui)

)− min
(
A(ui),B(ui)

)))]
.
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We now study the conditions under which the IVREF RIV given by Theorem 3.6 and the IV aggregation function 
MIV given by Theorem 3.17 can be applied in the previous theorem to obtain an IV similarity measure that preserves 
the width of intervals.

Corollary 4.4. Let α, β ∈ ]0, 1[ where β �= α. Let (v1, . . . , vn) ∈ ]0, 1]n be a weighting vector such that v1 + . . .

+vn = 1 and let MIV : (L([0, 1]))n → L([0, 1]) be the IV aggregation function w.r.t. ≤α,β defined as in Theorem 3.17
where M1(x1, . . . , xn) = M2(x1, . . . , xn) = v1x1 + . . . + vnxn for all x1, . . . , xn ∈ [0, 1]. Let RIV : (L([0, 1]))2 →
L([0, 1]) be an IVREF defined as in Theorem 3.6. Then the function SM : IV FS(U) × IV FS(U) → L([0, 1]) defined 
by:

SM(A,B) = MIV

(
RIV (A(u1),B(u1)) , . . . ,RIV (A(un),B(un))

)
,

for all A, B ∈ IV FS(U), is a width-based IV similarity measure on IV FS(U) w.r.t. ≤L associated with M1. More-
over, SM satisfies the following for all A, B ∈ IV FS(U):

w(SM(A,B)) = w(A(u1)) whenever w(A(u1)) = w(B(u1)) = . . . = w(A(un)) = w(B(un)). (8)

Proof. Observe that, by Proposition 3.18, MIV is the decomposable IV aggregation function associated with ML, 
MU where ML = MU = M1. Moreover, by Lemma 3.19 we have that MIV (X1, . . . , Xn) = 0L if and only if X1 =
. . . = Xn = 0L. Since a weighted arithmetic mean is self-dual and idempotent, from Theorem 4.2 it follows that SM

is a width-based IV similarity measure associated with M1. Finally, since MIV and RIV are w-preserving, we have 
(8). �
Example 4.5. Let (v1, . . . , vn) ∈ ]0, 1]n be a weighting vector with v1 + . . . + vn = 1. Consider the IVREF given by 
Example 3.11 (iii) for p = 1, α = 0.5, β = 1; and the IV aggregation function defined as in Theorem 3.17 for α = 0.5
(and β = 1, for instance) and M1(x1, . . . , xn) = M2(x1, . . . , xn) = v1x1 + . . .+vnxn. Then, applying Corollary 4.4, we 
obtain a width-based IV similarity measure SM1 on IV FS(U) w.r.t. ≤L associated with M1; moreover, SM1 satisfies 
(8).

As a special case, which is later used in the stereo matching application in the following section, we give an expres-
sion of SM1 for weighting vector 

( 1
n
, . . . , 1

n

)
. Note that, since the considered IV aggregation function is decomposable, 

the expression can be simplified significantly (see Lemma 3.18):

SM1(A,B) =

⎡
⎢⎢⎣1 −

n∑
i=1

∣∣∣A(ui) + A(ui) − B(ui) − B(ui)

∣∣∣
2n

−

n∑
i=1

min(w(A(ui)),w(B(ui)))

n
,

1 −

n∑
i=1

∣∣∣A(ui) + A(ui) − B(ui) − B(ui)

∣∣∣
2n

⎤
⎥⎥⎦ . (9)

Theorem 4.6. Let MIV : (L([0, 1]))n → L([0, 1]) be an IV aggregation function w.r.t. ≤L satisfying MIV (X1, . . . ,
Xn) = 1L if and only if X1 = . . . = Xn = 1L and MIV (X1, . . . , Xn) = 0L if and only if X1 = . . . = Xn = 0L. Let 
RIV : (L([0, 1]))2 → L([0, 1]) be a function satisfying axioms 1, 3, 4 from Definition 3.1 and RIV (X, Y) = 1L if and 
only if X = Y and w(X) = 0 for all X, Y ∈ L([0, 1]). Then the function SM : IV FS(U) × IV FS(U) → L([0, 1])
defined by:

SM(A,B) = MIV

(
RIV (A(u1),B(u1)) , . . . ,RIV (A(un),B(un))

)
for all A, B ∈ IV FS(U) satisfies axioms (SM1), (SM3), (SM4) and

(SM2′) S(A, B) = 1L if and only if A = B and A, B ∈ FS(U).

Proof. The proof is obtained just by a straight calculation. �
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Fig. 1. Schema of epipolar geometry for stereo vision.

Remark 4.7. Note that replacing axiom (SM2) in Definition 4.1 by Axiom (SM2′), we get an alternative approach 
to IV similarity measures which takes the width of intervals into account and is in the line with the ideas stated after 
Definition 3.1.

In the next Section we apply our developments to a stereo matching problem.

5. Stereo matching with w-preserving interval-valued restricted equivalence functions

Stereo vision arises as a model to capture the information around us in the same way as human vision does. Human 
visual perception is based on the formation of 3D images of the environment. Each eye captures a different scene, 
and from both, our brain builds a 3D image of the world around us. In stereo vision, human vision is mimicked by 
means of two cameras pointing at the same scene, such that each camera acts effectively as one ‘eye’. In order to 
obtain a perception of depth from these two images, the so-called correspondence between stereo images is used. 
Correspondence between stereo images is one of the main problems in computer vision [36,44] and it is very relevant 
in applications such as 3D scene reconstruction, autonomous movement or robotics.

The camera system used to catch stereo images is arranged according to an epipolar geometry, in such a way that 
all the points which correspond to the same camera lay on a plane, as shown in Fig. 1. Points captured from the scene 
by each of the cameras corresponding to the same point in the space are called corresponding points. Finding these 
corresponding points in the captured images is not a trivial task. Corresponding points may be affected by noise, 
occlusions or distortion during the capturing procedure. This task becomes easier if it is required that points in the 
captured images are subject to the epipolar restriction, i.e., each point should be in its corresponding epipolar line. 
This requirement implies that the search for the best correspondence should only be done along one of the dimensions 
of the image (horizontal axis).

Once the corresponding points have been located, a disparity map can be calculated. This map represents the depth 
of the objects in the image. Each disparity value is obtained by calculating the difference between the positions of the 
corresponding points along the horizontal axis. In the next subsection, we discuss a specific way for calculating the 
disparity map. Finally, we will apply the proposed IV similarity measures, taking into the width of the intervals into 
account.

3.3 Similarity between interval-valued fuzzy sets taking into account the width of the intervals 101
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Algorithm 1 Algorithm for constructing a disparity map using IV-similarity measures.
Input: Left and right colour images fl , fr , an IV-similarity measure SM .
Output: Disparity map fd .
1: IV-fuzzify the images fl , fr , getting three IVFSs for each image, one for each colour channel.
2: for each pixel (x, y) of fr do
3: Select a window of size n × m around the pixel;
4: for each possible y′ until the maximal disparity (provided by the dataset) do
5: Select a window of size n × m around the pixel (x, y′);
6: Calculate the IV-similarity between the two windows, in each of the three colour channels using the similarity SM ;
7: Aggregate the values of the IV-similarities for each colour according to Equation (10).
8: end for
9: Calculate the disparity between windows taking the pair of windows of greatest similarity according to the order relation �α,β with α = 1;

10: end for
11: Create the disparity map with each of the disparities obtained for each position (x, y);

Fig. 2. Choice of windows for calculating the IV similarity and the disparity.

5.1. Methods for calculating the disparity map

For us, an image is a function f : X × Y = {1, ..., r} × {1, ..., c} 
→ L, where r represents the number of rows in 
the image, that is, its height; c is the number of columns in the image, that is, its width; and L is a finite lattice whose 
elements are used to capture the intensities of the pixels in the image. Different choices of L allow the representation 
of different types of images. In particular, if we take L = {0, 1}, we represent black and white images, whereas for 
greyscale images we take L = {0, ..., 255}, and for colour images in the RGB colour space we take L = {0, ..., 255}3.

In order to do the correspondence procedure and to build the disparity map, we use the block-correspondence 
method. This technique consists of selecting a window of size n × m in the right image and calculating the similarity 
of this window with each of the windows of the same size, centred at pixels in the same epipolar line in the left image. 
To calculate this similarity, classical measures have been usually considered. In stereo vision, the most common ones 
are SSD [39], SAD [43], NCC [21] o ZNCC [37]. Furthermore, some authors have used fuzzy measures [38]. Among 
the latter, we find some studies which consider extensions of fuzzy sets, in particular interval-valued fuzzy sets [23]
or Atanassov intuitionistic fuzzy sets [32].

In Algorithm 1 we present a method for constructing a disparity map in an RGB image a using IV-similarity 
measures.

For steps 3 and 5 we proceed as indicated in Fig. 2, comparing the window in the right image to the different 
windows in the left image. To calculate the similarity between intervals, in step 6 we use the expression of width-based 
IV similarity proposed in Eq. (9). Besides, as we take into account the colour information in the images, in step 7 we 
aggregate the information as suggested in [19], by means of the expression:

SMT (A,B) = 0.299 · SMR
(A,B) + 0.587 · SMG

(A,B) + 0.114 · SMB
(A,B) (10)
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where SMR
(A, B), SMG

(A, B), SMB
(A, B) represent the similarity values for each of the colour channels calculated 

using a width-based IV similarity measure SM . Beyond the weighted mean (wMean) considered in Eq. (10), in the 
experiments, a number of other aggregation functions are also used to merge the similarity values, including the 
arithmetic mean (mean), the product (prod), the geometric mean (gmean), the harmonic mean (hmean), the median 
(median), the maximum (max) and the minimum (min). Finally, as in [23], for all the images we consider windows 
of size 7 × 11.

5.2. IV-fuzzification

A digital image is the result of a discretization of a real world scene. In order to represent such digital images, 
fuzzy sets have been used in the literature. However, due to the uncertainty which is inherent to the process of dis-
cretization, it is very hard to provide an accurate (real-valued) membership value for each pixel. In this sense, the use 
of interval-valued fuzzy sets allow us to consider such uncertainty by means of the width of the membership intervals 
associated to each pixel, as the precise (real-valued) fuzzy membership value is an unknown value considered to be 
inside the provided membership interval. For these reasons, and as it was done in [23], we represent the images by 
means of interval-valued fuzzy sets, assigning an interval-valued membership to each pixel. In particular, we are going 
to build the IVFSs representing a given image from different membership functions, as was done in [23]. It is worth 
mentioning that this IV-fuzzification method has been successfully used in image segmentation problems, obtaining 
results better than those methods which only take into account one single membership function.

Given k restricted equivalence functions Ri , the procedure to get an IV-fuzzified image is the following:

• Consider an image f with L intensity values.
– For each level of intensity t , (t = 0, t = 1, . . . , L − 1):

∗ Build k fuzzy sets Q1
t . . .Qk

t where for each i = 1 . . . k

Qi
t =
{
(q,μQi

t
(q)|q ∈ {0,1, . . .L − 1})

}
, with

μQi
t
(q) =

⎧⎨
⎩

Ri

(
q

L−1 ,
mb(t)
L−1

)
, si q ≤ t,

Ri

(
q

L−1 ,
mo(t)
L−1

)
, si q > t,

(11)

where mo(t) and mb(t) are the mean intensities of the object and the background, given by

mo(t) =
∑t

q=0 q·h(q)∑t
q=0 h(q)

mb(t) =
∑L−1

q=t+1 q·h(q)∑L−1
q=t+1 h(q)

where h(q) denotes the number of pixels with intensity q .
∗ For each level of intensity t , build an IVFS Q̃t from the fuzzy sets Q1

t . . .Qk
t , taking, for each q ∈ {0, . . . ,

L − 1},
μ

Q̃t
(q) =

[
T
(
μQ1

t
(q), . . . ,μQk

t
(q)
)

, S
(
μQ1

t
(q), . . . ,μQk

t
(q)
)]

with T a t-norm and S a t-conorm.

∗ Calculate the entropy εF of each of the L interval valued fuzzy sets Q̃t using the expression:

εF (Ã) = 1
N

∑N
i=1

(
μ

Ã
(xi) − μ

Ã
(xi)
)

, proposed in [34]

For representing the image f , select the IVFS Q̃t of smallest entropy.

Note that we take as best interval valued fuzzy set for representing the image the one of smallest entropy εF . This 
is so because this interval-valued fuzzy set displays the smallest amount of uncertainty in order to build the precise 
value of membership for the pixels.

In the experimentation, we use the configuration proposed in the first experiment in [23], i.e., we take k = 2 and 
the restricted equivalence functions:{

R1 (x, y) = 1 − |x − y|
R2 (x, y) = 1 − | 10

√
x − 10

√
y| (12)
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Fig. 3. Left and right images and groundtruth image proposed in the dataset Middlebury.

5.3. w-preserving IVREF Stereo Matching

To test the behaviour of the proposed width-depending IV similarity measure, in this work we use the Middlebury 
dataset [36], composed of the images in Fig. 3. One of the advantages of this dataset is that each pair of images is 
associated with a model of the disparity map (groundtruth) provided by an expert.

The evaluation of the error in a stereo matching procedure is done by calculating the absolute error percentage 
between the obtained disparity maps and the groundtruth provided by the dataset. To measure the error percentage, 
three types of regions, defined by the dataset, are considered:

• nonocc: considers only those pixels that are not occluded (occluded pixels are those which only appear in one of 
the images).

• all: all the pixels of the image are considered.
• disc: pixels near the discontinuous regions are considered.

In Fig. 4, an example of the evaluation regions is shown. For each one of the regions only pixels labelled in white are 
considered as part of the error computation.

5.4. Comparison of the proposed interval methods

We compare Algorithm 1 using our width-based IV similarity measure with the one proposed in [23], which also 
makes use of interval-valued fuzzy sets but without taking into account the width of the intervals.
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Fig. 4. Regions considered for the evaluation of a disparity map.

Table 1
Comparison of the two methods, IVFS and IVREF, with different aggregation functions to merge colour information. The first column represents 
the technique and aggregation used. The remaining columns represent for each image the percentage of incorrect disparities obtained for each 
evaluated region. Finally, the last column represents the mean error.

Algorithm Tsukuba Venus Teddy Cones %Et

%noocc %all %disc %noocc %all %disc %noocc %all %disc %noocc %all %disc

IVREF wMean 5.70 7.56 19.20 9.00 10.51 35.61 14.90 23.61 35.02 7.46 17.44 20.69 17.23
IVFS wMean 8.02 9.94 17.12 14.98 16.38 32.12 16.60 25.16 33.44 7.79 17.97 19.34 18.24

IVREF greyscale 6.29 8.22 20.46 7.48 9.01 34.87 15.85 24.43 33.67 8.16 18.02 22.16 17.38
IVFS greyscale 8.87 10.81 18.84 11.71 13.19 32.13 18.91 27.21 33.24 9.54 19.54 22.76 18.90

IVREF mean 6.06 7.86 19.37 11.16 12.62 35.53 15.75 24.37 35.62 7.80 17.75 21.34 17.94
IVFS mean 8.44 10.30 17.29 17.92 19.28 32.73 18.61 26.96 34.66 8.34 18.48 20.02 19.42

IVREF prod 6.07 7.86 19.37 11.18 12.64 35.54 15.79 24.41 35.67 7.80 17.75 21.33 17.95
IVFS prod 8.44 10.31 17.31 17.94 19.30 32.74 18.69 27.03 34.76 8.34 18.49 20.02 19.45

IVREF gmean 6.07 7.86 19.37 11.18 12.64 35.54 15.79 24.41 35.67 7.80 17.75 21.33 17.95
IVFS gmean 8.44 10.31 17.31 17.94 19.30 32.74 18.69 27.03 34.76 8.34 18.49 20.02 19.45

IVREF hmean 6.07 7.86 19.39 11.20 12.66 35.51 15.84 24.46 35.73 7.81 17.75 21.35 17.97
IVFS hmean 8.45 10.31 17.32 17.96 19.32 32.74 18.76 27.09 34.82 8.35 18.50 20.04 19.47

IVREF max 6.25 7.98 20.42 10.61 12.10 35.28 16.42 24.92 35.79 9.72 19.53 24.03 18.59
IVFS max 9.13 10.90 19.06 18.68 20.05 34.57 21.29 29.35 35.63 11.83 21.63 25.50 21.47

IVREF median 7.07 8.89 21.03 14.09 15.50 35.99 17.49 25.98 35.98 9.24 19.07 23.89 19.52
IVFS median 9.72 11.60 18.93 20.87 22.20 33.81 20.98 29.11 34.53 11.04 20.91 23.71 21.45

IVREF min 7.63 9.45 20.30 22.49 23.76 37.06 29.21 36.37 43.77 12.51 21.96 26.79 24.27
IVFS min 11.05 12.91 18.63 30.60 31.74 36.52 35.41 41.97 45.50 17.01 26.19 26.83 27.86

Table 1 shows the results obtained in the experiments, highlighting the best result in bold. In this table, IVREF 
denotes the method using Eq. (9) and the proposed definitions of w-preserving IV restricted equivalence function and 
similarity, and IVFS denotes the method in [23]. Furthermore, the aggregation function applied to merge the colour 
channels is specified after the terms IVREF or IVFS, respectively. In addition, we also consider greyscale images.

We can observe that the new similarity method outperforms – in respect to the total error, the one based on fuzzy 
sets presented in [23], even with different aggregation functions for colour merging. The only exceptions to this are 
when the median or min are used. It is worth mentioning that although the best performance is achieved when the 
weighted mean is used in respect to the overall result, in the case of the Venus, the image the performance obtained 
with greyscale images is considerably better for non occluded regions and for all regions.

5.5. Comparison of the proposed method with other methods which do not use intervals

When we compare the best results (using the weighted mean) with the classical methods in the literature, as SSD,
SAD, NCC, ZNCC and fuzzy measures (FUZZY), we clearly see in Table 2 that the new proposal gets globally better 
results.
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Table 2
Comparison of our similarity measure using the weighted mean for colour aggregation with the classical approaches SSD, SAD, ZNCC and Fuzzy 
similarity. The first column represents the technique and aggregation operator used. The remaining columns represent for each image the percentage 
of incorrect disparities obtained for each evaluated region. Finally, the last column represents the mean error.

Algorithm Tsukuba Venus Teddy Cones %Et

%noocc %all %disc %noocc %all %disc %noocc %all %disc %noocc %all %disc

IVREF wMean 5.70 7.56 19.20 9.00 10.51 35.61 14.90 23.61 35.02 7.46 17.44 20.69 17.23
IVREF greysacle 6.29 8.22 20.46 7.48 9.01 34.87 15.85 24.43 33.67 8.16 18.02 22.16 17.38

FUZZY wMean 7.75 9.63 16.17 13.67 15.09 31.51 18.56 26.90 29.01 15.00 24.33 23.24 19.24
FUZZY greyscale 8.35 10.24 16.84 8.41 9.93 31.04 20.26 28.39 29.38 16.83 25.89 25.55 19.26

ZNCC wMean 10.53 12.42 29.44 13.01 14.48 42.08 17.00 25.57 39.09 10.68 20.60 29.91 22.07
ZNCC greyscale 10.80 12.67 29.75 6.05 7.64 42.36 14.41 23.26 39.04 10.65 20.59 30.92 20.68

SAD wMean 8.74 10.75 22.48 13.57 15.01 38.88 20.00 28.23 35.20 14.84 24.39 28.40 21.71
SAD greyscale 9.26 11.21 22.86 8.52 10.07 38.60 21.55 29.61 34.94 16.43 25.70 29.42 21.51

NCC wMean 10.37 12.30 30.38 17.16 18.54 43.67 21.47 29.58 42.07 13.26 23.03 35.89 24.81
NCC greyscale 10.60 12.52 30.04 6.10 7.68 43.73 14.55 23.38 40.22 12.10 21.96 35.38 21.52

SSD wMean 9.74 11.79 28.75 13.09 14.55 43.02 19.62 27.91 39.62 13.88 23.61 33.47 23.25
SSD greyscale 10.14 12.12 29.11 7.92 9.48 43.58 21.23 29.34 39.73 14.29 23.89 33.72 22.88

Table 3
Comparison of our similarity measure without post-processing and our same method combined with exponential cost aggregation and cost guided 
filtering in addition to LRC check.

Algorithm Tsukuba Venus Teddy Cones %Et

%noocc %all %disc %noocc %all %disc %noocc %all %disc %noocc %all %disc

IVREF wMean 5.70 7.56 19.20 9.00 10.51 35.61 14.90 23.61 35.02 7.46 17.44 20.69 17.23
IVREF modified 3.10 3.76 13.42 2.43 2.99 19.79 11.49 17.14 26.09 4.72 10.74 12.34 10.67

The proposed method obtains the best results in the images Tsukuba and Cones, whereas for the other two ones, 
(Venus and Teddy) it remains below the ZNCC method using greyscale images. As we can see, our method outperforms 
the other ones in non occluded regions, in images where there is a wide variety of colour tones (Tsukuba and Cones). 
In regions near discontinuities, the best approach is the FUZZY similarity approach, with greyscale images. In Fig. 5, 
we show the approaches that obtain the best results in each of the images and regions. Note also that our method leads 
to disparity maps with less incorrect disparities, mainly in the case of Tsukuba and Cones. Nevertheless, the disparity 
values obtained tend to fail at getting the right value near discontinuous pixels. In these regions of discontinuity, better 
disparity values are obtained with the FUZZY approach, except in the case of Cones, where these regions get worse 
values.

Note that the inclusion of colour information in the process is useful in some cases where the correct value is not 
clear – here, it offsets some ambiguities. Despite being the best performer, our method still exhibits incorrect disparity 
values. This is because we have applied a basic methodology without refinement. The results shown are those from 
the raw disparity maps.

5.6. Illustrative example with refinement steps

As an illustrative example and to show the possibility of improvement of the proposed method, we discuss here an 
example using some refinement steps.

For the sake of this experiment we have chosen steps 3 and 5 of Algorithm 1, a window of size 3 × 3, coupled with 
an Exponential step aggregation function [42] and a Cost Guided filter [25]. Finally we use an LRC [36] to check the 
raw disparity map for possible outliers.

We can observe that most of the outliers are removed, obtaining a more homogeneous disparity map, although, 
some objects in the images lose their shape. For example, in the case of the image Tsukuba in Fig. 6 the electrical wire 
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Fig. 5. Disparity maps with the best obtained results. That is, IVREF aggregating colour with the weighted mean, FUZZY with colour aggregation 
and greyscale and ZNCC with greyscale images.

in the lamp disappears. Also, the use of a filter in the smoothing process makes the shapes of the objects better defined 
just prior to obtaining the disparity value. In the case of the Tsukuba and Cones images, the lamp and the cones have 
almost recovered their shape.

The quantitative results exposed in Table 3 confirm the benefits of using refinement processes during the similarity 
computation and in the raw disparity map processing. We see that the global error goes down to 10.67% and that in 
all the analysed images and in all the regions used for error measuring, the refinement improves the results. The most 
significant decrease occurs in the Venus image, where the disparity values homogeneize the image and outliers almost 
disappear.

6. Conclusions and future research

We have proposed a new definition of interval-valued restricted equivalence functions with respect to total or-
der considering the width of the intervals and described a construction method for restricted equivalence functions 
which preserves the widths of intervals. In a similar way, we have presented a construction method for w-preserving 
interval-valued aggregation functions with respect to total orders. Consequently, we have introduced a new definition 
of a width-based interval-valued similarity measure with respect to total order and proposed a construction method 
by aggregating restricted equivalence functions. Finally, we have discussed an illustrative example in stereo image 
matching where the width-based interval-valued similarity measures were used.
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Fig. 6. Comparison of the raw disparity maps obtained with raw IVREF and after applying refinement and outlier detection techniques.

The presented experimental study allows us to conclude that considering the width of the intervals in order to 
measure similarity between intervals is highly beneficial. The proposed method obtains better results, both compared 
to other interval-valued methods which do not take into account the width of the intervals, and compared to classical 
methods such as SSD, SAD, NCC, ZNCC or FUZZY. We note that the time complexity of our proposal is the same 
as the fuzzy method not using intervals (O(N2)) and slightly higher than the classical ones due to the fuzzyfication 
process.

It is worth mentioning that the use of colour in the extraction of the disparity values is a key point that leads to 
an improvement in the results. Finally, the presented method can be improved combining filtering steps during the 
similarity computation and searching for inconsistent disparities in the raw disparity map.

In our future work we are going to study the notions and constructions of interval-valued dissimilarity and interval-
valued entropy in line with the presented approach, i.e., with respect to total order and considering the widths of 
intervals. We also intend to analyze the use of refinement steps to further improve our method.
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In this paper we provide a specific contruction method of ordered directionally monotone 

functions. We show that the functions obtained with this construction method can be used to 

build edge detectors for grayscale images. We compare the results of these detector to those 

obtained with some other ones that are widely used in the literature. Finally, we show how a 

consensus edge detector can be built that improves the results that are obtained both by our 

proposal and by those in the literature individually.   
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Abstract

In this paper we provide a specific contruction method of ordered directionally monotone functions. We
show that the functions obtained with this construction method can be used to build edge detectors for
grayscale images. We compare the results of these detector to those obtained with some other ones that are
widely used in the literature. Finally, we show how a consensus edge detector can be built that improves
the results that are obtained both by our proposal and by those in the literature individually.

Keywords: Ordered directionally monotone function; Directional monotonocity; Edge detection;
Consensus image.

1. Introduction

In recent years, the analysis of functions which fulfill monotonicity conditions weaker than those required
to aggregations is attracting a growing interest. In particular, this study has led to the development of new
concepts as, for instance, weak monotonicity (where monotonicity is required only along the ray defined by
the vector (1, . . . , 1), see [42]) or directional monotonicity (where monotonicity is required along some ray
defined by a vector in the first quadrant, see [11]). These extensions have shown themselves very useful in
different application fields, specially in classification [31].

A common feature shared by all this extensions is that the direction along which monotonicity is con-
sidered is the same for every considered input. But, in some applied problems, this can be a too hard
restriction.

Let us consider, for instance, the problem of automatically identify objects on an image [3, 17, 24, 25, 32]
Many times, an important step for this identification consists in calculating the edges of the objects in the
image [10]. Recall that the contours of the visible objects are denoted as edges if there exists a big enough
jump between the intensity of a pixel and those of its neighbours. Clearly, this is an imprecise definition,
but this is due to the uncertainty inherent to the concept of border itself [28].

Many edge detection methods use, among other things, the gradient vector to represent intensity jumps
between pixels [37, 41], as for example the well-known approaches by Sobel and Feldman [40], Prewitt [38]
and Canny [15], being the latter still considered as one of the most important references for comparison
in order to determine the quality of a given method. In recent years, different methods have appeared
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which also use Machine Learning techniques, as the ones based on Random Forest [16]; other methods using
Newton’s Gravitational Law, as for instance,[28], etc. Furthermore, deep learning methods (see [43, 44, 45],
for instance) have become the most widely used ones due to their high performance, which improves those of
the other mentioned algorithms. Nevertheless, deep learning techniques have in general a high computational
cost and require of a previous training, so in some cases it is enough to use easier, less costly methods.

In order to focus our problem, let us consider Bezdek standardization of the edge detection problem.
Bezdek et al. [4] introduced a framework encompassing many of the existing methods in the literature in
that moment, which is a breakdown structure formed by four phases:

(S1) Smoothing the image. To apply a Gaussian filter (with σG = 2 ) to the image I obtaining a new
smoother image, IG.

(S2) Obtaining the feature image, i.e., a new image IM obtained from IG, where each pixel in IM represents
information about the intensity jump between the corresponding pixel in IG and its neighbours in IG.

(S3) Thinning the feature image. To use the non-maximum suppression procedure [15], computing prior
orientations by Kovesis’ function [27], obtaining a thinned image, IH .

(S4) Binarizing the thinned image. To apply a hysteresis method [36] to obtain the binary edge image
IB . Such representations are commonly demanded to every edge detection approach fulfilling the
restrictions imposed by Canny [14, 15].

If we center in the feature extraction phase (S2), we observe that we must consider the information
provided by a pixel and its neighbours simultaneously. But, if we only consider the difference between the
maximal and the minimal intensities [6] it is clear that we are losing information is lost as we do not take
into account all the differences of intensity between the central pixel and its neighbours. Furthermore, the
relevant information must take into account all the intensity jumps in the neighbourhood and how they are
related to each other according to their relative size. In particular, it is natural to order the intensity jumps
in a decreasing order, as the bigger an intensity jump is, the larger its influence is in the possible existence of
an edge. In this sense, it is natural to consider the directions defined by the increasingness or decreasingness
of the intensity, but such directions may vary from one pixel to another one. For this reason, we are led to
consider that the use or ordered directionally monotone functions may be natural for this problem.

Taking all the previous considerations into account, we have considered the following goals in this work:

1. To develop a new method to build mathematically ordered directionally monotone (ODM).

2. To show that the ODM functions built using this new method can be useful to develop a new method
to build a feature image for phase (S2) in the edge detection procedure

Besides, as we have already commented previously, there exists many different methods to get the feature
image in phase (S2). For this reason, we consider the following goal to complete our experimental study:

3. To build, using penalty functions [13, 8, 9], a consensus feature image from those obtained with
different algorithms in phase (S2).

The structure of this work is the following. In Section 2 some of the basic notation and concepts needed
for our proposal are exposed. Section 3 is devoted to expose a specific case of OD monotone function
and Section 4 develops the previous section ideas in the context of image feature extraction along with
two alternative constructions (Section 5). Section 6 presents a consensus edge detector build upon the
combination of the different considered methods. The experimental framework is exposed in Section 7. Then,
Section 8 shows the quantitative evaluation of the proposed methods compared with different alternatives
of the literature. Finally in Section 9 some conclusions and future works are presented.
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2. Preliminaries

2.1. Basic notations and concepts

In this subsection we fix some notations and concepts which will be useful for the remainder of the work.
Let n > 1. We use bold letters to denote points in the hypercube [0, 1]n, i.e., x = (x1, . . . , xn) ∈ [0, 1]n.

In particular, we write 0 = (0, . . . , 0) and 1 = (1, . . . , 1). Given x,y ∈ [0, 1]n we write x ≤ y if xi ≤ yi for
every i ∈ {1, . . . , n}. Note that this relation is a partial order which extends the usual linear order between
real numbers.

For n > 1, we denote by Pn the set of permutations of {1, . . . , n}. That is,

Pn = {σ : {1, . . . , n} → {1, . . . , n} | σ is bijective}.

Given σ ∈ Pn, x ∈ [0, 1]n and ~r ∈ Rn, we define:

xσ = (xσ(1), . . . , xσ(n))

and

~rσ = (rσ(1), . . . , rσ(n)).

We recall now that, for the sake of commodity, we call fusion function (of dimension n) to any function
F : [0, 1]n → [0, 1].

A distinguished class of fusion functions, specially from the point of view of applications, is that of
aggregation functions [20, 2].

Definition 1. [1, 12] A mapping M : [0, 1]n → [0, 1] is an aggregation function if it is monotone non-
decreasing in each of its components and satisfies M(0) = M(0, 0, . . . , 0) = 0 and M(1) = M(1, 1, . . . , 1) = 1.

2.2. Ordered directionally monotonicity

Imposing monotonicity might be too restrictive for some specific applications (e.g., the mode is not
increasing with respect to all its arguments but it is a valid function for certain applications). This consid-
eration led Wilkin and Beliakov [42] to introduce the notion of weak monotonicity.

This concept of weak monotonicity can be further extended by the notion of directional monotonicity,
that we define now.

Definition 2. [11] Let ~r = (r1, . . . , rn) be a real n-dimensional vector, ~r 6= ~0. A fusion function F : [0, 1]n →
[0, 1] is ~r-increasing if for all points (x1, . . . , xn) ∈ [0, 1]n and for all c > 0 such that (x1+cr1, . . . , xn+crn) ∈
[0, 1]n it holds

F (x1 + cr1, . . . , xn + crn) ≥ F (x1, . . . , xn) .

That is, an ~r-increasing function is a function which is increasing along the ray (direction) determined
by the vector ~r. For this reason, we say that F is directionally monotone, or, more specifically, directionally
~r-increasing. For an in-depth study of the concept of directional monotonicity see [11]. Nevertheless, it is
worth to mention that directional monotonicity combined with appropriate boundary conditions leads to
the notion of pre-aggregation function, see [31].

In [7] the notion of ordered directionally monotone function (ODM) is presented. To motivate its
introduction, note that by means of directional monotonicity, usual monotonicity may be relaxed, just
requiring increasingness along some fixed ray. However, the direction along which monotonicity is demanded
is the same for every point in the domain [0, 1]n, and it is independent of the particular point which is being
considered.

For ODM functions, on the contrary, the direction along which monotonicity is required varies depending
on the relative size of the coordinates of the considered input. The formal definition reads as follows.
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Definition 3. [7] Let F : [0, 1]n → [0, 1] be a fusion function and let ~r 6= ~0 be a n-dimensional vector.
F is said to be ordered directionally (OD) ~r-increasing if for any x ∈ [0, 1]n, for any c > 0 and for any
permutation σ ∈ Pn with xσ(1) ≥ · · · ≥ xσ(n) and such that

1 ≥ xσ(1) + cr1 ≥ · · · ≥ xσ(n) + crn ≥ 0,

it holds that

F (x + c~rσ−1) ≥ F (x),

where ~rσ−1 = (rσ−1(1), . . . , rσ−1(n)).
Analogously, F is said to be OD ~r-decreasing if for any x ∈ [0, 1]n, for any c > 0 and for any permutation

σ ∈ Pn with xσ(1) ≥ · · · ≥ xσ(n) and such that

1 ≥ xσ(1) + cr1 ≥ · · · ≥ xσ(n) + crn ≥ 0,

it holds that

F (x + c~rσ−1) ≤ F (x),

where ~rσ−1 = (rσ−1(1), . . . , rσ−1(n)).

By an OD ~r-monotone function we mean a function which is OD ~r-increasing or ordered directionally
~r-decreasing.

Example 4. The weighted Lehmer mean

Lλ(x, y) =
λx2 + (1− λ)y2

λx+ (1− λ)y
,

with the convention 0/0 = 0, is (1− λ, λ)-increasing. It follows that the function

Gλ(x, y) =
λ(∨(x, y))2 + (1− λ)(∧(x, y))2

λ ∨ (x, y) + (1− λ) ∧ (x, y)

is OD (λ, 1 − λ)-increasing. Note that, if λ ∈]0, 1[, then Lλ is a pre-aggregation function which is not an
aggregation function.

3. A particular case of OD monotone function

In this section we discuss an affine construction method for ODM functions.

Theorem 5. Let G : [0, 1]n → [0, 1] be defined, for x ∈ [0, 1]n and σ ∈ Pn such that xσ(1) ≥ . . . ≥ xσ(n), by

G(x) = a+

n∑
i=1

bixσ(i),

for some a ∈ [0, 1] and ~b = (b1, . . . , bn) ∈ Rn such that 0 ≤ a+ b1 + · · ·+ bj ≤ 1 for all j ∈ {1, . . . , n}. Then

G is OD ~r-increasing for every non-null vector ~r such that ~b ·~r ≥ 0. In particular, for every non-null vector
~r which is orthogonal to ~b.

Proof.

4
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Take σ ∈ Pn such that xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(n). Take also c > 0 such that (xσ(1) + cr1, . . . , xσ(n) +
crn) ∈ [0, 1]n. Then we have that

G(x + c~rσ−1) = a+

n∑
i=1

bi(xσ(i) + cri)

= a+

n∑
i=1

bixσ(i) + c

n∑
i=1

biri

≥ G(x),

as we wanted to show.
Theorem 5 can be generalized taking into account the following lemma.

Lemma 6. Let ϕ : [0, 1]→ [0, 1] be an automorphism (i.e., an increasing bijection). Then, if G : [0, 1]n →
[0, 1] is an ordered directionally increasing function, the function ϕ ◦ G is also an ordered directionally
increasing function.

Proof.
It follows straightforwardly from the definition of ordered directionally increasing functions and the fact

that ϕ is increasing.
From Lemma 6, we have the following corollary of Theorem 5, which is very relevant for our edge

detectors, since the value of p allows us to darken or lighten the considered image.

Corollary 7. Let p > 0. Let G : [0, 1]n → [0, 1] be defined, for x ∈ [0, 1]n and σ ∈ Pn such that xσ(1) ≥
. . . ≥ xσ(n), by

G(x) =

(
a+

n∑
i=1

bixσ(i)

) 1
p

, (1)

for some a ∈ [0, 1] and ~b = (b1, . . . , bn) ∈ Rn such that 0 ≤ a+ b1 + · · ·+ bj ≤ 1 for all j ∈ {1, . . . , n}. Then

G is OD ~r-increasing for every non-null vector ~r such that ~b · ~r ≥ 0.

Proof.
It follows from Lemma 6 taking into account that the function ϕ(x) = x

1
p is an automorphism.

The following result is very relevant from the point of view of applications in image processing, since it
can be straightforwardly applied to the cases in which an edge exists or not.

Corollary 8. Let p > 0 and let G : [0, 1]n → [0, 1] be defined as in Corollary 7. Then

(i) G(0) = 0 if and only if a = 0.

(ii) Assume that a = 0. Then, G(1) = 1 if and only if b1 + · · ·+ bn = 1.

Proof. To see (i), observe that G(0) = a
1
p , so the result is straightforward. Regarding (ii), G(1) =

(
∑n
i=1 bi · 1)

1
p , and the result follows.

4. A new algorithm to construct a feature image using Ordered Directionally Monotone func-
tions

In Algorithm 1 we present the process to obtain a feature image by means of ODM functions, phase (S2),
which by definition consider both the intensity jumps between a pixel and its neighbours and the direction
along which such jumps vary, in a decreasing way.

5
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Algorithm 1 Algorithm to construct a feature image using ODM functions

Input: A normalized greyscale image IG and a parameter p > 0 to build an ODM function G as in
Corollary 7.

Output: A feature image IM .
1: for each pixel (x, y) of IG do
2: Calculate the 8 values obtained by applying the absolute value of the difference between Ig(x, y) and

its 8-neighbourhood;
3: Order the eight values of step 2 in a decreasing way;
4: Calculate the parameters a, ~r y ~b according to the vector obtained in step 3.
5: Build the ODM function G as in Corollary 7 with the parameters obtained in step 4.
6: Apply the ODM function G to the values obtained in step 3;
7: Assign as intensity of the pixel (x, y) of IM the value obtained in step 6.
8: end for

Next, let us expose how to carry out the execution of the Algorithm 1. Firstly, let us consider that the
pixel (x, y) of IG is the pixel a22 of Fig. 1 and then calculate the 8 values indicated in step 2; the outcome
of these calculations are given by:

x1 = |a22 − a11|, x2 = |a22 − a12|,
x3 = |a22 − a13|, x4 = |a22 − a23|,
x5 = |a22 − a33|, x6 = |a22 − a32|,
x7 = |a22 − a31|, x8 = |a22 − a21|.

Figure 1: Pixel a22 and its 8-neighbourhood.

In step 3, these differences are ordered in a decreasing way; that is,

xσ(1)
≥ xσ(2)

≥ . . . ≥ xσ(7)
≥ xσ(8)

.

Note that, as we have already said, there exists an edge if there is a big enough intensity jump between
a pixel and its neighbours. So the greatest intensity differences are the most relevant ones in order to
determine if there is an edge or not.

In step 4 we calculate the parameters a, ~r y ~b necessary to get in step 5 an ODM function G as in
Corollary 7. Finally, in step 6, the ODM function G is applied to get the feature image.

5. Two specific cases of constructions of the ODM function for step 5 in Algorithm 1

In this section we discuss two expressions for ODM functions for Algorithm 1. These expressions are
obtained from Corollary 7 using Eq. (1) and giving specific values to the parameters a, p, vector ~r and ~b. It
is important to remark that these expressions are a first approach and they have not been optimized. On

6
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the contrary, we discuss them due to their simplicity. In a future work, we intend to optimize the value of
the different parameters depending on the specific type of images that we consider.

If we use the expression given in Eq. (1) for step 6 in Algorithm 1, then the parameter p allows us to
darken or lighten the resulting feature image. It is enough to observe that if p > 1, then we get a lighter
feature image, and if 0 < p < 1, then we get a darker one (see [18]).

5.1. Case 1

We consider:

~r = (xσ(1)
, xσ(2)

, xσ(3)
, xσ(4)

, xσ(5)
, xσ(6)

, xσ(7)
, xσ(8)

);

~b =


 xσ(1)

8∑
i=1

xσ(i)

, . . . ,
xσ(7)
8∑
i=1

xσ(i)

,
xσ(8)
8∑
i=1

xσ(i)

 if
8∑
i=1

xσ(i)
6= 0

(0, . . . , 0) otherwise.

a = 0 and 1
p = 0.30.

Regarding ~r, the highest value , xσ(1), is the most relevant for the possible edge, since it corresponds to
the biggest intensity jump between the central pixel and its neighbours. With respect to the value of a, we
take a = 0 because if all the values to be aggregated are null, i.e., if xσ(1) = · · · = xσ(8) = 0, this means that
in the considered 8-neighbourhood all the pixels have the same intensity and hence there is no edge. So, in
this case, we should have G(0, . . . , 0) = 0, and from Corollary 8, this is so if and only if a = 0. Besides, if
xσ(1) = · · · = xσ(8) = 1, the intensity jump between the pixels in the 8-neighbourhood and the central pixel
is as large as possible. So G(1, . . . , 1) must be equal to 1 and, again from Corollary 8, since a = 0, we should
require that b1 + · · ·+ bn = 1.

Regarding the calculation of the parameter 1/p for constructing the ODM functions, according to Corol-
lary 7, we do as follows: We consider the points 1/p11 = 0.1, 1/p21 = 0.2, 1/p31 = 0.3,. . . , 1/p91 = 0.9
(i.e., a uniform partition of the interval [0, 1]). We apply Algorithm 1 with each of these nine values and
we evaluate the quality of the resulting edge images (in terms of the average of the values of F0.5 on the
considered training images). Let i1 be the index such that, if we apply Algorithm 1 with 1/p = 1/pi11 ,

we get the best result among the nine considered values. Denote 1/pfix1 = pi11 . Next, consider the in-

terval [1/pfix1 − 0.05, 1/pfix1 + 0.05]. We take again a uniform partition of this interval with nine points,

1/p12 = 1/pfix1 − 0.04, 1/p22 = 1/pfix1 − 0.03, . . . ,1/p92 = 1/pfix1 + 0.04 and we repeat again the procedure
of running and evaluating the results of Algorithm 1 for each of these 9 values of the parameter 1/p to get

a new point 1/pfix2 . We repeat the procedure n times, where the new interval around the point 1/pfixi is

[1/pfixi − 5 × 10−i, 1/pfixi + 5 × 10−i] (i = 2, . . . , n) and we finish when the variation of the average value
of the measure F0.5 between the images obtained after applying Algorithm 1 with 1/p = 1/pfixn and those

obtained with 1/p = 1/pfixn+1 is smaller than a given tolerance, in our case 0.001.
As a result of following these procedure with the training images in the considered dataset, we get the

cited value 1/p = 0.30. Finally, observe that the expression that we are actually recovering in this situation

is G(x) =
8∑
i=1

x2
i

8∑
i=1

xi

. However, this simple expression is justified by the previous considerations.

5.2. Case 2

In this case we consider:

7
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(a) Original (b) Case 1 (c) Case 2

Figure 2: Original image from BSDS [33] (100007) along with feature images obtained after applying Algorithm 1 with Case 1
and case 2.

~r = (xσ(1)
, xσ(2)

, xσ(3)
, xσ(4)

, xσ(5)
, xσ(6)

, xσ(7)
, xσ(8)

);

~b =

(
1

8

(
1−

∣∣∣∣xσ(1)
− median
i∈{1,...,8}

{xi}
∣∣∣∣) , . . .

. . . ,
1

8

(
1−

∣∣∣∣xσ(8)
− median
i∈{1,...,8}

{xi}
∣∣∣∣)) ;

a = 0 and 1
p = 0.30. The justification for the choice of these parameters is analogous to that in Case 1.

Note that in this case necessarily a = 0. Indeed, it suffices to consider the case x1 = . . . = x8.
In Fig. 2 we show the results obtained by applying Algorithm 1 with the two ODM functions, Case 1

and Case 2, to an original image, Fig. 2a.

6. Consensus feature images

We have seen in the previous sections that, from a given image, we can build different feature images
in phase (S2). In this section we discuss a method to build a consensus feature image from the different
feature images. This consensus image can be built using aggregation function pixel by pixel, and there are
several ways of doing it. Given a set of aggregation functions M1, . . . ,Ms, we may:

1. fix one of this aggregation functions, Mi, and apply it to the intensities of the first pixel in every
feature image to get the intensity of the first pixel in the consensus image. Then we can apply it again
to the intensities of the second pixel in every feature image to get the intensity of the second pixel in
the feature image, and we can repeat the process, always with the same Mi, for the intensities of all
the other pixels; or we may

2. use the notion of penalty function [5], which allows us to choose the best aggregation (among the s
considered ones) for each pixel. In this case, it may happen that, in order to build the intensity of the
first pixel in the consensus image, we use an aggregation function Mj , whereas to build the intensity
of the second pixel we use an aggregation function Mk different from Mj , and so on.

The advantage of using penalty functions is that the aggregation used to build the intensity of each
pixel in the consensus image is that one which provides the least dissimilar result from the intensities of
the corresponding pixels in the feature images. So it seems logical to use penalty functions to build the
consensus feature image. But the main problem with this method is the choice of the best penalty function.
In our experimentation we will use the following expression (see [5]):

P∇(X,y) =

m∑
q=1

n∑
p=1

|xqp − yq|2 (2)

8

3.4 Ordered directional monotonicity in the construction of edge detectors 121



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

where we have n feature images to aggregate, each of them with m pixels. In this way, xqp denotes the
intensity of the pixel q in image p and yq is the result of aggregating xq1, . . . , x

q
n by means of some of

the considered aggregation functions. Finally, we denote X = ((x11, x
1
2, . . . , x

1
n), . . . , (xm1 , x

m
2 , . . . , x

m
n )) and

y = (y1, . . . , ym).
We use Eq. 2 since it is among the most used ones in image comparison, as it is based on the mean

squared error; and, moreover, due to the following property.
If the arithmetic mean is among the considered aggregation functions M1, . . . ,Ms set then the least

dissimilar result is obtained applying in every case the arithmetic mean.
To analyze, this property, let us recall the concept of pnalty function in a Cartesian product of lattices,

that was deeply studied in [5]. Consider the following goal: given a set of n numerical values x1, . . . , xn
and q averaging aggregation (i.e., between the minimum and the maximum, see [2]) functions M1, . . . ,Mq

penalty functions (see [13, 8, 9]) allow us to select, between the q functions, the one that provides the output
least dissimilar to all the inputs. That is, we choose the aggregation functions using a consensus procedure
based on testing several functions until we find the one providing the least dissimilar result with respect to
the values of the inputs.

The definition of penalty function in a Cartesian product of lattices reads as follows [9]:

Definition 9. A function P∇ : ([0, 1]n)m × [0, 1]m → [0,∞[ is a penalty function if, for every X =
(x1, . . . ,xm) ∈ ([0, 1]n)m (with xi = (xi1, . . . , x

i
n) for every i ∈ {1, . . . ,m}) and for every y = (y1, . . . , ym) ∈

[0, 1]m, it satisfies that:

1. P∇(X,y) ≥ 0;
2. P∇(X,y) = 0 if and only if xi1 = · · · = xin = yi for every i ∈ {1, . . . ,m};
3. P∇ is convex in yi or every i ∈ {1, . . . ,m}.

To understand how the penalty function works, let us consider the following example:

Let us assume that we have three feature images A,B,C, obtained with three different methods in phase
(S2).

Figure 3: Consensus image.

We want to choose, among a set of aggregation functions M1, . . . ,Ms, the combinations of three aggre-
gation functions Mi,Mj y Mk which provide the smallest value of the considered penalty function.

9
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Looking at Fig. 3, where Mi,Mj and Mk are three aggregation functions, it is clear that inputs can be
seen as vectors, so we should use penalty functions defined over a Cartesian product of lattices. That is,
functions defined as in Fig. 4, where it is clear that each combination of three aggregation functions Mi,Mj

y Mk gives us a value Pijk. so the idea is to determine which combination of three aggregation functions
provides the smallest value of Pijk for the considered pixels.

Figure 4: Penalty function

As we have said, for the experimentation we use the following specific expression:

P∇(X,y) =
m∑
q=1

n∑
p=1

|xqp − yq|2. (3)

In the literature, it is used the notation of penalty based function [13] or P -function [8] (for short) to
refer to the function which selects the value y which minimizes the value of the penalty function for any
(x1, . . . , xn), i.e.,

f(x1, . . . , xn) = argmin
y

P (x1, . . . , xn, y)

if y is the unique minimizer and y = (a+b)
2 if the set of minimizers is the interval (a, b) (open or closed). It

is also known that in some cases the penalty based function can be expressed analytically, while in other
cases it is not possible. For the proposed penalty function of the experimentation given in Eq. (2), we have
the following result.

Theorem 10. Let P be the penalty function given in Eq. (2). The penalty based function of P can be
expressed analytically and its expression is the arithmetic mean, i.e., the value of y which minimizes the
penalty function is

f(x1, . . . , xn) = P (x1, . . . , xn,
x1 + . . .+ xn

n
)

Proof. It is straight taking into account that the arithmetic mean is the P -function of a given P (x1, . . . , xn, y) =

10
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n∑
i=1

(xi − y)2 (see for example [8]).

So, with the considered expression, the least dissimilar result is obtained using in every case the arithmetic
mean, i.e., for y = ( 1

n

∑n
i=1 x

1
i , . . . ,

1
n

∑n
i=1 x

m
i ).

Taking into account this property and the results in the Annex, in this work we use the arithmetic mean
to build the consensus feature image.

We leave for future works the analysis of other possible expressions for the penalty functions, and hence,
of different aggregation functions.

7. Experimental framework

In this section, we present the set-up of the experimental framework used to develop the empirical
comparison in this work. Given a grayscale image I, we consider it as a matrix of elements (pixels)
arranged in rows and columns, where each pixel takes an intensity value in {0, 1, . . . , L − 1}. A prior step
is to normalize the intensities to values belonging to [0, 1]. As we have said, our proposal to perform the
experiments for a given grayscale image I, considering Bezdek et al. [4] includes phases (S1)-(S4) described
in the introduction. Moreover, we also need to evaluate the quality of the edges that we obtain, so we also
consider the following fifth step to compare to ground truth images, i.e,.
(S5) Comparing with ground truth images. To compare the binary edge image IB with hand-labeled

segmentations, getting measurements in terms of Precision (PREC), Recall (REC) and the measure
F0.5 [29].

7.0.1. The dataset

For our experiments we have used the images of Berkeley Segmentation Dataset (BSDS500) [33], specif-
ically 200 test natural images in grayscale with dimensions of 321 × 481 or 481 × 321. Associated to each
original image there exist several hand-labeled segmentations (done by humans), which, as we have already
said, are denoted as ground truth images; usually there are 5 ground truthimages associated to each original
image, but this number can vary between 4 and 9 (see Fig. 5). In this sense, the ground truth images are
considered as ideal images and they serve to test if the results obtained by an edge detection method are
similar, or not, to the ones segmented by a human.

Figure 5: The original image and its five ground truth images (BSDS500).
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7.0.2. Edge detection approaches and parameter configuration

Firstly, in step (S1) all the approaches perform a Gaussian filter with standard deviation σG = 2.
Secondly, to obtain a feature image, (S2), we consider the following edge detection approaches: Canny’s [15],
gravitational approach [28, 30], fuzzy morphology approach [21], Structured Forests method [16] and the
one based on ODM functions (Algorithm 1); all these methods have different configurations to be executed,
which are listed below:

• Canny [15]. We obtain the magnitude of the gradient estimation with the convolution operator pro-
posed by Canny, with σC = 2.25 which is a common value considering the size of the images [23, 30, 35].
This σC is different from that required for calculating the Gaussian filter, i.e., σG. Note that the un-
supervised calculation of an optimal value of σC has not been solved so far. We denote this approach
by C.

• Gravitational [28, 30]. This approach is based on gravitational forces using relief functions where,
as particular cases, t-norms and t-conorms are used. In our experiments, we denote by GSP and
GSM , when the probabilistic sum (SP (x, y) = x+ y − xy) and the maximum (SM (x, y) = ∨(x, y)) are
considered as t-conorms, respectively.

• Fuzzy Morphology [21, 22]. The authors proposed a generalization of the morphological operators
based on considering general t-conorms and t-norms in erosion and dilation definitions. We have
carried out in our experiments the best configurations claimed in [21, 22]: for erosion the Kleene-
Dienes implication operator (Eq. (4)) and for dilation, the nilpotent minimum as t-norm (Eq. (5)).

IKD(x, y) = ∨(1− x, y); (4)

TnM (x, y) =

{
0, if x+ y ≤ 1,
∧(x, y) otherwise.

(5)

Considering the pair (IKD, TnM ) we use the best two parameterizations given in [21, 22]:

– FMSS . The Schweizer-Sklar t-norm (TSSλ ) [39] is applied to Eq. (4) to get the fuzzy erosion and
for fuzzy dilation the Schweizer-Sklar t-conorm (defined as the dual of Schweizer-Sklar t-norm)
is applied to Eq. (5).

TSSλ (x, y) =


∧(x, y), if λ = −∞,
xy if λ = 0,
TD(x, y) if λ = +∞,
(∨(xλ + yλ − 1, 0))

1
λ otherwise.

where TD(x, y) =

{
0, if x, y ∈ [0, 1),
∧(x, y) otherwise.

.

We have taken the value of λ = −5 given in [22] as best result.

• Structured Forests [16]. In this approach the authors propose an edge detector learned from information
of local image patches, using Random Decision Forests. Originally the method works with RGB
color images, so we have trained the model for computing edges in grayscale with the configuration
parameters exposed in [16]. We denote this approach by SF.

• The two edge detector introduced in the next Section, Case 1 (C1) and Case 2 (C2), built from ODM
functions.

Anew for all methods, to thin the feature image, (S3), we compute prior orientations and subsequently
NMS process, both by Kovesis’ functions [27]. We finish binarizing the thinned image, (S4), [15, 36].

12

3.4 Ordered directional monotonicity in the construction of edge detectors 125



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

7.0.3. Comparison method

It is well-known that the procedure to evaluate the performance of an edge detector is an open problem
[29]. In this paper, to make the comparison, (S5), we have applied the approach given by Martin et al.
[34]. This approximation considers that we are dealing with a binary classification problem (each pixel is
classified as an element of the edge or is not classified as an element of the edge) and compares the output
image given by an edge detector method with the ones generated by humans (ground truth images). To do
so, a confusion matrix is performed.

In this work we use F0.5.
Thereupon, bearing in mind all previous indications, for each image in BSDS500, the measures PREC,

REC and F0.5 of a given edge detection method are those produced in the comparison with the ground
truth images for which F0.5 is maximal. As we have previously stated, there exist a number of ground truth
images for each original image, so in our experiments (see also [30]) we compare the solution given by any
edge detection method with all of the ground truth images. Then, the triplet (PREC,REC,F0.5) having
the greatest F0.5 is considered as the evaluation of the detection method for that image, i.e., for us, the
highest F0.5 value means that the solution obtained by the edge detection method is the closest to a human,
so, in this sense, is the best solution.

It is necessary to remark that we have also used a one-to-one pixel matching algorithm to map the edge
pixels in the output edge image (generated by an edge detection method) and the ground truth ones. This
matching allows some spatial tolerance (in our case, as much as 2.5% of the diagonal of the image), so that
an edge pixel can be slightly displaced from its true position, yet being considered as correctly classified.

In order to do the pixel-to-pixel matching, we use the method presented by Estrada and Jepson [19] (the
implementation can be found in [26]).

8. Experimental results

In this section we provide the results obtained by our new proposal, as an individual feature extractor
and as a consensus feature image, combined with other feature extraction techniques.

8.1. Case 1 and Case 2 vs. the other methods

In Table 1 the results of each edge detection method are indicated displaying the average of PREC,
REC and F0.5 for the 200 test set images. In terms of REC we can deduce that we have obtained better
results than the Canny method with all of our two methods (Case 1, Case 2 ), i.e., not including a lot of false
positives. On the other hand we may observe that FMSS combines a medium precision with a very high
recall, therefore the majority of edges are detected at the cost of including a high number of false positives.
In general, the best results are when PREC and REC have similar values, that is, considering F0.5 as an
overall quality measure. In this case, the results achieved with Case 1 and Case 2 are competitive with
the ones obtained with Canny and gravitational forces. Particularly, we obtain better results than the ones
with Canny and similar to those using the gravitational edge detector. If we focus on the results obtained
by the Structured Forest method, it obtains the highest values in terms of F0.5, this is due to the high
value of PREC as it detects more edges than the rest of the methods although having a lowest REC.
So, the results obtained with Case 1 and with Case 2 are better than those obtained with Canny, Fuzzy
Morphology, Gravitational with the maximum and Gravitational with the probabilistic sum, but worse than
those obtained with SF.

Next, in Table 2 we show the number of images in the dataset for which it is the best or worst performer
(in terms of F0.5).

We observe that C1 and C2 have the lowest values in terms of worst images. Moreover, the number
of images where we are the best result outperforms the ones obtained by all the other methods except
Structured Forest, which remains the best performer.
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Method PREC REC F0.5

C1 0.579 0.794 0.653
C2 0.602 0.765 0.654
FMSS 0.572 0.719 0.615
C 0.687 0.618 0.631
GSP 0.649 0.649 0.650
GSM 0.661 0.665 0.641
SF 0.753 0.645 0.682

Table 1: Comparison of ODM functions approach with other edge detection methods as Gravitational, Fuzzy Morphology,
Structured Forest and Canny in terms of PREC, REC and F0.5.

Method
* FMSS C GSP GSM SF

3 7 3 7 3 7 3 7 3 7 3 7
C1 44 17 14 86 6 39 29 16 21 19 86 23
C2 50 9 16 89 6 39 27 20 16 16 86 27

Table 2: Comparison of best (3) and worst (7) approaches for 200 images of (BSDS500) in terms of F0.5.

8.2. Consensus edge detector vs. the other methods

In this subsection we are going to build combinations without repetition of the feature images obtained
with the seven edge detection methods that we have considered in this work (Case 1, Case 2, Canny,
Gravitational with the probabilistic sum, Gravitational with the maximum, Fuzzy Morphology and SF).
Specifically, we are going to consider combinations of two (21 combinations), three (35 combinations), four
(35 combinations) and five (21 combinations) feature images. For each of the considered combinations, we
calculate the value of the measures PREC, REC and F0.5 (Tables 3- 6).

8.2.1. Combinations of two feature images

First, in Table 3 we consider combinations of two feature images obtained with two different edge
detectors. Since in this work we consider 7 edge detectors, we have 21 possible combinations, which appear
in the first column of the Table. For each of these combinations, we calculate the values of the PREC, REC
and F0.5 measures. we observe that the combination of Case 1 with SF provides the best result (in terms
of the measure F0.5). Moreover, the F0.5 value that we get for this combination of Case 1 and SF is better
than the F0.5 value obtained for SF individually (see Table 1).

8.2.2. Combinations of three feature images

Next, we consider combinations of three feature images obtained with three different edge detectors. The
35 possible combinations appear in the first column of Table 4 and for each of them we make the same study
for the PREC, REC and F0.5 values. In this case, we observe that the best result in terms of the measure
F0.5 is the combination of Case 1 with SF and the detector based on fuzzy morphology. But the F0.5 value
that we obtain, although better that the corresponding one for SF in Table 1, is worse than the one for the
combination of Case 1 and SF considered in Table 3.

8.2.3. Combinations of more than three feature images

Finally we study combinations of four (Table 5) and five (Table 6) feature images. In both cases, we
see that the best result according to F0.5 is obtained from the combination of our cases, SF and some of
the other methods, but the resulting F0.5 value, although bigger than the one of SF in Table 1, does not
overcome neither the combination of Case 1 with SF nor the combination of Case 1 with SF and the detector
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based on fuzzy morphology. Even more, the best combination in Table 6 gets a worst result (according to
F0.5) than the best combination in Table 5.

8.3. Experimental results in terms of the best and worst performance

In Tables VII-X we compare the different combinations of methods with the individual methods. We
study for how many images from the set of 200 each method provides the best and the worst results. The
first column contains the different combinations of methods. In the row corresponding to each of these
methods the 200 studied images are considered. In the column marked with * it is displayed in how many of
the 200 images the method to which the row corresponds provides the best (tick) and the worst (x) results.
In the other columns it is displayed the number of images among the 200 in which the method at the heading
of the column provides the best and the worst results.

8.3.1. Combinations of two feature images

In Table VII we observe that the combination of Case 1 with SF and the combination of Case 2 with
SF provide extremely competitive results, much better than those obtained with each method individually,
including SF.

8.3.2. Combinations of three feature images

Regarding the number of images in which the best and the worst results are obtained by combinations
of three methods, the result is even more relevant in Table VIII than in VII, since the combination of Cases
1 and 2 with SF provides the best result in 94 images and the worst in just 1.

8.3.3. Combinations of more than three feature images

In Tables IX and X we see that the best results are obtained by combination in which Cases 1 and 2
always appear, and moreover, such results are always very competeitive. Furthermore, in all the cases the
combination of methods provides the worst result in a very small number of cases.

8.4. Note about the time complexity

In Algorithm 1, regardless we use C1 or C2 we have a complexity of O(N), with N the number of pixels
in an image. In Algorithm 2 we only use the arithmetic mean, so we also have lineal complexity O(N).

If we consider the complete process until calculating the PREC, REC and F0.5 values, this is equivalent
for all the compared methods, so the time complexities are equivalent. But it is worth to mention that
the highest cost in our proposal corresponds to the calculation of the optimal value for 1/p. To do so, we
must run Algorithm 1 for each considered value of 1/p. So, if we consider N values of 1/p, we have a time
complexity of O(N2). But this calculation is done only once, in the training phase.

8.5. Conclusions from the experimental study

From the experimental study that we have done, we arrive at the following conclusions:

• The combination of methods improves the results obtained by each method separately.

• As more methods are combined, the results for the best combination (according to the F0.5 measure)
worsen.

• The best results correspond always to combinations in which Case1 or Case 2 (or both) and SF appear.

These results justify the introduction and the study of Case 1 and Case 2. So we propose to use always
combinations of two methods. We leave for a future work the analysis of the causes of this improvement in
the performance when different methods are combined.
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Method PREC REC F0.5

C1-C2 0.586 0.785 0.654
C1-Canny 0.661 0.682 0.652
C1-FMSS 0.582 0.784 0.651
C1-GSP 0.620 0.749 0.660
C1-GSM 0.625 0.731 0.654
C1-SF 0.715 0.724 0.705
C2-Canny 0.668 0.669 0.650
C2-FMSS 0.602 0.754 0.649
C2-GSP 0.628 0.731 0.657
C2-GSM 0.635 0.715 0.653
C2-SF 0.720 0.710 0.701
Canny-FMSS 0.675 0.650 0.644
Canny-GSP 0.677 0.666 0.651
Canny-GSM 0.674 0.648 0.641
Canny-SF 0.728 0.671 0.683
FMSS-GSP 0.624 0.734 0.655
FMSS-GSM 0.631 0.711 0.649
FMSS-SF 0.722 0.708 0.701
GSP -GSM 0.654 0.687 0.650
GSP -SF 0.722 0.688 0.687
GSM -SF 0.725 0.673 0.681

Table 3: Comparison of penalty functions combining two feature images in terms of PREC, REC and F0.5.

9. Conclusions and Future Research

As a conclusion for this paper, we can make the following remarks. The goal of evaluating the validity
of ODM functions, used to measure the changes of intensity between a pixel and its neighbours taking into
account the direction defined by the vector obtained by ordering in a decreasing way such intensity changes,
has been achieved, so such functions can be used to determine the existence of an edge. Furthermore, using
different ODM functions in phase (S2) and bearing in mind F0.5 measure,we can conclude that, among the
considered cases, Case 1 and Case 2 individually are only overcome by SF. This justifies the consideration
of the new method to build ODM functions and the introduction of both Case 1 and Case 2.

Furthermore, if we consider combinations of methods, the combinations of Case 1, Case 2 or both with
SF overcome the results obtained by any of the methods individually. But the more combined methods, the
worse the results are, so we consider that the best option is to combine Case 1 or Case 2 with SF.

With respect to future research lines, we consider that it is necessary to make a study for optimizing the
parameters in Eq. 1, both in a general way and with specific types of images.

As we have already mentioned in the introduction, our proposal is outperformed by deep learning meth-
ods. But we would like to insist once more on the simplicity and interpretability of our method, in particular
when the feature image is built using the expression in Eq. (1). Note that, contrary to the case of deep
neural networks, no training is need in our case, and furthermore, the computational cost of our algorithms
is very low compared to that of deep learning procedures. Nevertheless, in future works we intend to study
the possible combination of our algorithms and those based in deep learning techniques.
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Method PREC REC F0.5

C1-C2-Canny 0.648 0.704 0.656
C1-C2-FMSS 0.591 0.779 0.654
C1-C2-GSP 0.614 0.758 0.661
C1-C2-GSM 0.620 0.741 0.656
C1-C2-SF 0.699 0.738 0.702
C1-Canny-FMSS 0.654 0.693 0.655
C1-Canny-GSP 0.656 0.701 0.659
C1-Canny-GSM 0.656 0.686 0.652
C1-Canny-SF 0.710 0.700 0.689
C1-FMSS-GSP 0.615 0.757 0.660
C1-FMSS-GSM 0.620 0.737 0.654
C1-FMSS-SF 0.701 0.737 0.704
C1-GSP -GSM 0.638 0.723 0.658
C1-GSP -SF 0.695 0.725 0.693
C1-GSM -SF 0.701 0.706 0.687
C2-Canny-FMSS 0.660 0.683 0.653
C2-Canny-GSP 0.660 0.692 0.656
C2-Canny-GSM 0.664 0.674 0.649
C2-Canny-SF 0.713 0.692 0.687
C2-FMSS-GSP 0.621 0.746 0.659
C2-FMSS-GSM 0.626 0.728 0.653
C2-FMSS-SF 0.704 0.726 0.700
C2-GSP -GSM 0.643 0.713 0.656
C2-GSP -SF 0.700 0.717 0.691
C2-GSM -SF 0.707 0.700 0.686
Canny-FMSS-GSP 0.664 0.689 0.657
Canny-FMSS-GSM 0.665 0.670 0.648
Canny-FMSS-SF 0.719 0.691 0.689
Canny-GSP -GSM 0.673 0.668 0.650
Canny-GSP -SF 0.714 0.680 0.679
Canny-GSM -SF 0.719 0.663 0.672
FMSS-GSP -GSM 0.640 0.714 0.655
FMSS-GSP -SF 0.704 0.716 0.693
FMSS-GSM -SF 0.712 0.696 0.688
GSP -GSM -SF 0.711 0.682 0.678

Table 4: Comparison of penalty functions combining three feature images in terms of PREC, REC and F0.5.
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Method PREC REC F0.5

C1-C2-Canny-FMSS 0.644 0.711 0.657
C1-C2-Canny-GSP 0.647 0.719 0.662
C1-C2-Canny-GSM 0.650 0.699 0.654
C1-C2-Canny-SF 0.702 0.709 0.690
C1-C2-FMSS-GSP 0.611 0.763 0.661
C1-C2-FMSS-GSM 0.617 0.744 0.655
C1-C2-FMSS-SF 0.694 0.739 0.700
C1-C2-GSP -GSM 0.629 0.738 0.660
C1-C2-GSP -SF 0.684 0.738 0.693
C1-C2-GSM -SF 0.685 0.724 0.688
C1-Canny-FMSS-GSP 0.649 0.714 0.661
C1-Canny-FMSS-GSM 0.651 0.698 0.654
C1-Canny-FMSS-SF 0.705 0.709 0.691
C1-Canny-GSP -GSM 0.656 0.698 0.657
C1-Canny-GSP -SF 0.697 0.707 0.685
C1-Canny-GSM -SF 0.704 0.687 0.678
C1-FMSS-GSP -GSM 0.629 0.737 0.659
C1-FMSS-GSP -SF 0.683 0.738 0.694
C1-FMSS-GSM -SF 0.688 0.721 0.687
C1-GSP -GSM -SF 0.688 0.715 0.683
C2-Canny-FMSS-GSP 0.654 0.706 0.660
C2-Canny-FMSS-GSM 0.655 0.688 0.652
C2-Canny-FMSS-SF 0.707 0.703 0.689
C2-Canny-GSP -GSM 0.662 0.689 0.655
C2-Canny-GSP -SF 0.703 0.698 0.683
C2-Canny-GSM -SF 0.709 0.680 0.676
C2-FMSS-GSP -GSM 0.631 0.731 0.658
C2-FMSS-GSP -SF 0.690 0.729 0.693
C2-FMSS-GSM -SF 0.697 0.711 0.687
C2-GSP -GSM -SF 0.693 0.708 0.682
Canny-FMSS-GSP -GSM 0.662 0.687 0.654
Canny-FMSS-GSP -SF 0.707 0.696 0.685
Canny-FMSS-GSM -SF 0.709 0.678 0.676
Canny-GSP -GSM -SF 0.705 0.678 0.673
FMSS-GSP -GSM -SF 0.696 0.707 0.683

Table 5: Comparison of penalty functions combining four feature images in terms of PREC, REC and F0.5.
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Method PREC REC F0.5

C1-C2-Canny-FMSS-GSP 0.642 0.726 0.663
C1-C2-Canny-FMSS-GSM 0.645 0.706 0.655
C1-C2-Canny-FMSS-SF 0.695 0.715 0.689
C1-C2-Canny-GSP -GSM 0.651 0.707 0.658
C1-C2-Canny-GSP -SF 0.688 0.718 0.685
C1-C2-Canny-GSM -SF 0.690 0.702 0.678
C1-C2-FMSS-GSP -GSM 0.625 0.742 0.660
C1-C2-FMSS-GSP -SF 0.675 0.744 0.692
C1-C2-FMSS-GSM -SF 0.678 0.733 0.687
C1-C2-GSP -GSM -SF 0.676 0.724 0.682
C1-Canny-FMSS-GSP -GSM 0.650 0.709 0.659
C1-Canny-FMSS-GSP -SF 0.689 0.718 0.686
C1-Canny-FMSS-GSM -SF 0.694 0.699 0.679
C1-Canny-GSP -GSM -SF 0.692 0.698 0.676
C1-FMSS-GSP -GSM -SF 0.679 0.726 0.685
C2-Canny-FMSS-GSP -GSM 0.654 0.701 0.658
C2-Canny-FMSS-GSP -SF 0.694 0.710 0.685
C2-Canny-FMSS-GSM -SF 0.699 0.692 0.678
C2-Canny-GSP -GSM -SF 0.697 0.691 0.675
C2-FMSS-GSP -GSM -SF 0.685 0.717 0.684
Canny-FMSS-GSP -GSM -SF 0.700 0.691 0.677

Table 6: Comparison of penalty functions combining five feature images in terms of PREC, REC and F0.5.
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Method
* FMSS C GSP GSM SF

3 7 3 7 3 7 3 7 3 7 3 7
C1-C2 42 11 16 88 6 39 31 20 18 16 87 26
C1-Canny 18 2 26 94 6 39 41 21 18 16 91 28
C1-FMSS 43 15 11 87 6 39 34 19 20 16 86 24
C1-GSP 43 6 22 93 7 39 18 18 19 16 91 28
C1-GSM 30 4 22 93 6 39 33 21 17 15 92 28
C1-SF 97 1 20 96 4 39 26 21 15 16 38 27
C2-Canny 15 1 28 95 6 39 42 21 18 16 91 28
C2-FMSS 38 11 14 88 6 39 37 19 17 15 88 28
C2-GSP 38 3 25 95 7 39 22 19 18 16 90 28
C2-GSM 26 2 24 94 6 39 36 21 15 16 93 28
C2-SF 96 1 20 96 4 39 29 21 15 16 36 27
Canny-FMSS 16 1 29 96 3 38 42 21 20 16 90 28
Canny-GSP 15 3 28 96 7 38 37 20 19 15 94 28
Canny-GSM 9 5 28 96 7 37 43 21 19 13 94 28
Canny-SF 52 2 27 95 5 39 36 20 16 16 64 28
FMSS-GSP 42 9 23 91 6 38 19 18 19 16 91 28
FMSS-GSM 24 4 22 93 6 39 39 21 17 15 92 28
FMSS-SF 98 1 20 96 4 39 28 21 16 16 34 27
GSP -GSM 18 6 26 95 7 38 37 19 17 14 95 28
GSP -SF 61 6 28 95 5 38 28 18 16 16 62 27
GSM -SF 48 3 29 95 5 39 36 20 15 16 67 27

Table 7: Comparison of best (3) and worst (7) approaches in terms of F0.5 considering penalty approaches with two feature
images.
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Method
* FMSS C GSP GSM SF

3 7 3 7 3 7 3 7 3 7 3 7
C1-C2-Canny 30 1 21 95 6 39 38 21 16 16 89 28
C1-C2-FMSS 41 10 14 90 6 39 33 19 18 16 88 26
C1-C2-GSP 44 2 22 95 6 39 22 20 17 16 89 28
C1-C2-GSM 34 4 22 92 6 39 34 21 17 16 87 28
C1-C2-SF 93 2 19 96 5 39 25 21 11 16 47 26
C1-Canny-FMSS 22 1 24 95 6 39 40 21 17 16 91 28
C1-Canny-GSP 28 3 27 95 6 38 30 20 17 16 92 28
C1-Canny-GSM 22 1 26 96 6 39 37 21 17 15 92 28
C1-Canny-SF 63 1 26 95 5 39 30 21 13 16 63 28
C1-FMSS-GSP 46 11 22 90 7 38 19 18 20 16 86 27
C1-FMSS-GSM 33 6 20 92 6 39 32 21 18 14 91 28
C1-FMSS-SF 95 1 19 96 3 39 23 21 13 16 47 27
C1-GSP -GSM 34 3 25 95 7 38 25 21 17 15 92 28
C1-GSP -SF 85 0 24 96 5 39 13 21 15 16 58 28
C1-GSM -SF 67 1 22 95 6 39 29 21 11 16 65 28
C2-Canny-FMSS 20 1 25 95 5 39 41 21 18 16 91 28
C2-Canny-GSP 21 2 27 95 6 38 31 21 20 16 95 28
C2-Canny-GSM 15 1 28 95 7 39 41 21 18 16 91 28
C2-Canny-SF 52 3 27 94 6 39 36 20 16 16 63 28
C2-FMSS-GSP 39 6 23 93 7 38 22 19 19 16 90 28
C2-FMSS-GSM 25 4 21 94 6 39 38 21 18 14 92 28
C2-FMSS-SF 88 1 16 96 3 39 29 21 15 16 49 27
C2-GSP -GSM 30 3 24 96 7 38 30 21 17 14 92 28
C2-GSP -SF 81 0 24 96 5 39 20 21 15 16 55 28
C2-GSM -SF 62 1 24 95 6 39 31 21 12 16 65 28
Canny-FMSS-GSP 25 2 27 95 6 39 29 20 21 16 92 28
Canny-FMSS-GSM 18 3 28 94 6 39 40 21 17 15 91 28
Canny-FMSS-SF 60 2 26 95 5 39 33 21 16 16 60 27
Canny-GSP -GSM 16 5 27 94 7 38 39 20 17 15 94 28
Canny-GSP -SF 44 3 28 95 4 38 34 20 14 16 76 28
Canny-GSM -SF 37 5 28 93 4 39 39 20 12 16 80 27
FMSS-GSP -GSM 28 5 25 95 7 38 30 21 16 13 94 28
FMSS-GSP -SF 85 2 25 95 5 39 17 20 15 16 53 28
FMSS-GSM -SF 62 1 23 95 5 39 34 21 13 16 63 28
GSP -GSM -SF 43 2 29 95 6 38 31 21 15 16 76 28

Table 8: Comparison of best (3) and worst (7) approaches in terms of F0.5 considering penalty approaches with three feature
images.

21

134 Chapter 3 Publications: published, accepted and submitted



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Method
* FMSS C GSP GSM SF

3 7 3 7 3 7 3 7 3 7 3 7
C1-C2-Canny-FMSS 29 0 22 96 6 39 36 21 18 16 89 28
C1-C2-Canny-GSP 34 1 24 96 6 38 31 21 16 16 89 28
C1-C2-Canny-GSM 26 2 25 94 6 39 35 21 16 16 92 28
C1-C2-Canny-SF 71 1 23 95 4 39 28 21 13 16 61 28
C1-C2-FMSS-GSP 46 6 19 93 7 38 22 19 18 16 88 28
C1-C2-FMSS-GSM 36 3 18 94 6 39 34 21 17 15 89 28
C1-C2-FMSS-SF 97 3 14 95 3 39 22 21 12 16 52 26
C1-C2-GSP -GSM 33 2 25 95 7 38 26 21 18 16 91 28
C1-C2-GSP -SF 88 1 20 96 5 39 11 21 16 16 60 27
C1-C2-GSM -SF 68 0 18 96 6 39 27 21 11 16 70 28
C1-Canny-FMSS-GSP 35 3 23 95 7 38 27 20 17 16 91 28
C1-Canny-FMSS-GSM 27 1 23 96 7 39 37 21 16 15 90 28
C1-Canny-FMSS-SF 70 1 22 95 5 39 27 21 16 16 60 28
C1-Canny-GSP -GSM 24 3 25 95 7 38 32 20 19 16 93 28
C1-Canny-GSP -SF 65 1 25 95 5 39 22 21 15 16 68 28
C1-Canny-GSM -SF 47 1 25 95 6 39 35 21 14 16 73 28
C1-FMSS-GSP -GSM 37 2 24 95 7 38 26 21 18 16 88 28
C1-FMSS-GSP -SF 86 1 18 96 5 39 14 21 15 16 62 27
C1-FMSS-GSM -SF 70 1 17 95 6 39 29 21 10 16 68 28
C1-GSP -GSM -SF 62 0 25 96 6 39 21 21 13 16 73 28
C2-Canny-FMSS-GSP 24 2 25 95 6 38 33 21 19 16 93 28
C2-Canny-FMSS-GSM 22 2 26 95 6 39 39 21 16 15 91 28
C2-Canny-FMSS-SF 68 2 22 94 5 39 30 21 16 16 59 28
C2-Canny-GSP -GSM 22 3 25 95 7 38 35 20 17 16 94 28
C2-Canny-GSP -SF 63 2 27 95 5 38 20 21 14 16 71 28
C2-Canny-GSM -SF 40 1 26 95 5 39 34 21 14 16 81 28
C2-FMSS-GSP -GSM 31 3 23 95 7 38 30 20 17 16 92 28
C2-FMSS-GSP -SF 87 1 22 95 5 39 14 21 13 16 59 28
C2-FMSS-GSM -SF 67 1 19 95 6 39 29 21 11 16 68 28
C2-GSP -GSM -SF 62 1 25 96 6 38 23 21 13 16 71 28
Canny-FMSS-GSP -GSM 22 3 26 94 7 38 33 21 18 16 94 28
Canny-FMSS-GSP -SF 65 1 25 96 4 38 24 21 13 16 69 28
Canny-FMSS-GSM -SF 41 3 28 94 5 39 34 21 14 16 78 27
Canny-GSP -GSM -SF 37 3 29 95 4 38 34 20 16 16 80 28
FMSS-GSP -GSM -SF 65 2 24 95 5 38 23 21 13 16 70 28

Table 9: Comparison of best (3) and worst (7) approaches in terms of F0.5 considering penalty approaches with four feature
images.
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Method
* FMSS C GSP GSM SF

3 7 3 7 3 7 3 7 3 7 3 7
C1-C2-Canny-FMSS-GSP 34 2 22 95 7 38 30 21 17 16 90 28
C1-C2-Canny-FMSS-GSM 26 0 24 96 6 39 37 21 16 16 91 28
C1-C2-Canny-FMSS-SF 69 1 21 95 5 39 29 21 13 16 63 28
C1-C2-Canny-GSP -GSM 28 3 25 94 7 38 31 21 17 16 92 28
C1-C2-Canny-GSP -SF 69 1 24 95 5 39 19 21 13 16 70 28
C1-C2-Canny-GSM -SF 48 1 24 95 5 39 32 21 15 16 76 28
C1-C2-FMSS-GSP -GSM 36 3 22 94 7 38 28 21 17 16 90 28
C1-C2-FMSS-GSP -SF 86 1 17 95 6 39 14 21 15 16 62 28
C1-C2-FMSS-GSM -SF 72 1 16 95 6 39 26 21 11 16 69 28
C1-C2-GSP -GSM -SF 66 1 23 95 6 39 19 21 13 16 73 28
C1-Canny-FMSS-GSP -GSM 25 3 25 94 7 38 31 21 19 16 93 28
C1-Canny-FMSS-GSP -SF 70 1 23 95 5 39 22 21 15 16 65 28
C1-Canny-FMSS-GSM -SF 53 1 24 95 6 39 32 21 12 16 73 28
C1-Canny-GSP -GSM -SF 52 1 24 95 5 39 27 21 12 16 80 28
C1-FMSS-GSP -GSM -SF 66 1 20 95 6 39 22 21 14 16 72 28
C2-Canny-FMSS-GSP -GSM 27 4 25 94 6 38 33 20 16 16 93 28
C2-Canny-FMSS-GSP -SF 64 2 25 95 5 38 24 21 15 16 67 28
C2-Canny-FMSS-GSM -SF 48 1 26 95 5 39 33 21 12 16 76 28
C2-Canny-GSP -GSM -SF 46 1 27 95 5 39 30 21 15 16 77 28
C2-FMSS-GSP -GSM -SF 63 2 24 95 6 38 23 21 14 16 70 28
Canny-FMSS-GSP -GSM -SF 48 2 26 95 5 38 28 21 15 16 78 28

Table 10: Comparison of best (3) and worst (7) approaches in terms of F0.5 considering penalty approaches with five feature
images.
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construction and an application,” IEEE Transactions on Fuzzy Systems, vol. 23, no. 2, pp. 260–272, 2016.

[32] J. M. Malof, K. Bradbury, L. M. Collins, and R. G. Newell, “Automatic detection of solar photovoltaic arrays in high
resolution aerial imagery,” Applied Energy, vol. 183, pp. 229 – 240, 2016.

[33] D. Martin, C. Fowlkes, D. Tal, J. Malik, “A database of human segmented natural images and its application to evaluating
segmentation algorithms and measuring ecological statistics,” in Proc. of the 8th International Conference on Computer
Vision, vol. 2, 2001, pp. 416–423.

[34] D. Martin, C. Fowlkes, J. Malik, “Learning to detect natural image boundaries using local brightness, color, and texture
cues,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 5, pp. 530-549, 2004.

[35] R. Medina-Carnicer, F. Madrid-Cuevas, A. Carmona-Poyato, R. Muñoz-Salinas, “On candidates selection for hysteresis
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A survey on matching algorithms
for boundary image comparison and evaluation

C. Lopez-Molina, C. Marco-Detchart, H. Bustince, Senior Member, IEEE, and B. De Baets

Abstract—Among the different alternatives to evaluate bound-
ary images, the ones gaining more interest are those based on
comparison to ground truth solutions. More specifically, recent
years have seen a dominance of techniques based on the use of
a confusion matrix. These techniques require a correspondence
between the boundary pixels in the candidate boundary image
and those in the ground-truth; that correspondence is further
used to create the confusion matrix, from which a statistic is
computed. This correspondence faces different challenges, mainly
related to the matching of potentially displaced boundaries. In
this work, we survey all existing strategies for establishing such
correspondence, we propose a taxonomy to embrace them all,
and perform a usability-driven quantitative analysis of their
behaviour.

Index Terms—Boundary image, Displaced boundary, Linear
feature matching, Image comparison

I. INTRODUCTION

In the context of boundary detection, quality evaluation
has long been studied, the first references dating back to the
1970s [15], [21]. The reasons are manifold, including the
need to rank different boundary detection methods or the de-
velopment of training-based methods, which demand reliable
objective functions. It is generally accepted that the best way
to evaluate boundary detection methods is by comparing their
results to those by humans. However, there is no agreement on
which is the most reliable way to (quantitatively) perform that
comparison, either it is carried out in terms of similarity (how
close both images are) or dissimilarity (how different they are).
As of today, several different techniques and configurations are
used; this has led to a rather disorganized situation in which
very few standards are kept.

In the past, most of the measures for boundary image
comparison relied on distance transformations [1], [4], which
are convenient to overcome counting dilemmas due to variable
boundary position or boundary cardinality [33]. However,
in recent years, a new family of proposals approached the
problem with a classification-based inspiration. The reason is
simple: at a very basic level, boundary detection is nothing
else but binary classification, since every pixel in the image
must be labelled as either boundary or not. The comparison
between two images is then phrased in the usual terms of
binary classification: the matching boundary pixels becoming
True Positives (TPs), etc. Once a confusion matrix has been

C. Lopez-Molina, C. Marco-Detchart and H. Bustince are with the Dept.
Estadistica, Informatica y Matematicas, Universidad Publica de Navarra,
Spain.
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created, well-known statistics and quantifiers yield final eval-
uations [24], [73].

The classification-based inspiration is very convenient and
attractive, since it relates to machine learning and classi-
fication, two fields in which quality evaluation is deeply
studied [14], [57], [67]. However, it also comes coupled with
a critical handicap that is unresolved in the literature: if the
boundary of an object appears at slightly displaced (non-
overlapping) positions in two images, the comparison method
should be able to recognize the circumstance and count its
pixels as correctly classified. That is, the counting of the
correctly/wrongly classified pixels cannot be done based on
mere a pixel-to-pixel comparison. A more elaborated matching
is needed to map the boundaries in one image to those in
the other, up to some spatial tolerance. This matching would
ideally be able to tolerate small spatial deviations, yet not
pairing the boundaries of objects to those due to different
objects, texture or noise.

The boundary matching problem is, at a broad level, that of
linear feature matching, which has been regularly addressed in
computer vision literature. An evident solution is to treat the
problem as bipartite graph matching, i.e. one-to-one mapping
of the boundary pixels in one image to those in the other,
typically minimizing the distance between paired pixels. How-
ever, this solution is not perfect. Firstly, the computational
cost of deterministic optimal algorithms (such as the Hun-
garian/Munkres algorithm [25]) is exorbitant. Second, there
is also a theoretical problem, since bipartite graph matching
requires one-to-one correspondence in the matching. This is
a problem in the context of boundary matching strategies
because non-overlapping boundaries might be composed of a
different (yet similar) number of pixels. Several authors have
proposed alternatives to this algorithm, either focusing on the
computational cost (as Martin [42] using the CSA algorithm
by Goldberg and Kennedy [16]) or presenting alternatives able
to cope with the one-to-many correspondences (as Estrada and
Jepson [13]). Moreover, alternatives based on area overlapping
or mathematical morphology have also been employed. Cur-
rently, there is no clear way of knowing which is the best
alternative for boundary matching. The most accepted one is
the CSA algorithm, but this might due to the fact that it is
used in the most popular boundary detection benchmark (the
BSDS [2]).

In this work we review the most relevant boundary matching
techniques with application to boundary quality evaluation.
Moreover, we investigate and compare their performance.
Since there is no clear way of knowing which one works
better, we pose a different question: do different alternatives
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have a real impact on the resulting confusion matrices? That
is, should we expect significantly different results when using
different matching strategies? Although this does not answer
the question on the best possible option, it clearly reduces
the controversy about it. Section II describes such techniques,
while Section III includes some experimental comparisons
between them and Section IV recaps a brief discussion.

II. BOUNDARY MATCHING TECHNIQUES

While understanding the human visual system remains a
challenge, it seems clear that humans make intensive use
of features to compose objects and scenes [62], [59]. So is
the underlying idea of Marr’s Primal Sketch [39], arguably
the best computational model for human vision. While there
exists a diversity of features, the ones represented as lines
or curves play a key role in the human visual system. In
fact, some famous experiments in the context of cognitive
sciences are based on the recognition of contours and shape-
based objects, such as the Shepard-Metzler study [63] and
subsequent evolutions into the Mental Rotation Test [46], [65].

Not surprisingly, linear features1 became one of the most
relevant low-level features in computer vision [40], either
representing visually salient linear structures or any other
artefact. In this work we concentrate on boundary images,
which use linear features to represent the silhouette of relevant
objects in a scene. Nevertheless, examples of use of linear
features can also be found in biometrics [75], computational
biology [7], [66] or photogrammetry [5], [64].

The ubiquity of linear features in computer vision makes it
necessary to design comparison methods, either at individual
or whole-scene level. The generic problem of linear feature
comparison and matching has been recurrently materialized in
specific challenges. The tools and techniques used to resolve it
are, nevertheless, heavily dependent upon contextual matters.
Such matters include, e.g., the characteristics of the linear
features, the semantics of the problem to be solved, or the
expected output of the matching process. As a result we find
a diversity of linear feature matching techniques, most of them
being applicable exclusively to the context for which they were
designed.

In Section II-A we review different tasks that are partially
or totally based on linear feature matching. This analysis is
driven by their interestingness for our final goal: boundary
comparison and matching. Then, a mathematical framework
for such goal is provided in Section II-B. Finally, Section II-C
introduces a novel taxonomy for boundary matching tech-
niques.

A. Linear feature matching for image processing

Linear feature matching is the process of comparing, in
quantitative terms, the linear features in two scenes. There are
two factors with major influence in linear feature matching:
(a) the nature and constraints of the potential displacements
of the same feature in different images and (b) the expected

1In this work, we refer as linear features to any visible artefact whose
representation is a line. This holds regardless of their origin (edges, countours,
ridges) or characteristics (lines, curves, shapes).

output of the matching. The first factor relates to the nature
of the linear features and the circumstances under which they
were gathered. The second factor is bounded to the utility
of the matching process, and the application in which it is
intended to be useful. The study of linear feature matching
techniques in the literature must therefore be performed under
a dual perspective.

The most evident application of linear feature matching al-
gorithms is line pattern recognition, with applications ranging
from biometrics to aerial imagery registration. The complexity
of linear patterns has often led to the use of derived informa-
tion in the matching process, instead of the linear features
themselves [23]. However, some authors propose an explicit
matching of linear features (e.g. for palmprint matching [11]
or for fingerprint matching [38]).

A task slightly different from line pattern matching is
that of silhouette (also, shape) matching, often with the goal
of object recognition or classification. Generally, silhouettes
contain most of the information for object recognition, while
avoiding problems related to image texture, shading or colour.
In some scenarios, texture or colour cannot be used as a cue
for recognition [47], while in others silhouettes contain enough
information to complete the recognition task [22], [69]. Liter-
ature contains biometric systems based on silhouette matching
and recognition, e.g. for person/gait recognition [32] or hand
shape-based identification [26]. Also within the context of
silhouette recognition we can list linear feature matching tasks,
in applications such as stereo matching or image correspon-
dence [5]. Although stereo matching is often carried out using
disparity maps [60], early proposals were based on silhouette
recognition and matching [41], [45], [51]. In recent works, line
matching is still used for other delicate calibration tasks, e.g.
pose estimation in bifocal camera setups [71].

Recognition tasks, either based on linear patterns or shapes,
can be roughly divided according to their output: verification
(matching of two elements or not), identification (which ele-
ment, out of a pool of candidates, is a good matching) [37]
or offset computation (e.g. modelling the physical 3D setting
of two or more scenes)[31]. None of them fits the semantics
of boundary image matching, mostly because recognition is
grounded on the idea that a perfect (or fair enough) version
of the instance is stored in the system. This often turns these
tasks into the computation of an optimal deformation model.

Silhouette matching and recognition is so relevant that it led
to prominent mathematical developments. A good example is
the Curvature Scale-Space (CSS), which has as final goal the
comparison and matching of curves and shapes. Introduced by
Mokhtarian and Mackworth [48], the CSS uses a parametric
representation of non-overlapping curves based on paired
functions. Using this representation, the similarity between
two curves is quantified as the comparison of such functions,
more specifically of the zero-crossings in their second deriva-
tives when projected into the Gaussian Scale-Space (GSS).
The CSS is aimed at scale- and rotation-invariant silhouette
recognition. These aims are possibly critical to explain human
shape recognition (whose behaviour in this regard is still under
analysis, see recent works by Chen et al. [10] or Han et
al. [19]), but play no positive role in boundary comparison,
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in which rotation or scale invariance is undesired. Subsequent
evolutions of the CSS (see, e.g. [49]) extended the original
proposal, but do not substantially enhanced its utility for
boundary matching.

An interesting variation of the problem of shape matching is
that of shape-based object tracking, examples being [12], [44],
[74]. The difference between shape matching and shape-based
object tracking is twofold. First, tracking is performed across
several images, not only two of them. This enables, among
other possibilities, simultaneous multi-image evaluation. Sec-
ond, there is contextual information that takes relevance in
modelling the movement of the objects. That information
involves, for example, the appearance of other (potentially
occluding, or occluded) objects in the scene [72], as well as
inertia influencing the object movement. Moreover, restrictions
in the movement of objects can apply, e.g. in [61], [18],
rotating motion matching relies on an expected geometrical
transformation. Silhouette-based object tracking is usually
solved by applying non-rigid models based on active contours
or B-snakes [17], [68]. None of these solutions are available
for boundary image matching, where the variation in the
displacement of the boundaries can greatly differ for different
objects in the same image, or even different segments of the
same object boundary.

Object tracking is the most prominent example involving
multi-image analysis, but not the only one. Another very
relevant example is multiscale image analysis. Within mul-
tiscale image analysis we often find inter-scale linear feature
matching, especially when it involves tracking. As proposed
by Bergholm [6], evolving the ideas by Witkin [70], tracking-
based linear feature detection methods intend to discriminate
the relevant boundaries in an image at a coarse scale; then,
those boundaries are tracked down to the position they occupy
at a finer scale. In this way, a feature detector can combine
the good discrimination properties of large scales with the
accuracy of the fine ones. The tracking process starts out
by matching the boundaries at the coarsest scale to those
in the immediately finer scale, then repeats the process until
the image corresponding to the finest one. Normally, cross-
scale feature displacement is limited by a maximum scalewise
displacement, which dramatically eases the problem. Although
tracking has received considerably less attention than other
components of multiscale image analysis (e.g. the theoret-
ical properties of the scale-spaces), some alternatives have
appeared in the literature [53], [33]. Note that multiscale edge
and ridge analysis often demand linear feature matching, even
if they do not involve tracking. For example, the practical
implementation of Lindeberg’s ideas in the GSS [28], which
involve the location of the optimal scale for each boundary,
demand the explicit construction of the so-called edge surfaces
in scale-space. Such surfaces are typically given by the cor-
respondence of the positions of each boundary at each scale.

Although linear feature tracking (or edge surface construc-
tion) and boundary matching for quality evaluation seem to be
close tasks, relevant differences arise in the detailed analysis.
Linear feature tracking involves a sense of inertia and, despite
being carried out as consecutive matchings between pairs of
images, it aims at the construction of multi-image, cross-scale

structure. Also, the scale-spaces under which the image is
projected can incorporate relevant constraints to the matching
problem. For example, the causality principle in the GSS
imposes that any feature at a coarse scale corresponds to
a not-necessarily unique [55] feature at a lower scale. This
allows, and in a sense encourages, that a single feature at a
given scale is matched to spatially diverging features at a finer
scale. While some similarities between boundary matching and
edge tracking are evident, in particular the fact that no explicit
matching is required, solutions from linear feature tracking can
hardly be ported to boundary matching for comparison.

A completely different approach to line-based object recog-
nition is that mimicking human recognition abilities through
the implementation of CNNs. This research, which roots
back to early Mental Rotation Tests [65], attempt to model
human abilities in early stages of the Human Visual System
(HVS), specially regarding rotation, scale and eccentricity in-
variance [56], [10]. Since some of these experiments are based
on line based draws (e.g., in [19], Korean characters), it is to
be expected that eventually CNNs might mimic human line
pattern recognition abilities. Such a solution would, however,
raise evident questioning when used for boundary matching
in the context of quantitative evaluation. First, some of the
features (as scale invariance) are hardly desirable when applied
to comparison, even if it seems to be part of the HVS [56],
[19]. Second, if many differently trained CNNs yield similar
results, how to produce a canonical comparer out of them?
Alternatively, if using any of such CNNs for the task, how to
audit their results [27]? Third, as reported by Nguyen, Yosinski
and Clune [52], well-performing CNNs can lead to aberrant
results which are not only misleading, but also yield in almost-
full (> 99%) confidence. As the authors state, their findings
raise questions about the true generalization capabilities of
DNNs [52], which are of paramount importance for the present
task.

As a recap, we find very different tasks for which linear fea-
ture comparison or matching becomes relevant, but exporting
their solutions to the context of boundary quality comparison
and matching is troublesome. Recognition or classification
systems usually look for a closest-possible match, assuming
that the same object appears in two different images. Tracking
systems extend that assumption to a large number of images,
even if the object(s) to be tracked is (are) potentially occluded
at some of them. Moreover, the semantics of the output of such
tasks do not properly match that of boundary image evaluation.

B. A model for boundary evaluation and matching

Boundary matching for quality evaluation is oriented to the
recognition (and quantification) of the amount of coincidental
information in two boundary images. Although some contro-
versies hold on the interpretation of boundaries [54], most
authors accept that boundaries are the silhouette of the relevant
objects in an image. Often, the position of such silhouettes
is hard to determine even for humans, either due to limited
resolution in the image or to the very configuration of the
scene in terms of lightning, shading, occlusions, etc. Matching
for boundary quality evaluation needs to tolerate a certain
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displacement, which can take place, a priori, in any possible
direction. However, it is desirable to have some control on the
displacement of nearby boundary pixels. For example, it does
not seem natural that pixels that are contiguous in one image
get matched to pixels that are very distant in the other one.
With respect to the expected output, boundary matching for
quality evaluation imposes very few restrictions. In fact, the
matching does not need to be in terms of an explicit item-
by-item matching, but in terms of the amount of common
information instead. That is, since the final question to be
cleared out is how similar the images are, the correspondence
of the boundary pixels at each image does not need to be
explicitly enunciated. Any other output is acceptable, as long
as it serves as support for computing a subsequent confusion
matrix.

The problem of boundary matching, as well as that of qual-
ity evaluation, can be put to mathematical terms. In this work,
we consider all the images to have generic dimensions M×N ,
so that the set of positions is Ω = {1, . . . ,M} × {1, . . . , N}.
A binary image can be seen both as a mapping Ω → {0, 1}
and as a subset of Ω.

Let Ecd and Egt represent a candidate and a ground-truth
boundary image, respectively. Classification-based approaches
to boundary quality evaluation aim at generating a confusion
matrix from the comparison of Ecd (probably due to an
automated method) with Egt (probably due to a human). In
this context, a False Positive (FP) is a boundary pixel in Ecd
with no correspondence in Egt, a false negative (FN) is a
pixel in Egt that is not represented in Ecd, etc. Although some
authors have proposed to use confusion matrices to compute
χ2 or ROC-derived measures [8], [73], most authors choose
the Fα-measure to evaluate the closeness of Ecd to Egt. The
Fα-measure is given by:

Fα =
PREC ·REC

α PREC +(1− α) REC

with PREC = TP
TP+FP and REC = TP

TP+FN , where α is
a parameter modulating the relevance of PREC and REC
(typically set to 0.5 [33], [43]), and TP, FP and FN are the
usual quantities in a confusion matrix.

The Fα-measure is preferred over other quantities for a list
of reasons, including the fact that it avoids using the true
negatives (TN), which is typically (much) greater than the
other quantities in a confusion matrix for boundary quality
evaluation.

Given Ecd and Egt, the generation of a confusion matrix
is far from trivial. The reason is that the same boundary
might appear at nearby, yet not overlapping, positions at
each image. When comparing the images in a pixel-to-pixel
manner, the non-overlapping boundary pixels at each image
would be accounted for as both a FP (those in Ecd) and a
FN (those in Egt). This is undesirable, since the information
contained in both images is similar and, as long as the distance
between both appearances of the boundary is not excessive, the
boundary should be taken as a correct detection. While some
previous studies [24], [35], [36] analyze different quantitative
measures to be extracted from a confusion matrix, this work

focuses on the strategies for the generation of such matrix;
that is, for the correspondence between Ecd and Egt.

C. A taxonomy for boundary matching techniques

We consider that boundary matching techniques should be
classified according to the inspiration they take, not according
to the mathematical tools they make use of. Consequently,
next, we present a fourfold taxonomy in which the categories
are not completely disjoint. At the end of this section, we
review such overlappings.

Note that this taxonomy can be seen as a specialization of a
part of the taxonomy for error measures in [35], [34], since it
appears as a subdivision of the statistical error measures. Also,
it relates to the so-called Confusion matrix-based error assess-
ments by Adbulrahman et al. [?], and to the statistics derived
from confusion matrices in the survey by Magnier [36].

There exist four strategies for boundary pixel matching in
the context of boundary evaluation:

a) Distance-based Matching (DbM).- This strategy roots in
validating (matching) boundary pixels in Ecd as long
as they are closer to a boundary pixel in Egt than a
given threshold [8]. Such pixels become true positive
detections, while the remaining pixels in Ecd are taken
as false positives. In the context of classification, the
confusion matrix is given by

TP = |{p ∈ Ecd | d(p,Egt) ≤ t}| ,
FP = |{p ∈ Ecd | d(p,Egt) > t}| , and
FN = |{p ∈ Egt | d(p,Ecd) > t}| ,

(1)

where d(p,E) represents the distance from a pixel p
to the closest boundary pixel in E, | · | represents the
cardinality of a set, and t ∈ R+ is the maximum allowed
distance between matched pixels2.
This strategy can also be put in terms of mathematical
morphology, as done by Arbelaez in [3] (Ch. 7). In this
case, a circular structuring element [20] represents the
potential displacement of a boundary pixel, so that a pixel
in Ecd is validated if it falls within the dilation scope of
Egt (and vice versa):

TP = |Ecd ∩ dilS(Egt)| ,
FP = |Ecd ∩ ¬ dilS(Egt)| , and
FN = |Egt ∩ ¬ dilS(Ecd)| ,

(2)

where dilS is the dilation operation with structuring
element S, which here is a circular structuring element
of radius t. The results using the formulation in Eq. (1)
and that in Eq. (2) are equivalent.
The DbM strategy is extremely simple and computation-
ally cheap, especially if using implementations based on
either distance transformation or mathematical morphol-
ogy. However, it lacks refinement in the discrimination
of boundaries and spurious responses. As an example,
spurious responses due to texture or noise might be
accounted for as true positives when appearing relatively

2Note that d(p,E) can also be seen as the value of the pixel p in the
distance transform of E by means of d.
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close to the actual boundaries. Hence, although simple
and understandable, its use is often disregarded.

b) Area-based Matching (AbM).- The AbM grounds on the
idea that boundaries have a certain area of influence,
which is simply defined as the area surrounding it. Then,
it quantifies the TP as the overlapping of the areas of
influence of the boundaries at each image.
This strategy renders in a formulation similar to that of
the DbM, but allows for a more delicate setting of the al-
lowed displacement. In AbM, the tolerated displacement
is modelled by a structuring element [20], leading to

TP = |dilS(Egt) ∩ dilS(Ecd)| ,
FP = |dilS(Egt) ∩ ¬ dilS(Ecd)| , and
FN = |¬dilS(Egt) ∩ dilS(Ecd)| ,

(3)

where S represents the structuring element and dilS
stands, again, for morphological dilation.
Although the formulation in Eq. (3) resembles that in
Eq. (2), it yields significantly different results. Firstly, the
interpretation of the quantities in the confusion matrices
is completely different, since those for DbM represent
the number of pixels in the boundaries, but those for
AbM represent area sizes. Secondly, displaced boundaries
can yield perfect matching in terms of DbM, as long as
the displacement is lower than t. However, in AbM, any
boundary in Ecd slightly displaced from its position in
Egt will produce a certain number of FPs and FNs, since
dilS(Ecd) and dilS(Egt) will not overlap completely.
Note that both AbM and DbM do not perform explicit
matchings between the images. Instead, they count the
pixels that are matchable to the counterpart image, which
leads to the generation of the confusion matrix.

c) Correspondence-based matching (CbM).- This strategy
attempts to create an explicit one-to-one matching of the
pixels in Ecd to those in Egt. Such matching can lead
to conclusions on the amount of information in Ecd also
present in Egt (and vice versa), as well as to the average
displacements of the matched pixels [29].
Put to mathematical terms, CbM is presented as the
problem of finding a minimal-cost assignment of the
pixels in Ecd to those in Egt. That is, finding a (largest
possible) subset Q = {(p1, q1), . . . , (pn, qn)} so that
pi ∈ Ecd, qi ∈ Egt and

∑
i∈{1,...,n} d(pi, qi) is minimal.

Note that some constraints apply to the set Q. Firstly, each
boundary pixel in Ecd (resp. Egt) can only be matched
to one boundary pixel in Egt (resp. Ecd). Secondly, since
the number of boundary pixels in each image might be
different, the set Q is likely not to cover any of them
completely. Thirdly, pairs of pixels (pi, qj) ∈ Ω × Ω
are eligible to belong to Q iff d(pi, qj) < t, where t
represents a certain threshold in terms of a metric d.
This approach to boundary matching has evident links
to both the assignment problem and the transportation
problem [25], [50].
Liu and Haralick [29] studied the problem deeply, cover-
ing such constraints and proposing strategies to overcome
them. Finally, the authors convert the problem into an

unconstrained assignment problem by adding ghost pixels
(to equalize the cardinality of both sets) and setting
artificially long distances to the unmatchable pairs of
pixels. Another detailed analysis of this problem, leading
to a different proposal, can be found in [42] (Ch. 3).
Regardless of the algorithm used in the process, CbM
leads to the creation of Q, containing the matched pairs of
boundary pixels. Once Q is created, the confusion matrix
is constructed as:

TP = |{p ∈ Ecd | (p, y) ∈ Q for some y}| ,
FP = |{p ∈ Ecd | (p, y) /∈ Q for any y}| , and
FN = |{p ∈ Egt | (x, p) /∈ Q for any x}| .

CbM has interesting properties and is mathematically
sound, but also requires a careful revision. Some of
its features are controversial, especially when it comes
to the restriction of the one-to-one assignment. On the
one hand, this helps avoiding situations in which one
single pixel in Egt is matched to (or validates) multiple
boundary pixels in Ecd, potentially far from each other.
Also, the fact that CbM creates an explicit matching
allows for the direct computation of related, contextual
information, e.g. the average distance between matched
boundaries. On the other hand, the fact that each pixel
can be matched only once in CbM produces problems in
matching slightly displaced boundaries, which are usually
composed of a similar, yet different, number of pixels.
Although unmatched pixels can be seen as an implicit
penalization for the displacement, such penalization is
hard to interpret or predict.
Apart from the one-to-one restriction, finding the optimal
set Q in CbM is computationally prohibitive. Some
alternatives have been presented based on the Hungar-
ian/Munkres algorithm [50], even including pre- and post-
processing of Ecd and Egt to reduce the computational
load. However, most authors use pseudo-optimal algo-
rithms to produce Q, more specifically the implemen-
tation of the CSA algorithm [16] distributed within the
BSDS300 and the BSDS500 [42], [2].

d) Pixelwise validation (Pv).- This strategy takes individual
decisions on the validity of each of the boundary pixels
in Ecd, using information from the surrounding region in
both images. The validation process can be expressed as a
mapping ψ : P(Ω)×P(Ω) 7→ P(Ω) so that ψ(A,B) ⊆ A
is the subset of boundary pixels in A that are validated
w.r.t. B. Depending on the rules used for validation,
ψ might not be symmetric (i.e. it might happen that
ψ(A,B) 6= ψ(B,A)). Given ψ, a confusion matrix can
be constructed as

TP = |{p ∈ Ecd | p ∈ ψ(Ecd, Egt)}| ,
FP = |{p ∈ Ecd | p /∈ ψ(Ecd, Egt)}| , and
FN = |{p ∈ Egt | p /∈ ψ(Egt, Ecd)}| .

However, as proposed in [13], it is more natural to skip
the confusion matrix and to compute PREC/REC as

PREC =
|ψ(Ecd, Egt)|
|Ecd|

and REC =
|ψ(Egt, Ecd)|
|Egt|

.

Page 5 of 13

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

3.5 A survey on matching algorithms for boundary image comparison and evaluation 145



IEEE TRANSACTIONS 6

The Pv strategy has properties of great interest. First, it
is able to produce a deterministic one-to-many matching
of the boundary pixels in each image at an acceptable
cost (among the previous strategies, only certain cases
of CbM are able to do so). Secondly, it allows for the
application of rather complex, yet meaningful, validation
rules, including boundary orientation or interference of
different boundaries. However, the fact that it is based
on a local analysis makes it computationally inefficient
compared to other strategies, especially to those based on
mathematical morphology or distance transformations.

The four categories in this taxonomy are not completely dis-
joint. For example, DbM can be seen as a specialization of Pv
in which no information other than the distance between pixels
is used. Also, DbM with d = 1 would produce results equal
to those by AbM with a (rather useless) circular structuring
element with radius 1. Still, we consider each category to have
different semantics, even if leading to equivalent instantiations.

The theoretical comparison of the four strategies can be
performed from different perspectives, none of them providing
clear advantage to any of the strategies. Pv matching is the
strategy able to use most of the available local information,
while all of the other ones only consider the area/length of a
potential displacement of each boundary pixel. However, the
fact that CbM considers a global solution (instead of pixelwise
validation) seems more adequate for the task. With respect to
the robustness against small variations in the input, we find
AbM to be the most adequate strategy, since it is robust against
boundary rugging and progressively penalizes displaced edges;
also, this displacement-derived penalty is easily interpretable.
Interestingly, DbM, CbM and Pv might judge a boundary pixel
to be either completely matchable or completely unmatchable
on the basis of a 1-position displacement, (the displacement
making the boundary pixel inside or outside the allowed
displacement scope). Alternatively, if robustness refers to that
against the inclusion of noise in one of the images, CbM
appears as the best option, since each noisy pixel contributes
with at least one unit to TN or FN (maybe both).

On top of the previous considerations, we find that some
desirable properties are not provided by any of the strategies.
For example, one might consider that neighbouring pixels in
a boundary image should be matched to nearby pixels in the
other image with some spatial coherence. That is, there should
be some spatial coherence between the neighbouring source
pixels matched in one image and their destination pixels in
the other. No such proposal have appeared in the literature,
and only Pv, due to its flexibility in neighbourhood analysis,
seems to allow for similar goals.

III. EXPERIMENTAL RESULTS

Ideally, we could investigate which is the best matching
strategy in boundary image comparison, or at least the one
that fits better some specific goals. However, there is no
clear way of doing so, and, moreover, there is no evident
way of generating ground-truth for the boundary matching.
As an alternative, the present work questions whether there
are practical differences in using different boundary matching

techniques. That is, whether there exist significant differences
in the results (quality evaluations) obtained when the matching
is performed based on different techniques.

The matching methods considered are the following:
• Distance-based Matching (DbM) using the Euclidean

metric;
• Area-based Matching (AbM) using a circular structuring

element;
• Correspondence-based Matching (CbM) using the CSA

algorithm [16];
• Pixelwise validation (Pv) using the constraints by Estrada

and Jepson [13].
All the matching methods above have a parameter representing
the maximum allowed displacement of a boundary pixel, i.e.
the maximum distance between two matched pixels. This
parameter is embodied differently in each method: the maxi-
mum distance in the DbM, the radius of a circular structuring
element in the AbM, and the maximum matching distance in
both CbM and Pv. Apart from that common parameter, which
we refer to as t, the only parameter required in the experiment
is the maximum angular distance used by Estrada and Jepson,
which we set to π

2 (see [13] for more details).

A. First experiment

Our first inquiry relates to how similar it is, the evaluation
of a candidate image Ecd w.r.t. Egt using different matching
strategies. Hence, we measure the Pearson correlation of the
F0.5 evaluations after performing the matching with each of
the considered techniques. The set of images used in the
experiment are the ground truth (human-made) images in
the BSDS500 set (500 original images, 2696 ground truth
images [2]). Note that this dataset contains several human-
made solutions for each of the original images.

Table I displays the Pearson correlation between the values
of F0.5 in the one-to-one comparison of the images. The
results are displayed separately for the intra-class comparisons
(comparisons of non-identical images that are ground-truth to
the same image), and the the inter-class ones. The results are
discriminated in this way for two reasons. Firstly, because
the matching problem is completely different when a large
number of coincidences exists, as is the case of the intra-class
comparisons, from when very few elements are to be matched.
Secondly, since the number of inter-class comparisons is about
300 times greater than the number of intra-class ones, a joint
display would obfuscate the visibility of the latter3. We use
t = 2.5, t = 5 and t = 10 pixels, what corresponds to
around 0.5%, 1%, 2% of the length of the image diagonal,
respectively.

In Table I we observe that there exists a high correla-
tion between the values yielded by any pair of matching
strategies. This seems to be true for both intra- and inter-
class comparisons. Also, there is a slight decrease in the
correlation coefficients as t increases. This is natural, since the
opportunities for disparities in the matching of the boundaries

3Ignoring the comparison of images with themselves, there is around 3·104
intra-class and 107 inter-class pairs of images to be compared.
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Matching strs. Maximum matching distance
t = 2.5 t = 5 t = 10

DbM - AbM .994 / .993 .985 / .984 .974 / .966
DbM - CbM .999 / .996 .993 / .986 .974 / .966
DbM - Pv .999 / .997 .996 / .988 .987 / .974
AbM - CbM .992 / .994 .979 / .988 .955 / .971
AbM - Pv .994 / .995 .983 / .990 .972 / .982
CbM - Pv .999 / .999 .998 / .995 .991 / .989

TABLE I: Pearson correlation coefficient between the F0.5

values obtained in the comparison of the ground truth images
in the BSDS500 using four different strategies for boundary
matching. For each pair of strategies and maximum distance
between matched pixels, we list the correlation coefficients in
the intra-class (left) and inter-class (right) comparisons.

increase as t increases. We also observe that the pairs AbM-
CbM and AbM-Pv produce slightly lower correlations than the
other pairs. Still, the correlation is very high for any possible
combination of matching strategies and maximum matching
distance.

B. Second experiment

The results in Section III-A indicate that all of the match-
ing techniques lead to highly correlated results. The linear
correlation does not necessarily mean that the F0.5 values are
similar, but we can expect the results with a given matching
algorithm to be a scaled version of the others. However, quality
evaluation is often not about scoring, but about ranking and/or
picking the best contender. Although the results by different
matching algorithms are similar, would they lead to similar
rankings of boundary image? With this second experiment we
intend to shed light on this fact.

Let R be the set of triplets of unrepeated ground truth
images (A,B,C) in the BSDS500 Test Set. That is, every
triplet (A,B,C) so that A 6= B 6= C. Let q1 and q2 be any
two comparison measures.

The Equal-Sorting Ratio (ESR) between two measures q1
and q24 in a dataset R is

ESRR
q1,q2 =

|G|
|T|

, (4)

with G ⊆ R defined as

G = {r ∈ R |
q1(A,B) ≥ q1(A,C) iff q2(A,B) ≥ q2(A,C)} . (5)

The ESR is hence the proportion of triplets r = (A,B,C)
in R for which the measures q1 and q2 agree on whether B or
C is closer to A. Hence, it aims at measuring how consistent
would rankings be if created with different boundary matching
techniques.

4In fact, in this experiment, we have the same measure (F0.5) embodied
with different matching strategies.

Matching strs. Maximum matching distance
t = 2.5 t = 5 t = 10

DbM - AbM .955 / .960 .935 / .948 .922 / .926
DbM - CbM .981 / .973 .954 / .949 .908 / .914
DbM - Pv .990 / .977 .967 / .951 .932 / .926
AbM - CbM .952 / .961 .924 / .949 .890 / .918
AbM - Pv .953 / .964 .930 / .949 .915 / .932
CbM - Pv .986 / .983 .967 / .966 .934 / .949

TABLE II: Equal-Sorting Ratio (ESR) obtained in the compar-
ison of the ground truth images in the BSDS500 using four
different strategies for boundary matching. For each pair of
strategies and maximum distance between matched pixels, we
list the ratios for intra-class (left) and inter-class (right) triplets.

Table II displays the ESR for the intra- and inter-class
triplets in R separately. Note that in the BSDS500 Dataset
there are over 2 ·105 and 1010 of intra- and inter-class triplets,
respectively.

Table II displays the ESR for different pairs of matching
strategies, and exposes facts similar to those in Table I. The
ESR is very high for any possible combination of matching
strategies and maximum matching distance. As in the first
experiment, the increase of t comes coupled to a greater
divergence between the matching strategies (in this case, lower
ESR). It is also noticeable that the pairs AbM-CbM and AbM-
Pv again produce lower ESR values than any other pair. It is
worth mentioning that, in the case of inter-class comparison,
the pair DbM-AbM shows a significantly lower ESR, closer
to the two previous mentioned pairs of strategies. From the
results in Table II, we conclude that the rankings obtained
by different matching techniques are very similar for any two
matching strategies.

C. Third experiment

From the first and second experiments, we can infer that
the matching technique used to create the confusion matrix is
nearly irrelevant, since any choice leads to similar conclusions
in terms of amount of matched information (first experiment),
and also fine grained ranking (second experiment). However,
there is still a question to be posed, related to the validity
of the dataset used in the experiments, i.e. to the fact that
the comparisons are always carried out between human-made
images. Truly, the goal of the community is to produce meth-
ods whose results look like human-made images. Nevertheless,
this is not always true, and current boundary image evaluations
might involve images whose characteristics are different from
those in the ground truth of the BSDS500. The final goal in
quality evaluation is not to measure the quality of human-made
images, but that of computer-generated ones.

The first and second experiments have been repeated using a
set of boundary images generated with the Canny method [9].
That is, comparing the human-made images in the BSDS Test
Set with those generated automatically. The Canny method has
been selected because it is a good representative of boundary
detection methods based on gradient magnitude, a historically
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Fig. 1: Comparison of boundary image when produced by hand by human labellers or automatic methods. The upmost row
contains the original images in the BSDS. The second contains human-made ground-truth images. The two lowest rows contain
the result by the Canny method on two different configurations: σ1 = 1, σ2 = 1 and σ1 = 2, σ2 = 2, where σ = 1 and σ2
refer to the standard diviation for the smoothing filter and the differentiation filter, respectively.

significant class of methods. Even if it is not a state-of-the
art competitor in the BSDS, this fits our intention of using
not-very-human boundary images in the comparison. Using
more advanced boundary detection methods, whose results
look more like those by human labellers, would have led to the
replication of the results in the first and second experiments.
The Canny method is hence both significant for its position
in the literature and appropriate for the characteristics of its
results.

In this experiment, intra-class comparisons are those be-
tween images generated (either by humans or by the Canny
method) from the same original image. In the Canny method
we take σ1 ∈ {1, 2} for the Gaussian smoothing and σ2 ∈
{1, 2, 3} for the differentiation kernels. The binarization is
performed using NMS, hysteresis and the double-threshold
determination technique by Liu [30]. In this manner, the (six)
boundary images in each class are similar, while differing
in the position (and potentially, in the selection) of some
boundaries due to the variation in the filter sizes5. Moreover,
the intra-class divergences are due to the parameter setting,
not to human interpretation, what leads to a more realistic
scenario. In fact, the Canny method is preferred over other
alternatives for its simplicity, and the clear way in which it
manifests the most common errors in edge detection methods:
texture false detection, edge displacement, edge breaking, etc.

5This set of boundary images is, as well as the code of the comparisons,
available at [58].

Some examples of the differences between the human-made
images and those obtained with the Canny method are shown
in Figure 1. We can observe that, in textured areas, typically
tag no boundaries (first, second and third column from the
left), while the Canny method might do it. Also, salient,
but semantically unimportant structures, might also be tagged
by automatic, yet not by humans. Examples of such are the
windows on the building facades in the rightmost column of
Figure 1.

In the replication of the second experiment, triplets are
created so that (A,B,C), with A a human-made ground
truth and B, C automatically-generated images by the Canny
method. In this way we simulate a realistic setup in which two
computer-generated images need to be ranked taken a human-
made one as reference.

The results gathered in the comparisons are listed in Ta-
ble III. These results illustrate a rather acute decrease of cor-
relation and, very specially, of ESR. This indicates that, even if
results are highly correlated, the small perturbations in the F0.5

values might lead to different rankings. A direct hypothesis
which would explain all results is that such missortings are
decided by very small margins. Hence, we attempt to verify
it.

Let r = (A,B,C) be any triplet of images. According to the
definition of ESR, r is missorted by two comparison measures
q1 and q2 iff

(q1(A,B)− q1(A,C)) · (q2(A,B)− q2(A,C)) < 0.
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Matching strs. Maximum matching distance
t = 2.5 t = 5 t = 10

DbM - AbM .992 / .997 .982 / .990 .960 / .973
DbM - CbM .987 / .977 .956 / .900 .883 / .785
DbM - Pv .999 / .999 .991 / .983 .968 / .947
AbM - CbM .982 / .979 .933 / .921 .832 / .831
AbM - Pv .992 / .997 .967 / .986 .922 / .957
CbM - Pv .988 / .981 .979 / .955 .960 / .928

(a) Correlation coefficients, as in Table I

Matching strs. Maximum matching distance
t = 2.5 t = 5 t = 10

DbM - AbM .914 / .958 .870 / .932 .808 / .882
DbM - CbM .875 / .909 .784 / .770 .699 / .646
DbM - Pv .979 / .981 .873 / .909 .768 / .825
AbM - CbM .829 / .907 .732 / .784 .669 / .669
AbM - Pv .917 / .962 .810 / .909 .720 / .830
CbM - Pv .874 / .917 .895 / .847 .910 / .805

(b) Equal-Sorting Ratio (ESR), as in Table II

TABLE III: Repetition of the experiments in Tables I and II,
using different images. In this case the comparisons are run
between hand-made images in the BSDS500 Test Set and
automatically-generated boundary images. The second set is
created running the Canny method with 6 different parameter
settings on each of the (grayscale) images in the BSDS500
Test Set. For each pair of strategies and maximum distance
between matched pixels, we list the ratios for intra-class (left)
and inter-class (right) triplets.

Capitalizing on this idea, given two error measures q1
and q2, we define the Sorting Margin (SM) of a triplet
t = (A,B,C) as:

SMq1,q2(r) = sign(α) ·
√
|α| , (6)

with

α = (q1(A,B)− q1(A,C)) · (q2(A,B)− q2(A,C)). (7)

The SM is positive for well-sorted triplets, and becomes
negative in case of missorted ones. At the same time, SMs of
small absolute value indicate marginal missortings, while SMs
of large absolute value are due to severe differences between
q1 and q2. For every pair of comparison measure and matching
distance t we have computed the distribution of SM over the
triplets in R. Figure 2 displays the distribution of triplets with
negative SM for each combination of q1, q2 and matching
distance t. In this figure we can see how most of the missorted
triplets are so by a margin which rarely exceeds 0.03. Even in
the cases in which the ESR is relatively low, most of the SMs
are near zero. For example, in the case of CbM-DbM, with
t = 5, the 2.5 percentile stays in −0.049, being the lowest
0.025 percentile of the distribution represented in the figure.
Overall, it can be concluded that the SM is always relatively
low.

Three factors can, still, raise the SM. First, increasing the
matching distance t increases the SM, as seen in Fig. 2.
Second, interclass triplets (which are less representative for
real comparison) normally yield lower SM, meaning that more

realistic (intraclass) comparisons are missorted by smaller mar-
gins. Third, some combinations of distances clearly produce
greater ESR and SM than other. A paradigmatic case is that
of CbM-DbM, mostly due to the fact that CbM enforces a
1-to-1 correspondence of matched pixels, while DbM allows
any number of nearby pixels to be matched. This, in images
containing strong textures near actual edges, can lead to signif-
icant variability in the matching and, hence, in the measured
F . Such cases are, however, rare over a standard dataset as
the BSDS, and mostly produced by high-frequency gradient
characterization filters (in this experiment, the Canny method
with σ1 = σ2 = 1).

Figure 3 contains one of the triplets having a greatest SM in
the overall comparison. The triplet composed by those three
images produces, for example, a SM of −0.094 when using
the strategies DbM-CbM with matching distance t = 0.05.
It can be observed that the image recaps the characteristics
that can create a perfect storm in terms of discrepancies
between different matching strategies. First, there is a large
number of objects which human ignore due to contextual
facts. For example, the public leaning on the fence, which
is relatively salient, yet contextually unimportant. Also, it
combines two facts that create divergent results by different
matching strategies: (a) strong textures being detected near
edge structures, so that strategies as DbM or AbM will count
as TPs boundary pixels which will become FPs in CbM; (b)
multiple lines that are uniquely tagged by users as a single line,
yet being multiply labelled by automatic methods. Examples
of the former are the people leaning on fence, or the elements
in the cyclist bodies, while the latter manifests at the limits of
the cycling track.

Figure 4 contains a visual representation of the matching
by each strategy in the triplet featured in Fig. 3, setting the
matching distance to t = 5. Specifically, for each image and
matching method, two areas are highlighted for better illustra-
tion of the relevant characteristics of the images and the output
of the matching strategies. In the two upper rows we observe
how strong textures near human-labelled boundaries produce a
variable response depending on the matching strategies. This is
mostly due to the fact that CbM restricts the matching to be a
1-to-1 correspondence, which in this case results in judicious
responses. In the two lower rows we observe the behaviour
of the matching strategies when multiple boundaries appear.
While DbM or AbM validate all responses, CbM restricts the
matching (again) to a 1-to-1 correspondence. The behaviour by
DbM or AbM seems, in this case, more appropriate. Anyhow,
the combination of both types of situations lead to divergent
interpretations by different matching strategies.

In general, even if some triplets can show the problematics
seen in the triplet in Fig. 3, such cases are exceptional. In
order for a triplet to generate a SM under -0.03, a list of
circumstances must co-occur, including poor performance by
the automatic method, and adversary situations in the image
(as those seen in Fig. 4) leading to variable interpretation by
the matching algorithms. In general, most of the missorted
triplets produce SMs in the range [-0.03,0], what proves
that such co-ocurrences are rather unusual. This, additionally,
explains the results in Table III.
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Fig. 2: Percentual distribution of triplets with negative ESM when combining different matching strategies and matching
distances. The images used for the experiment are those in the BSDS500 Test Set, compared to automated Canny method-
generated solutions, as in Table III. The distribution is binned with 0.01 granularity. It is clearly seen that, even in case of
a large ESR (as is the case for CbM-DbM and AbM-CbM), the ESM is mostly in the range [0, 0.03]. Triplets for which the
ESM is greater than 0.05 are rather unusual.

.

Human-labelled ground truth Canny method, σ1 = 1, σ2 = 1 Canny method, σ1 = 2, σ2 = 3

Fig. 3: Ground truth image 226022 05 extracted from the BSDS500 Test Set, together with two automatically-generated images
using the Canny method. The parameter setting of the Canny method are specified for each image, with σ1 representing the
standard deviation of the regularization filter and σ2 represneting the standard deviation of the differentiation filter.

IV. DISCUSSION

In this work, we have reviewed the problem of boundary
matching for boundary image quality evaluation. This problem
can be seen as an instantiation of a frequent problem in image
processing, namely that of linear feature matching. Also, it can
be seen as a practical realization of some of the most studied
problems in pattern matching, i.e. as embodiments of the
assignment and the transportation problems. However, most
of practical solutions found in literature with similar goals are
unapplicable to the present task. We have proposed a novel
taxonomy for the different strategies present in the literature.
Finally, we have questioned whether the different strategies
might lead to significantly different (quantitative) results in
boundary quality evaluation. We have found that most of the

strategies lead to similar results in terms of evaluation, despite
their fundamental differences in inspiration and realization.
We report very high similarity in the results by different
matching strategies, with two factors negatively influencing
such similarity: (a) increasing maximum matching distance
t and (b) the boundary images to be rated/ranked contain
a large number of spurious responses near the boundaries.
Overall, for any fixed matching distance t and dataset, almost
all strategies hold very high correlation in terms of the F0.5

measure. Also, they all produce very similar rankings, and
most of the discrepancies are due to small margins which,
given the imperfect reliability of all matching strategies, should
not be taken into account.

With this analysis, we can state that none of the strategies
for boundary matching leads to significant differences for
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Fig. 4: Visual comparison of the matching made on the triplet of images in Fig. 3. Each image displays the result of the
matching, so that (a) green pixels are validated boundaries, (b) pink pixels are unmatched ones and (c) black pixels are the
boundaries in the ground truth..

boundary quality evaluation. Regarding the potential variation
in rankings when using one or the other, we consider that the
strategies might actually alter rankings. However, authors shall
understand that neither the matching strategies analyzed in this
work, nor any other boundary quality evaluation method, are
precise, reliable or exhaustive enough to produce trustworthy,
detailed rankings.
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a b s t r a c t

We address the issue of adapting optical images-based edge detection techniques for use in Polarimetric
Synthetic Aperture Radar (PolSAR) imagery. We modify the gravitational edge detection technique
(inspired by the Law of Universal Gravity) proposed by Lopez-Molina et al., using the non-standard neigh-
bourhood configuration proposed by Fu et al., to reduce the speckle noise in polarimetric SAR imagery.
We compare the modified and unmodified versions of the gravitational edge detection technique with
the well-established one proposed by Canny, as well as with a recent multiscale fuzzy-based technique
proposed by Lopez-Molina et al. We also address the issues of aggregation of gray level images before and
after edge detection and of filtering. All techniques addressed here are applied to a mosaic built using
class distributions obtained from a real scene, as well as to the true PolSAR image; the mosaic results
are assessed using Baddeley’s Delta Metric. Our experiments show that modifying the gravitational edge
detection technique with a non-standard neighbourhood configuration produces better results than the
original technique, as well as the other techniques used for comparison. The experiments show that
adapting edge detection methods from Computational Intelligence for use in PolSAR imagery is a new
field worthy of exploration.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Edge detection seeks to identify sharp differences automati-
cally in the information associated with adjacent pixels in an
image [1]. Edge detection for optical images is nowadays quite
an established field. It is traditionally carried out using
gradient-based techniques, such as the well-known Canny algo-
rithm [2]. Techniques based on Computational Intelligence have
also been proposed in the recent literature. Sun et al. [3] proposed
the gravitational edge detection method, inspired by Newton’s
Universal Law of Gravity. Lopez-Molina et al. [4] proposed a fuzzy
extension for this technique, allowing the use of T-norms, a large
class of fuzzy operators; they also proposed small modifications
in the basic formalism (see Section 3). Danková et al [5] proposed
the use of a fuzzy-based function, the F-transform; the original
universe of functions is transformed into a universe of their skele-
ton models (vectors of F-transform components), making further

computations easier to perform. Barrenechea et al. [6] proposed
the use of interval-valued fuzzy relations for edge detection, using
a T-norm and a T-conorm to produce a fuzzy edge image, that is
then binarized. This approach was extended by Chang and Chang
[7]. First of all, two new images are created—one rather dark and
the other rather bright—by applying two different parameters on
the linear combinations of the images obtained using min and
max operators, respectively. Then, the fuzzy edge image is created
by the difference between these two new images. Another recent
approach from Computational Intelligence is the multiscale edge
detection method proposed by Lopez-Molina et al. [8], using
Sobel operators for edge extraction and the concept of Gaussian
scale-space.

SAR sensors are not as adversely affected by atmospheric condi-
tions and the presence of clouds as optical sensors. Moreover,
unlike the optical counterparts, SAR sensors can be used at any
time of day or night. For these reasons, remote sensing applications
using SAR imagery have been growing over the years [9]. SAR
images, however, contain a great amount of noise, known as
speckle, that degrades the visual quality of the images. Caused by
inherent characteristics of radar technology, this multiplicative

http://dx.doi.org/10.1016/j.knosys.2015.07.030
0950-7051/� 2015 Elsevier B.V. All rights reserved.
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non-Gaussian noise is proportional to the intensity of the received
signal.

Contrary to what happens with optical images, there are still
few algorithms specifically dedicated to SAR images [10]. One
interesting means to create edge detection algorithms for SAR
images is to modify those created for optical images. However,
the use of these methods on SAR images is not straightforward,
due to speckle. One can either adapt optical image techniques to
meet SAR data properties, or first preprocess the images using fil-
ters and then apply the original optical techniques.

The main purpose of our study is to investigate the application
of the gravitational edge detection, Here we modify the original
3 � 3 window: the value in each cell in the window is no longer
the original one, but the aggregation of a set of neighbouring pix-
els, according to the larger 9� 9 neighbourhood configuration pro-
posed by Fu et al. [10]. We propose a typology of experiments to
study the behaviour of the modified edge detection method, con-
sidering polarization, image aggregation, and image binarization.
We focus on the use of the following processes: DAB (edge
Detection on non-binary images, Aggregation of the resulting
non-binary images, Binarization) and ADB (Aggregation of
non-binary images, edge Detection on the resulting non-binary
image, Binarization).

We also investigate the use of noise-reduction filters in prepro-
cessing the images, by making use of the well-known Enhanced
Lee filter [11] and a filter recently proposed by Torres et al. [12].

da Silva et al. [13] describe a classification experiment, based on
a full polarimetric image from an agricultural area in the Amazon
region in Brazil. In that study, the authors estimated the parame-
ters for probability distributions associated to each of the classes
of interest, such as water and different types of vegetation and
their phenology. They assessed their results in an image formed
by a mosaic of the classes, with pixel values generated using the
parameters found for each class. We apply all techniques
addressed in this study on twenty simulated mosaics, using the
parameters estimated in [13], considering amplitude images
derived from different polarizations. We assess the quality of the
results, according to Baddeley’s Delta Metric (BDM) [14].

We also apply the methods on the real images, but assessment
is only visual. We compare our results with those produced by the
use of Canny’s algorithm [2] and the recently proposed multiscale
method by Lopez-Molina et al. [8].

The present study is an extended version of [15], in which some
of the main ideas of this paper were first delineated. However, the
present study and [15] differ in the scope of the proposed approach
as well as in the reliability of the results. Indeed, in [15], only one
simulated image was used in the experiments and only Canny’s
technique was compared to its results. Moreover, in the previous
paper we only addressed the edge detection of the image resulting
from the aggregation of the three simulated polarization images. In
our first paper only ADB was addressed; edge detection on the
individual polarization images as well as DAB strategy were not
considered.

The results from our current study show that adapting edge
detection methods from Computational Intelligence to use in radar
imagery is a new field worthy of exploration. In particular, our
experiments show that modifying the gravitational method with
Fu’s 9� 9 neighbourhood produces better results than the unmod-
ified method. They also show the importance of filtering when
adapting edge detection techniques from optical to radar images.

2. Basic concepts on SAR images

Optical and SAR sensors measure the amount of energy
reflected by a target in various bands of the electromagnetic

spectrum. The bands employed in most imaging radars use
frequencies in the 2 MHz to 12.5 GHz range, with wavelengths
ranging from 2.4 cm to 1 m. In this study, we used only the
L-band with wavelengths of [30 cm,1 m] and frequencies of
[1 MHz,2 GHz].

SAR systems generate the image of a target area by moving
along a usually linear trajectory, and transmitting pulses in lateral
looks towards the ground, in either horizontal (H) or vertical (V)
polarizations [16], respectively denoted as H and V (see Fig. 1). In
the past, the reception of the transmitted energy was made solely
on the same polarization of the transmission, generating images in
the HH and VV polarizations. Currently, with the advent of polar-
ized and fully polarimetric radars (PolSAR – Polarimetric Synthetic
Aperture Radar), information about intensity and phase of the cross
signals are also obtained, generating images relating to HV and VH
polarizations. Usually, applications only consider the HH, VV, and
HV polarizations.

The imaging can be obtained by gathering all the intensity and
phase information data from the electromagnetic signal after it has
been backscattered by the target in a given polarization [18]. Each
polarization in a given a scene generates a complex image, which
can be thought of as two images, containing the real and imaginary
values for the pixels, respectively.

We denote the complex images from HH, VV, and HV polariza-
tions as SHH; SHV , and SVV . Multiplying the vector ½SHH SHV SVV � by its

transposed conjugated vector S�HH S�HV S�VV

� �t , we obtain a 3� 3
covariance matrix. The main diagonal contains intensity values;
taking their square root, we obtain amplitude values. We denote
the intensity images by IHH; IHV , and IVV and their corresponding
amplitude counterparts by AHH; AHV , and AVV . In this paper, we only
considered the amplitude images, such as those depicted in Fig. 2.

Speckle noise is multiplicative, non-Gaussian, and is propor-
tional to the intensity of the received signal. Speckle degrades
the visual quality of the displayed image by sudden variations in
image intensity with a salt and pepper pattern, as can be seen in
Fig. 2. It can be reduced with multiple looks in the generation of
the complex images, causing degradation in spatial resolution.
Another way to reduce noise is to employ filters, as will be dis-
cussed in the next section.

In SAR image classification, one often uses samples from the
classes in order to estimate the parameters of the distribution
believed to underlie each class. Synthetic images can then be cre-
ated using Monte Carlo simulation by taking the realization of
the random variable associated to the class of each classified pixel.
This artifice is useful to choose the most apt classifier for a given
application: instead of relying solely on the original image, one
takes the classifier that obtains the best average accuracy on the
set of synthetic images. This methodology can also be used in other
tasks, such as edge detection.

Fig. 1. Horizontal and vertical signal polarizations transmitted by an antenna.
Source: [17].
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3. Related work

One of the most successful edge detection algorithms for optical
images was proposed by Canny [2], based on the following guide-
lines: (i) the algorithm should mark as many real edges in the
image as possible; (ii) the marked edges should be as close as pos-
sible to the edge in the real image; (iii) a given edge in the image
should only be marked once; and (iv) image noise should not
create false edges. It makes use of numerical optimization to derive
optimal operators for ridge and roof edges. The usual implementa-
tion of this method uses a 3� 3 neighbourhood.

A more recent multi-scale edge detection method was proposed
by Lopez-Molina et al. [8], using Sobel operators for edge extrac-
tion and the concept of Gaussian scale-space. More specifically,
the Sobel edge detection method is applied on increasingly
smoother versions of the image. Then, the edges which appear
on different scales are combined by performing coarse-to-fine edge
tracking.

The gravitational edge detection approach was first proposed by
Sun et al. [3] and applied to optical images. It is based on Newton’s
Universal Law of Gravity, described by Eq. (1):

f 1;2 ¼ G�m1 �m2

k~rk2 �
~r
k~rk ; ð1Þ

where m1 and m2 are the masses of two bodies;~r is the vector con-

necting them; ~f 1;2 is the gravitational force between them; k � k
denotes the magnitude of a vector; and G is the gravitational con-
stant. In the analogy proposed by Sun et al. [3]; the bodies are the
gray level values of pixels in a grid; G is a function of the values
of the pixels in a given window; the distance between any two adja-
cent pixels is equal to 1; and, when computing the resulting force of
the pixel in the center of a window; the pixels outside that window
are considered negligible. Lopez-Molina et al. [4] extended this
technique, proposing the use of a Triangular Norm [19] in place of
the product between the two masses,1 by first normalizing the gray
level values to ½0;1�. The authors treat edges as fuzzy sets for which
membership degrees are extracted from the resulting gravitational
force on each pixel. They take G as a normalization constant, calcu-
lated so as to guarantee that the resulting forces lie in [0,1]. Also, in
the normalization of gray level values into [0,1], a small value dq is
added beforehand to both the numerator and denominator so as
avoid pixels with value 0, which would have too strong an effect
on neighbouring pixels. The authors used 3� 3 and 5� 5 windows
as well as several prototypical triangular norms.

The so-called Lee (or sigma) filter introduced in 1983 [20], is
still in use today due to its simplicity, its effectiveness in speckle

reduction, and its computational efficiency. It is based on the fact
that, under Gaussian distribution, approximately 95:5% of the
probability is concentrated within two standard deviations from
the mean. The filter estimates the mean and the standard deviation
of samples around each pixel, and only those values within this
interval are used to compute the local mean. Lopes et al. [11]
proposed an adaptive version for this filter, here referred to as
‘‘Enhanced Lee’’.

Torres et al. [12] recently proposed a nonlocal means approach
for PolSAR image speckle reduction based on stochastic distances;
the method can be tailored to any distribution, both univariate of
multi-variate. It consists of comparing the distributions which
describe the central observation for each pixel, and each of the
observations which comprise a search region. The comparison is
made through a goodness-of-fit test, and the p-value of the test
statistic is used to define the convolution matrix which will define
the filter: the higher the p-value the larger the confidence and,
thus, the importance, each observation will have in the convolu-
tion. In Torres et al.’s proposal, the tests are derived from h–/
divergences between multi-look scaled complex Wishart distribu-
tions for fully PolSAR data [21]. Their results are competitive with
classical and advanced polarimetric filters, with respect to usual
quantitative measures of quality.

Fu et al. [10] proposed a statistical edge detector suitable for
SAR images which uses the squared successive difference of aver-
ages to estimate the edge strength from the sliding window. An
interesting feature of this paper is the proposal of a specific type
of 9� 9 neighbourhood, shown in Fig. 3. In a previous paper [15],
we proposed a modification of the gravitational approach using
Fu et al.’s neighbourhood: given a central pixel in a 3� 3 window
in an image, the values considered for the surrounding pixels in the
window are no longer the ones in the original image, but the mean
values in this new configuration.

AHH AHV AV V

Fig. 2. Amplitude images for polarizations HH, VV, and HV from the same scene.

Fig. 3. Standard 3� 3 and Fu’s neighbourhood [10].

1 Triangular norm operators are mappings from ½0;1�2 to ½0;1�, that are commu-
tative, associative, monotonic, and have 1 as neutral element.
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4. Materials and methods

We compare the edge detection methods proposed by Canny [2]
and by Lopez-Molina et al. [8] to the modified gravitational
approach using the product T-norm, followed by thresholding.
The effect of preprocessing the images through filtering is also
studied, using the filter described by Torres et al. [12] and the
Enhanced Lee filter [11]. We study the behaviour of
Lopez-Molina’s method with the usual 3� 3 window as well as a
modified version of this approach, proposed in a previous paper
[15], involving the neighbourhood proposed by Fu et al. [10].

The input for Canny’s and Lopez-Molina’s edge detector are
images in, respectively, f0; . . . ;255g and ½0;1�. Image values are,
thus, mapped into these sets prior to edge detection. For the
Lopez-Molina methods (the original and modified versions), we
normalize further to ½0;1�, using dq ¼ 1 and making
q0 ¼ ðqþ 1Þð255þ 1Þ�1, where q and q0 are the old and new value
of a given pixel, respectively.

4.1. Working image

We apply the methods on data derived from a fully polarimetric
image, presented by da Silva et al. [13], from an agricultural area in
the Amazon region in Brazil (see Fig. 4). The authors describe a
classification experiment using classes of interest from that area,
such as water and different types of crops and natural vegetation,
at different stages of growth. Samples from the classes from band L
are used to estimate the parameters of the complex Wishart distri-
bution associated to each class. The results are assessed using a

mosaic with the classes that was created using the derived
Wishart distributions. Fig. 5 illustrates the approach. For our study
we apply the edge detection methods on twenty independently
simulated mosaics amplitude images, using the parameters esti-
mated in [13] to assess the quality of the methods.

4.2. Quality assessment

The quality of the results is assessed by the Baddeley’s Delta
Metric (BDM) [14], by comparison with what would be the perfect
result, discarding those pixels close to the outer frame.

Let x and y be two binary images, seen as mappings from K to
½0;1�, where K is a set of sites arranged in a grid (positions). Let q
be a metric on K, such as the Euclidean distance, and dði;AÞ be the
distance between a site i and a set A # K, defined as

dði;AÞ ¼ min
j2A

qði; jÞ:

Let bðxÞ ¼ fi 2 Kjxi ¼ 1g denote the set of foreground sites in x.
BDM between x and y, denoted as Dp;w:ð:; :Þ, is then defined as

Dp;wðx; yÞ ¼
1
jKj
X
i2K
jwðdði; bðxÞÞ �wðdði; bðyÞÞjp

 !1
p

;1 6 p 61

ð2Þ

where w is a strictly increasing concave function satisfying
wð0Þ ¼ 0. Here we use wðtÞ ¼ t and p ¼ 2, as in [4].

Throughout the text, we display BDM results in ½0;100� instead
of ½0;1�, for the sake of readability.

Fig. 4. Images derived from a scene in Bebedouro in Brazil (not registered): (a) Landsat RGB composition and (b) SAR L-band RGB composition. Source: [13].

Fig. 5. Images derived from a scene in Bebedouro in Brazil: (a) training samples used to generate Wishart distributions and (b) synthetic mosaic images generated using the
Wishart distributions estimated in [13] from image samples. Source: [13].
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5. Proposed methodologies

Edge detectors use a window around a center pixel to verify
whether that pixel belongs to an edge or not. When adapting opti-
cal image edge detectors to radar imagery, we have to find the
means to deal with speckle. The main contribution of this study
is to modify the original 3� 3 window used by the edge detection
method proposed in [4] for use in radar imagery such that the
value in each cell in the window is no longer the original one but
the aggregation of set of neighbouring pixels, according to a larger
9� 9 non-standard neighbourhood proposed by Fu et al. [10]. We
here investigate this particular combination of method and neigh-
bourhood, but the same procedure can be applied using other edge
detection methods and/or non-standard filters.

Frequently, a single band is used in edge-detection, resulting in
a gray level-image that is then binarized at some point (the usual
implementation of some methods, like Canny’s, already involve a
binarization step). In radar imagery, very often one deals with
more than one band at the same time (e.g. intensity images coming
from different polarizations, or complex images in the fully polari-
metric case), aiming at using the richness of information to com-
pensate for the speckle noise. Therefore, the question of when to
aggregate results has to be addressed. One may, for instance, first
aggregate the bands and then apply the edge detector on the
aggregated image, or else apply the edge detector on the individual
bands and then aggregate the edge images. These two methods
usually yield different results.

Here, we propose a typology for experiments using radar ima-
gery, considering different orderings of three steps: edge detection
on gray level images, binarization of gray level images, and aggre-
gation of results. In the aggregation step, the input may be either
gray level or binary images, depending on whether the binarization
is made immediately after edge detection or not. Three strategies
can then be envisaged to perform edge detection experiments with
radar images:

� DAB (edge Detection on non-binary images, Aggregation of the
resulting non-binary images, Binarization).
� ADB (Aggregation of non-binary images, edge Detection on the

resulting non-binary image, Binarization).
� DBA (edge Detection on non-binary images, Binarization,

Aggregation of the resulting binary images).

Options ABD, BAD and BDA are not considered, since that would
mean applying edge detectors on the binary images.

In this work, we focus on the DAB and ADB strategies. For both
of them, we use the arithmetic mean to aggregate gray level
images. Strategy DBA, involving the aggregation of binary images,
is left for future study.

When no aggregation is considered, the strategies are reduced
to only edge detection and binarization. For example, for the HH,
HV and VV polarizations, we obtain strategies DB-HH, DB-HV and
DB-HH. Note that some methods already incorporate the binariza-
tion step in the edge detector. That is for instance the case of all
methods discussed previously. However, to be consistent with
the notation, we will denote by ADB the strategy in a method that
includes binarization, such as Canny’s and the multi-scale method,
when it is applied to the gray level image resulting from the aggre-
gation of the images from the HH, HV and VV polarizations.

6. Experimental results

The output of the Lopez-Molina gravitational method is an
image with values in ½0;1�. In order to obtain binary indicators of
edges, the authors use a hysteresis transformation. Here, we use

a simple threshold and search for the value in the ½0:05;0:15� inter-
val which produces the best BDM. For Canny’s method, we search
for the best value for the noise standard deviation parameter r in
the interval ½0:3;1:5�. The intervals above for both Canny and
Lopez-Molina are the ones that presented the best results by
trial-and-error. The following parameters were used for the
Lopez-Molina multi-scale method, as suggested in [8]: dr ¼ 0:25;
r2 f0:50;0:75;1:00;1:25;1:50;1:75;2:00;2:25;2:50;2:75;3:00;3:25;
3:50;3:75;4:00g.

We applied two filters Torres et al. [12] and Enhanced Lee [11]
on intensity values, which were then transformed in amplitude
before further processing.

Tables 1–4 show the results for BDM mean and standard devi-
ation after applying four methods to twenty simulated mosaic
images: Canny’s method, Lopez-Molina et al.’s multi-scale method,
Lopez-Molina et al.’s original gravitational method, and
Lopez-Molina et al.’s method modified using Fu’s 9� 9
neighbourhood.

We see that the best BDM average values were obtained with
the use of Lopez-Molina et al.’s gravitational method modified by
Fu’s neighbourhood, using the ADB and DAB strategies, both
preprocessed with the Enhanced Lee filter. Both are significantly
higher than the other procedures.

Table 3
Average BDM results for the gravitational method; with standard deviation inside
parentheses.

Strategy No filter Torres filter Enh. Lee filter

DB-HH 33.89 (1.98) 26.61 (2.00) 38.97 (0.79)
DB-HV 31.95 (0.46) 27.14 (1.22) 32.26 (2.78)
DB-VV 32.35 (1.47) 28.95 (0.95) 43.65 (1.13)
DAB 29.26 (1.62) 25.91 (1.55) 27.71 (2.62)
ADB 31.50 (0.82) 26.63 (1.27) 18.24 (3.41)

Table 4
Average BDM results for the gravitational method modified by Fu’s neighbourhood,
with standard deviation inside parentheses.

Strategy No filter Torres filter Enh. Lee filter

DB-HH 25.27 (0.76) 22.18 (0.48) 17.79 (3.05)
DB-HV 26.48 (1.00) 24.21 (0.65) 18.40 (5.75)
DB-VV 21.41 (1.97) 18.14 (0.77) 17.83 (2.54)
DAB 22.67 (2.29) 18.97 (1.62) 5.43 (1.68)
ADB 23.80 (2.23) 22.74 (0.50) 5.16 (0.36)

Table 2
Average BDM results for the multi-scale method, with standard deviation inside
parentheses.

Strategy No filter Torres filter Enh. Lee filter

DB-HH 28.23 (0.89) 28.00 (0.93) 25.36 (2.11)
DB-HV 28.34 (1.13) 24.55 (2.97) 19.56 (2.36)
DB-VV 25.62 (1.10) 28.42 (0.56) 28.89 (2.25)
ADB 25.15 (3.23) 24.37 (1.52) 20.71 (3.97)

Table 1
Average BDM results for Canny’s method, with standard deviation inside parentheses.

Strategy No filter Torres filter Enh. Lee filter

DB-HH 26.72 (1.22) 23.40 (1.92) 28.85 (1.86)
DB-HV 30.70 (1.39) 26.74 (1.33) 66.40 (0.42)
DB-VV 29.81 (2.17) 26.28 (1.09) 24.83 (1.98)
ADB 27.87 (1.16) 48.16 (0.003) 30.24 (1.20)
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In Table 1, we see that filtering did not have a significative
impact on Canny’s detector. The same is true, to a lesser degree,
for most results of the multi-scale and (unmodified) gravitational
methods, as can be seen in Table 2 and 3. In these methods, there
is a slight advantage in preprocessing the images using the
Enhanced Lee filter. However, filtering has an impressive effect
on the Lopez-Molina gravitational method modified with Fu’s
neighbourhood. In particular, the best results are obtained for
strategies DAB and ADB with preprocessing with the Enhanced
Lee filter.

Fig. 6 shows the negative images corresponding to the best
results, according to BDM, obtained by the edge detection methods
and the filtering strategies with the best average values; note that
the image boundaries are depicted only for illustrative purposes.
We see that according to BDM the best binary image (depicted in
Fig. 6b) presents little noise and most of the regions are separated,
even though the lines are rather thick. We also see that BDM was
able to distinguish the best image from the others.

Fig. 6b shows the best results from the methods come from
filtered images, which raises the question of how important pre-
processing by filtering is. In what follows we discuss the details
of the gravitational method using the original 3� 3 and Fu’s
9� 9 neighbourhood in relation to filtering. We take the simula-
tion that obtained the best BDM results for each type of neighbour-
hood. We see in these examples, that filtering does, indeed,
ameliorate the results for all methods.

Fig. 7a–c respectively show that: using the 3� 3 neighbourhood
for the original gravitational method, the unfiltered image is very
noisy; the Torres filter reduced the noise and separated the
regions; and the Lee filter detected false edges. In Fig. 8, we see that
Fu’s 9� 9 neighbourhood detected almost all the edges, especially
when using Lee’s filter. Filtering for the modified method pre-
sented a larger trade-off between detection of edges and reduction
of noise (some edges were detected using Torres filter with an
increase of noise when compared to the unfiltered image).

When we compare the results in Figs. 7 and 8 we see that the
gravitational method modified with Fu’s 3� 3 neighbourhood
clearly produced better results than the method with the original
3� 3 window, which agrees with the BDM evaluation.

Figs. 9–11 show the best edge detection results obtained for the
Bebedouro SAR image in terms of visual analysis, with the applica-
tion of the Enhanced Lee filter, for the parameterizations used here.
The figures present the results for HV polarization; in general, HH
(respec. VV) polarization produced images with more noise
(respec. less information) than HV. Figs. 10 and 11, respectively,
show the results of the application of ADB and DAB aggregation

(a) (b) (c)

Fig. 8. Results for the gravitational method modified with Fu’s neighbourhood, on a single simulated image from ADB: (a) no filtering (BDM = 23.80), (b) Torres (BDM = 23.76)
and (c) Enh. Lee (BDM = 3.05).

(a) (b) (c)

Fig. 7. Results for the gravitational method with original 3 � 3 window, on a single simulated image from ADB: (a) no filtering (BDM = 31.90), (b) Torres (BDM = 27.73) and
(c) Enh. Lee (BDM = 10.96).

(a) (b)

(c) (d)

Fig. 6. Best BDM results obtained from the best methods (average): (a) Canny (DB-
HH, with Torres filtering, BDM = 18.51), (b) multi-scale (DB-HV, with Enh. Lee
filtering, BDM = 14.94), (c) gravitational (ADB with Enh. Lee filtering, BDM = 10.96)
and (d) gravitational and Fu (ADB with Enh. Lee filtering, BDM = 3.05).
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strategies. ADB in general produced binary images with very little
information for all methods; the decrease of noise in relation to the
individual polarizations does not compensate the lack of

information. In general, the DBA aggregation method produced
results with less noise for the gravitational method, with and with-
out modification, than the results obtained with the individual

Fig. 9. HV Bebedouro binary images, with Enh. Lee filter: the first row depicts results obtained using the Canny and the Multi-scale methods; and the second row depicts
results obtained using the original Gravitational method and its modification with Fu’s neighbourhood, (the latter two methods use binarization threshold = .2).

Fig. 10. ADB Bebedouro binary images, with Enh. Lee filter: the first row depicts results obtained using the Canny and the Multi-scale methods; and the second row depicts
results obtained using the original Gravitational method and its modification with Fu’s neighbourhood, (the latter two methods use binarization threshold = .2).
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polarizations. The best results for the gravitational method, both
with and without modification with Fu’s neighbourhood, were
obtained with thresholds around the same interval that produced
the best results using the mosaics.

7. Conclusions

Contrary to what happens with optical imagery, few algo-
rithms are specifically dedicated to PolSAR image edge detection
[10]. One interesting means to create edge detection algorithms
for SAR images is to modify those created for optical images, in
such a way as to reduce the non-Gaussian noise. Here we have
investigated the modification of a method issued from
Computational Intelligence for optical imagery, the gravitational
edge detection method extension proposed in [4] (see also [3]),
to Synthetic Aperture Radar imagery. In order to deal with
speckle, we modified the gravitational method with a
non-standard 9� 9 neighbourhood configuration proposed by Fu
et al. [10]: considering a 3� 3 window centered around a given
pixel, the value of any pixel in the window becomes the average
value of the region associated to that pixel in the non-standard
neighbourhood configuration.

Considering that SAR imagery has different polarizations, and
that their joint use may compensate for the presence of speckle,
we also proposed a typology of experiments regarding aggregation
of these images. In particular, we addressed two procedures: DAB
(edge Detection on non-binary images, Aggregation of the resulting
non-binary images, Binarization) and ADB (Aggregation of
non-binary images, edge Detection on the resulting non-binary
image, Binarization).

For means of comparison, we also addressed the use of two
other edge detector methods stemming from the realm of optical
images: the traditional method proposed by Canny [2] and a recent
multi-scale one coming from Computational Intelligence, based on

Sobel operators for edge extraction and the concept of Gaussian
scale-space [8].

We studied the effect of filtering the images prior to edge
detection by two procedures: Enhanced Lee [11] and Torres et al.
[12] filters. The methods were applied on twenty samples of a
scene, which were simulated using Wishart distributions derived
from a fully polarimetric image [13]. Using both visual inspection
and the Baddeley Delta metric [14] we verified that the combina-
tion with the Lopez-Molina technique with the 9� 9 neighbour-
hood proposed by Fu et al. [10] and preprocessing with the
Enhanced Lee filter produced the best results.

This paper is an extended version of [15]; together, these
studies represent a first step towards investigating the use of edge
detection methods derived from Computational Intelligence
techniques for use in SAR images. The main implication of our
results is that the joint use filtering and neighbourhood modifica-
tion on those methods, as well as the use of aggregation of the
individual polarization images, are able to deal with speckle, which
is crucial when detecting edges in radar imagery.

Future work includes modifying the Lopez-Molina method with
other types of neighbourhoods, such as Nagao–Matsuyama [22]; to
verify the performance of other T-norms than the product to calcu-
late the gravitational forces; and to perform preprocessing with
other filters. We also intend to investigate the use of the proposed
procedure with other edge detection methods, such as the one
described in [23], involving fuzzy sets.

We would like to better address the issue of aggregation. Here
we have dealt exclusively with the aggregation of non-binary
images, using the arithmetic means in strategies DAB and ADB.
In the future, we intend to explore aggregation of the images
considering families of operators in general, such as weighted
means, ordered weighted means (OWA), T-norms, and T-conorms
[19]. Also, we intend to study other operators than the average
to perform aggregation of pixel values in regions of a non-standard
neighbourhood.

Fig. 11. DAB Bebedouro binary images, with Enh. Lee filter: the first and second rows respectively depict results using the original Gravitational and Gravitational modified
with Fu’s neighbourhood, the first and second columns respectively depict results obtained with binarization thresholds .1 and .2.
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Moreover, we intend to assess the results using other methods
than BDM, such as the one proposed recently by Frery et al. [24].
We would also like to draw comparisons with other edge detection
algorithms, such as the one proposed by Fu in 2012 [10].

Last but not least, we intend to verify the use of the approach
considering fully polarimetric images (PolSAR), instead of just
intensity images. In this case, Torres filter, designed specifically
for PolSAR images, can be more adequately employed.
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